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ABSTRACT
Large highly distributed data sets are poorly supported by
current query technologies. Applications such as endsystem-
based network management are characterized by data stored
on large numbers of endsystems, with frequent local updates
and relatively infrequent global one-shot queries. The chal-
lenges are scale (103 to 109 endsystems) and endsystem un-
availability. In such large systems, a significant fraction of
endsystems and their data will be unavailable at any given
time. Existing methods to provide high data availability
despite endsystem unavailability involve centralizing, redis-
tributing or replicating the data. At large scale these meth-
ods are not scalable.

We advocate a design that trades query delay for com-
pleteness, incrementally returning results as endsystems be-
come available. We also introduce the idea of completeness
prediction, which provides the user with explicit feedback
about this delay/completeness trade-off. Completeness pre-
diction is based on replication of compact data summaries
and availability models. This metadata is orders of magni-
tude smaller than the data.

Seaweed is a scalable query infrastructure supporting in-
cremental results, online in-network aggregation and com-
pleteness prediction. It is built on a distributed hash table
(DHT) but unlike previous DHT based approaches it does
not redistribute data across the network. It exploits the
DHT infrastructure for failure resilient metadata replication,
query dissemination, and result aggregation. We analyti-
cally compare Seaweed’s scalability against other approaches
and also evaluate the Seaweed prototype running on a large-
scale network simulator driven by real-world traces.

1. INTRODUCTION
Querying endsystem data on large networks such as data

centers, enterprise networks, or the Internet requires a scal-
able distributed query infrastructure. Recent research has
looked at building such infrastructures [1, 16, 22, 31, 32].
The challenges are availability and scalability. A significant
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fraction of endsystems will be unavailable at any given time
due to network outages, endsystem failures, and scheduled
downtimes, which means the system must tolerate the un-
availability of some fraction of the data. Additionally, any
query infrastructure must scale, i.e. the bandwidth over-
heads of query execution and background maintenance must
not become prohibitive at large scale.

Currently proposed solutions to the problem of data un-
availability require centralization, redistribution, or replica-
tion of the data. These techniques do not scale well with
data size per endsystem or data update rate per endsystem.
An example of such a system is PIER [16], where every
endsystem periodically re-injects all its tuples into the net-
work, requiring network bandwidth linear in the product of
network size, per-endsystem data size, and re-injection rate.
We believe that storing data anywhere but on the endsystem
where it is produced fundamentally limits scalability.

In this paper we present Seaweed, a scalable query in-
frastructure which solves the problem of data unavailabil-
ity by allowing queries to persist until unavailable data be-
comes available. By querying data entirely in-situ, Seaweed
scales with network size, data size, and data update rate.
Query results are updated incrementally with completeness
improving over time, where completeness is defined as the
ratio of tuples processed to the total number of tuples rel-
evant to the query. Seaweed addresses data unavailability
through an explicit trade-off between completeness and de-
lay, by providing the user with estimates of current com-
pleteness and predictions of future completeness.

1.1 Our Contributions
Previous approaches have addressed the problem of data

unavailability using data replication which fundamentally
limits scalability. We introduce the novel concept of delay
aware querying with completeness prediction. Delay aware
querying is scalable and solves the problem of data unavail-
ability by explicitly trading query delay for completeness,
exposing to the user a prediction of the expected delay to
reach any given level of completeness. This is achieved by es-
timating the amount of data relevant to a query held by each
currently unavailable endystem, and also predicting when it
will next become available. This in turn requires replication
of a small amount of per-endsystem metadata consisting of
a compact data summary and an availability model.

We describe the Seaweed architecture which uses an ap-
plication level overlay or distributed hash table (DHT). Un-
like other DHT-based approaches, Seaweed does not use the
DHT to replicate or redistribute the dataset but to replicate
the metadata. Data is queried in-situ and Seaweed leverages
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the overlay structure to build efficient, failure-resilient pro-
tocols for query dissemination and result aggregation.

We show through analytic models that Seaweed scales bet-
ter with network size, data size, and data update rate than
approaches based on data replication, centralization, or re-
distribution. We also show through simulation results that
Seaweed efficiently disseminates queries, generates accurate
completeness predictors, and aggregates query results.

1.2 Applications
Many applications are enabled by scalable query infras-

tructures. We are particularly interested in endsystem and
network management at different scales. At the small scale
many Internet services, such as Google, Amazon and MSN,
run multiple data centers at geographically distributed lo-
cations, each containing thousands of endsystems. Each
endsystem can generate large amounts of fine-grained per-
formance data of interest to human operators and auto-
mated support systems. Effective analysis and diagnosis
based on this data requires distributed querying support.

At the next order of magnitude, we have large enterprise
networks with hundreds of thousands of endsystems. The
original motivation for Seaweed was to support Anemone,
an endsystem based network measurement and monitoring
system [26] for such enterprise networks. Endsystems in
enterprise networks can capture and store data about local
resource usage, network activity, running applications, etc.
For example, Anemone can store network information at the
per-flow and per-packet level. This data can then be queried
by the network operator for aggregate statistics, diagnostics,
or historical exploration.

Finally, at Internet scale, applications such as Dr. Wat-
son [25] report crash dump data from millions of Windows
machines worldwide to a single centralized site for subse-
quent analysis. The amount of data uploaded is limited
by available bandwidth: an in-situ approach would allow
queries over a richer dataset with lower network overheads.

These applications are characterized by their scale, as well
as the need to support one-shot queries and not just stream-
ing queries. Simple streaming queries might be used to mon-
itor aggregate statistics over time. However, when an oper-
ator observes an unexpected reading they need to perform
one or more retrospective one-shot queries over the stored
data to diagnose the issue. If the issue being diagnosed re-
lates to availability (e.g. “why did I get no results from rack
10 between 8:30 and 9:00?”), then the streaming results will
provide little helpful information. Hence there is a need for a
scalable, efficient infrastructure supporting one-shot queries
on distributed stored data.

1.3 Limitations
We restrict Seaweed queries to be either local or read-

only: Seaweed does not support distributed updates. Stan-
dard techniques for distributed updates such as distributed
locks and 2-phase commit do not scale well, and our de-
sign philosophy was to eschew any functionality that would
limit scalability. Our current prototype also does not sup-
port distributed joins as they are difficult to make scalable.
For example, joins in PIER [16] can require cross-network
bandwidth linear in the size of the joined data tables. By
restricting read-only queries to be single-table and updates
to be single-endsystem, we gain scalability at the cost of re-
stricted query functionality. This seems an acceptable trade-

off for the applications we have examined. Functionality
such as distributed updates or joins over small numbers of
endsystems could be provided in a layer above Seaweed for
applications that require it.

Seaweed’s query dissemination is scalable with respect to
network size and resilient to faults in the network. However,
it disseminates queries to all endsystems, which must per-
form at least the minimal processing to determine if they
have data matching the query. This could cause significant
overheads at high query rates, where approaches such as
distributed indexes [22, 27] might prove useful. Currently
we target applications with a small number of human users
such as network administrators who issue one-shot queries.
We evaluated the benefits of maintaining distributed indexes
for these applications and concluded that they do not justify
the resulting overheads and complexity.

1.4 Map
The remainder of the paper is organized as follows. Sec-

tion 2 describes the design philosophy, high level design de-
cisions, and novel features of Seaweed. Section 3 describes
the detailed design of our prototype, including the proto-
cols used for query dissemination and result aggregation.
Section 4 compares analytic models of Seaweed with three
alternative architectures, demonstrating the superior scala-
bility of Seaweed. It also provides simulation results quanti-
fying the network overheads of various components of Sea-
weed and the accuracy of completeness prediction. Section 5
summarizes related work, and Section 6 concludes the paper.

2. DESIGN PRINCIPLES AND INSIGHTS
For simplicity, we use standard data models and query

languages for our implementation. We assume that data is
relational and that for any given application there is a stan-
dard schema across endsystems. The data thus consists of a
set of tables, each of which is horizontally partitioned across
a large number of endsystems. Each endsystem is capable
of executing relational queries and updates on its local data.
For many applications, there may be data integration issues
which render such a model over-simplistic [14]; these are
outside the scope of this paper.

Our query language is a subset of SQL. Read-only queries
may be distributed across endsystems but must not per-
form distributed joins. Updates are constrained to a single
endsystem at a time.

A Seaweed query is inserted into the system by the ap-
plication layer on any endsystem. Seaweed dynamically
builds an application-level query distribution tree that dis-
seminates the query to all available endsystems, which then
return completeness predictors that are aggregated back up
to the root. The predictor at the root can estimate the com-
pleteness of the incremental result at any time and also its
expected future progress.

Meanwhile, endsystems also execute the query locally and
generate results. These results are propagated to the root
using another tree which is built dynamically from the leaf
level upward. If the query uses standard aggregation opera-
tors, results are aggregated in the tree to reduce bandwidth
usage. Any new or previously unavailable endsystem that
joins Seaweed receives a list of currently active queries for
which it generates results which are propagated to the root
using the tree. Incremental results will thus continue to ar-
rive for any query until it times out or is explicitly canceled.
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Figure 1: Availability of 51,663 endsystems on the
Microsoft corporate network in July/August 1999.

2.1 Availability
Endsystem availability is a major challenge for any dis-

tributed query infrastructure. Studies of endsystem avail-
ability in widely deployed peer-to-peer applications such as
Gnutella [29] and Overnet [5] show that there is significant
churn in the set of available endsystems. Even studies of
more benign enterprise network environments show that a
significant fraction of endsystems is unavailable at any time.
Figure 1, reproduced from one such study [8], shows the
availability of 51,663 endsystems on the Microsoft corporate
network, July–August 1999. Each endsystem was probed
once per hour to test its availability. On average, 81% of the
endsystems were available at any time. Further, a clear pe-
riodic pattern suggests endsystem availability is predictable.

Therefore a guiding principle for all scalable distributed
query systems is to design for unavailability. Solutions in-
volving replication of all data in a large system place a pro-
hibitive load on the network, even if the amount of data per
endsystem is relatively small. This observation is validated
by our analysis in Section 4 as well as other studies on wide-
area distributed applications [7]. This motivated our design
decision not to replicate the raw data but to address the
availability problem through delay aware querying.

A key component of delay aware querying is complete-
ness prediction. Completeness predictors are computed at
endsystems from the replicated metadata and aggregated
up the query distribution tree. A completeness predictor
is a cumulative histogram of expected row count over time.
For example, a user could use it to estimate that 80% of
the rows are immediately available, 99% within 1 hour, but
100% only after several days. She might then decide to
accept the results after 1 hour and then cancel the query
rather than waiting for perfect completeness. Completeness
predictors are query-specific: they depend on the data rows
that are relevant to the query and also on the distribution
of these rows across available and unavailable endsystems.

Seaweed provides metadata replication as an application-
independent service, where the metadata consists of col-
umn histograms and availability models. The replication
frequency and the set of histograms are application-specific
parameters. This proactively replicated metadata is query-
independent and allows us to compute query-specific com-
pleteness predictors when a query is injected.

Replication of column histograms can be viewed as a spe-

cial case of selective replication. One could imagine an appli-
cation designer specifying any subset of the data (e.g. projec-
tion) or derived values (e.g. views) for replication. Queries
on the replicated portion alone would be answered with rel-
atively low latency, albeit with some staleness dependent
on the replication frequency. Obviously careless selection of
data for replication could result in an unscalable application.

2.2 Scalability
Seaweed’s design achieves scalability through a combina-

tion of two factors. First, by not replicating the data the
network overheads of dealing with unavailability are vastly
reduced: the replicated metadata is several orders of mag-
nitude smaller than the raw data. Second, Seaweed’s tree
protocols are designed to be both scalable and fault-tolerant,
with each endsystem only sending or receiving a small num-
ber of messages per query.

2.3 Consistency
A highly distributed system precludes certain kinds of

consistency such as ACID. Even snapshot validity, which
guarantees that a read-only query sees a snapshot at a sin-
gle time across the entire system, cannot be guaranteed un-
der a relaxed asynchronous model of distributed systems [4].
Systems such as PIER [16] provide relaxed consistency in
the form of a ‘dilated reachable snapshot’ where only avail-
able endsystems will respond to a query, and the ‘snapshot’
across these endsystems will be dilated by clock skew.

Seaweed provides more precise guarantees than ‘dilated
reachable snapshot’ on the set of endsystems that will re-
spond to a query. We define our consistency in terms of
single-site validity [4]. We define the set HC(t1, t2) as the
set of hosts that were available at all instants in the time
range [t1, t2]. Note that Seaweed does not distinguish be-
tween unreachable and unavailable endsystems: an available
endsystem is reachable within Seaweed by definition. We de-
fine HU (t1, t2) as the set of hosts that were available at some
instant in [t1, t2] for sufficient time to execute a query. Con-
sider a user who injects a query into Seaweed at time 0 and
observes the partial result at time T generated by some set
of endsystems H. Single-site validity would guarantee only
that HC(0, T ) ⊆ H ⊆ HU (0, T ) whereas Seaweed guarantees
H = HU (0, T ), a strictly stronger semantics.

For completeness prediction we can offer a stronger guar-
antee yet. The metadata replicas for any endsystem that was
ever available in the past remain available with high prob-
ability. Thus, if Seaweed provides the aggregated predictor
for the query at time Te ≤ T , then the set of endsystems H
contributing to this predictor will with high probability sat-
isfy HU (−∞, 0) ⊆ H ⊆ HU (−∞, Te). In practice, Te is on
the order of seconds, and the difference between the upper
and lower bounds is small.

Seaweed is able to provide these semantics because with
high probability each endsystem’s contribution to the result
is counted exactly once provided it becomes available dur-
ing the lifetime of the query, [0, T ], and remains available for
long enough to receive and process the query. This property
is provided by the distributed data structures described in
the next section. At-least-once counting results from the
property that any endsystem in Seaweed available for suffi-
cient time will have a path to the root with high probability.
At-most-once counting is achieved through persistent, repli-
cated versioning of messages in the aggregation tree.
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3. SEAWEED DESIGN
Seaweed is implemented on top of Pastry [28], a scalable,

self-organizing, structured overlay network. We provide a
brief overview of Pastry before describing the three main
components of Seaweed: replication of availability models
and data summaries; query dissemination and completeness
prediction; and result aggregation.

3.1 Background: Pastry
Endsystems and objects in Pastry are assigned random

identifiers, known as endsystemIds or object keys respec-
tively, from a large sparse wrapped namespace. Keys and
endsystemIds are 128 bits in length and can be thought of
as a sequence of digits in base 2b, where b is a configura-
tion parameter with a typical value of 4. Given a message
and a key, Pastry routes the message to the key’s root: the
endsystem with the endsystemId numerically closest to the
key. When a message is delivered successfully it is then
passed to the application running on that endsystem.

Messages can be routed from any endsystem to any other.
Each endsystem maintains a routing table of size O(log2b N),
where N is the total number of endsystems in the system,
and a leafset of the l/2 neighboring endsystems clockwise
and counter-clockwise in the namespace. The leafset size l
is a configuration parameter typically set to 8. Using these
data structures, Pastry is expected to deliver messages in
O(log2b N) hops.

Our Seaweed implementation is built on the MSPastry [9]
implementation of Pastry. MSPastry provides a low-level
key-based routing (KBR) API [12] which is used by Sea-
weed. MSPastry has low overhead and provides reliable
message delivery under adverse network conditions: even
with network message loss rates as high as 5% together with
high overlay membership churn, the incorrect delivery rate
is only 1.6 × 10−5 [9].

3.2 Metadata replication
In order to be able to generate completeness predictors,

metadata consisting of the data summaries and availability
model of each endsystem is actively replicated.

For an endsystem with endsystemId x, Seaweed replicates
the metadata on the k numerically closest endsystems to x.
As endsystems join and fail new replicas are generated as
necessary to ensure that this holds. The k endsystems stor-
ing the metadata for x form its replica set. The replication
messages are routed in a single Pastry hop, and thus both
the network latency and the bandwidth usage are small.
When x becomes unavailable any of the k members of x’s
replica set can generate a completeness predictor for any
query on behalf of x.

3.2.1 Availability model
For each unavailable endsystem the availability model is

used to determine when it is likely to become available again.
In particular, if an endsystem has currently been unavailable
for time t, what is the likely duration before it becomes avail-
able once more? Availability prediction must be done on a
per-endsystem basis since the effect of an endsystem’s avail-
ability on completeness depends on the number of query-
relevant rows on that endsystem.

Two distributions are maintained per-endsystem: down
duration and up-event by hour of day. The down duration
captures the length of time for which an endsystem stays

unavailable, and the up-event distribution captures the hour
of day (0–23) at which it comes back up.

Many endsystems follow a periodic cycle, e.g. people turn-
ing their desktop machine on when they arrive at work. If
the up event distribution for an endsystem is heavily concen-
trated in a certain hour (if the peak-to-mean ratio exceeds
2), we classify it as periodic and use the up event distribu-
tion for availability prediction. Otherwise, we use the down
duration distribution for prediction: in this case, the predic-
tion also takes into account the time for which the endsystem
has currently been unavailable.

The two distributions are persisted at each endsystem and
dynamically updated over time. Whenever an endsystem
becomes available, it updates the distributions and locally
classifies itself as periodic or non-periodic. It then pushes
out the relevant distribution to its replica set.

When a member y of the replica set notices that an endsys-
tem x is unavailable, it records the time at which this oc-
curred. Subsequently it can predict when x will next become
available based on its copy of x’s availability model.

3.2.2 Data summaries
Each endsystem x pushes its data summary to its replica

set when it (re)joins the network; the summary is also pushed
to new replica set members when the replica set changes due
to failure. Additionally, endsystems periodically push their
summary to the replica set if the data has changed.

In Seaweed the summary currently consists of histograms
on indexed columns of the local database. When an avail-
able endsystem generates a row count estimate for a query
on its own behalf, it queries the local DBMS for the esti-
mate. When row count estimation is done on behalf of an
unavailable endsystem, it uses standard row count estima-
tion techniques on the replicated histogram information.

Currently we take the conservative approach of pushing
the histogram periodically if there is any change in the data.
We are looking at methods to dynamically vary the push
rate based on the data change rate, as well as sending delta-
encoded histograms which could reduce network overhead
compared to pushing the entire histogram.

3.3 Query dissemination and completeness
prediction

When a query is submitted to Seaweed the first stage is
to disseminate it to all available endsystems and generate
the completeness predictor. The query is assigned a key, its
SHA-1 hash, referred to as the queryId. The query must
be reliably disseminated to the available endsystems and
estimates must be generated on behalf of the unavailable
endsystems. The dissemination algorithm must ensure that
exactly-once semantics are maintained even as endsystems
concurrently join and fail during the process.

For robust query dissemination and completeness predic-
tor generation, Seaweed dynamically builds a distribution
tree. For ease of explanation we describe the tree here as
a binary tree; our implementation uses a 2b-ary tree. The
root of the tree is the endsystem with the endsystemId nu-
merically closest to the queryId. The root initiates an effi-
cient broadcast using a divide-and-conquer approach. Each
broadcast message contains an explicit namespace range for
which predictions are required; at the root level, this cor-
responds to the entire namespace range of Pastry. When
an endsystem receives a broadcast, it subdivides the range
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into two equal ranges, and sends one message for each of the
subranges. One of the messages will be sent to itself, and
the other will be routed towards the midpoint of the other
subrange. This will eventually reach an endsystem within
that subrange, typically within one Pastry hop in the com-
mon case where the sender has a Pastry routing table entry
for a live endsystem within that subrange.

When an endsystem detects that it is the only live endsys-
tem in a range or that it is the numerically closest live
endsystem to a range containing no live endsystems, it takes
responsibility for all unavailable endsystems in that range,
and generates completeness predictors for them from the
replicated metadata. If it lies within the range it also gen-
erates its own completeness predictor based on row count
estimates from its local DBMS. This recursive process cre-
ates a tree with depth O(log2b N), which determines the
latency of query dissemination.

The endsystem row count estimates are aggregated to a
cumulative distribution of row counts against predicted time
of availability, where time is on a log scale to accommodate
wide variations in availability ranging from seconds to days.
These row-count distributions are the per-endsystem com-
pleteness predictors. They are propagated and aggregated
up the tree, with each endsystem transmitting the predictor
to its parent: the endsystem that originally sent the query
to it. The predictors are aggregated at each step and are
thus maintained at constant size.

In order to make this process robust endsystems send
heartbeats to their parents. If an endsystem does not re-
ceive a heartbeat or predictor within a specified period then
it reissues the request for that sub-range. Since predictor
generation takes place on the order of seconds, there will
typically be very little churn during this window, and thus
the retransmission costs will be low.

The protocol also exploits the format of Pastry routing
tables to achieve a message overhead of O(N). It relies on
the property that when a broadcast is forwarded by endsys-
tem x to a subrange, with high probability there is a live
endsystem y in that subrange, in x’s routing table. Thus
each step of the divide-and-conquer dissemination is O(1).

3.4 Result aggregation
Once the completeness predictor is generated, each avail-

able endsystem generates the result for the query. While
predictor generation takes place in seconds, incremental re-
sult generation can span hours as more endsystems become
available. This means that a different tree must be built
from the leaves up for result aggregation: since churn now
becomes a significant factor, this tree cannot rely on aggres-
sive retransmission for failure-resilience.

The result aggregation tree must also ensure that once an
endsystem becomes available and submits its result, it must
be counted exactly once in the result at the root. Main-
taining a list at the root of all endsystems that have con-
tributed results is not feasible, as this will result in messages
of size O(N). Instead, we maintain O(1) information in each
endsystem in the aggregation tree: the current results re-
ceived from each child. When new results are received from
any child (due to an endsystem in that subtree becoming
available), this list of child results is updated, and a new
aggregate is computed and forwarded up the tree.

This protocol requires that each vertex in the tree deter-
ministically computes the vertexId of its parent: a vertexId

is a key in the DHT namespace. We accomplish this through
a deterministic function v(queryId, vertexId) �→ vertexId.
This function defines a tree of depth O(log N) rooted at the
query originator.

The aggregation protocol guarantees that results are gen-
erated exactly once for each endsystem when it becomes
available, assuming that there are no failures in the interior
nodes of the tree. To provide this property, we implement
each interior vertex as a failure-resilient replica group.

Each group is represented by a primary with m backups.
The primary is always the endsystem whose endsystemId is
numerically closest to the vertexId, thus guaranteeing that
messages sent to the vertexId are always routed to the pri-
mary. The primary replicates its state to the backups before
acknowledging any message or transmitting any message to
its parent. If any member of the group fails then a new
endsystem joins the group and a new primary is selected
automatically if necessary, always with the property that
the primary has the endsystemId closest to the vertexId.

This protocol provides exactly-once semantics with very
high probability: for an entire vertex to fail, the primary
and all backups would have to fail within a short period
of time determined by the Pastry leafset heartbeat interval,
currently 30 seconds.

This protocol also makes it possible to support continuous
queries in a failure-resilient manner; however this is outside
the scope of this paper.

4. EVALUATING SEAWEED
In this section we present simplified analytical models of

Seaweed’s scalability, and evaluate them against three alter-
native architectures. Our aim is to understand the inherent
trade-offs and limitations with respect to network overheads,
network size, data size, and data update rate.

These analytical models simplify many of the engineer-
ing issues involved in building real distributed systems. To
better understand the performance of Seaweed in a real ap-
plication scenario, we also present an evaluation of Seaweed
running in a network simulator driven by real-world traces.

Seaweed can be compiled to run in the simulator or stand-
alone. We do not present results from the stand-alone ver-
sion, as our focus is in this paper is scalability, and we do
not have a large-scale deployment.

Before describing the analytical models we briefly describe
the application we use to drive this evaluation.

4.1 Application
In this paper, we use Anemone [26], an endsystem-based

network management application, as our driving application
for Seaweed. In Anemone, each endsystem captures its net-
work activity into two tables, Packet and Flow. Each record
in Packet contains a timestamp, the source and destination
IP addresses and ports, the protocol, the direction of the
packet (Rx or Tx), and the size in bytes. Flow is a per-flow
summary of the packet data, which periodically records for
each active flow the timestamp, the interval of measurement,
the IP addresses, ports, and protocol, and the number of
bytes and packets sent and received. The flow measurement
interval is currently set to 5min.

A typical query on Flow by a network operator might be:
SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80

AND ts <= NOW() AND ts >= NOW() - 86400

which gives an idea of the total amount of web activity in the
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Variable Description Value Source

N Number of endsystems 300,000 Microsoft CorpNet
fon Fraction of available endsystems 0.81 Farsite
c Churn rate 5.5 x 10−6 /s Farsite
u Data update rate per endsystem 970 bytes/s Anemone
d Database size per endsystem 2.6 GB Anemone
k Number of replicas stored 4 Farsite
h Size of data summary 6,473 bytes Seaweed/Anemone
a Size of availability model 48 bytes Seaweed
p Summary push rate 0.033 /s Seaweed (30 s period)
r PIER data renewal rate 0.0033 PIER (300 s period)

Table 1: Model parameters

network in the last 24 hrs. Note that NOW() will be generated
using the querying endsystem’s timestamp, assuming the
loose clock synchronization described in Section 2.3.

Seaweed will disseminate the query to all endsystems; gen-
erate a predictor of completeness over time; and propagate
incremental results as they become available. In this case,
since the query uses a standard aggregation operator, these
incremental results will be aggregated in-network to mini-
mize network overheads.

4.2 Modeling
In this section we present analytical models of Seaweed

and three alternative designs: centralized, DHT-replicated,
and PIER. For each design we derive formulas for the back-
ground maintenance overhead in terms of network band-
width measured in bytes per second transferred system-wide.

All the models are driven by system parameters that char-
acterize the network size, availability characteristics, data
size, and data update rate. We denote the network size —
the total number of endsystems — by N . Of these, we expect
some fraction fon to be available on average at any given
time. The churn rate c is the average rate at which any sin-
gle endsystem switches between available and unavailable. It
measures the dynamics of availability, i.e. the rate at which
endsystems change between available/unavailable. Since we
assume fon remains stable, we assume that the system-wide
rates of joining and leaving are equal, and we add them to
get the total churn Nc. The data update rate u measures
the average amount of new data generated by each endsys-
tem per second; we assume here that only available systems
generate data. The database size d measures the average
amount of data stored by each endsystem.

For each of these parameters, we choose values from real-
world scenarios. The availability parameters are derived
from the Farsite availability traces [8], a 4-week long mea-
surement of availability characteristics across an enterprise
network. The data update rate and data size are based
on our measurements of Anemone packet data, with each
endsystem storing its local packet data for 1month. Table 1
summarizes these parameters as well as additional model-
specific parameters used in some of the models.

4.2.1 Centralized
This is the simple “data warehousing” model where all

available endsystem data is backhauled onto a single central
repository before being queried. The maintenance costs thus
lie in backhauling all the generated data, and are given by:

fonNu (1)

4.2.2 Seaweed
The maintenance costs of Seaweed are driven by the repli-

cation of metadata. They also depend on the replication
factor k. When an endsystem fails, the metadata stored by
it must be replicated on some other endsystem to maintain
k replicas. If all k replicas fail during the window of vulner-
ability between failure detection and replication, the data
will become unavailable. Thus the choice of k is a trade-off
between overhead and availability, and depends on the en-
vironment. Typical values of k are between 3 and 8; here
we choose a value of 4.

Seaweed replicates both availability models and data sum-
maries, which have average sizes a and h respectively. Here
h is the total compressed size per endsystem of all metadata,
i.e. the histograms on all indexed columns; in the Anemone
case there are 5 such histograms per endsystem. Each avail-
able endsystem proactively pushes its metadata to its repli-
cas at rate p, at a bandwidth cost of fonNkph. Additionally,
Seaweed incurs the cost of replicating metadata whenever an
endsystem joins or leaves the system. In the first case, the
joiner must acquire the metadata that it will be responsible
for. In the second case, the metadata held by the leaving
endsystem must be re-replicated on some other endsystem.
Since each endsystem has h+a bytes of metadata on average
which must be replicated k times, the total amount of repli-
cated data is Nk(h + a). This metadata must be replicated
on the available endsystems, each of which will store on av-
erage 1

fon
k(h + a) bytes. These bytes must be transferred

on each churn event at a bandwidth cost of 1
fon

Nck(h + a).
Thus Seaweed’s total maintenance overhead is:

fonNkph +
1

fon
Nck(h + a) (2)

4.2.3 DHT-replicated
Here we consider using a typical DHT approach to store

the data: each tuple is mapped onto a key in the DHT based
on its primary key, regardless of where it was generated.
The tuple is k-way replicated on a replica set determined
by the DHT key. This incurs the cost of transferring each
new tuple from the generating endsystem to the k replicas,
which is fonNku.

Additionally, the DHT must pay the cost of re-replicating
data when endsystems join or leave. The average amount
of replicated data stored per endsystem is 1

fon
kd, thus the

bandwidth consumption of re-replication is 1
fon

Nckd. Thus
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Figure 2: Overhead versus N .

DHT-replication requires a total maintenance bandwidth of:

fonNku +
1

fon
Nckd (3)

This ignores the overhead of discovering the root of each
tuple, each of which would typically require an O(log N)
lookup over the network. We simplify the model by assum-
ing the cost to be negligible.

4.2.4 PIER
PIER [16] uses a DHT but does not replicate data as de-

scribed above. Instead, each available endsystem periodi-
cally re-inserts its data into the DHT, with tuples mapped
to DHT keys according to their primary keys. This renewal
process serves to maintain the freshness of the data as well
as to provide additional availability when endsystems fail.
Thus the maintenance overheads in PIER are independent
of endsystem churn, and only depend on the data size d and
the renewal rate r. The overhead is:

fonNdr (4)

Note that avoiding churn-related overheads comes at a price:
PIER cannot provide the same availability as k-way repli-
cation. Specifically, if both the source and the root of some
tuple fail, then the tuple will become unavailable.

4.2.5 Comparison
We use the four models to compare the scalability of the

different solutions. Specifically, we compare the scalability
of maintenance overheads with increasing network size (N),
database size per endsystem (d), and data update rate per
endsystem (u), in each case keeping all the other parameters
constant with the values in Table 1.

Figure 2 shows how these different systems scale with net-
work size N . Both axes are on a log scale to illustrate the
order-of-magnitude effects involved. The total system band-
width for all the designs increases linearly with N , but there
are order-of-magnitude differences in the constant factors in-
volved. PIER endsystems must periodically refresh all their
data at a rate r, causing a very high overhead. The DHT-
replication scheme must replicate each endsystem’s data at a
rate proportional to the churn rate c. The factor for the cen-
tralized system is the data update rate u. Finally, Seaweed’s
overhead depends on the churn rate c and the metadata size.
Since the metadata is orders of magnitude smaller than the
data, Seaweed has correspondingly lower overhead: 10 times
lower than the centralized solution, and 1000 or more times
lower than the other distributed solutions.

Figure 3: Overhead versus u.

Figure 4: Overhead versus d.

Figure 3 shows the system-wide bandwidth in bytes per
second for each of the models as u, the number of bytes gen-
erated per second per online endsystem, is varied. PIER’s
overhead is independent of u but extremely large, due to
the periodic reinsertion of the entire database into the net-
work. DHT-replication incurs both the overhead of repli-
cating fresh data, which depends on u, and of replicating
on endsystem churn, which is independent of u. Thus DHT-
replication outperforms PIER by two orders of magnitude at
low update rates but approaches and then exceeds the over-
head of PIER at high update rates. The centralized system
has no churn-related overheads, and its overhead scales lin-
early with the data update rate. Finally, Seaweed overheads
are independent of data update rate, and also several orders
of magnitude lower than either DHT-replicated or PIER.

When the update rate u is low, the centralized approach
will require lower overhead than Seaweed. As the data
rate increases, the overhead of metadata replication becomes
small compared to that of sending the data to the central-
ized database. At the Anemone update rate of 970 bytes
per second per endsystem, a relatively modest rate for to-
day’s endsystems, Seaweed already outperforms the central-
ized solution by a factor of 10. Thus Seaweed scales better
than the centralized approach and has orders of magnitude
lower overhead than the other distributed approaches.

Figure 4 compares the scalability of the four designs with
increasing database size per endsystem d. PIER’s overhead
is dominated by the cost of periodic reinsertion, which is lin-
ear in d. DHT-replication’s overhead is due to re-replication
of data on churn, also linear in d but with a much smaller
factor than PIER. The cost of the centralized solution is in-
dependent of d, depending only on the data update rate u.
Finally, Seaweed’s overhead is also independent of d, and is
orders of magnitude lower than that of the other designs.
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Figure 5: Predicted vs. actual completeness,
SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80

injected on Tuesday 20th July 1999 at 00:00.

The other component of overhead is the foreground or per-
query overhead. The centralized solution does not incur any
networking costs for querying, whereas all three decentral-
ized architectures have a cost that increases with network
size. Simple analytical models of Seaweed’s per-query over-
head are difficult to derive: the overhead depends on the
number of retransmissions and hence on the endsystem fail-
ure patterns. However, our simulation results show that in
practice, Seaweed’s per-query overheads are three orders of
magnitude smaller than its background maintenance over-
head, and hence will not be significant until there are thou-
sands of active queries in the system at the same time.

4.2.6 Summary
Our simplified analytic models do not capture many real-

world engineering optimizations that each implementation
could employ. However, we believe that they capture the
general scalability issues of each approach. Our analysis
shows that Seaweed’s design is much more scalable in terms
of maintenance overhead than the other approaches. Al-
though this increases query latency compared to the cen-
tralized and DHT-replicated solutions, we believe that for
truly scalable, highly distributed querying, this price must
be paid to avoid prohibitive network costs.

4.3 Simulation
Here we present results from a discrete event simulator

that allows us to evaluate the scaling properties of Seaweed.
The simulations are driven by real-world application data,
traces of endsystem availability, and network topologies.

The difficulties of running a discrete event simulator at
this scale should not be underestimated: we have thousands
of endsystems, the events to be simulated occur at the gran-
ularity of milliseconds and we simulate them over a period of
4 weeks. We made some optimizations that would not affect
our evaluation metrics. We pre-computed the results of each
query as well as the histograms on all endsystem data, by
loading each endsystem’s data into SQL Server 2005, run-
ning the queries on them and also extracting all histograms
on indexed attributes. This enabled the simulation to run
much faster by not executing a large number of database
queries during the simulation.

These optimizations did prevent us from supporting data
updates during simulation. In our experiments we pessimisti-

Figure 6: Predicted vs. actual completeness,
SELECT COUNT(*) FROM Flow WHERE Bytes > 20000

injected on Thursday 22th July 1999 at 00:00.

cally assume the total data size as of the end of the trace,
i.e. containing all the packet and flow data irrespective of
the query time. Further, since we could no longer tell if the
histogram data would change in any given push interval,
we push the histograms with an average period of 17.5 min,
with each endsystem choosing its push time randomly to
avoid spikes in network bandwidth.

4.3.1 Experimental setup
We generated an Anemone application data set for the

endsystems by instrumenting the network routers in our
building. We captured a complete packet trace of all inter-
LAN traffic for the period 30 Aug 2005–20 Sep 2005 for 456
workstations and servers. This is representative of though
not identical with the data from a full endsystem-based de-
ployment of Anemone. The raw packet data was processed
to generate per-endsystem Flow and Packet tables.

Simulated endsystem availability is based on the Farsite
trace of endsystem availability gathered over approximately
4 weeks in July/August 1999 in the Microsoft corporate net-
work [8]. The trace was generated using hourly pings to test
the availability of each of 51,663 endsystems on the network.

The network simulation results presented here use the
CorpNet topology, which has 298 routers generated from
measurements of the world-wide Microsoft corporate net-
work. The topology includes the minimum round trip time
(RTT) per link and this is used as the proximity metric in
the simulations. Each endsystem was directly attached by
a LAN link with delay of 1 ms to a randomly chosen router.

Our simulations were run at a number of different network
sizes. In each simulation, each endsystem was randomly
assigned an availability profile from the availability trace
and an endsystem data set from the Anemone data.

MSPastry was configured to use a base b = 4, a leafset
size of l = 8, and a leafset heartbeat period of 30 seconds.
Seaweed was configured with a replication factor of m = 3
for the result tree vertexes and k = 8 for the metadata.

4.3.2 Completeness prediction
The first set of experiments evaluates the ability of Sea-

weed to generate accurate completeness predictions. The
experiments were run using the full Farsite set of 51,633
endsystems. Since packet-level network simulation is expen-
sive to run on a large data set, and we wished to experiment
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Figure 7: Relative error for various injection times,
SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80.

with multiple queries as well as multiple query start times,
these experiments used a simplified simulator that correctly
captures the effect of availability on completeness but does
not do packet-level simulation.

We simulated from the 6th July 1999 onward and injected
queries into the system at various points during the work
week starting Monday 19th July 1999. The warmup period
allowed each endsystem to learn an availability model. For
each injected query we generated the completeness predictor
and then monitored the actual results returned over the 48
hours after injection, after which the query was terminated.

Figure 5 compares the completeness predictions generated
when the query is injected with the actual completeness ob-
served over time. The query was injected on Tuesday 20th
July 1999 at 00:00, and the actual query was:
SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80

which captures the amount of http traffic in the network.
The completeness prediction is shown as a cumulative func-
tion of rows queried against time: Figure 5 shows that it
matches the observed result well. Note that when the query
is first injected only 85% of the matching rows are available.
After approximately 8 hours, when the employees arrive at
work there is a significant increase in the number of rows
queried, which is accurately predicted.

Figure 6 shows the same results for a second query:
SELECT COUNT(*) FROM Flow WHERE Bytes > 20000,
injected on Thursday 22th July 1999 at 00:00. The query
examines the number of flows with significant amounts of
traffic. As with the previous results the completeness pre-
diction closely matches the observed completeness over time.
When the query is first injected only 87% of the rows ex-
pected to be queried are available.

Figures 7 and 8 show the relative error for the previous
two queries injected at different times of day (00:00, 06:00,
12:00 and 18:00). The completeness predictions generated
at query time provide the predicted completeness after 1, 2,
4, 8, 16, and 32 hours. We show the prediction error relative
to the observed result for all these time periods. Prediction
error is low, less than 5% in all cases.

We have determined that the primary source of error for
these queries is in the availability prediction. Row count es-
timation is extremely accurate for queries such as these with
range predicates on a single indexed column. We are cur-
rently exploring summarization techniques that will enable
accurate estimation for more sophisticated queries.

Figure 8: Relative error for various injection times,
SELECT COUNT(*) FROM Flow WHERE Bytes > 20000.

4.3.3 Performance overheads
The second set of experiments measures the overheads

of running Seaweed using the packet-level simulator. We
ran experiments to measure the bandwidth overhead with
different network sizes. For each run we simulated from the
6th July 1999 to the 9th August 1999. We injected the query
SELECT SUM(Bytes) FROM Flow WHERE SrcPort=80

on Tuesday 20th July 1999 at 00:00. We allowed the query
to run until the end of the simulation.

Figure 9 shows the overhead in bytes per second per on-
line endsystem when running with 20,000 endsystems. On
average there are 16,080 endsystems online. The overhead is
sub-divided into the MSPastry overhead, the Seaweed main-
tenance overhead and the query overhead. The mean over-
head of all three components put together is 69 bytes per
second per endsystem. The Seaweed maintenance traffic is
the highest overhead and is dominated by the cost of pe-
riodically replicating the indexed attribute histograms, and
could be substantially reduced by using some form of delta
encoding between successive histogram versions. However,
even without this optimization the overhead is low.

Figure 10 shows the cumulative distribution of load across
endsystems and time, aggregated by 1-hour intervals for
20,000 endsystems. Each sample in this distribution is the
average transmission bandwidth used by a single endsystem
in a single hour of the trace period. A transmission band-
width of zero bytes in some hour indicates that the endsys-
tem was unavailable in that hour: hence the y-intercept of
this graph is the mean unavailability. The 99th percentile of
this distribution is only 117 bytes per second, and the dis-
tribution of receive bandwidth usage is similar. This shows
that the overhead is not only low overall but also evenly
distributed across endsystems and across time.

Figure 11 shows the overhead in transmitted bytes per sec-
ond per endsystem as the number of endsystems in the net-
work (N) is varied between 2,000 and 51,663. The Seaweed
maintenance overhead per endsystem, which dominates, is
O(1). Both the Seaweed query overhead and MSPastry over-
head grow as O(log N). However, the MSPastry overhead is
an order of magnitude lower than the Seaweed maintenance
overhead, and the query overhead is three orders of mag-
nitude lower. This leads us to believe that the design will
scale to 1,000,000 endsystems or more.

We also evaluated the latency between query injection and
returning the completeness predictions to the user. For the
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Figure 9: Overhead over time for 20,000 endsys-
tems.

Figure 10: CDF of transmission bandwidth for
20,000 endsystems.

2,000 endsystem case the latency was 3.1 seconds, rising to
12.0 seconds for 51,663 endsystems. We feel that this is an
acceptable latency for queries whose actual execution could
take minutes or hours due to endsystem unavailability. The
network bandwidth consumed for query dissemination with
20,000 endsystems was 1,043 bytes per query per endsys-
tem and that for completeness predictor aggregation was 776
bytes per query per endsystem; these could be reduced fur-
ther through packet format and protocol optimizations. For
the usage scenarios we are targeting, with new queries sub-
mitted infrequently by a small number of human users, we
feel that the cost of disseminating queries to all endsystems
is justified by the resulting simplicity and high coverage.

Most Seaweed applications such as endsystem-based net-
work management are targeted at fairly stable enterprise
networks with low churn rates. This is captured by the Far-
site availability traces with a mean endsystem departure rate
of 4.05×10−6 departures per live endsystem per second. To
measure Seaweed’s overhead under high churn, we repeated
the experiment using the Gnutella activity traces [29]. We
used a 60-hour trace with 7,602 endsystems and an average
departure rate of 9.29 × 10−5 departures per online endsys-
tem per second. Figure 12 shows the total overhead over
time in this case, and Figure 13 shows the cumulative dis-
tribution across endsystems and time. The mean total over-
head was 472 bytes per second per endsystem and the 99th
percentile was 1,512 bytes per second. Thus the mean over-

Figure 11: Overhead versus numb er of endsystems.

Figure 12: Overhead in a high churn network.

head increased only by a factor of 7 even though the churn
in the system increased by a factor of 23.

5. RELATED WORK
We have already discussed PIER [16]; here we mention a

selection of other related work.
Distributed information management. Systems that

support distributed information management such as Astro-
labe [31] and SDIMS [32] build aggregation trees supporting
continuous queries using user-defined aggregation functions.
Queries are injected into the system and continuously com-
pute summaries of data. In contrast, Seaweed aims to sup-
port one-shot queries across stored data and so is principally
concerned with problems due to data unavailability.

Distributed indexes. Earlier work in the field of dis-
tributed databases provided index structures [19, 20, 21] to
enable efficient search for distributed data and distributed
updates with strong consistency semantics. More recently,
distributed indexes using various peer-to-peer structures have
been designed [1, 6, 18, 27]. These provide efficient access to
and range queries over data distributed over many endsys-
tems.

Seaweed replicates neither indexes nor data, aiming for
far greater scalability by only replicating compact data sum-
maries. Instead, it disseminates queries to all endsystems.
For applications with sufficiently high query rates, distributed
index structures may prove useful. However, a scalable de-
sign will still require that the data remain on the producing
endsystems.
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Figure 13: CDF of transmission bandwidth in a high
churn network.

Data stream management. Due partly to the recent
popularity of sensor networks, executing long-running queries
over multiple data streams is an extremely active research
area. Many large-scale systems route tuples through long-
standing pre-installed queries [2, 3, 10, 13, 23, 30]. Bore-
alis [3] deals with data unavailability on much smaller time
scales than Seaweed, buffering stream data to tolerate tran-
sient network failures on the order of a minute.

In contrast, Seaweed leaves data where it is generated and
supports efficient, one-shot, select-project-aggregate queries
on stored data, which is sufficient for a wide variety of useful
and interesting applications. This requires that we deal with
endsystem unavailability on the scale of hours to days.

Availability models and data summarization. A
key feature of Seaweed is the prediction of endsystem avail-
ability and the ability to estimate row count from data
summaries. Seaweed uses a very simple availability predic-
tor. Concurrently with this work, others have developed
alternative predictors [24] which could potentially improve
Seaweed’s performance. Similarly, the data summaries cur-
rently distributed in Seaweed are relatively simple: just the
histograms computed by the local DBMS across manually
selected attributes. PTQs [11] and histogram-based approx-
imation [17] are examples of more sophisticated techniques
that might support summary-based estimation for a wider
range of queries.

Online aggregation. Online aggregation was first pro-
posed by Hellerstein et al. [15] in the context of single-site
databases, along with statistical estimators of result accu-
racy. Seaweed uses row-count based estimates of complete-
ness rather than estimators of result accuracy as there is no
guarantee that incrementally processed tuples will be in ran-
dom order: the data being queried may well be correlated
with endsystem availability.

6. CONCLUSION
In this paper we describe Seaweed, a query infrastructure

for highly distributed data sets. The major challenge for
such systems is managing the unavailability of endsystems
in a scalable manner. Prior systems use replication, which
fundamentally limits their scalability.

Seaweed adopts a different approach, delay aware query-
ing. Rather than replicating the data, Seaweed replicates
only metadata and uses this to provide the user with a com-
pleteness predictor. The predictor allows the user to es-

timate the completeness of the result so far and also the
expected future progress. The Seaweed approach is scalable
but trades query latency for scalability.

Analysis and simulation show that Seaweed scales well and
that metadata replication enables the generation of accurate
completeness predictors. To conclude, it seems that Seaweed
represents a novel and interesting point in the design space
for query infrastructures for highly distributed data sets.
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