
GORDIAN: Efficient and Scalable Discovery
of Composite Keys

Yannis Sismanis Paul Brown Peter J. Haas Berthold Reinwald
IBM Almaden Research Center

San Jose, CA, USA
{syannis,pbrown1,phaas,reinwald}@us.ibm.com

ABSTRACT
Identification of (composite) key attributes is of fundamental im-
portance for many different data management tasks such as data
modeling, data integration, anomaly detection, query formulation,
query optimization, and indexing. However, information about
keys is often missing or incomplete in many real-world database
scenarios. Surprisingly, the fundamental problem of automatic key
discovery has received little attention in the existing literature. Ex-
isting solutions ignore composite keys, due to the complexity as-
sociated with their discovery. Even for simple keys, current algo-
rithms take a brute-force approach; the resulting exponential CPU
and memory requirements limit the applicability of these methods
to small datasets. In this paper, we describe GORDIAN, a scalable
algorithm for automatic discovery of keys in large datasets, includ-
ing composite keys. GORDIAN can provide exact results very effi-
ciently for both real-world and synthetic datasets. GORDIAN can be
used to find (composite) key attributes in any collection of entities,
e.g., key column-groups in relational data, or key leaf-node sets in
a collection of XML documents with a common schema. We show
empirically that GORDIAN can be combined with sampling to ef-
ficiently obtain high quality sets of approximate keys even in very
large datasets.

1. INTRODUCTION
Keys play a fundamental role in understanding both the structure

and properties of data. Given a collection of entities, a key is a set
of attributes whose values uniquely identify an entity in the collec-
tion. For example, a key for a relational table is a set of one or
more columns such that no two rows have matching values in each
of the key columns. The notion of keys carries over into many other
settings, such as XML repositories, document collections, and ob-
ject databases. Identification of keys is a crucially important task
in many areas of modern data management, including data mod-
eling [1], query optimization, indexing, anomaly detection, and
data integration. The knowledge of keys can be used to (1) pro-
vide better selectivity estimates in cost-based query optimization,
(2) provide a query optimizer with new access paths that can lead
to substantial speedups in query processing, (3) allow the database

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

administrator (DBA) to improve the efficiency of data access via
physical design techniques such as data partitioning or the creation
of indexes and materialized views, (4) provide new insights into
application data, and (5) automate the data-integration process [4].

Unfortunately, in real-world scenarios with large, complex data-
bases, an explicit list of keys is often incomplete, if available at all.
In the best case, some small number of keys are explicitly known
to the database management system (DBMS) because they are an
integral part of the schema, representing important logical relation-
ships among entities. Such keys are often maintained explicitly by
the use of referential-integrity constraints. Many other keys are of-
ten unknown to the DBMS, because

• the key represents a “constraint” or “dependency” that is in-
herent to the data domain but unknown to both the applica-
tion developer and the database administrator (DBA);

• the key arises fortuitously from the statistical properties of
the data, and hence is unknown to the application developer
and DBA;

• the key is known and exploited by the application without the
DBA explicitly knowing about it; or

• the DBA knows about the key but for reasons of cost chooses
not to explicitly identify or enforce it.

Many of the unknown keys are composite keys, that is, keys con-
sisting of two or more attributes. The unknown keys in a database
represent a loss of valuable information.

This paper is concerned with methods for automated, data-driven
key discovery. There has been a great demand on the part of indus-
try for such methods, because they vastly simplify the job of the
DBA and thereby decrease the overall cost of database ownership.
Although there has been much renewed interest in the research and
industrial communities [18, 23, 32] in autonomic and self-tuning
database technology, the problem of automatic key discovery has
received relatively little attention, perhaps due to the challenging
nature of the problem. Discovery of composite keys is especially
difficult, because the number of possible keys increases exponen-
tially with the number of database attributes. The general problem
of discovering a minimal composite key—i.e. a composite key with
the fewest possible number of attributes—is NP-complete [14], and
associated problems like discovering the exact number of minimal
composite keys are even harder, indeed, #P-hard [14]. Because
such functionality is nevertheless needed by industry, the goal is to
provide practical algorithms that have good “typical case” behavior
on real-world datasets. This relatively modest quest is less daunt-
ing than it may appear, because the datasets used to demonstrate
theoretical worst-case performance tend to be highly artificial and
unrepresentative of the type of data encountered in practice.

691

Michael MichaelMichaelSally

KwanThompson Spencer Thompson

First Name

Last Name

Entity 1 Entity 2 Entity 3 Entity 4Employee

(Entities)(Schema)

Emp No 10 20 90 50

Phone 3478 3478 5237 6791

Figure 1: Example Dataset

A brute-force approach, as used in most commercial products,
does not scale as the database size grows. For example, one of
the databases that we use in our experiments contains entities hav-
ing more than 50 attributes, so that the number of candidate keys
is 250− 1. Even if we argue that most interesting keys are com-
posed of at most three or four attributes, we would still be faced
with

(50
1
)
+

(50
2
)
+

(50
3
)
+

(50
4
)

= 251,175 candidate keys. The ex-
isting research literature on key discovery [3, 17, 21, 24, 33] has
not directly addressed the problem of composite keys.

In this paper, we introduce GORDIAN, a novel algorithm for
efficiently discovering composite keys in a collection of entities.
GORDIAN represents a vast improvement over currently used brute-
force techniques. In our experiments, GORDIAN performed well on
both real-world and synthetic databases with large numbers of both
attributes and entities. As discussed below, it can even be shown
that GORDIAN, when restricted to a certain class of generalized Zip-
fian datasets, has a time complexity that is polynomial in both the
number of entities and attributes.

The basic idea behind GORDIAN is to formulate the problem as
a cube computation problem [13] and then to interleave the cube
computation with the discovery of all non-keys—sets of attributes
that are not keys. Finally, GORDIAN efficiently computes the com-
plement of this collection, yielding the desired set of keys. In our
setting, the cube computation corresponds to the computation of
the entity counts for all possible attribute projections of a given
dataset. From such counts we can quickly identify whether or not
a projection corresponds to a composite key. Many optimizations
are possible during the cube computation, because we are not inter-
ested in storing, indexing, or even fully computing the cube. Work-
ing with non-keys instead of keys is advantageous for a couple of
reasons. First, a non-key can often be identified after looking at
only a subset of the entities—unlike keys, a discovered non-key
cannot subsequently be “invalidated” as more entities are exam-
ined. Moreover, any subset of the attributes in a non-key is also
a non-key, so that GORDIAN can apply pruning techniques remi-
niscent of those used in the Apriori algorithm for association-rule
mining [28]. GORDIAN applies a number of other powerful pruning
techniques that can further reduce the time and space requirements
by orders of magnitude. Finally, experiments show that when GOR-
DIAN is applied to a relatively small sample of the data, the algo-
rithm discovers a high-quality set of “approximate” keys as in [21].

The remainder of the paper is organized as follows. In Section 2,
we discuss several important concepts related to keys and non-keys,
and develop intuition about keys and non-keys through an example.
Section 3 contains the description and analysis of the GORDIAN
algorithm. Section 4 contains the results of an empirical evaluation
of GORDIAN on both synthetic and real-world datasets. We discuss
related work in Section 5 and conclude in Section 6.

2. KEYS AND NON-KEYS
As discussed above, given a schema (i.e., set of attributes) R and

a set of entities R over R, we define K ⊆ R as a key if and only if
for any t,u ∈R we have t[K] = u[K] only if t = u.1 Similarly, we
define K⊆R as a non-key if and only if there exist t,u∈R such that
t[K] = u[K] but t 6= u. If K is a key, then the projection of R onto
the attributes in K (with duplicate removal) results in an entity-set
of the same size as R; if K is a non-key, then the projection of R
onto the attributes in K results in an entity-set strictly smaller than
R.

For example, consider the simple dataset R in Figure 1, which
comprises four entities. Here 〈EmpNo〉 is a key, because EmpNo
uniquely identifies an employee. Moreover, 〈Last Name, Phone〉 is
a composite key. If we project on either of these keys, the result is
a set containing four entities. Because three entities share the first
name ’Michael’, it follows that K =〈First Name〉 is a non-key. If
we project on First Name, the result is a set containing only two
entities. Because there is a 1-to-1 correspondence between a set of
attributes and a projection of R onto the attributes, we sometimes
use the term “projection” instead of “key”, “non-key,” “candidate
non-key,” and so forth.

If K ⊆ R is a non-key with respect to a dataset R and K′ ⊆ K,
then K′ is a non-key. For example, if 〈First Name, Last Name〉 is
a non-key (because there are two Michael Thompsons), then 〈First
Name〉 is a non-key (there are at least two Michaels) and 〈Last
Name〉 is a non-key (there are at least two Thompsons). In this
situation we say that K covers K′ or, equivalently, that K′ is re-
dundant to K. A set of non-keys {K1,K2, . . .} is non-redundant or
minimal if and only if K j 6⊆ Ki for all i 6= j. The non-redundant
non-keys for our running example are 〈Phone〉 and 〈First Name,
Last Name〉. As part of its operation, GORDIAN maintains a Non-
KeySet container that holds a set of non-redundant non-keys; see
Section 3.6.

As mentioned in the introduction, non-keys are easier to iden-
tify than keys. Suppose, for example, that we have examined the
first three entities in the example dataset, and have determined that
〈First Name〉 is a non-key with respect to the entities processed so
far. Then we know that 〈First Name〉 must be a non-key with re-
spect to the entire dataset. Keys, on the other hand, do not have this
nice property. Suppose that we have examined the first three enti-
ties in our example dataset and have determined that 〈Last Name〉
is a key with respect to the entities processed so far. Then, at any
point in the future, this property might be invalidated by some en-
tity that we haven’t seen yet. Indeed, we will discover that 〈Last
Name〉 is actually not a key after we examine the final entity.

GORDIAN converts non-keys to keys during the final stage of its

1See [1]; here, as usual, t[X] denotes the specific values of the at-
tributes in X ⊆ R for the entity t.

692

Dataset Prefix
Tree

w/ Non−Key Discovery

& Prunning

Minimal Keys

Inteleaved Cube Computation

NonKeyFinder

convert minimal non−keys

to keys

Figure 2: GORDIAN Overview

operation, and the following definitions are pertinent to this pro-
cess. The complement of a non-key is the set of single-attribute
keys that correspond to the attributes not appearing in K and pro-
vides the starting point for converting non-keys to keys. Formally,
C(K) = {〈a〉 : a ∈ R\K }. For example, the complement of the
non-key 〈First Name, Last Name〉 is the set {〈Phone〉,〈EmpNo〉}.
The covering relationship for keys is the reverse of the relationship
for non-keys: a key K′ is redundant to a key K if K ⊆ K′. We de-
fine a non-redundant set of keys analogously to our definition of a
non-redundant set of non-keys.

3. GORDIAN ALGORITHM
In this section we present the complete GORDIAN algorithm. We

first give an overview of GORDIAN, explaining the intuition behind
our approach, and then we describe the details of the algorithm in
subsequent subsections.

3.1 Overview of GORDIAN

3.1.1 Using the CUBE operator
The main idea behind GORDIAN is that the problem of discover-

ing (composite) keys can be formulated in terms of the cube [13]
operator. The cube operator encapsulates all possible projections
of a dataset while computing aggregate functions on the projected
entities. Figure 3 depicts some possible projections for the count
aggregate function. We observe that a projection corresponds to
a key if and only if all the count aggregates for a projection are
equal to 1. For example, 〈EmpNo〉 and 〈First Name, Phone〉 are
keys, while 〈First Name, Last Name〉 is a non-key. Since we are
not dealing with the full complexity of the cube operator (i.e full
computation, storing, or indexing), many optimizations are possi-
ble.

Figure 3: A subset of the cube operator for the Dataset in Fig. 1

���������	
�������	 ����	 ����	 �����	
�������� ��	
��	� ����� ��� ��
�������� ������� ����� ��� ��
�������� ��	
��	� ����� ��� ��

�
�
���������	
�������	 �����	
�������� ��	
��	� ��
�������� ������� ��

�

Figure 4: Some segments of the slice First Name=’Michael’

3.1.2 Singleton Pruning Overview
GORDIAN exploits a novel form of powerful pruning, called sin-

gleton pruning, that is based on a slice-by-slice computation of the
cube. A slice of the cube is defined as a cube that is based on a sub-
set of the entities; the subset is obtained via a selection operation
on the dataset. Whereas a cube comprises all possible projections,
a slice comprises the segments of the projections that correspond to
the slice selection.

For example, consider the dataset depicted in Figure 1 and as-
sume that we have computed the slice F of the cube that corre-
sponds to First Name = Michael. In Figure 4 we depict some
segments that correspond to that slice.

��������� �	
��� ���
� ������
��������� �	
�� �� ��
��������� �
��� �� ��

�
�
��������� ������
��������� ��

�

Figure 5: Some segments of the slice Last Name = ’Tho-
mpson’

Now consider the slice L of the cube that corresponds to Last
Name = Thompson. Because (in the full dataset) the value ’Tho-
mpson’ appears only with the value ’Michael’, it follows that the
slice L is subsumed by the slice F , in the sense that all the seg-
ments of L already appear in F with just the First Name at-
tribute ’Michael’ prepended to them. Thus all the aggregate counts
of L appear in F (with ’Michael’ prepended). It follows that any
non-keys of L appear in F with the additional attribute First
Name. Therefore, as discussed in Section 2, each non-key of L is
redundant to some non-key of F . Indeed in our example, the slice
F contains the non-key 〈First Name, Last Name〉 and the slice L
contains the (redundant) non-key 〈Last Name〉. This observation
leads to the following lemma:

LEMMA 1. If a slice L is subsumed by another slice F then
each non-key of L is redundant to some non-key of F .

This simple yet powerful result allows GORDIAN to avoid all
computation and traversal of subsumed slices, without the need to
consult the NonKeySet container. See Section 3.4.1 for details.

693

3.1.3 Futility Pruning Overview
Futility pruning complements singleton pruning, using a repos-

itory of the non-keys discovered so far to avoid computing seg-
ments of future slices. For example, if at some time we determine
that 〈First Name, Last Name〉 is a non-key by finding an aggregate
count greater than 1, then we suppress computation of the 〈First
Name, Last Name〉 segments as well as the 〈First Name〉 and 〈Last
Name〉 segments when processing future slices. We refer to such
prunings as futile prunings; see Section 3.4.2 for details.

3.1.4 Computing Projections using Prefix Trees
The general flow of the GORDIAN algorithm is shown in Fig-

ure 2. First, the dataset is compressed into a compact representa-
tion called a prefix tree during a single pass through the data. The
prefix-tree representation (see Section 3.2) minimizes both space
and processing requirements and, more importantly, facilitates ef-
ficient singleton pruning.2 While GORDIAN is computing the cube
aggregates, it keeps track of any discovered non-redundant non-
keys, and finally, it converts the non-keys to a set of non-redundant
keys.

Spencer

Sally

34783478 6791

50 1

5237

KwanThompson

Michael

(2)

(1)

20 110 1 90 1

(3)

(4) (5) (7)

(8)

(9)

(10)

(6)

First Name [0]

Last Name [1]

Phone [2]

Emp No [3]

Figure 6: Prefix Tree for data in Figure 1

Figure 6 shows the prefix tree for the dataset of Figure 1. As
can be seen, each level of the tree corresponds to an attribute in the
schema. The “attribute number” for each attribute is displayed in
brackets; the attrNo variable in the NonKeyFinder algorithm refers
to these values. Each node contains a variable number of cells,
where each cell contains a value in the domain of the attribute cor-
responding to the node’s level; the values within the cells of a node
are distinct. Each non-leaf cell has a pointer to a single child node.
The idea is that there is a 1-to-1 correspondence between the set
of root-to-leaf paths in the tree and the set of unique entities in the
dataset. Therefore, each unique prefix of the entities is stored only
once (hence the name prefix tree). Leaf-node cells have, in addi-
tion to a value, an associated counter—represented by a gray box
in the figure—which records the number of times the entity corre-
sponding to the root-to-leaf path appears in the dataset. Nodes are
numbered in depth-first order; node numbers in Figure 6 appear in
parentheses. Algorithms for creating and manipulating prefix trees
are given in Section 3.2.1. Although not depicted here, each cell
of the prefix tree also records the sum of the counters over all leaf
nodes that are descended from the cell; this structural information
is used for pruning (see Section 3.4).

A high-level, simplified representation of GORDIAN’s method
for finding non-keys is given as Algorithm 1; the full, detailed
method is given as Algorithm 4 below. In our simplified version
we have suppressed any explicit mention of pruning (Section 3.4);
in the full algorithm, many of the traversal and merge steps are
not actually executed. Moreover, the full algorithm combines the
traversal and merge functionality—displayed separately in Algo-
rithm 1—in a compact and efficient manner.
2A similar structure is used in [26, 27] to efficiently answer aggre-
gation queries in a datacube.

Algorithm 1 GORDIAN’s Method for Finding Non-Keys
1: t ← root of prefix tree
2: Traverse(t) // recursively explore all slices
3: return
4:
5: Traverse(t):
6: if at leaf level then
7: discover and store non-keys // see Section 3.6
8: else
9: for c in Children(t) do

10: Traverse(c) // explore slices in depth-first order
11: end for
12: Merge(t) // explore segments of current slice
13: end if
14: return
15:
16: Merge(t):
17: m← root of subtree obtained by merging children of t

// see Section 3.2.2
18: Traverse(m) // recursive exploration and merging
19: Discard(m) // discard prefix tree rooted at m
20: return

The GORDIAN algorithm begins by performing a depth-first (DF)
traversal of the prefix tree. When all the children of a node are
traversed, we compute the slice of the cube that corresponds to the
path from the root to the node by recursively merging the children
of the node. Each merge operation corresponds to the computation
of a different segment (i.e., projection) for the slice. For example,
for the prefix tree in Figure 6, assume that we have visited all the
children of node (3). The path from the root “Michael,Thompson,
{3748,6791}” identifies the current slice. By recursively merging
the children of (3), we compute all the segments for that slice; one
such merge is depicted in Figure 7.

3478 6791

50 110 1
(4) (5)

50 1

Thompson

Michael

(2)

(1)

(3)

10 1
(M1)

Last Name [1]

First Name [0]

Phone [2]

Emp No [3]

Figure 7: Computing segments for slice=”Michael,Thompson”

The doubly recursive nature of GORDIAN (one recursion visits
all the nodes and the other merges the children of a visited node)
guarantees that—if no singleton or futility pruning is performed—
all possible segments for all slices will be generated and traversed.
This property provides also an informal sketch of the correctness of
GORDIAN: all possible projections are processed and all non-keys
are discovered. The details of the merging operation are given in
Section 3.2.2, and the details of how GORDIAN performs the doubly
recursive DF-traversal are explained in Section 3.3. The operation
of the NonKeySet container, which maintains a non-redundant set
of non-keys, is described in Section 3.6. The final step of the GOR-
DIAN algorithm is to compute a non-redundant set of keys from
the set of non-keys in the NonKeySet container; this procedure is
described in Section 3.7.

694

10 1

3478 6791 5237

10 1 120

3478 6791 5237

After merging nodes (4) and (5):

150
(M1)

After merging nodes (3) and (6):

(4) (5) (7)

(M2)

After merging nodes (4), (5) and (7):

1 1

(5) (7)

After merging nodes (3),(6) and (9):

Thompson Spencer Kwan

(3)

After merging nodes (2) and (8):

(6) (9)

(M3)

(M4)

(M5)

(M6)

(M7)

After merging nodes (M6), (5) and (7):

1110 1 20 50 90

1 9050 110 1 1

(a)

(c)

(d)

(e)

(f)

(b)

Figure 8: Merges performed for the data in Figure 6

3.2 Prefix-Tree Operations
We now describe how GORDIAN creates prefix trees and merges

nodes.

3.2.1 Creating a prefix tree
GORDIAN uses Algorithm 2 to create a prefix-tree representation

from an input set of entities. The algorithm requires only a single
pass through the data. Variable root holds the root of the prefix tree,
variable node holds the current node and variable cell the current
cell in node.

The algorithm begins by creating the root node of the tree, i.e.,
node (1). Initially, node (1) is empty and contains no cells at all.
For each entity processed, set the variable node to root (line 3). For
each attribute value vi of this entity, either create a new cell (line
9) and insert the value vi, or locate the cell in node that has value
equal to vi (line 7); in either case, recursively populate the subtree
rooted at the cell with the remaining attributes of the entity.

As discussed earlier, if the algorithm ever increases the count of
a leaf-node cell to a value greater than 1, then it must be the case
that the dataset has no keys at all. GORDIAN therefore aborts its

Algorithm 2 Prefix Tree Creation
Input: DataSet
1: root← new empty node
2: while there are entities in DataSet do
3: node← root
4: t ← next entity of DataSet
5: for each attribute vi of t do
6: if node contains vi then
7: cell← cell in node containing vi
8: else
9: cell← create new cell in node

10: cell.count← 0
11: cell.value← vi
12: cell.child← create new node
13: end if
14: if vi is the last attribute of t then
15: make cell a leaf
16: increment cell.count by 1
17: if cell.count > 1 then
18: abort GORDIAN and report that no keys exist
19: end if
20: else
21: node← cell.child
22: end if
23: end for
24: end while
25: return root

processing and reports that the dataset has no keys (lines 17–18).
Note that different prefix-tree representations are possible, de-

pending upon the order in which attributes are scanned. GORDIAN
finds all keys regardless of representation, and experiments indi-
cate that GORDIAN’s performance is relatively insensitive to the
choice of representation. One heuristic is to processes attributes
in descending order of their cardinality in the dataset, in order to
maximize the amount of pruning at lower levels of the prefix tree.

3.2.2 Merging prefix trees
Algorithm 3 is an efficient algorithm for merging nodes to create

a modified tree. The merge algorithm takes as input a set of nodes
that are to be merged. If the set consists of a single node, then the
algorithm immediately returns this node (line 2). The algorithm
merges all of the nodes of the input, creating and returning only one
node (mergedNode). If the nodes to be merged are leaves, then, for
each distinct value v that appears in at least one cell, the algorithm
creates a new cell in the merged node with value equal to v, and
sets the counter equal to the sum of counter values over all input
cells having value v (line 9). Otherwise, for non-leaf nodes, the
algorithm proceeds by recursively merging the child nodes for each
set of cells that share the same value (line 12).

For example, when merging nodes (2) and (8), the algorithm cre-
ates a new node that has enough cells to accommodate all the dis-
tinct values that appear in nodes (2) and (8). Specifically, it creates
three cells with values ’Thompson’, ’Spencer’ and ’Kwan’, respec-
tively. Then the algorithm proceeds recursively for ’Thompson’ to
merge node (3). However, there is only one node to merge, so the
algorithm immediately returns a reference to node (3). The same
happens for the child pointers of ’Spencer’ and ’Kwan’, i.e., nodes
(6) and (9) are returned, respectively. The result of merging nodes
(2) and (8) is shown in Figure 8(d).

It is worth noting that the merging operation minimizes space
consumption by avoiding unnecessary duplication of nodes. E.g.,

695

Algorithm 3 Prefix Tree Merging
Input: toMerge: set of Prefix-tree nodes
1: if there is only one node in toMerge then
2: mergedNode← (the only) node in toMerge
3: else
4: mergedNode← create new node
5: for each distinct value vi in nodes in toMerge do
6: newCell← create new cell in mergedNode
7: newCell.value← vi
8: if nodes in toMerge are leaves then
9: newCell.count ← sum of all counts of cells (in

toMerge) with values equal to vi
10: else
11: partialSet ← all the children of the cells (in toMerge)

with values equal to vi
12: newCell.child←Merge(partialSet)
13: end if
14: end for
15: end if
16: return mergedNode

in Figure 8(d) we see that the newly created node (M4) points to the
existing nodes (3), (6), and (9)—these nodes are shared, rather than
duplicated. As discussed in Section 3.3 below, care needs to be
taken when discarding a node, because it might be a shared node,
but this inconvenience is vastly outweighed by the space-saving
advantages.

When running the merge algorithm on real datasets, it is often
the case that most of the merge steps are degenerate, because there
is only one node to be merged. This scenario holds especially for
sparse datasets with a large number of attributes. Even in the toy
dataset of Figure 8, we see that most merges generate a prefix tree
with just a single node.

3.3 Finding Non-Keys
The NonKeyFinder routine (Algorithm 4) performs the modified

DF-traversal—as introduced in Section 3.1.4—of the prefix tree,
and appropriately merges nodes to discover non-keys. NonKeyFin-
der takes the root of a prefix tree and the corresponding level num-
ber (i.e., the attribute number as in Figure 6) as input. For the tree
in Figure 6, the initial call to NonKeyFinder has root equal to node
(1) and attrNo = 0, which corresponds to the first-level attribute
First Name. The variable curNonKey is static and global, and is
initialized to be empty prior to the first (topmost) call to NonKey-
Finder. As mentioned earlier, NonKeyFinder consults and updates
the NonKeySet container which records, in a compressed manner,
a non-redundant set of the non-keys discovered so far. The algo-
rithm is carefully designed to avoid producing redundant non-keys:
a redundant non-key will either never be discovered, due to the
invocation of one of the pruning methods, or it will be discovered
but immediately eliminated upon insertion into the NonKeySet con-
tainer.

The algorithm can be summarized as follows. The path from
the root to the current node being visited specifies the current slice
under consideration, and the variable curNonKey contains the cur-
rent non-key candidate (equivalently, current segment) that Non-
KeyFinder is working on for the slice. When NonKeyFinder visits
a node, it appends attrNo to curNonKey (Line 1) and then processes
the contents of the node. Then it removes attrNo from curNonKey
(Lines 9 and 22), merges the cells of the node using Algorithm 3,
and recursively visits the root of the merged prefix tree.

Consider a data-set with three attributes X, Y, and Z. If we ignore

for a moment the effects of the pruning mechanisms described in
subsequent sections, then, for the current slice under consideration,
the order in which NonKeyFinder would traverse all possible non-
keys is as depicted in Figure 9; equivalently, the figure shows the
order in which segments of the current slice are processed. This
ordering makes the pruning mechanism described in Section 3.4
possible.

XYZ

XY

X Y Z

XZ YZ
5

6

3

4

2

1

7

Figure 9: Segment processing order (three attributes)

In more detail, when NonKeyFinder processes a leaf node of the
prefix tree, it first checks whether any of counters exceeds 1 and, if
so, it adds curNonKey to the NonKeySet container (Line 5). Then
NonKeyFinder removes attrNo from curNonKey, merging the cells
of the leaf node, and then checking if the counter value exceeds 1.
Actually, the foregoing operation can be optimized, as in Line 10;
i.e. if there is more than one cell in the node or the count of the only
cell in the leaf exceeds 1, then curNonKey is indeed a non-key, and
we insert it into the NonKeySet container (Line 11).

When NonKeyFinder processes a non-leaf node, it first recur-
sively visits all the children of the cells in the node (Line 19).
Then—after removing attrNo from the current non-key candidate
curNonKey—NonKeyFinder merges the cells in the node using Al-
gorithm 3 and recursively visits the merged prefix tree (Line 28),
which it discards afterwards (Line 29). Caution is required when
discarding a merged prefix tree to ensure that any shared nodes are
retained; in our implementation, a reference-counting scheme was
used to this end.

3.4 Search Space Pruning
GORDIAN’s pruning techniques speed up NonKeyFinder by or-

ders of magnitude without affecting accuracy. As mentioned ear-
lier, singleton pruning is based on relationships between slices,
whereas futility pruning is based on previously discovered non-
keys.

3.4.1 Singleton Pruning
We have seen that the sharing of prefix-tree nodes significantly

reduces time and space requirements when computing slices of the
cube. In this section, we describe an additional benefit of node
sharing, namely, pruning of redundant searches.

When NonKeyFinder processes a node, the path from the root to
the node specifies the current slice L under consideration. It may
be the case that some cells of the node point to shared and previ-
ously traversed prefix (sub)trees, as in Figure 8(d) or, more gen-
erally, Figure 10(a). We claim that NonKeyFinder does not need
to traverse these subtrees again. To see this, observe that the mere
fact that the node points to a previously traversed subtree means
that there exists a previously processed slice F that subsumes L
in the sense of Section 3.1.2. As discussed in Section 3.1.2, this
subsumption means that any non-key discovered in L will be re-
dundant to a previously discovered non-key in F . This observation
is exploited in NonKeyFinder by pruning the search in line 18.

Figure 10(b) illustrates an extension of this pruning idea, when

696

(Ref1) (Ref2)

SubTree

...

Redundant Traversal

one
cell

SubTree

Redundant Merge
Traversal

(a) While Traversing (b) While Merging

Figure 10: Singleton Pruning

a node with just one cell is being processed. It is obvious that the
merging operation will return a shared prefix tree, and thus cannot
provide any non-redundant non-keys. This extension is exploited
in line 23.

As a final optimization, if NonKeyFinder encounters a prefix tree
(i.e., a slice) that corresponds to just one entity, it does not search
the tree (line 14). Such a search is unnecessary because no count
can exceed 1, and hence the tree cannot yield any non-keys.

3.4.2 Futility Pruning
This pruning operation prevents NonKeyFinder from merging

and searching trees that can generate only redundant non-keys. Fu-
tility pruning, unlike singleton pruning, uses the non-key container
to discover if searching can be pruned.

Recall that if K is a non-key, then K′⊂K implies that K′ is a non-
key. NonKeyFinder takes advantage of this property by checking
for such futile trees before merging them. The non-key container
holds all of the non-keys seen so far. Before creating a new prefix
tree, NonKeyFinder checks (line 24) whether there exists a non-key
in the non-key container that covers all of the possible non-keys
that could be found. The coverage test for all such paths can be
performed very efficiently using bitmaps; see Section 3.6.

3.5 An Example of NonKeyFinder Operation
In this section, we illustrate the NonKeyFinder by applying it

to the prefix tree in Figure 6. Although the dataset contains only
four entities with four attributes each, the dataset is sufficient to
demonstrate all of the concepts discussed so far.

NonKeyFinder performs a DF-traversal on the prefix tree. It
starts with the root node (1) and proceeds recursively to nodes (2)
and (3) until it arrives at leaf node (4). The current slice there-
fore corresponds to the entity “Michael,Thompson,3478,10”. Dur-
ing this recursive traversal, NonKeyFinder builds up the sequence
of attributes in curNonKey, i.e. 〈First Name, Last Name, Phone,
EmpNo〉. Because the count of the (only) cell in (4) equals 1, Non-
KeyFinder does not find a non-key. The next segment (i.e., non-key
candidate) is curNonKey = 〈First Name, Last Name, Phone〉. Since
cell ’3478’ has only one child, no non-key is found.

Recursively, NonKeyFinder now follows the child pointer of cell
’6791’ to node (5). The current slice now is “Michael,Thompson,
6791,50” and, just as at node (4), NonKeyFinder doesn’t find any
non-keys for 〈First Name, Last Name, Phone, Emp No〉 and 〈First
Name, Last Name, Phone〉. NonKeyFinder backtracks to node (3),
thereby increasing the slice to the two entities “Michael,Thompson,
3478,10” and “Michael,Thompson,6971,50”. Because all the chil-
dren of node (3) have been traversed, NonKeyFinder merges these
children and creates a new prefix tree with a single node (M1);
node (M1) is depicted in Figure 8(a). The merge operation essen-

tially projects out the Phone attribute from the current slice. The
next candidate non-key is now 〈First Name, Last Name, EmpNo〉.

NonKeyFinder now traverses (M1). Because all of the cells in
the leaf node (M1) have counter values equal to 1, no non-keys are
discovered. NonKeyFinder is now finished with (M1) and projects
out the leaf attribute (EmpNo) to obtain the new candidate non-key
〈First Name, Last Name〉. Since (M1) has more than one cell, Non-
KeyFinder discovers the first non-key 〈First Name, Last Name〉 and
inserts it into the non-key container. Node (M1) is then discarded.

The recursion backtracks to node (2), so that the current slice
is based on all three ’Michael’ entities. NonKeyFinder now fol-
lows the child pointer of the cell with value ’Spencer’ and reaches
node (6). As node (6) has only one cell, singleton pruning [as in
Figure 10(b)] stops the traversal immediately. NonKeyFinder ex-
amines a new segment by merging the children of node (2), thereby
creating a prefix tree with node (M2) [Figure 8(b)]. The traversal
would now proceed recursively to nodes (4), (5) and (7). How-
ever, since all of these nodes have been traversed before, singleton
pruning [as in Figure 10(a)] terminates the traversal immediately
and NonKeyFinder merges nodes (4), (5) and (7) to create a prefix
tree with node (M3) [Figure 8(c)], i.e., the current candidate non-
key is set to curNonKey = 〈First Name, EmpNo〉. By traversing
Node (M3) we see that all aggregate counts in the cells are equal to
1, and therefore no non-keys are found. NonKeyFinder now needs
to see whether 〈First Name〉 is a key. Since we are at the leaf level, a
naive procedure would scan node (M3) to see whether this node has
more than one cell. But as we have already determined that 〈First
Name, Last Name〉 is a non-key (this is checked via the NonKey-
Set container), we know that 〈First Name〉 would be a redundant
non-key. Hence, futility pruning immediately aborts the search.

NonKeyFinder now backtracks to node (1), follows the child
pointer of the cell with value ’Sally’, and proceeds in a manner
similar to that described above. The algorithm eventually discov-
ers the only other non-key, namely 〈Phone〉, when it merges the
children of the cells in node (1). The search ultimately terminates,
having found the non-keys 〈First Name, Last Name〉 and 〈Phone〉.

3.6 Non-Key Container
As discussed previously, the NonKeySet container holds a cur-

rent set of non-redundant non-keys during NonKeyFinder process-
ing. Algorithm 5 is used to insert a non-key, denoted NonKey, into
NonKeySet. The algorithm goes over the non-keys in the container
to check if any of them cover NonKey (Lines 2 to 7). If no covering
non-key can be found, then the algorithm removes any previously
inserted non-keys that are now covered by NonKey during a sec-
ond pass (Lines 8 to 15). The last step of the second pass inserts
NonKey into the container (Line 14). We use a bitmap represen-
tation for non-keys—where each bit corresponds to an attribute of

697

Algorithm 4 NonKeyFinder
Input: root: node of the prefix tree, attrNo: attribute number
1: add attrNo as part of curNonKey
2: if root is leaf then
3: for each cell in root do
4: if cell.count 6= 1 then
5: add curNonKey to NonKeySet
6: break
7: end if
8: end for
9: remove attrNo from curNonKey

10: if root has more than one cell or the count of the only cell
exceeds 1 then

11: add curNonKey to NonKeySet
12: end if
13: else
14: if there is only one entity then
15: return
16: end if
17: for each cell in root do
18: if cell.child is not a shared prefix tree then
19: NonKeyFinder(cell.child,attrNo +1)
20: end if
21: end for
22: remove attrNo from curNonKey
23: if there is more than one cell in root then
24: if curNonKey is futile then
25: return
26: end if
27: mergeTree←Merge all the children of the cells in root
28: NonKeyFinder(mergeTree,attrNo +1)
29: discard mergeTree
30: end if
31: end if

R—both for compactness and for efficiency when performing the
redundancy test and other operations.

3.7 Computing keys from non-keys
The final step of the GORDIAN algorithm is to compute a non-

redundant set of discovered keys from the set of discovered non-
keys. The basic idea is that the set of keys corresponds to the carte-
sian product of the complement sets (see Section 2) of the N non-
redundant non-keys. To see this, observe that an element of this
cartesian product K =< A1,A2, . . . ,AN > has the property that it is
not covered by any of the non-keys, because A1 is not covered by
the first non-key, A2 is not covered by the second non-key, and so
forth. If K were a non-key, then it would be covered by at least one
of the non-redundant non-keys in the NonKeySet container, but it is
not, and hence must be a key. Thus we can proceed for each non-
key by computing its complement set, taking the cartesian product
with the previously-seen complement sets, and pruning any redun-
dant keys on the fly (where redundancy is defined as at the end of
Section 2).

Algorithm 6 performs the conversion, using the variable KeySet
to store the set of keys that will be returned and the variables com-
plementSet and newSet to hold extra sets of keys for book-keeping
purposes. The algorithm reads the first non-key and assigns the
complement set of the non-key to complementSet (line 3). In our
running example, the algorithm computes the complement of the
non-key 〈First Name, Last Name〉which is the set of candidate keys
〈Phone〉 and 〈EmpNo〉. The KeySet is currently empty, so comple-

Algorithm 5 NonKeySet Insertion
Input: NonKey: non-key to insert, NonKeySet: container of non-

keys
1: toAdd← true
2: for each non-key nk in NonKeySet do
3: if nk covers NonKey then
4: toAdd← false
5: break
6: end if
7: end for
8: if toAdd is true then
9: for each non-key nk in NonKeySet do

10: if NonKey covers nk then
11: remove nk from NonKeySet
12: end if
13: end for
14: add NonKey in NonKeySet
15: end if

Algorithm 6 Obtaining the Keys from the Non-Keys
Input: NonKeySet: container of non-keys
1: KeySet← 0
2: for each NonKey in NonKeySet do
3: complementSet← complement of NonKey
4: if KeySet = 0 then
5: KeySet← complementSet
6: else
7: newSet← 0
8: for each pKey in complementSet do
9: for each Key in KeySet do

10: insert (Key union pKey) into newSet
11: end for
12: end for
13: simplify newSet
14: KeySet← newSet
15: end if
16: end for
17: return KeySet

mentSet is assigned to KeySet and we proceed to the next non-key.
Again, complementSet gets the complement set of the non-key. In
our example, the next non-key is 〈Phone〉 whose complement set is
the candidate keys 〈First Name〉, 〈Last Name〉 and 〈EmpNo〉. Now,
for each candidate key pKey in the complementSet and for each key
Key already inserted in KeySet we insert the union (line 10) of pKey
and Key into the set newSet. Then we remove all redundant keys
from newSet and assign newSet to KeySet.

The final result is:

Key
〈EmpNo〉

〈First Name, Phone〉
〈Last Name, Phone〉

3.8 Complexity
Determining the complexity of any sophisticated data-driven al-

gorithm is a challenging task, because it is hard to model all per-
tinent properties of the data distribution. In our setting, where we
are dealing with multi-dimensional datasets, attribute correlations
make the problem even harder. In the general case we know that the
problem of finding a minimal composite key is NP-complete [14]
and indeed we can construct (highly artificial) datasets on which the

698

behavior of our algorithm is exponential. However, as described in
Section 4, GORDIAN performs well on a wide variety of real-world
and synthetic datasets.

The following result helps explain GORDIAN’s good empirical
performance. Due to lack of space, we omit the proof, which is
rather long and uses arguments similar to those in [27]. In the fol-
lowing, suppose that

1. The frequencies for each attribute follow a generalized Zip-
fian distribution with parameter θ , so that the frequency of
the ith most frequent value is proportional to i−θ .

2. The only pruning employed by GORDIAN is the sub-case of
singleton pruning in which the subsumed slice L is based
on a single entity. This assumption is conservative in that,
in actuality, GORDIAN will apply the other available pruning
methods, and hence be much more efficient.

3. There are no correlations among the attributes. Note that real
data tends to have many complex correlation patterns. Such
patterns greatly benefit GORDIAN because they lead to a lot
of pruning; thus this assumption is also conservative.

THEOREM 1. Under Assumptions 1–3 above, the time complex-
ity of GORDIAN is

O
(

s ·d ·T 1+ 1+θ

logd C + s2
)

and the memory complexity is O(d ·T), where s is the number of
mutually non-redundant non-keys, d is the number of attributes,
C is the average cardinality (number of distinct values) of the at-
tributes, and T is the number of entities.

For uniform data (θ = 0) in which each entity has 30 attributes
and 5,000 distinct values per attribute, we have 1 + (logd C)−1 ≈
1.4, which implies that the time complexity scales almost linearly
with the number of entities. The s2 term in the complexity expres-
sion reflects the cost of computing the keys from the non-keys, and
uses the fact that the number of keys is O(s). Although the sta-
tistical assumptions of the theorem rarely hold exactly in the real
world, our experiments show that GORDIAN’s actual performance
is clearly superior to the exponential time and polynomial (at best)
space requirements of the brute-force approach.

3.9 Sampling
Instead of processing every entity in a dataset of size T , we can

process a sample of the entities, with the goal of making GORDIAN
scalable to very large datasets. GORDIAN, when applied to a sam-
ple, will discover all of the keys in the dataset, but will also discover
false keys, i.e., sets of attributes that are keys for the sample but not
for the entire dataset. Some false keys can be useful, however, if
their strength—defined as the number of distinct key values in the
dataset divided by the number of entities—is sufficiently high. A
set of attributes whose strength is close to 1 is called an approxi-
mate key. (Of course, a true key has strength equal to 1.) Kivinen
and Mannila [21] show that, in general, a minimum sample size of
O

(
T 1/2ε−1(d + logδ−1)

)
is needed to ensure that, with probabil-

ity (1−δ), the strength of each key discovered in a sample exceeds
1−ε . Here, as before, T is the number of entities and d is the num-
ber of attributes. This sample size can be large for typical values
of the parameters. As with the algorithmic complexity results cited
previously, however, the datasets used to establish this theoretical
result are rather artificial. For the more realistic datasets that we
considered in our experiments, we found that GORDIAN can use a

relatively small sample and still produce a high quality set of true
and approximate keys.

Precise assessment and control of the strength of the discovered
keys is an extremely challenging problem. Indeed, estimation of
the strength of a set of attributes is closely related to the notoriously
difficult problem of sampling-based estimation of the number of
distinct values in a population [16]. The state-of-the-art estimation
algorithms are quite expensive to apply in the current setting, so
we do not pursue this topic further. Interestingly, we found in our
experiments that, with fairly high probability, the quantity

T (K) = 1−∏
v∈K

N−Dv +1
N +2

,

is a reasonably tight lower bound on the strength of a sample-based
discovered key K, where N is the sample size and Dv is the number
of distinct values of attribute v in the sample. This quantity is de-
rived via an approximate Bayesian argument similar to the deriva-
tion of Laplace’s “rule of succession” [9, Sec. 7.10].

4. EXPERIMENTS
We implemented GORDIAN on top of DB2 V8.2 and applied this

prototype to several synthetic, real-world, and benchmark datasets.
First, we validated GORDIAN over these datasets and compared
GORDIAN to other key-discovery algorithms. We then examined
the impact of sample size on GORDIAN’s accuracy and speed, as
well as the overall impact of GORDIAN on query execution times.

4.1 Experimental Setup
We evaluated GORDIAN on a number of real and synthetic data-

sets. The TPC-H dataset corresponds to the synthetic database de-
scribed in [31]. The OPIC dataset is a real-world database contain-
ing product information for a large computer company. The BASE-
BALL dataset contains real data about baseball players, teams, a-
wards, hall-of-fame membership, and game/player statistics for the
baseball championship in Australia. Table 1 displays some sum-
mary characteristics of the datasets. All experiments were per-
formed on a UNIX machine with one 2.4 GHz processor and 1 GB
of RAM. Unless stated otherwise, results are reported for experi-
ments on the OPIC dataset; results for the other datasets are similar.

4.2 Performance Comparison
Figure 11 and Table 2 compare GORDIAN’s processing time and

memory requirements to (1) a brute-force algorithm that finds all
composite keys by checking all possible combinations (2) the brute
force algorithm, but limited to finding composite keys with at most
four attributes and (3) same as (2), but limited to single-attribute
keys only. As can be seen, for roughly the same time and mem-
ory needed by a brute-force algorithm to find single-attribute keys,
GORDIAN can find all composite strict keys, as well as approximate
keys.

To study how the number of dimensions affects the relative per-
formance of the foregoing algorithms, we ran GORDIAN on a se-
quence of datasets having increasingly many attributes. To obtain
this sequence, we selected a relation in the OPIC dataset that has
50 attributes, and projected the relation onto 5 attributes, then 10
attributes, and so forth. Figure 12 displays our results. We see
that GORDIAN scales almost linearly with the number of attributes
and that, although it finds all composite keys, its performance is
very close to the approach that just checks for single-attribute keys.
For readability, we do not display results for the brute-force ap-
proach that checks all possible combinations of attributes—these
times were orders of magnitude slower than the rest.

699

Dataset Number of Tables Average #Attributes Maximum #Attributes # Tuples (Entities)
TPC-H 8 9 17 866,602
OPIC 106 17 66 27,757,807

BASEBALL 12 16 40 262,432

Table 1: Dataset Characteristics

10 k 100 k 1 M

#Tuples

10

100

1000

10000

T
im

e
(s

ec
)

GORDIAN (all attributes)
Brute Force (all attributes)
Brute Force (up to 4 attributes)
Brute Force (single attribute)

Figure 11: Time comparison

0 10 20 30 40 50

#Attributes
0

20

40

60

80

T
im

e
(s

ec
)

GORDIAN (all attributes)
Brute Force (single attribute)
Brute Force (up to 4 attributes)

Figure 12: Performance vs. #Attributes

In Figure 13 we show the effect of GORDIAN’s pruning methods.
We see that singleton pruning and futility pruning together speed
up processing by orders of magnitude.

4.3 Effect of Sample Size
Because, as shown above, GORDIAN’s execution time scales al-

most linearly with the number of entities, it follows that the exe-
cution time is an almost linear function of the sample size. Thus
GORDIANis applicable even to very large datasets.

Of course, GORDIAN identifies not only strict keys but also ap-
proximate keys when it operates on a sample of the data; see Sec-
tion 3.9. Figure 14 shows the minimum strength found for each
of the datasets at various sample sizes. We computed the strength
exactly, by performing the projection of the full dataset on the key
attributes (eliminating duplicates) and dividing by the total num-

Brute force Brute force
Dataset GORDIAN (≤ 4 attrib’s) (single attrib)
TPC-H 12MB 240MB 6MB
OPIC 100MB 600MB 77MB

BASEBALL 6MB 30MB 4MB

Table 2: Maximum Memory Usage

0 10 20 30 40 50

#Attributes

100

200

300

T
im

e
(s

ec
)

GORDIAN (w/ Prunning)
GORDIAN (No Prunning)

Figure 13: Pruning Effect

ber of tuples. We observe that even with fairly small sample sizes,
GORDIAN finds a useful set of approximate keys, i.e., having high
strength.

To further study the effect of sample size on accuracy, we de-
fined a false key as a key with a strength < 80%, and examined the
ratio of false keys to true (strict) keys as the sample size varied.
Our results are displayed in Figure 15. Again, GORDIAN yields
acceptable results even at fairly small sample sizes.

0.1 1 10 100

Sample Size(%)
0

25

50

75

100

M
in

 S
tr

en
gt

h
(%

) TPC-H
OPICM
BASEBALL

Figure 14: Minimum Strength vs. Sample Size

4.4 Application to Query Execution
As discussed in the introduction, there are many possible uses

for the keys discovered by GORDIAN. In this section we discuss
one interesting and important use for such keys in the context of
query optimization. In this setting, GORDIAN proposes a set of in-
dexes that correspond to the discovered keys. Such a set serves
as the search space for an “index wizard” that tries to speed up
query processing by selecting the most appropriate indexes based
on available storage, workload characteristics, maintenance con-
siderations, and so forth. We explored the applicability of GOR-
DIAN for index recommendation using a synthetic database with
a schema similar to TPC-H. The largest table had 1,800,000 rows
and 17 columns. GORDIAN required only 2 minutes to discover the
candidate indexes. Because we had sufficient storage available, we
were “naive” in that we simply built all of the candidate indexes.
Figure 16 displays the resulting speedups obtained for a workload

700

0.1 1 10 100

Sample Size(%)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fa
ls

e-
K

ey
 R

at
io

TPC-H
OPICM
BASEBALL

Figure 15: Quality comparison

of 20 typical warehouse queries. For query 4 the speedup was dra-
matic (≈ 6 times) because the index covered all of the attributes in
the query, so that the query was processed using only index pages.

0 5 10 15 20

Query No
0

1

2

3

4

5

6

Sp
ee

du
p

Figure 16: Effects of GORDIAN on Query Execution Time

5. RELATED WORK
Many researchers have focused on the problem of automated

metadata discovery, especially in the context of query optimiza-
tion. The two main approaches can be characterized as either query
driven or data driven. The query-driven, or feedback, approach ex-
tracts information from the answers to user queries. An advantage
of this approach is that it directs system resources toward the users’
needs and interests. For example, the LEO learning optimizer [30]
corrects its cardinality estimates based on actual cardinalities ob-
served while processing user queries. Another set of examples ex-
ample is given by the work in [6, 29], where query feedback is used
to maintain self-tuning histogram approximations to the underlying
data distribution. Query-driven techniques scale well, and yield
immediate gains by focusing on real production queries. These
techniques, however, require a “burn-in” period of initial learn-
ing. Moreover, these techniques may not be robust when faced
with previously-unseen queries or significant changes to the under-
lying data; in the latter case, the feedback from queries executed
at different times can be mutually inconsistent. A variant type of
query-driven technique uses information about a query workload,
rather than the actual results of executing the queries [5, 7].

Data-driven techniques look directly at the base data, without
reference to a query workload. These techniques form an impor-
tant complement to query-driven methods: while perhaps less ac-
curate, data-driven techniques tend to be more robust. Indeed, the
two techniques can be fruitfully combined; see [2] for some work in
this direction. Well known data-driven techniques include methods
for producing “summary” or “synopsis” data structures such as his-

tograms [20], wavelets [22] and graphical statistical models [12].
These techniques typically do not scale well to high-dimensional
data (the so-called “curse of dimensionality”), and the user usually
has to select which (few) dimensions to include in the summary. In
an attempt to combat the curse of dimensionality, Cheng, et al. [8]
construct a Bayesian network model from the base data by using
conditional independence tests and a mutual information measure.
Application of the method is limited to discrete attributes without
any missing values, and has processing complexity of O(d4) where
d is the number of attributes. In [11] a technique is provided that
combines a set of low-dimensional histograms with a Markov Net-
work model by searching through the space of possible models and
sorting them according to a scoring function. However, the search
space is exponential on the number of attributes.

The foregoing techniques focus on discovering metadata related
to the joint frequency distribution; numerous other techniques are
oriented directly toward relationship discovery. BHUNT [15] is a
data-driven technique that can discover algebraic constraints in the
data, e.g., SHIPDATE−ORDERDATE = 1 week. CORDS [19]
builds upon BHUNT and develops an efficient technique for iden-
tifying soft functional dependencies and correlations between pairs
of columns. The Bellman system [10] uses a variety of techniques
for discovering similarities between (multi)sets of values. There
has also been a great deal of work related to mining strict and soft
functional dependencies. TANE [17], for example, uses a parti-
tioning of the tuples with respect to their attribute values to quickly
test the validity of functional dependencies. TANE can also dis-
cover approximate FDs and it implicitly identifies keys (including
composite keys) that are used to prune the search space. Our ap-
proach can bootstrap TANE in that respect, identifying all keys be-
fore executing TANE to find FDs. Kivinen and Mannila [21] pro-
vide a sampling-based technique for discovering approximate FDs.
In [24], inclusion and functional dependencies are extracted by an-
alyzing equi-join queries embedded in an application program, for
the purpose of organizing the database in third-normal form. See
[15] and [19] for further references in this area, as well as a discus-
sion of the difference between strict, approximate, and probabilis-
tic dependencies. The literature on mining semantic integrity con-
straints and association rules—see, for example, [25] and [28]—is
a related body of work that, however, focuses on relations between
values of attributes rather than the attributes themselves.

With respect to the above taxonomy, GORDIAN is a data-driven
method which works directly on the base data. However, GOR-
DIAN can be enhanced to exploit workload information or other
DBA knowledge in order to further prune the search space. As in
[15, 19, 21], the use of sampling reduces significantly the over-
head of processing and makes GORDIAN applicable to real-world
environments with thousands of datasets, hundreds of attributes and
millions of entities. GORDIAN also works well with updates, since
usual referential constraints or triggers can be set to check for the
continuing validity of a key.

6. CONCLUSIONS AND FUTURE WORK
We have described GORDIAN, a novel technique for efficiently

identifying all composite keys in a dataset. This capability is cru-
cial for many different data management tasks such as data mod-
eling, data integration, query formulation, query optimization, and
indexing. Our solution is the first to allow the discovery of com-
posite keys while avoiding the exponential processing and memory
requirements that have limited the applicability of previous brute-
force methods to very small data sets. Our technique can be used
to find keys in any collection of entities, e.g., relational tables or
XML repositories. Our empirical study has demonstrated that GOR-

701

DIAN has excellent real-world performance, discovering all com-
posite keys in the time that previous approaches required to find
single-attribute keys. Our study also shows that GORDIAN, when
combined with sampling, can quickly find high quality sets of ap-
proximate keys in very large datasets. GORDIAN can be effectively
used for index recommendation, resulting in dramatic speedups in
query processing. We plan to extend our approach to permit iden-
tification of foreign-key relationships, thereby automating the dis-
covery of full entity-relationship diagrams.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] A. Aboulnaga, P. J. Haas, M. Kandil, S. Lightstone,

G. Lohman, V. Markl, I. Popivanov, , and V. Raman.
Automated statistics collection in DB2 UDB. In Proc.
VLDB, pages 1146–1157, 2004.

[3] S. Bell and P. Brockhausen. Discovery of constraints and
data dependencies in databases. In Proc. ECML, pages
267–270, 1995.

[4] P. Brown, P. Haas, J. Myllymaki, H. Pirahesh, B. Reinwald,
and Y. Sismanis. Toward automated large-scale information
integration and discovery. In T. Härder and W. Lehner,
editors, Data Management in a Connected World. Springer,
2005.

[5] N. Bruno and S. Chaudhuri. Exploiting statistics on query
expressions for optimization. In Proc. ACM SIGMOD, pages
263–274, 2002.

[6] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
multidimensional workload-aware histogram. In Proc. ACM
SIGMOD, 2001.

[7] S. Chaudhuri and V. Narasayya. Automating statistics
management for query optimizers. IEEE Trans. Knowl. Data
Engrg., 13:7–20, 2001.

[8] J. Cheng, D. A. Bell, and W. Liu. Learning belief networks
from data: An information theory based approach. In Proc.
CIKM, pages 263–274, 1997.

[9] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley, 1991.

[10] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.
Mining database structure; or, how to build a data quality
browser. In Proc. SIGMOD, pages 240–251, 2002.

[11] A. Deshpande, M. Garofalakis, and R. Rastogi.
Independence is good: Dependency-based histogram
synopses for high-dimensional data. In Proc. ACM
SIGMOD, pages 199–210, 2001.

[12] L. Getoor, T. B, and K. D. Selectivity estimation using
probabilistic models. In Proc. ACM SIGMOD, 2001.

[13] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M.Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizsing group-by,
cross-tab, and sub-totals. J. Data Mining and Knowledge
Discovery, 1(1):29–53, 1997.

[14] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja,
H. Toivonen, and R. S. Sharma. Discovering all most specific

sentences. ACM Trans. Database Syst., 28(2):140–174, 2003.
[15] P. J. Haas and P. G. Brown. BHUNT: Automatic discovery of

fuzzy algebraic constraints in relational data. In Proc. VLDB,
pages 668–679, 2003.

[16] P. J. Haas and L. Stokes. Estimating the number of classes in
a finite population. J. Amer. Statist. Assoc., 93:1475–1487,
1998.

[17] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Tiovonen.
TANE: An efficient algorithm for discovering functional and
approximate dependencies. Comput. J., 42:100–111, 1999.

[18] IBM Research. Autonomic computing. In
http://www.research.ibm.com/autonomic, 2003.

[19] I. Ilyas, V. Markl, P. J. Haas, P. G. Brown, and A. Aboulnaga.
CORDS: Automatic generation of correlation statistics in
DB2. In Proc. VLDB, pages 1341–1344, 2004.

[20] Y. E. Ioannidis. The history of histograms (abridged). In
Proc. VLDB, pages 19–30, 2003.

[21] J. Kivinen and H. Mannila. Approximate dependency
inference from relations. Theoret. Comput. Sci.,
149:129–149, 1995.

[22] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-Based
histograms for selectivity estimation. In Proc. ACM
SIGMOD, pages 448–459, 1998.

[23] Microsoft Research. The Autoadmin project. In
http://research.microsoft.com/autoadmin, 2003.

[24] J.-M. Petit, F. Toumani, J.-F. Boulicaut, and J. Kouloumdjian.
Towards the reverse engineering of denormalized relational
databases. In Proc. ICDE, pages 218–227, 1996.

[25] M. Siegelan, E. Sciore, and S. Salveter. A method for
automatic rule derivation to support semantic query
optimization. ACM Trans. Database Sys., 17:563–600, 1992.

[26] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and
Y. Kotidis. Dwarf: Shrinking the Petacube. In Proc. ACM
SIGMOD, 2002.

[27] Y. Sismanis and N. Roussopoulos. The Polynomial
Complexity of Fully Materialized Coalesced Cubes. In Proc.
VLDB, 2004.

[28] R. Srikant and R. Agrawal. Mining quantitative associations
rules in large relational tables. In Proc. ACM SIGMOD,
pages 1–12, 1996.

[29] U. Srivastava, P. J. Haas, V. Markl, and N. Megiddo.
ISOMER: Consistent histogram construction using query
feedback. In Proc. ICDE, 2006.

[30] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO -
DB2’s LEarning Optimizer. In Proc. VLDB, pages 19–28,
2001.

[31] http://www.tpc.org/tpch/default.asp.
[32] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback.

Self-tuning database technology and information services:
from wishful thinking to viable engineering. In Proc. VLDB,
pages 20–34, 2002.

[33] S. K. M. Wong, C. J. Butz, and Y. Xiang. Automated
database schema design using mined data dependencies. J.
Amer. Soc. Inform. Sci., 49:455–470, 1998.

702

