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ABSTRACT
The contents of Web databases are accessed through queries
formulated on complex user interfaces. In many domains of
interest (e.g. Auto) users are interested in obtaining infor-
mation from alternative sources. Thus, they have to ac-
cess many individual Web databases via query interfaces.
We aim to construct automatically a well-designed query
interface that integrates a set of interfaces in the same do-
main. This will permit users to access information uniformly
from multiple sources. Earlier research in this area includes
matching attributes across multiple query interfaces in the
same domain and grouping related attributes. In this paper,
we investigate the naming of the attributes in the integrated
query interface. We provide a set of properties which are re-
quired in order to have consistent labels for the attributes
within an integrated interface so that users have no difficulty
in understanding it. Based on these properties, we design
algorithms to systematically label the attributes. Exper-
imental results on seven domains validate our theoretical
study. In the process of naming attributes, a set of logi-
cal inference rules among the textual labels is discovered.
These inferences are also likely to be applicable to other in-
tegration problems sensitive to naming: e.g., HTML forms,
HTML tables or concept hierarchies in the semantic Web.

1. INTRODUCTION
In recent years there is increased awareness regarding the

tremendous amount of information available on the Web and
especially among online databases. These databases provide
dynamic query-based data access through query interfaces,
instead of static URL links. A user seeking desired informa-
tion in such repositories needs to be aware of these sources (a
recent survey [6] estimated 450,000 online databases), then
to learn their query interface capabilities and to proceed
with the actual retrieval. As an example, a user buying a
car is often interested in probing alternative sources for bet-
ter price. Given the large number of alternative sources a
user has to access numerous sites to achieve lowest price.
It is unrealistic to expect for a user to access a large num-
ber of pertinent online sources. Therefore, one step towards
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Figure 1: Example of naming problems.

meeting the user’s desire is the construction of an integrated
query interface that allows uniform access to disparate rele-
vant sources. Meaningful user interface creation is an impor-
tant issue underlined also by the Florida ”butterfly” ballots
incident in US Election 2000. This is still a vivid proof that
ill-designed forms make it difficult even for human voters to
simply associate candidates with their punch holes.

The problem is to construct automatically a well-designed
unified query interface which contains all or most significant
distinct fields of source interfaces. The goal of our work
is to lay down a set of properties that allows for a precise
characterization of an integrated interface. Much like in the
other data models used in the database community (e.g. re-
lational, XML) for a certain domain there is no unique well-
designed query interface. In order to distinguish ”well” from
”bad” constructed unified interfaces a formalism (i.e. a set
of desirable properties) is needed. Our study of individual
query interfaces in various domains revealed the presence of
three major components that contribute to a well-designed
query interface. The first component is structural [8]; the
elements of query interfaces are organized in groups (log-
ical units) of related elements [8, 26] so that semantically
related elements are placed in close vicinity. For example,
Adults, Seniors, Children of the interface shown in Figure 1
are placed together. In addition, multiple related groups of
fields are organized in super-groups (e.g. Where and when
do you want to travel?). This bottom-up characterization
leads to a hierarchical structure for interfaces (see Figure 2,
Vacations tree) [8, 24], where a leaf in the tree corresponds
to a field in the interface, an internal node corresponds to a
(super)group of fields and the order among the sibling nodes
within the tree resembles the order of fields in the interface.
The second is lexical, i.e., the labels assigned to their ele-
ments are carefully chosen so as to convey both the meaning
of each individual element and to underline the hierarchical
organization of the fields (e.g. the three fields together with
the parent field How many people are going?). The third is
the set of instances; designers rely on instances to further
help users grasp the role of elements within a query interface.
For example, the attribute Going to in Figure 1 is equipped
with a list of predefined values.

The quality of the integrated interface has to be judged
along these three components. We already addressed the
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Figure 2: Schema trees and their correspondences.

structural part [8]; we described the construction of a uni-
fied query interface that preserves the structural information
in disparate query interfaces of the same domain. Since this
work draws on the concepts developed there we will briefly
introduce them in the following section. Even though the
third component is not always present [23], whenever it is
we use it to improve the lexical component of the integrated
interface. The computation of the domains of the fields on
the unified interface is described in some detail in [12] and
it will not be covered here. The second component is the
chief focus of this paper. A key problem addressed in this
work is consistent labeling of fields in the same group. As it
can be observed in the query interface of Figure 1 between
the labels of the fields in the same group there are certain
relationships. For instance, Adults, Seniors and Children are
all plurals, whereas Departing from and Going to are gerund
followed by a preposition. In addition to this uniformity
property among the labels of a group the global interface
faces an additional problem: fields may come from different
sources. Thus, a group of fields within the unified inter-
face might not correspond to any group in a single interface,
making even harder the task of uniform assignment of la-
bels to these fields. For example, consider that the global
interface is just as the one shown in our example but it has
an additional field next to Children, namely, a field denoting
the infants whose label can be drawn from among Infant,
Infants, and Number of Infants. Clearly, the best label for
such a field is Infants as it preserves the existing homogene-
ity within the interface (i.e. all plurals). In addition, there
are also semantic ambiguity problems. Consider the query
interface in the Job domain (Figure 1, on the right). For the
sake of this example suppose the integrated interface of this
domain is as shown in the figure except for an additional
field denoting job preferences, i.e. part-time, full-time, etc,
whose label needs to be selected from among Job Type, Type
of Job and Job Preferences. Here the first two labels would
not be appropriate, since they are essentially the same as
another field Job Type.

The objective of our research is to provide a systematic
way to label fields in the integrated user interface so that
(i) the labels of the fields within a group are consistent and
(ii) the labels of internal nodes in the global interface are
consistent with respect to themselves and to the leaf nodes.
The former is called horizontal consistency, while the latter
is called vertical consistency.

The contributions of this paper are:
• the most comprehensive treatment of naming attributes

automatically within an integrated interface;
• a set of logical inference rules among text attributes with

broad applicability;
• extensive experiments on seven domains (see Section 7)

which show that in general in each domain, the integrated
interface is natural and easy to understand.

2. BACKGROUND
Data in searchable databases are accessible through form-

based search interfaces. The basic building blocks of these
forms are: text boxes, selection lists, radio buttons, and

Table 1: The clusters of the mapping in Figure 2
c Depart c Dest c Senior c Adult c Child c Infant

Departing fromGoing to Seniors Adults Children
From To Adults Children Infants

Leaving from Going toPassengersPassengersPassengersPassengers

check boxes. They are generically called fields. Fields have a
number of properties. Typically, they have labels, describing
their purpose to the user. Some fields may also have pre-
defined domains (e.g. selection lists). Labels and instances
are of particular interest in this work. Hereafter, we will
interchangeably use names and labels to refer to labels.

The problem addressed here is part of a larger system we
envision for lifting the burden from users seeking informa-
tion on disparate Deep Web sources. The solution consists of
a number of components. First, query interfaces are identi-
fied, extracted from the relevant Web pages [11, 26] and clus-
tered into different classes based on the type of products or
services they offer (i.e., Airline, Job) [18]. Second, the fields
in different interfaces in the same domain are matched [7,
10, 23]. Third, the interfaces of the same class are integrated
into a unified interface [8, 12]. This step corresponds to the
structural component. As noted in [16, 20], in general, nam-
ing (the lexical component) is not part of a merge algorithm
semantics. Thus, since query interfaces are highly sensitive
to the lexical component the next step is the meaningful la-
beling of the unified query interface. This is the focus of this
paper. Fourth, a global query submitted against the inte-
grated user interface is translated into subqueries against
individual sources [5, 13, 27]. Finally, returned data by in-
dividual sites needs to be correctly extracted and the results
ranked in descending order of desirability (e.g. price).

2.1 Mapping Structure
Among the inputs of our problem is a mapping globally

characterizing the semantic correspondences between equiv-
alent fields in the query interfaces. The mapping is orga-
nized in clusters [24] that record 1:1 and 1:m matchings of
fields. For a given domain, a cluster consists of all the fields
(leaves) of different schemas that are semantically equiva-
lent. An example of clusters is given in Table 1. The ta-
ble shows the clusters of the (fragments) schema trees de-
picted in Figure 2. The fields of the three schemas denoting
”adults” are all placed in the cluster c Adult. For a schema
that does not have a field in a cluster a null entry is added,
marked through an empty entry in the table. A field that
matches multiple fields in different clusters is placed in each
of the clusters where there is a field it matches (e.g., Passen-
gers). 1:m correspondences lead to granularity mismatches
between schemas. To have a uniform representation of the
fields within all schemas they need to be reduced to 1:1 cor-
respondences [8]. This is done by expanding the leaf node on
the one side of 1:m mapping into an internal node whose chil-
dren have 1:1 correspondence to the leaf nodes on the many
side. In Figure 2 the field Passengers becomes an internal
node with four children which have 1:1 correspondences with
Adults, Seniors, Children, and Infants. Consequently, the la-
bel ”Passengers” becomes a candidate label for an internal
node and it is removed from all the clusters it occurs.

In this work we assume the semantic relationships between
the attributes of the interfaces in the same domain have been
already computed. The actual computation of the clusters
is defined and analyzed in [10, 24, 23].

2.2 Fields Grouping
Recent works on the problem of integrating query inter-
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Figure 3: Real Estate unified interface (fragment).

faces on the Deep Web [8, 10, 26] have observed that fields on
these interfaces are laid out so as to underline the semantic
meaning not only of the fields themselves but also of groups
of fields as a whole (e.g. Adults, Children, Infants). In [8], a
group is a semantic unit of fields and each group is disjoint
from each other. For example, in the airline domain fields
denoting the type of passengers (e.g. seniors, children) are
never intermixed with the fields about departure date (e.g.
month, day, year).

2.3 Merge Algorithm (Brief Description)
Although there are many merge algorithms [4, 12, 15, 20,

22] that might potentially be relevant for the discussion at
hand we choose the formalism laid by [8]. The reasons are
that (1) both the individual query interfaces and the inte-
grated interface are abstracted as ordered schema trees; (2)
the outputted integrated schema tree has the following de-
sirable properties: all ancestor-descendant relationships in
individual schema trees are preserved (under certain con-
straints) and the grouping constraints are satisfied as much
as possible. As revealed later, these properties form the
foundation for an accurate labeling of the elements of an
integrated interface.

3. PRELIMINARIES
The input of the naming algorithm consists of a set of

query interfaces, QI, in a given domain of interest, the set
of clusters, C, that globally characterizes the semantic cor-
respondences between equivalent fields in these query inter-
faces, the set of groups, G, which partition the fields into
logical units, and the schema tree of the integrated query
interface, I. Based on the placement of the fields in the in-
tegrated schema tree, the set of clusters is divided into three
disjoint partitions: the set of clusters that belong to some
group, denoted Cgroups, the set of clusters that are children
of the root, denoted Croot and the set of clusters that are
isolated children of internal nodes, other than the root, de-
noted Cint. We exemplify them on the integrated schema
tree fragment of the Real Estate domain drawn in Figure 3.
Cgroups consists of {State, City}, {Minimum, Maximum}, Cint

= {Garage} and Croot = {Property Type, Property Character-
istics, Property Availability, Zone}.

We assume that an interface is reasonably well-designed
so that users have little or no problem understanding it. This
is accomplished by having (1) consistent labels for the fields
within a group and (2) consistent labels for internal nodes
which have ancestor-descendant relationship. The labels of
the internal nodes also have to be consistent to those of
their descendant leaves (fields). Consistency of type (1) is
exemplified by (Adults, Seniors, Children) (Figure 1), while
consistency of type (2) can be exemplified by How many
people are going? (Figure 1) as parent of the previous three
fields. The problem we address in this paper is to extend
the two types of consistency to the integrated interface.

3.1 Normalization
In our naming algorithm a pre-processing step is the nor-

malization of the labels of the attributes. This is a 2-step
process. In the first phase attached comments are removed

(e.g. Adults (18-64) becomes Adults) and all characters that
are not alphanumeric are replaced by a space character (e.g.
Price $ becomes Price). The new label is used to perform
plain string comparisons (see Definition 1). The second step,
which is used to derive more complex relationships between
labels (next section), involves more complicated operations:
(1) tokenize labels consisting of multiple words, (2) con-
vert each label string to its lower case equivalent, (3) stem
extracted tokens using the standard Porter stemming algo-
rithm [19], (4) retrieve the base form of each token using
WordNet [9] and remove stop words.

3.2 Semantic Rules on Content Words
In many practical instances we need to establish seman-

tic relationships between labels of the attributes. For labels
consisting of one token these relationships are easy to estab-
lish using WordNet. However, for labels with more than one
content word WordNet cannot be employed directly. For
example, to detect that Area of Study and Field of Work
are synonyms more complex techniques need to be devised.
Thus, it is preferable to treat labels in a more systematic
manner, e.g. as n-dimensional vectors or set of tokens.

In the second normalization step each field will be repre-
sented by a set of content words of its label. For instance,
{area, study} corresponds to the label Area of Study. This
view allows us to implement a set of inference rules on la-
bels that will be extensively used in the naming process. In
this work we restrict our attention to determining the fol-
lowing semantic relationships between two labels: equality,
synonymy, hyponymy/hypernymy. They will be computed
based on the relationships between the tokens of the two
labels as given by WordNet.

Definition 1. Given two labels A and B along with their
set of content words representation Acw = {a1, ..., an} and
Bcw = {b1, ..., bm}, respectively, m, n ≥ 0, we define the
following relationships between A and B:
• A string equal B, if A is identical to B. E.g. From string

equal From.
• A equal B, if Acw = Bcw. E.g Type of Job equals Job

Type.
• A synonym B if n = m and all elements of Acw and

Bcw participate in at least one relationship, which is either
equality or synonymy but at least one such relationship is
synonymy by WordNet. E.g. Area of Study synonym Field
of Work since area is a synonym of field and study is a
synonym of work, by WordNet.

• A hypernym B, if n ≤ m and for each ai ∈ Acw, 1 ≤
i ≤ n, there exists bj ∈ Bcw such that ai rel bj, where rel
is either equality, synonymy or hypernymy, by WordNet,
and either n < m or at least one rel is hypernymy. E.g.
Class hypernym Class of Tickets. We assume A and B do
not contain and (&), or (/).

• A hyponym B if B hypernym A

3.2.1 Most Descriptive vs. Most General
When assigning a label to a field of a unified query inter-

face it is tempting to strive for the one with the most gen-
eral meaning among the candidate labels [12]. The rationale
lies on the assumption that an element of a global interface
should be general enough so that its meaning covers all the
concepts of the individual interfaces that map to it. Con-
sider the following example from the job domain. A label for
the concept Job Category needs to be chosen from the fol-
lowing set of labels {Category, Job Category, Area of Work,
Function}. With this approach either Category or Function
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Table 2: A group of clusters example
cluster/schema c Senior c Adult c Child c Infant

aa Adults Children
airfareplanet Adult Child Infant

airtravel Adult Child
british Seniors Adults Children

economytravel Adults Children Infants
vacations Seniors Adults Children

will be chosen. There are at least two problems with this
approach: (1) a most general concept could turn out to be
too general and (2) its meaning could be ambiguous and
possibly cover other concepts of the interface. In this exam-
ple both Category and Function are too generic. We prefer
most descriptive names over most general ones. Observe
that any of the other more descriptive labels does a better
job in conveying the actual meaning to the user.

Next, we introduce our methodology for naming the fields
within groups. Then we describe the requirements imposed
on the labels of the internal and the leaf nodes that need to
be satisfied so as to ensure a consistent labeling of the entire
schema tree. A formalism is provided for capturing naming
consistency among attributes (fields and internal nodes) of
an integrated interface. We conclude with a discussion on
the role of instances within the naming problem.

4. CONSISTENT LABELING OF FIELDS
The task addressed in this section is the assignment of

meaningful labels to each group of clusters in G. We will
treat the set of clusters in Croot as a group. Hence, we will
apply the solution we devise for regular groups to this spe-
cial group, as well. It should be pointed out, that generally
among the fields that appear as children of the root in the
schema tree there are loose naming consistency constraints.
Thus, for this particular group of clusters partially consis-
tent solutions will be accepted. Clusters in Cint will also be
treated in this section. However, being isolated, i.e. not part
of a group, their labels do not require significant correlation
with the labels of the surrounding elements, therefore, find-
ing satisfactory labels is easier. In fact, this is the only place
where we found helpful approaches of the past works [12].

4.1 Naming Consistency within Groups
The key idea of our solution is introduced using the ex-

ample in Table 2. Suppose the airline domain consists of
the query interfaces in the first column of the table and
the group of clusters [c Senior, c Adult, c Child, c Infant] is
present in the integrated interface. Thus, a consistent nam-
ing assignment should be determined for this group. A row
in the table corresponds to the labels provided for these con-
cepts by an individual interface. For example, query inter-
face aa has labels for c Adult and c Child but not for c Senior
and c Infant. In line with our assumption that source inter-
faces are well-designed, the labels in such a row are con-
sistent to each other. Note that there is no interface pro-
viding labels for all global fields. The existence of such an
interface would have given us a good candidate naming so-
lution. However, there is a systematic way to construct a
consistent solution even when such a candidate solution is
not present. Observe that by combining the labels given by
british and economytravel a consistent naming assignment,
namely, Seniors, Adults, Children, Infants, can be attained.
Each of the first three and the last three labels are con-
sistent as they are members of the same groups in the user
interfaces they originate from, i.e. british and economytravel,
and they all are consistent because the two sets share labels

Table 3: A set of non-consistent clusters
cluster/schema c State c City c ZipCode c Distance

100auto State
Ads4autos Zip Code Distance
CarMarket State City

cars-1 Your Zip Within

that are consistent with the labels in both sets. We call this
strategy intersect-and-union. The underlying idea is that
a nonempty intersection of consistent labels from different
interfaces is a strong indication that their union should lead
to a larger set of consistent labels. Hence, the general strat-
egy would be to figure out a way to combine multiple such
rows of labels so that a new row is created that has a label
in each column and the labels are consistent. The problem
that needs to be addressed is to define precisely when the
labels of two query interfaces can be combined.

There are instances of well-defined semantic groups of
fields for which the above strategy cannot be directly ap-
plied. Table 3 shows an example that falls in this category.
The group [c State, c City, c ZipCode, c Distance] is an ac-
tual group of fields of the integrated interface of auto do-
main. Again, the tabular organization helps us identify the
issue. Namely, there is a clear partition of the clusters with
respect to the labels supplied by the individual query in-
terfaces: {c State, c City} and {c ZipCode, c Distance}. In
other words, there is no row of labels that links these two
sets of clusters. Therefore, no consistency that spans the
two sets can be enforced. The best we can do is to compute
a consistent solution for each partition and then to concate-
nate them, producing a best possible consistent naming so-
lution, which will be referred as partially consistent. In this
case, a solution would be [State, City, Zip Code, Distance].

We next define the precise terms that allow to construct
labeling solutions along the logic presented above. First,
we organize the clusters of a group in a (n+1)-ary relation,
where n is the number of clusters in the group and a com-
ponent denoting the name of the interface. Such a relation
is called a group relation. A tuple in this relation denotes
the labels a particular interface supplies for the clusters of
the group. Tables 2 and 3 are examples of such relations.

Definition 2. Consider a group relation, gR, consisting
of n(n > 0) clusters, C1, ..., Cn and C ⊆ {C1, ..., Cn}. We
define three levels of naming consistency between the tuples
of πC(gR):
1. string level: two distinct tuples s, t ∈ πC(gR) belong to

string level of consistency if there exists a cluster A ∈ C
so that t.A = s.A (plain string comparison).

2. equality level: tuples s, t ∈ πC(gR) are in the equality
level of consistency if there exists A ∈ C, such that t.A
equal s.A.

3. synonymy level: tuples s, t ∈ πC(gR) belong to synonymy
level of consistency if there exists A ∈ C, so that t.A
synonym s.A.

Definition 3. Let gR be a group relation. For any two
consistent tuples r, s ∈ gR, Combine(r, s) = t, where the
non-null components of t are all the non-null components
of r plus the non-null components of s for which r has null
entries. All the other components of t, if any, are null.

The first level of consistency (i.e. string level) is the
strongest and it is adequate for computing consistent solu-
tions for groups similar to the group shown in Table 2. Sup-
posedly, a naming solution computed in its terms should re-
turn the ”most” consistent one. However, while the strongest
in terms of its potential to find a best possible consistent
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Table 4: Semantic consistency example.
schema c NumConnections c TicketClass c Airline

aa NonStop Choose an Airline
airfare Number of Connections Airline Preference
alldest Class of Ticket Preferred Airline
cheap Max. Number of Stops Airline Preference
msn Class Airline

solution, it is also the most restrictive in terms of its appli-
cability. The other levels of consistency are devised to deal
with the heterogeneity specific to such a rich environment.
They can all be summarized in the semantic level of con-
sistency. If set C in the definition is composed of all the
clusters of the group shown in the table then the tuples of
respectively british and economytravel query interfaces are
string level consistent. They both supply the label Adults
for the cluster c Adult and the label Children for the clus-
ter c Children. Moreover, Combine(british, economytravel) =
(Seniors, Adults, Children, Infants), where the first three com-
ponents of the new tuple are given by the british whereas the
last component is given by the tuple economytravel.

We use the example in Table 4 to exemplify the seman-
tic level of consistency. The table shows a group relation
in the airline domain (a fragment of it). In this group the
labels are much more diverse and more descriptive than in
the previous examples and there are no two string level con-
sistent tuples. Nonetheless, the tuples (null, Class of Ticket,
Preferred Airline) and (Max. Number of Stops, null, Airline
Preference) can be shown to be in the equality level of consis-
tency. There exists cluster c Airline for which the two supply
the same set of content words. That is, the set representa-
tion of both Preferred Airline and Airline Preference is {prefer,
airline} (Porter’s stemming algorithm returns the same stem
for Preference and Preferred, i.e. prefer).

The generalization of the Combine operator, Combine∗,
over a nonempty set of tuples iteratively takes two consis-
tent tuples and combines them, ignoring eventual duplicates.
Each resulting tuple may then be combined with another
consistent tuple to have more non-null components. The
process is repeated until all possible consistent tuples are
generated. Hopefully, consistent tuples having no null com-
ponents, which are exactly what we desire, are generated.
The following definition states what the desired tuples are.

Definition 4. Let G be a group, gR its group relation,
consisting clusters, C1, ..., Cn, n > 0, and C ⊆ {C1, ..., Cn}.
A tuple t is a consistent naming solution for the set of clus-
ters in C, called tuple-solution, if (1) t ∈ Combine∗(πC(gR))
and (2) it has no null components. If t with these properties
belongs to πC(gR), it is called a candidate solution.

Frequently, the set C in the definition is the group’s set of
clusters itself. However, as shown in the example of Table 3,
there are instances where a consistent solution for the entire
set of clusters cannot be located. In such circumstances
consistent solutions for subsets of clusters are computed and
the final solution is obtained by concatenating them. Hence,
defining the concepts with respect to a subset of clusters
in the group instead of the entire set of clusters enables a
more flexible way to introduce both the concepts and the
algorithms (as many steps will be similar).

The general directions of the algorithm: The al-
gorithm proceeds along the three consistency levels. That
is, for all clusters of each group, first a solution is sought
based on the string consistency level. If a solution can be
obtained using only this level of consistency the algorithm
stops and reports the consistent naming solution. Else, the

Figure 4: An example of partitioning the tuples.

algorithm relaxes the constraint and looks for consistent so-
lutions based on the second level of consistency (i.e. equality
level). Again, it checks for the existence of a consistent solu-
tion. If one cannot be computed then it moves to the third
level of consistency. If even this cannot guarantee a consis-
tent naming solution, a solution is constructed based on the
consistent solutions for subsets of clusters.

4.1.1 Find Consistent Related Clusters in a Group
In this section we describe our methodology for finding the

subsets of clusters of a group from which a consistent nam-
ing solution can be constructed. The ideal situation is when
it can be shown that the entire set of clusters of a group is
name consistent. The input of the algorithm consists of the
consistency level (initially string level) and the group rela-
tion for which a solution has to be computed. To discover
the sets of consistent clusters we compute a partition over
the set of tuples of the group relation with respect to the
consistency definition (see Definition 2) so that each parti-
tion is maximal with respect to the given consistency level.
In order to put together consistently related tuples we em-
ploy a graph oriented closure computation algorithm. That
is, we construct an undirected graph, G(V,E), where each
vertex v ∈ V represents a tuple and its set of clusters with
non-null values. Hence, a vertex plays two roles: it repre-
sents (1) a unique tuple, t, in the group relation and (2) the
set of clusters with non-null values of tuple t. Tuples whose
entries are all null are discarded. Given two distinct nodes,
v1, v2 ∈ V , there is an edge between them if and only if the
tuples are consistent. In this graph, we find all connected
components. In each connected component, the union of
the sets of clusters represented by its vertices denotes the
set of clusters for which a consistent naming solution can be
constructed and the union of the vertices themselves gives
the set of consistent tuples. In this way we accomplish two
orthogonal goals: we identify the sets of clusters of a group
from which a consistent naming solution can be computed
and for each such set of clusters we confine the set of tuples
among which a consistent solution can be constructed. The
goal is to determine if there are partitions whose tuples can
be used to construct a consistent solution for the group. A
partition with this property is said to supply a consistent
solution for the group. Whenever they can be identified the
algorithm obtains all of them. The algorithm returns the
set of all partitions, and the set of all those partitions, each
of which covers all clusters of the group. If there are no par-
titions with this property, the later will be empty and the
naming algorithm will pursue with the creation of a partially
consistent solution from the set of all partitions.

Example 1. We illustrate this process on the group of
Table 2. Figure 4 shows the resulting graph for the tuples in
this group when the string level consistency is applied. For
instance, there is an edge between the tuples aa and vaca-
tion as they have the same labels in the clusters c Adult and
c Child, whereas there is no edge between aa and airtravel
as they do not share any label within this level of consis-
tency. The resulted partitions consists of {aa, british, econ-
omytravel, vacation} and {airfareplanet, airtravel}. A quick
inspection of the entries in the table reveals that the former
partition supplies a candidate solution for the group, whereas
the second does not as it does not have a label for c Senior.
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Proposition 1. A consistent naming solution for the clus-
ters of a group exists iff there exists a partition of consistent
tuples which contains all clusters of the group.

4.2 Obtaining Labels for Groups
We now describe the extraction of the actual labels for the

fields of the group from either a partition supplying a solu-
tion or from multiple partitions when a consistent solution
does not exist.

4.2.1 Consistent Naming Solution
Upon invocation the algorithm for finding a consistent

solution receives a partition that covers with labels all the
clusters of a group. The solution can be constructed in many
ways once we know the tuples. Here we describe two strate-
gies that strive to capitalize on more properties among the
labels. If the time to retrieve a consistent solution is an issue
then one can always be found in linear time by applying the
Combine operator along a spanning tree of the connected
component. Otherwise, all consistent solutions are obtained
by utilizing the Combine∗ operator on all spanning trees of
all connected components, each containing all clusters. We
have the following elements to decide which one to choose:
(1) the frequency of occurrence of each tuple-solution in the
relation resulted from the application of Combine∗, and (2)
its expressiveness. The expressiveness of a tuple-solution is
defined as the number of content words of its constituent
labels. The frequency of occurrence is only considered for
candidate solutions; we disregard the eventual duplicates
generated by the operator. Consider the group relation of
Table 4. Suppose the tuples of the relation are partitioned
in three disjoint subsets {aa}, {airfare, alldest, cheap} and
{msn}. This set of partitions is obtained if only the first
two levels of consistency (i.e. string and equality) are con-
sidered. Since the second partition comprises all the clusters
of the group, a consistent solution can be extracted. As-
sume two tuple-solutions were generated: (Max. Number of
Stops, Class of Ticket, Preferred Airline) and (Number of Con-
nections, Class of Ticket, Airline Preference). Employing the
expressiveness criterion the former will be preferred since it
has more distinct content words. Whenever there are mul-
tiple tuple-solutions we opt for the most expressive one. If
multiple candidate solutions have the same expressiveness
then we apply the frequency of occurrence criterion.

4.2.2 Partially Consistent Naming
When there is no partition covering all the clusters of a

group relation we conclude that a consistent naming solution
for the group cannot be constructed. This decision only oc-
curs after all three consistency levels were exhausted. As our
goal is to find a naming solution that accommodates most of
the clusters in a group a greedy strategy is employed to find
a partially consistent solution. The solution is constructed
as follows. First, a consistent solution is constructed for each
partition of tuples. Such a solution provides consistency only
among the clusters covered by the partition. The partially
consistent solution is constructed from these solutions. We
start with the tuple-solution, t, that has the largest number
of non-null values. Then, for the clusters of t having null
entries we pick among the remaining tuple-solutions the one
that contains the largest number of non-null values, denoted
t1. The labels of t1 corresponding to the non-null labels of
t are added to t. If the new tuple, t, has labels for all the
clusters in the group then t is the partially consistent solu-
tion. If not, we repeat the steps above until all clusters will
have a label.

4.2.3 Naming Conflicts
Before a naming solution for a group is reported we need

to make a final check upon its quality. It is possible that
the final solution will have the so called homonym problem
[2, 10]. Namely, two fields of a group may have the same
name but different meanings. The classic solution to this
problem (e.g. [2, 21]) is in terms of fields’ types and values.
Since fields with pre-defined domains are rather scarce [23]
we present an alternative solution that ignores instances.
We start by determining a pair of clusters with similar labels
(i.e. homonym) in the tuple-solution. If one is found then we
derive another consistent solution which avoids this possible
ambiguity. The new solution is computed as follows. We
first identify tuples in the group relation with the property
that they have non-null entries for both clusters and one of
the entries is one of the conflicting labels but the other is not.
If a tuple is found, we replace the labels for these conflicting
clusters in the naming solution with the labels in the tuple.
The assumption is that designers of source interfaces avoid
these evident ambiguities. Here is an example. The tuple-
solution retrieved is (Position Options Job Type, Type of Job,
Company Name), where the second and the third entries are
similar. We look for tuples that have either Job Type (or
an equivalent label) for the second entry or Type of Job
(or an equivalent label) for the third. Each of these tuples
should provide good replacements for the conflicting labels
(designers avoid ambiguities). Suppose we find a tuple (X,
Job Type, Employment Type, X ) (X denotes labels which are
not useful in this discussion). We replace label Type of Job
with the new label Employment Type. The new solution will
be (Position Options, Job Type, Employment Type, Company
Name). After all these consistency issues are investigated
the labeling solution is ready to be reported.

4.3 Naming Groups, Concluding Discussion
We have developed the main ingredients for labeling the

fields of a group. The naming algorithm returns a set of
pairs 〈p, CLabels〉, where the first component represents a
partition supplying a consistent solution and the second is
the naming solution derived from the partition. When there
is no consistent solution the set of pairs consists of one pair.
Its first component is empty as there is no partition sup-
plying a consistent solution and the second is the partially
consistent solution. The selection of a consistent solution
for the group at hand from a set of possible solutions is not
the responsibility of this algorithm as the solution needs to
be correlated with the labels of other attributes within the
schema tree. This is accomplished in a different stage of the
algorithm which will be shortly introduced.

In our experiments we noticed that for almost all regular
groups (i.e. Cgroups) a partition that covers all the clusters
exists. The reason lies in the semantic relationships among
the elements in the group. For instance, Number of Connec-
tions, Class of Tickets, Preferred Airline all describe service
characteristics. However, not the same ”homogeneity” can
be found among the fields that are children of the root (i.e.
Croot). For these fields consistency can be rarely enforced
along the entire set of fields. Nevertheless, it can be enforced
for subsets of fields most of the time. Our experiments have
revealed that for domains whose query interfaces are rather
flat consistent naming solutions can be only constructed for
subsets of fields, that is, partially consistent solutions.

4.4 Assign Names to Isolated Clusters
For this type of clusters (i.e. cluster in Cint) we employ a

variation of the representative attribute name (RAN) algo-
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rithm [12]. To determine the name of an isolated cluster, we
use a method based on the generality rule and the most de-
scriptive rule. First, we build hypernymy hierarchies based
on the field labels in the cluster. The hypernymy relation-
ships are established through the semantic rules given in
Definition 1. The roots of these hierarchies represent the la-
bels with the most general meaning among the labels in the
cluster. Next, the most descriptive label among the roots
that appears in most interfaces in the cluster is elected as
the label of the cluster. Consider a cluster containing the
following labels: Class, Class of Ticket, Preferred Cabin and
Flight Class. Two hypernymy hierarchies are generated, one
has Class as the parent of Class of Ticket and Flight Class,
and the other has Preferred Cabin by itself. Then the label
for this cluster will be elected between Class and Preferred
Cabin. The latter will be chosen as it is the most descriptive.

5. LABELING INTERNAL NODES
To this point we have developed means to compute consis-

tent labels for the fields (i.e. horizontal consistency). What
misses is a methodology to select the right labels for both in-
ternal and leaf nodes so that a consistent labeling is obtained
for the entire integrated schema tree. To achieve this goal
we need to define the consistency requirements between the
labels of the internal nodes and those of the leaf nodes, and
among the internal nodes’ labels themselves. We first define
how the various candidate labels of the internal nodes are
related to the set of possible solutions for their descendant
leaves and then we build on this definition to enforce con-
sistency constraints among the labels of the internal nodes.

In assigning labels to the internal nodes of a global schema
tree (called herein global internal nodes) we mainly exploit
two types of knowledge: (i) the relationship between internal
nodes of source schema trees with overlapping set of descen-
dant leaves and (ii) the semantic relationships among the
labels of these internal nodes. Consider two internal nodes
v and w in distinct schema trees. Denote by X and Y the
descendant leaves of v and of w, respectively. For ease of
presentation, we say X is a subset of Y if for each x ∈ X
there exists y ∈ Y so that x and y are in the same cluster.

Definition 5. Let I1, I2 ∈ QI (set of query interfaces)
and two internal nodes, v1 and v2, of respectively I1 and I2,
we say that the label lv2 of the internal node v2 is semanti-
cally at least as general as the label lv1 of v1 if (i) either lv2

is a hypernym of lv1 or (ii) the set of descendant leaves of
v1 is a subset of v2’s set of descendant leaves. If lv1 is also
semantically at least as general as lv2 then they are seman-
tically equivalent.

As a consequence of this definition we derive a logical in-
ference (LI) to determine when two labels of two internal
nodes in distinct interfaces are semantically equivalent.

LI 1. Given two distinct query interfaces, I1, I2 ∈ QI,
and two internal nodes, v1 and v2, of respectively I1 and I2

with v1’s set of descendant leaf nodes a subset of v2’s set of
descendant leaf nodes. If v1’s label is a hypernym of v2’s label
(by Definition 1) then v1’s label is semantically equivalent
to v2’s label in the given domain of discourse.

Consider two internal nodes of two schema trees in the
Real Estate domain. One of them has an internal node whose
label is Location and its set of descendant leaf nodes consists
of State and County, whereas the other schema has an inter-
nal node labeled Property Location whose set of descendant

Table 5: Example of vertical consistency.
Group Year Group Car Model Internal Node

c From c To c Makec Modelc Keyword Label Label
Min Max Brand Model Year Range
Year To Year Make Model Car Information
From To Make Model Keyword Make/Model Year Range

leaves is composed of State, County and City. As the set of
descendant leaves of the former is a subset of the latter it is
reasonable to imply that the label of the later, i.e. Property
Location, is at least as general as the former’s label, Loca-
tion. On the other hand, if we use the semantic relationships
introduced in Definition 1 we can infer that Property Loca-
tion is a hyponym of Location. Combining the two results
we could say that the two labels are equivalent.

While this sort of logic is a reasonable path to consider
within the same domain of discourse (here, Real Estate) this
might lead to undesirable inferences when applied across do-
mains. For instance, Location with the above characteristics,
but in a different domain (e.g. car rental), might denote the
place to pick the rented car.

Here are the hypotheses upon we build the consistency
requirements. For each group of fields there is a set of parti-
tions, which can be used to construct a (partially) consistent
solution. Assume that each group has a consistent solution.
Every such partition consists of tuples of labels and each
tuple belongs to at most one partition. Moreover, an in-
dividual schema tree supplies at most one tuple per group
relation. The fields within Croot do not impact the consis-
tency interaction between the groups and the internal nodes
as they have no descendants. In what follows we disregard
them. We regard isolated clusters, i.e. Cint, as being groups
with one cluster only as to provide a more uniform treat-
ment. Therefore, the descendant leaves of any internal node
are organized in groups and, thus, we can speak of internal
nodes as having descendant groups. That is, a group is seen
as a node, called group node. Figure 6 (on the right) shows
the integrated schema tree of AUTO domain (on the left)
with the groups collapsed into group nodes.

Since fields are organized in groups and each group is
regarded as a well-defined semantic unit, we capture the
consistency relationship between the labels assigned to the
leaves and to the internal nodes through the relationship be-
tween internal nodes and groups. In this way we accomplish
the two goals: horizontal consistency and vertical consis-
tency. The assumption is that if a label of a global internal
node is consistent with the solution constructed for a group
then it is also consistent with each of the labels assigned
to the fields within the group. The definition below states
the consistency requirements between labels of the internal
nodes and the naming solutions for groups, with the underly-
ing assumption that the labels of an internal node and those
of its descendant nodes within a user interface are consistent
(well-designed assumption).

Definition 6. Consider a global internal node, v, and
one of its descendant groups, G. Let lv be a candidate label
of v that originates in some schema tree I. Denote by tv the
tuple of labels I has in the group relation of G. We say that
label lv is consistent with a consistent naming solution, S,
for G if tv belongs to the partition of tuples of G that was
used to compute S. Moreover, if {G1, ...Gn}, n ≥ 1, is the
set of all descendant groups of v and {S1, ...Sn} is the set of
consistent solutions of these groups then the candidate label
lv of v is consistent with {S1, ...Sn} if lv is consistent with
each Si, 0 ≤ i ≤ n.

Table 5 shows the organization of two groups, Group Year
and Group Car Model. Additionally, a candidate label, Car
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Figure 5: Interfaces in auto domain Figure 6: The integrated schema tree of the auto domain.

Information, for the least common ancestor of the fields of
these two groups (Figure 6, on the left) is shown in the last
column. It will be shown later (next section) that this label
is determined to be a candidate label. In the table each tuple
of the Group Year group belongs to a different partition as
there are no two labels in the two clusters of the group to
ensure any sort of consistency among them. The tuples of
the Group Car Model group are all in the same partition since
they are all consistent. The query interface supplying the
label Car Information (Figure 5) provides also tuples in each
of the two groups, i.e. (Year, To Year) and (Make, Model,
null). By Definition 6 the label Car information is consistent
with (Year, To Year) and with any solution resulted from
the sole partition of the Group Car Model. The Year Range
label in the table is a candidate label for the parent node
of Group Year. This label is given by a number of query
interfaces, some providing the tuple (From, To) (Figure 5,
on the right) and others (Min, Max).

The next objective is to precisely define consistency re-
quirements between the labels assigned to internal nodes.
We are only concerned with internal nodes having ancestor-
descendant relationship. There are two requirements on
their label assignment. First, if w is an ancestor of v in
the integrated schema tree, and lw, lv their respective la-
bels obtained from the set of query interfaces, QI, then lw
must be semantically at least as general as lv (Definition 5).
Second, we use the consistency of the internal nodes’ labels
with the labels of the groups to infer consistency rules be-
tween labels assigned to the internal nodes. Specifically, we
assume that if the labels of both descendant and ancestor
internal nodes satisfy Definition 5 and they are consistent
with the labels of the common descendant groups then the
labels are consistent. The following definition rephrases this
observation in a more systematic way.

Definition 7. Let v and w be two global internal nodes,
with v a descendant of w, and lv and lw be their respective
potential labels. Suppose {G1, ...Gn}, n ≥ 1, is the set of all
common descendant groups of v and w. The labels lv and
lw are called consistent if:
1. lw is semantically at least as general as lv, and
2. there is a set of solutions {S1, ...Sn} for {G1, ...Gn} so

that both lv and lw are consistent to these solutions.

To illustrate it we use our running example based on Table
5. We analyze the consistency between Car information and
Model/Make, Year Range of the internal nodes in the auto in-
tegrated schema tree (Figure 6). Assume the first condition
in the definition is satisfied. It will be shown in the next sec-
tion how this can be established. Year Range is a potential la-
bel for the parent node of the Group Year group, Model/Make
for Group Car Model and Car information for the lowest com-
mon ancestor of Group Year and Group Car Model. First,
Car information and Model/Make are consistent with the
tuple-solution (Make, Model, Keywords) (see Table 5). How-
ever, in Table 5 there does not exist any tuple-solution for
Group Year which is consistent to both Car information and
Year Range. As this example shows, the second condition,
while ideal and important to meet, in practice weaker con-
straints can also lead to well-labeled query interfaces. There-
fore, whenever these strong constraints are not met we probe

for a labeling solution that comply with the first condi-
tion only. The internal nodes (see Car Information and Year
Range) whose labels satisfy only the first condition of the
definition are said to be weakly consistent.

5.1 Find Candidate Labels for Internal Nodes
Here we introduce the main set of inference rules to iden-

tify suitable labels for internal nodes. For a global internal
node we first identify all its descendant leaves, denoted by
X. Then we scrutinize all individual schema trees for inter-
nal nodes whose sets of descendant leaves are subsets of X.
The label of such an internal node is a potential label for
the global internal node. The potential labels are collected,
analyzed and (if possible) a candidate label is derived for the
global internal node. Once a candidate label is found we add
it to the set of candidates labels of the global internal node
and annotate it with the set of partitions of tuples (if any)
of the groups it is consistent with. We say that a label, l, of
the global internal node semantically covers X, and thus, it
is a candidate label, if it can be shown that each leaf node
in X is a descendant of an internal node whose label is l or a
label, l1, satisfying that l is semantically at least as general
as l1 among the individual schema trees.

5.1.1 Overlapping Descendant Leaf Nodes Scenario
We look for labels with the following property:

LI 2. Let gn be the global internal node for which a la-
bel is sought and X its set of descendant leaves. Consider
a potential label l that appears in multiple schema trees,
QIsub ⊆ QI. Denote by V the set of internal nodes in
QIsub having label l and whose leaves are among the ele-

ments of X. If Xl =
[

v∈V

{v′s leaf descendants} ⊆ X then

l semantically covers Xl. If Xl = X then l is a candidate
label for gn.

The example in Figure 8 (on the left) shows an instance
of this situation, where the same label, i.e. Location, is used
in multiple query interfaces to denote various related pieces
of data (i.e. parts of an address). The union of the sets
covered by Location is the same as the set of leaves whose
lowest common ancestor in the integrated interface needs
to be labeled. Thus, Location is a candidate name for this
internal node.

5.1.2 Hypernymy Hierarchy Scenario
The next inferences exploits the relationship between the

labels of the nodes.

LI 3. Let v and w be two internal nodes, of respectively
query interfaces I and J , whose descendant leaves, Xv and
Xw, are contained in X, a set of descendant leaves of a
global internal node. If the label lv of v is a hypernym of w’s
label then lv semantically covers the set Xv ∪ Xw

An immediate consequence of this line of logic is the fol-
lowing inference.

LI 4. Suppose there is a set of labels of multiple internal
nodes in the set of query interfaces whose leaf nodes union to
X. A hypernymy hierarchy is constructed from their labels.
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Figure 7: Combine the inference rules. Figure 8: Examples of assigning labels to internal nodes.

From this hierarchy, by applying the above logical inference,
the semantic coverage of each label in the hierarchy is estab-
lished. A label that semantically covers X is sought. This is
a candidate label for the global internal node.

For illustration we use the example in Figure 8 (in the
middle). Using our semantic rules we determine that both
Airline Preferences and What are your service preferences? are
hyponyms of Do you have any preferences?. After removing
all stop words from Do you have any preferences? its set
representation will be {prefer}, while of the others will be
{airline, prefer} and {service, prefer}, respectively. Thus, the
hypernymy hierarchy will have one root, i.e. Do you have any
preferences?, and it has the desired qualities to be selected a
label of the global internal node since its semantic coverage
can be extended to cover all descendant leaves.

5.1.3 Extend Label Meaning Scenario
Consider the configuration in Figure 8 (on the right). Our

goal is to extend the meaning of label Car Information to en-
compass Keywords. First, observe that none of the previous
rules help in this scenario. Second, given the (fragment)
schema tree in Figure 5 it should be clear that Keywords is
rather a dependent concept. That is, it merely character-
izes the concepts denoted by the fields Make and/or Model.
Hence, if we knew that the semantic meaning of Keywords
is bound to Make and/or Model, it would be safe to say
that Car Information is general enough to cover the meaning
of Keywords, too. The following inference rule states more
systematically the discussion above.

LI 5. Let X be the set of leaf nodes whose lowest common
ancestor needs to be labeled within the integrated query in-
terface. X can be partitioned in two disjoint nonempty sets,
Y and Z, with the property that the fields in Z are charac-
terized by a nonempty subset of fields, W, of Y, if one of
the following properties holds:
1. the set of instances of the fields in Z is a subset of the set

of instances of the fields in W, or
2. there exists a schema tree in QI so that W and Z are

the descendant leaves of one of its internal nodes, v, with
label lv, having the property that the set of content words
of lv is a subset of the set of content words of the labels
of the fields in W.

Let v be a labeled internal node in an individual query in-
terface whose descendant leaves include those in Y, but not
Z’s. If Z is characterized by Y, then the semantic meaning
of v’s label can be extended so as to cover Z ∪ Y = X.

In our example, the label of the internal node whose set
of descendant leaves consists of {Make, Model, Keywords}
is composed of the content words make and model. This
should be a strong indication that the foremost concepts of
this group of fields are Make and Model and the rest, i.e.
Keywords, just refers to these two. Hence, Car Information
semantically covers Keywords as {Make, Model} ⊂ {Make,
Model, From, To} = Y and Z = {Keywords} is characterized
by W = {Make, Model}.

Comments: It is not difficult to see how the inference
rules can be utilized in combination. As a case in point, con-

sider the example shown in Figure 8 (on the left). Suppose
an additional leaf node is added, called Locate within, along
with an internal node, called Area, whose descendant leaves
are Locate within and Zip Code. In addition, assume none
of the Location’s include Locate within among their descen-
dant leaves. This new configuration is depicted in Figure
7. As we showed previously, using the inference rule LI2 we
can enlarge the semantic coverage of Location to the entire
set of fields except for the newly added field, Locate within.
However, employing the inference rule LI3, (Location is an
hypernym of Area by Definition 1), we can discover that
Location covers the entire new set of leaves. Thus, by the
two rules we determine Location as a candidate label for the
global internal node with these new set of leaves.

If these strategies fail to produce a candidate label then
there is a good chance that a label does not exists.

6. PUT ALL THE PIECES TOGETHER
We have developed most of the machineries to define when

a global query interface is or is not consistently labeled and
to identify where exactly the problems occur. The following
definition expresses the precise terms to decide when an en-
tire naming solution for an integrated interface is consistent.

Definition 8. For a given integrated schema tree there
exists a consistent naming solution if (1) there is an assign-
ment of consistent solutions for its groups such that each in-
ternal node has a label consistent with this assignment and
(2) the labels of the internal nodes are consistent (see Def-
inition 7). Moreover, the schema tree is weakly consistent
named if there are internal nodes whose labels satisfy the
first condition of Definition 7, but not the second, and it is
inconsistent named if either there are groups for which con-
sistent naming solutions cannot be constructed or there are
internal nodes without labels whose set of potential labels is
nonempty.

Let e be a global internal node and path(e) the set of nodes
on the path from e to the root, excluding e. Denote by Le

the set of candidate labels of e and by Lpath(e) the union of
the candidate labels of the internal nodes in path(e).

Proposition 2. There exists a weakly consistent labeling
for I if (1) there is an assignment of consistent solutions for
all groups and (2) for each internal node, e, distinct from
the root Le − Lpath(e) 
= ∅.

Clearly, a weakly consistent integrated schema tree, con-
taining an internal node with the property that none of its
candidate labels are consistent with at least a solution of
each of its descendant group nodes, does not have a consis-
tent labeling solution.

The naming algorithm is a three-phase traversal algo-
rithm. In the first phase, in a bottom-up traversal, it de-
termines the set of candidate labels for leaves and internal
nodes. Second traversal determines the level of consistency
which may be possible for the schema tree. In the third
phase, each node is assigned a label from its set of candi-
date labels so that the label complies with consistency level
established in the previous phase. Each of these processes
was described in detail in the previous sections.
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Table 6: Characteristics of interfaces per domain.
Domain Domain Characteristics (Avg) Integrated Query Interface Statistics

LeavesInt NodesDepth LQ LeavesGroupsIso. LeavesRoot LeavesInt NodesDepthFldAccIntAcc HA HA′

Airline (20) 10.7 5.1 3.6 53% 24 8 0 1 13 5 100% 84.6% 96.6%98.3%
Auto (20) 5.1 1.7 2.4 79.7% 18 5 0 4 7 3 100% 100% 100% 100%
Book (20) 5.4 1.3 2.3 83.3% 19 5 1 8 6 3 100% 100% 98.9% 100%
Job (20) 4.6 1.1 2.1 80% 19 1 0 15 2 2 100% 100% 100% 100%

Real Estate (20) 6.7 2.4 2.7 79.1% 28 8 1 7 8 4 96.4% 100% 97.8%97.8%
Car Rental (20) 10.4 2.4 2.5 52.5% 34 9 3 3 15 5 100% 93.4% 97.9%98.2%

Hotels (30) 7.6 2.4 2.3 70.1% 26 8 3 2 15 5 100% 93.4% 95.3%96.1%

6.1 Where Instances Could Help
As opposed to the classical entities treated in the integra-

tion problem (e.g. relational) the fields of query interfaces
may not have pre-defined domains. Nonetheless, we under-
line some circumstances where instances may come in handy.
Specifically, we describe two very sensitive problems for the
naming process: picking a label from a set of labels while
avoiding too generic or too specific labels and discarding
those that are merely values of other fields.

Figure 9: Most general vs most descriptive.

6.1.1 Reconcile Most General vs More Descriptive

There are several places in our algorithm where a label
needs to be drawn out from a set of candidate labels. Blindly
relying on the most descriptive strategy is not always the
best strategy. However, it is possible to reconcile the ap-
parent divergent goals of the most general and the more
descriptive criteria. The idea is to bound the meaning of
a most general label to a more descriptive one employing
their instances collected from all the query interfaces they
are used to denote equivalent fields.

LI 6. Consider a cluster, C, for which a label has to be
chosen from a nonempty set of labels, L. For a label l ∈ L
denote by domain(l) the union of instances of all the fields
in cluster C having label l. Let l1 and l2 be two labels in L so
that l1 is an hypernym of l2 (Definition 1). If domain(l1) ⊆
domain(l2) then l1 and l2 are semantically equivalent in the
given domain.

Suppose we need to elect a label among Class, Class of
Tickets, Flight Class. Using the semantic relationships of
their tokens we obtain the hypernymy hierarchy shown in
Figure 9. Assume each of these labels come from fields
equipped with instances. For each of the fields with the
same label we compute the union of their domains. Then
we probe among the hyponyms of the root to determine the
presence of a label whose associated domain includes the do-
main of the root label. For example, Flight Class and Class
have the same domain. Thus, it would be safe to infer that
although Class is more generic its use in this domain (i.e.
airline) is bounded to the semantic meaning of the more de-
scriptive label Flight Class. Hence, Flight Class will be chosen
as the label over Class.

6.1.2 Discard Labels as Values
This problem is known in the schema matching literature

as either schema element name as value [25] or schema mis-
match [7] and it characterizes those cases when matches re-
late the data of a schema with the labels in another schema.

For example, in the Book domain labels like hardcover or
paperback are data instances of a field with label Format or
Binding. This mismatching type occurs very frequently in
practice, e.g., product description, course listing. Obviously,
such too specific labels need to be identified and discarded in
the process of label selection. The following logic inference
is meant to identify such occurrences:

LI 7. Consider two fields f and e in the same cluster. If
e’s label occurs among the instances of f, then f’s label is
semantically at least as general as e’s label.

7. EMPIRICAL EVALUATION
Experiment setup: We evaluated our algorithm on 150

sources over 7 real-world domains on the Web, each con-
sisting of 20 query interfaces, excepting Hotels that has 30.
Table 6 (columns 2-5) shows a summary of the character-
istics of the source data sets per domain, i.e. the average
number of fields and of internal nodes on the individual in-
terfaces (columns 2,3) and their average depth of individual
interfaces (column 4). In the 6th column we provide a metric
describing each domain’s labeling property. LQ stands for
labeling quality and it is the average of per query interface
percentage of labeled nodes (both internal and leaves). That
is, on average an individual query interface in Car Rental do-
main has about 52% of its nodes labeled, whereas in Book
domain more than 80%. The characteristics of the resulted
global interfaces for the 7 domains are illustrated in columns
6-11. Herein we will focus on the naming only. Due to space
limitation we cannot exemplify all seven integrated inter-
faces, but the reader is encouraged to study them on our
project web page [1].

To show the effectiveness of our solution we need, first, to
evaluate the resulted integrated interface against the desired
properties (i.e. (weakly) consistent) and, second, to evaluate
the ease of being used by an ordinary user.

Consistency Quality: To appraise the accuracy of the
automatic consistency enforcement we define two metrics.
The first, called fields consistency accuracy, measures the
level of accuracy the algorithm succeeds to enforce consis-
tency among the fields. Which means that for a group either
all leaves are labeled consistently or if there are leaves with-
out a label then they will have instances associated with
them. It is defined as the ratio of fields (within the groups,
isolated and children of the root) consistently labeled over
the total number of fields. The outcome for the seven do-
mains is given in column ”FldAcc”. We get almost perfect
accuracy. In the Real Estate (Figure 11) Lease Rate has two
children, one having no label. However, the semantics of the
No Label node can be easily inferred by a user given the label
of its sibling, To. Moreover, the field does not have a label
in any of the source interfaces where it is present. Hence,
there is no way the algorithm can assign a label to it. The
second metric, called internal nodes accuracy is the ratio of
the number of internal nodes that have labels (i.e. they are
at least weakly consistent) over the total number of internal
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Figure 10: LIs
Involvement Figure 11: The integrated schema tree of the Real Estate domain.

nodes (column ”IntAcc”). Observe that we get very good
accuracy. For airline the accuracy is influenced by a group of
attributes that occurs once among the individual interfaces
and it does not have a label. Such a group can adversely
influence the results as it can propagate the inconsistency
among the internal nodes along the path to the root. This
group was troublesome for many of the people involved in
the survey (see below). The airline global interface is incon-
sistent. The Car Rental integrated interface is inconsistent
as well. It has a node whose set of candidate labels is pro-
moted to its ancestors. Thus, the algorithm cannot assign
a label to this node. All the other schema trees are either
weakly consistent or consistent, e.g., Auto, Job and Book.
In the Real Estate, Features is only weakly consistent with
Unit Range and Acreage.

Human Acceptance: It is worth contrasting the result
of the automatic labeling algorithm to human acceptance.
We asked a number of people (a total of 11 people with dif-
ferent backgrounds reported: e.g., students, actuaries, engi-
neers) to answer three simple questions. The first question
asked was: ”Do you have any difficulty in filling in an entry
for each field?”. The column HA (i.e. human acceptance)
shows the feedback received. HA is defined as the average
of per person percentage of non-ambiguous attributes within
an integrated interface. For instance, nobody identified any
problem in the Auto and Job unified interfaces, whereas all
the others have some problems. For example, for the air-
line integrated interface 4 persons found the group of fields
[Return From, Return To] confusing. Hotels integrated inter-
face has several fields that people found too specific to be
included in a generic interface (e.g. Wyndham ByRequest
No, see [1]). The next question was ”If you do, identify the
fields you have difficulty filling in?”. When such fields are
identified, we submitted a source query interface which con-
tains these fields and asked ”Are the fields understandable
on the source interface?”. The latter helped us distinguish
between those instances where the errors are due to our al-
gorithm from those that are merely due to those fields which
are inherently difficult for user to understand. We discount
those fields which are difficult to understand in both inte-
grated interface and on some source interfaces. Then we
recomputed the metric above, called HA′ (see last column
in the table). Note that in the Book, Airline, Car Rental
and Hotels people have accounted the sources for some of
the errors. As a case in point, all the errors in the Book
integrated interface are due to the input interfaces and in
the Airline half of the errors originate from source interfaces.
For all the others, they believe that the fields are easier to
grasp on the interfaces they originate from. The answer to
the second question has revealed a point already stated in
the literature [12, 8]. That is, fields with low frequency can
be removed from the global interface to improve its quality.
In our survey, without exception all the fields that people
found hard to understand have very low frequency. More
precisely, they all have a frequency of 1. Which means they
are too specific to be included in the global interface. For

example, all ambiguous fields in the Hotels interface refer
to discount programs specific to certain hotel chains (e.g.
WYNDHAM). Car Rental has the same problem.

An important aspect of the survey was the comments col-
lected. People pointed out that certain elements are not
organized in the order expected. For example, within some
of the unified interfaces the date does not have the Amer-
ican layout (mm/dd/yyyy). In our view this is mainly a
regional issue, which might be solved by considering only
search engines from the same geographic area. Our data set
has interfaces from both Europe and US. Moreover, some
people noticed a sort of redundant concepts on the global
interface. One comment was: ”Do you need to request the
number of nights if you already asked for the check in and
check out dates?”. Which is a very valid point and we plan
to address it in the future.

Evaluation of Inference Rules: The pie chart (Figure
10) gives a graphical image of the overall involvement of the
inference rules in the seven domains. Each slice represents
a logical inference involvement in all seven domains, i.e. the
ratio of the total number of times the inference was used to
produce candidate labels over the total number all inferences
were used to produce candidate labels. All inference rules
were used in the seven domains, with the inference rules LI2
and LI3 being employed more frequently.

The experimental results show that query interfaces satis-
fying the naming consistency definitions, come very close to
a human accepted query interface. Additional information
on our work, including further experimental evaluation, can
be found on our project’s Web site [1].

8. RELATED WORK
There are many individual aspects our naming algorithm

depends on that are too voluminous to cite here, e.g., ef-
fectiveness of works on query interface matching [7, 10, 24],
fields grouping [8] and merging [4, 8, 15, 17, 20]. Thus, we
will focus on works where naming is significantly treated.

Although the problem of meaningfully labeling of ele-
ments within a model (e.g. query interfaces, forms, ontolo-
gies) is not a particularity of query interfaces only, to the
best of our knowledge, there is no work to tackle the problem
to the extent we do in this paper. In the integration liter-
ature the existing efforts either recognize the problem and
ignore it (e.g. [16, 20]), delegating it to the designer, or ac-
knowledge the problem and commit to some resolution (e.g.
[3, 12, 17, 21]), which is covered next. With the exception
of [3, 12, 17], most of the works treat a rather specialized
aspect of the problem, namely, naming conflict. Synonyms
and homonyms are the two sources of naming conflicts, and
renaming is the most frequently chosen solution in tradi-
tional methodologies [2].

Ontology merging is an area sensitive to naming and the
state of the art algorithms isolate naming conflicts during
the merge process and either pursue some automated res-
olution [17], by renaming one of the offending concepts, or
it provides a list of candidate names for the user to choose
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from [14]. The common denominator of all these works is
the presence of a domain expert who is deeply involved dur-
ing the merge process being required to decide on most of
the naming conflicts (and other conflicts as well), whereas
our approach strives to eliminate any human involvement.
[12] builds hypernymy hierarchy of labels in the same clus-
ter and it chooses the representative label for the cluster
(i.e. global field) among the roots using the majority rule.
We adopted this technique for finding a label for an isolated
cluster of an integrated schema tree with a modification by
replacing the majority rule by the most descriptive rule.

The salient aspects distinguishing all existing works on
labeling user interfaces from ours are: interfaces are mod-
eled as flat schemas, thus, no labeling is required for nodes
denoting groups of related fields, there is no notion of fields
grouping, no consistency is sought among the labels, except
for avoiding too specific labels [12], instances are not con-
sidered during the labeling process, and except for knowl-
edge acquired from external thesauruses/dictonaries, infer-
ence rules are not involved in the naming process

9. CONCLUSIONS & FUTURE WORK
We consider our naming framework to be also pervasive

to other integration areas (e.g. concept hierarchies, HTML
tables, ontologies) where more descriptive labels are com-
monly used and often preferred over abbreviations.

The central goal of this work is to show that well-designed
integrated query interfaces for given domains can be achieved
automatically. We described a naming algorithm for assign-
ing meaningful labels to the elements of an integrated query
interface. A novel abstraction to capture the consistency
among the labels assigned to various attributes within a
global interface was introduced. Moreover, a set of infer-
ence rules were discovered and experimentally proven to ac-
curately suggest candidate labels for the elements of a global
interface. We believe these inference rules to be of particu-
lar interest in the Semantic Web area, as well. Finally, the
naming algorithm has well-defined properties to character-
ize the consistency levels for integrated interfaces. To the
best of our knowledge, this is the first piece of work making
such guarantees for a merged interface. The experiments on
the 7 domains demonstrate that the formalism we provide is
useful in pactice. There is substantial work left to be done.
We aim to experimentally show that our framework is read-
ily applicable to other areas of interest sensitive to labeling
process, e.g., integrated concept hierarchies or HTML forms.
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