
Efficiently Linking Text Documents with Relevant
Structured Information

Venkatesan T. Chakaravarthy Himanshu Gupta Prasan Roy Mukesh Mohania
IBM India Research Lab

New Delhi, India

{vechakra, higupta3, prasanr, mkmukesh}@in.ibm.com

ABSTRACT
Faced with growing knowledge management needs, enter-
prises are increasingly realizing the importance of interlink-
ing critical business information distributed across struc-
tured and unstructured data sources. We present a novel
system, called EROCS, for linking a given text document
with relevant structured data. EROCS views the structured
data as a predefined set of “entities” and identifies the enti-
ties that best match the given document. EROCS also em-
beds the identified entities in the document, effectively cre-
ating links between the structured data and segments within
the document. Unlike prior approaches, EROCS identifies
such links even when the relevant entity is not explicitly
mentioned in the document. EROCS uses an efficient al-
gorithm that performs this task keeping the amount of in-
formation retrieved from the database at a minimum. Our
evaluation shows that EROCS achieves high accuracy with
reasonable overheads.

1. INTRODUCTION
Faced with growing knowledge management needs, enter-

prises are increasingly realizing the importance of interlink-
ing critical business information distributed across struc-
tured and unstructured data sources. In this paper, we ad-
dress the problem of linking a document with related struc-
tured data in an external relational database. We introduce
a novel system, called EROCS (Entity RecOgnition in Con-
text of Structured data), that views the structured data in
the relational database as a set of predefined “entities” and
identifies the entities from this set that best match the given
document. EROCS further finds embeddings of the identi-
fied entities in the document; these embeddings are essen-
tially linkages that interrelate relevant structured data with
segments within the given document. Unlike prior entity
recognition approaches [20, 7, 12], EROCS identifies such
linkages even when the relevant entity is not explicitly men-
tioned in the document.

As an example, consider a retail organization where the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

structured data consists of all information about sales trans-
actions, customers and products. The organization, with a
network of multiple stores, has a steady inflow of complaints
into a centralized complaint repository; these complaints are
accepted using alternative means, such as a web-form, email,
fax and voice-mail (which is then transcripted). Each such
complaint is typically a free-flow narrative text about one
or more sales transactions, and is not guaranteed to con-
tain the respective transaction identifiers; instead, it might
divulge, by way of context, limited information such as the
the store name, a partial list of items bought, the purchase
dates, etc. Using this limited information, EROCS discovers
the potential matches with the transactions present in the
sales transactions database and links the given complaint
with the matching transactions.

Such linkage provides actionable context to a typically
fuzzy, free flow narrative which can be profitably exploited
in a variety of ways.

• In the above example, we can build an automated com-
plaint routing system. Given the transaction auto-
matically linked with the complaint, this system re-
trieves from the relational database additional infor-
mation about the transaction (such as type and value
of the items purchased, specific promotions availed and
the customer’s loyalty level), and routes the complaint
to an appropriate department or customer service rep-
resentative based on the same.

• Consider a collection of complaints that have been
linked to the respective transactions in the relational
database. This association can be exploited in OLAP
analytics to derive useful information such as regions
or product categories that have shown a recent upsurge
in complaints.

In addition to the database-centric uses mentioned above,
the additional information provided by these linkages can be
effectively exploited in entity-based search [8], question an-
swering, document understanding and a host of other related
problems in information retrieval [3] and extraction [20].

Overview. EROCS takes as input (a) the given document,
suitably filtered to retain only the relevant terms, and (b)
the given database, viewed as a set of predefined entities and
associated context information. These entities are defined
in terms of a collection of entity templates that specify the
location of each entity and its context information in the
relational database. In the retail organization example, the
each sales transaction is an entity and the customer, store

 667

Figure 1: EROCS Overview

and product information associated with a given transac-
tions forms its context. Given this input, as illustrated in
Figure 1, EROCS matches the context information of the
candidate entities with the document and finds the best
matching entities and their embeddings.

This task performed by EROCS is similar in spirit to
dictionary-based named-entity recognition [7, 1, 12, 17], but
differs in the following crucial and challenging aspects.

• EROCS identifies an entity even if it is not explic-
itly mentioned in the document; it exploits the avail-
able context information to match and identify the
entities. As a consequence, while entity matching in
named-entity extraction essentially involves a dictio-
nary lookup, entity matching in EROCS involves a
significantly more complex search over a multi-table
database. Notice that given the large number of can-
didate entities (in the retail example, the number of
sales transactions could easily be in hundreds of thou-
sands) and the size of context information associated
with each entity, it is impractical to apriori material-
ize and index the entire context of each candidate en-
tity; this materialization would involve expensive joins
across multiple tables, and would have high mainte-
nance and storage overheads.

• In named-entity recognition, the terms matching an
entity are assumed to appear as contiguous phrases in
the document and follow regular patterns. In EROCS,
this assumption does not hold and the terms matching
an entity could be arbitrarily spread out in the doc-
ument. The additional challenge, in course of identi-
fying the best matching entities, is thus to interrelate
multiple terms across the document as belonging to the
same entity. Note that the number of entities present
in the document, or their relative order is not known
apriori.

Contributions. Our main contributions in this paper are
as follows.

• We propose an efficient algorithm that, while keeping
the amount of information retrieved from the database
at a minimum, finds the best matching entities as well
as their optimal embedding in the document. The pro-
posed algorithm successively queries the database to
incrementally build the contexts of only the potentially
matching entities as it converges to the final solution.

• We present an experimental study that clearly illus-
trates the practicability of the proposed approach and
its superiority over less sophisticated alternatives, in
terms of both the accuracy of the result as well as the
execution and space overheads.

Organization. The remainder of the paper is organized
as follows. We begin with a discussion of related work in
Section 2. A description of framework appears in Section 3.
This is followed by the details of the proposed algorithm in
Section 4. In Section 5, the context cache is introduced.
In Section 6, algorithms that effectively exploit the context
cache to resolve the database performance bottleneck are
presented. A preliminary experimental study is presented
in Section 7. Finally, Section 8 presents the conclusions.

2. RELATED WORK
Matching entities across structured data and unstructured

text documents falls under the general area of semantic inte-
gration, which deals with the problem of identifying common
concepts across heterogeneous information sources. Tradi-
tionally, the mainstay of this area has been integration of
data across heterogeneous structured databases [13]. Re-
cent work has also addressed the semantic integration within
and across text documents [16]. However, we are not aware
of any previous work that directly addresses semantic inte-
gration across structured data and unstructured documents,
the focus of this paper.

Record matching is the task of matching records and iden-
tifying whether they correspond to the same real-world en-
tity [23]. Record matching techniques are primarily relevant
to structured records [10], but can be extended to semi-
structured records (such as paper citations and street ad-
dresses) by including text-segmentation as a pre-processing
step [1, 17]. EROCS, in contrast, matches structured records
with informal, unstructured text (such as an email) which is
not amenable to segmentation using these methods because
it could contain arbitrarily intermixed entity references.

Semantic integration in text [16] is the task of identify-
ing whether different entities identified using NER within
or across documents correspond to the the same real-world
entity; this identification is done by matching multiple fea-
tures extracted using natural language rules. Note that the
real-world entity is not available for reference, which is an in-
herent limitation. In EROCS, the focus is to match mentions
of an entity in the document with a well-defined structured
representation of the entity, which acts as a reference.

Recently, there has been significant work on keyword-
based search in relational databases [2, 6, 14]. Given a
set of terms as input, the task is to retrieve the candi-
date join-trees (group of rows across multiple tables in the
database interlinked through foreign-key relationships) that
collectively contain these terms; these candidate join-trees
are also ranked against each other based on relevance. The
entity identification task of EROCS is quite different; it in-
terprets the input document as a sequence of terms, and
not only identifies the best matching entities, but also their
embeddings in the document. Note that entities embedded
in disjoint portions of the document do not compete against
each other. Moreover, in keyword search, the number of in-
put terms are few (typically, less than 5) and hence, for each
given term, an algorithm can afford to fetch all rows con-
taining the term. Whereas, in EROCS, the input document

 668

Figure 2: Example of a Relational Database Schema

and an associated Entity Template

may contain hundreds of terms and so, we need to restrict
the above database lookup to a minimum.

Entity matching in EROCS is similar to dictionary-based
named-entity recognition (NER) [7, 1, 12, 17, 9], where
the focus is to identify sequences of terms within the doc-
uments as named-entities such as person name, company
name, location, etc. by exploiting explicit lists (dictionaries)
of single and multi-word terms and patterns. Unlike NER,
EROCS identifies entities even when they are not explicitly
mentioned in the document. This makes entity matching
in EROCS significantly more complex than the dictionary
lookup in NER, as discussed earlier in Section 1. However,
EROCS can exploit NER to preprocess the input document
to increase the efficiency of the entity matching task; the
details appear in Section 3.2.

3. FRAMEWORK
In this section, we give details of the models that build

up the underlying framework of EROCS.

3.1 Entity Model
An entity is a “thing” of significance, either real or con-

ceptual, about which the relational database holds informa-
tion [11]. An entity template specifies (a) the entities to be
matched in the document and (b) for each entity, the context
information that can be exploited to perform the match.

Formally, an entity template is a rooted tree with a des-
ignated root node. Each node in this tree is labeled with a
table in the given relational database schema, and there ex-
ists an edge in the tree only if the tables labeling the nodes
at the two ends of the edge have a foreign-key relationship in
the database schema. The table that labels the root node is
called the pivot table of the entity template, and the tables
that label the other nodes are called the context tables. Each
row e in the pivot table is identified as an entity belonging to
the template, with the associated context information con-
sisting of the rows in the context tables that have a path to
row e in the pivot table through one or more foreign-keys
covered by the edges in the entity template.

For instance, the sales transactions entity template, shown
in Figure 2, has the root node labeled by the TRANSACTION

table (the pivot table), and the non-root nodes labeled by
the CUSTOMER, STORE, TRANSPROD, PRODUCT and MANUFACTURER

tables (the context tables) that provide the context for each
transaction in the TRANSACTION table. Note that the tem-
plate definition also provides the information that the SUPPL-
IER table, though reachable from the TRANSACTION table via
both the PRODUCT and STORE tables, carries no contextual in-

formation about a given transaction; this is valuable domain
knowledge that is hard to figure automatically.

Multiple nodes in the template can be labeled with the
same table. This is needed to differentiate the different roles
a table might play in the context of the entity. Suppose
the document mentions product names not only to identify
a transaction, but also to identify the store in which the
transaction occurred; further suppose it mentions the man-
ufacturer in the former case, but not in the latter. Then, the
template in Figure 2 would extend the TRANSACTION→STORE

path to TRANSACTION→STORE→INVENTORY→PRODUCT. Now
there exist two nodes in the template labeled with the same
table PRODUCT representing the two roles the table plays;
also, one includes a child labeled with the table MANUFACTUR-
ER, the other does not.

Currently, we assume that the entity templates are spec-
ified by a domain expert; this is a one-time low-overhead
activity that can be a part of the initial customization and
configuration. For instance, reverse engineering of existing
relational databases to derive the entity-relationship model
is a much studied problem [18], and several commercial data
modeling tools support this feature (e.g. Microsoft Office
Visio [22]); specification of entity templates can be readily
integrated with this reverse engineering effort.

The entity templates are closely related to view objects
defined earlier by Barsalou et al. [5], who also propose infor-
mation theoretic techniques to automatically identify what
tables to include in the view object for a given pivot ta-
ble [4]. We plan to explore similar techniques to automate
the specification of entity-templates as a future work.

Further discussion in this paper assumes only a single en-
tity template is defined. This is only for ease of exposition;
the techniques can be readily generalized for a collection of
entity templates.

3.2 Document Model
EROCS views a document as a sequence of sentences,

where a sentence is a bag of terms. Some terms in a sen-
tence are potentially useful since they occur in the database
as well, and thus may occur in the context of a candidate en-
tity; other terms are not useful and are filtered out. EROCS
uses a part-of-speech parser to identify noun-phrases in a
sentence, and filters out the rest; the assumption, which
usually holds, is that only nouns appear as values in the
database. Further, each noun thus identified is looked up in
the database and annotated with the database columns it
occurs in.

This filtering and annotation pre-processing reduces the
amount of work to be performed in the matching step. This
could be further enhanced by (a) incorporating NER tech-
niques [1] that can identify potential matches with the data-
base terms without the database lookups needed currently,
and (b) incorporating semantic integration in text [16] to
matches the terms in the document to identify whether they
belong to the same entity; this dependency information can
potentially reduce the number of database queries needed in
the current implementation.

3.3 Entity-Document Matching Model
EROCS defines the weight of a term t as:

w(t) =

{
log(N/n(t)) if n(t) > 0
0 otherwise

 669

where N is the total number of distinct entities in the rela-
tional database, and n(t) is the number of distinct entities
that contain t in their context.

A segment is a sequence of one or more consecutive sen-
tences in the document. We now discuss how a segment d
is scored with respect to an entity e.

Let T (d) denote the set of terms that appear in the seg-
ment d, and let T (e, d) ⊆ T (d) denote the set of such terms
that appear in the context of e as well. Then, the score of
the entity e with respect to the segment d is defined as:

score(e, d) =
∑

t∈T (e,d)

tf(t, d).w(t)

where tf(t, d) is the number of times the term t appears in
the segment d, and w(t) is the weight of the term t as defined
above. This definition of score(e, d) is in the spirit of the
“tf-idf” scores commonly used in the Information Retrieval
literature [3].

4. IDENTIFYING BEST MATCHING ENTI-
TIES AND THEIR EMBEDDINGS

In this section, we first formulate the entity identification
and embedding problem and then provide an efficient algo-
rithm for solving the same.

4.1 Problem Formulation
We are given as input (a) a document D, (b) a relational

database, and (c) an entity template that interprets the
database as a set of entities E.

In this paper, we make the assumption that each sentence
in the document D relates to at most one entity; this is a
stylistic assumption about the document, and seems to be
reasonable in practice. Given this assumption, we can for-
mally model an annotation for D as follows: An annotation
for the document D is a pair (S, F) where S is a set of non-
overlapping segments of D and F is a mapping that maps
each segment in d ∈ S to an entity F (d) ∈ E.

EROCS defines the score of an annotation (S,F) as:

score(S,F) =
∑
d∈S

(score(F (d), d) − λ)

where the entity-document matching score is as defined in
Section 3.3 and λ ≥ 0 is a tunable parameter; a justification
for this parameter will appear in a moment. The problem
being addressed can now be stated as follows.

Problem Statement. Find an annotation with the maxi-
mum score among all annotations of the document D.

Before moving on to discuss the solution of this problem
in the next section, let us reflect upon the utility of the
parameter λ in the above formulation. For a given annota-
tion (S, F), we can think of score(F (d), d) as the support
for a given d ∈ S. Introducing λ in the annotation scoring
function guarantees that in the annotation with the maxi-
mum score, no segment will have a support less than λ. In
Section 7, we show that setting λ > 0 eliminates a signifi-
cant amount of irrelevant annotations, leading to improved
accuracy.

The naive algorithm to solve the proposed problem is to
enumerate all annotations, and pick the annotation that has
the maximum score. This is clearly impractical since the
number of possible annotations is |E||D|, where |E| is the
number of entities and |D| is the number of sentences in the

document. EROCS solves this problem by first effectively
pruning the search space, and then searching on the reduced
space using an efficient algorithm; the next two sections give
the details of the solution.

4.2 Pruning the Search Space
In this section, we present some properties of the best

annotation of a given document D. These properties will
help in effectively pruning the size of the search space, which
will be useful in developing an efficient algorithm for finding
the best annotation in the next section.

We call an annotation (S, F) canonical iff (a) S is a par-
tition1 of D, and (b) F maps each d ∈ S to its best match-
ing entity. Now, consider an annotation (S, F) that is not
canonical. If S does not cover some sentences of D, then we
can transform the annotation by adding these non-covered
sentences to adjacent segments in S. Further, if S contains
a segment d such that the associated entity F (d) is not its
best matching entity, then we can transform the annotation
by taking F (d) as d’s best matching entity instead. Notice
that neither of these transformations can possibly decrease
the annotation’s score. Thus, we see that any annotation
can be converted into a canonical annotation without de-
creasing its score. It follows that there exists a canonical
annotation that achieves the maximum score. We formalize
the discussion in the following claim.

Claim 1. For any document D, there exists a canonical
annotation (S, F) such that (S, F) is an optimal annotation
for D.

We can thus restrict the search space to only canonical an-
notations without any loss in generality. The problem being
addressed can now be revised as follows.

Revised Problem Statement. Find a canonical annota-
tion with the maximum score among all canonical annota-
tions of the document D.

In the next section, we present an efficient algorithm to
solve this problem.

4.3 Best Annotation Computation
In this section, we present an efficient dynamic program-

ming algorithm to find the best canonical annotation for a
given document. As argued in the previous section, the re-
striction to canonical annotations does not result in any loss
of generality, and the best canonical annotation computed
is guaranteed to be the best annotation overall. Accord-
ingly, we consider only canonical annotations in the rest of
this paper. Moreover, since a canonical annotation (S, F) is
completely specified by its segment set S, we shall occasion-
ally identify a canonical annotation (S, F) by S alone, and
refer to F as the canonical mapping for S.

For 1 ≤ i ≤ j ≤ |D|, let Di,j denote the segment in D
that starts at the ith sentence and ends at the jth sentence
(both inclusive). The segments D1,1, D1,2, . . . , D1,|D|, where
D1,|D| is the document D itself, are termed the prefixes of
the document D.

Now, let Sk be the best annotation for the prefix D1,k and
let rk be its score. Further, let ei,j be the best matching
entity for the segment Di,j and let si,j be its score. The
following claim gives a recurrence relation for rk in terms

1A set of non-overlapping segments that cover each sentence
in the document

 670

Procedure BestAnnot(D)
Input: Document D
Output: (best annotation, score)
Begin

A01 For i=1 to |D|
A02 For j=i to |D|
A03 Let ei,j = argmaxe∈E score(e,Di,j)
A04 Let si,j = score(ei,j , Di,j)
A05 Let S0 = φ
A06 Let r0 = 0
A07 For k = 1 to |D|
A08 Let j = argmax0≤j≤k−1(rj + sj+1,k − λ)
A09 Let Sk = Sj ∪ {Dj+1,k}
A10 Let rk = rj + sj+1,k − λ
A11 For each d ∈ S|D|

A12 Let F|D|(d) = argmaxe∈E score(e, d)
A13 Return ((S|D|, F|D|), r|D|)
End

Figure 3: Best Annotation Computation Algorithm

of rj , for j ≤ k − 1; as the base case for the recurrence, we
define r0 to be zero.

Claim 2. For each 1 ≤ k ≤ |D|, the score rk can be
recursively expressed as rk = max0≤j≤k−1(rj + sj+1,k − λ).

Proof. The claim is easily proved via induction on k. We
make use of the fact that (a) rk is the maximum annotation
score possible for D1,k, and (b) for any 1 ≤ k ≤ |D|, there
must exist a 1 ≤ j ≤ k such that Dj,k appears in the best
annotation of the prefix D1,k.

This recurrence relation forms the basis of the dynamic pro-
gramming algorithm presented in Figure 3.

The algorithm first computes the best matching entities
for all the segments in the given document (Lines A01-A04).
Then, in accordance with the recurrence relation of Claim 2,
it iteratively computes the best annotation for increasingly
larger prefixes of the document, making use of these best
matching entities and the best annotations of strictly smaller
prefixes computed in previous iterations (Lines A05-A10).
The algorithm then constructs the canonical mapping F|D|

for the computed best annotation S|D| (Lines A11-A12) and
returns the pair along with its score r|D| (Line A13).

Discussion. The time complexity of the proposed algo-
rithm is quadratic in the number of sentences in the docu-
ment; this can be reduced to linear if we limit the size of the
segments considered to be at most L sentences. However,
this efficient algorithm is not enough to make the solution
scalable. Finding the entity in E that best matches a given
segment (Line A03) involves a search (rather than a simple
lookup) on the database; this is an expensive operation for
nontrivial database sizes, and performing it for every seg-
ment in the document is clearly a performance bottleneck.
In the next section, we describe how EROCS resolves this
critical scalability issue.

5. THE CONTEXT CACHE
As discussed in the previous section, the operation of find-

ing the entity with the best score for a given document seg-
ment is an expensive operation. This operation needs to
be performed for every segment in the document; if naively
done, this is likely to be a severe performance bottleneck.
Since a document is not likely to have repeated segments,

caching the result of the operation is not effective. More-
over, the large number of candidate entities, and the size of
context information associated with each entity, makes it im-
practical to apriori materialize and index the entire context
of each candidate entity; this materialization would involve
expensive joins across multiple tables, and thus would have
high computation, maintenance and storage overheads. In
this section and the next, we show how EROCS resolves this
critical issue.

EROCS uses an entity-term association cache, formally
referred to as the context cache, to reduce the database ac-
cess overhead. This cache can be visualized as a collection
of relationships of the form (e, t) meaning that the term t
is contained in the context of the entity e. This cache is
indexed both on entities as well as terms. In Section 5.1, we
describe how this cache is populated.2

A naive, conventional use of the cache would be in elim-
inating the overheads of repeated database accesses. The
crux of EROCS’s algorithms lies in more sophisticated use of
the contents of this cache to reduce the number of database
accesses. At the core of these optimizations, which will be
discussed in the next section, lie techniques that exploit the
contents of the cache to bound the entity-segment matching
scores as well as the annotation scores. These techniques
are formally described in Section 5.2.

5.1 Context Cache Population
The algorithms in this paper access the relational database

via the following two operations.

• GetEntities(t): Given a term t appearing in D, this
operation queries the database and returns the set of
all entities that contain the term t in their context.

• GetTerms(e): Given an entity e,3 this operation queries
the database and returns the set of all terms from D
that are contained in the context of e.

GetEntities involves (a) identifying the rows containing
the term t across all tables labeling the nodes in the en-
tity, and (b) identifying the rows in the pivot table that
have a join path (along the edges in the entity template)
to any of the identified rows. Step (a) is performed using
a text index over the tables in the database, while step (b)
involves a union of multiple join queries, one for each node
whose labeling table contains a row that contains the term
t. Our current implementation exploits DB2 Net Search Ex-
tender [15] for combined execution of both steps in a single
query. Computing the context of an entity in GetTerms, on
the other hand, involves a join query based on the entity
template. However, in presence of nested substructure, it
is sometimes more efficient to retrieve the context using an
outer-union query; such issues are well-known in the XML
literature [21].

Clearly, both these operations are expensive, and caching
their results makes sense. The result of GetEntities(t) for
a term t is cached by inserting the pair (e, t) for each each
entity e returned in the result. Similarly, the result of Get-
Terms(e) for an entity e is cached by inserting the pair (e, t)
for each each term t returned in the result.

2In this paper, we focus on populating the cache with rel-
evant data; techniques for shrinking the cache by removing
garbage entities and terms exist, but are not discussed here.
3Henceforth, entity stands for the identifier of the entity.

 671

5.2 Context Cache-based Score Bounds
In this section, we show how the contents of the cache at

any given point can be used to obtain tight upper and lower
bounds on the entity-segment matching scores as well as the
annotation scores.

Consider a document segment d and let T (d) be the set
of terms in d. Further, let TC(d) ⊆ T (d) denote the set of
terms in d for which GetEntities has been invoked so far.
Now, consider an entity e ∈ E and, as in Section 3.3, let
T (e, d) ⊆ T (d) denote the set of terms in the document that
appear in the context of e.

To compute score(e, d) exactly, we need to know T (e, d).
There are two cases, based on whether or not GetTerms has
been invoked on e earlier. If GetTerms has not been invoked
on e earlier, then our knowledge of the context of e is limited
to the set of terms which were found to be in the context
of the entity e by virtue of having invoked GetEntities on
them in the past; this set, T (e, d) ∩ TC(d), can be obtained
using an index lookup on the cache using e. We use this
information to get a lower bound on score(e, d) as:

score−C(e, d) =
∑

t∈T (e,d)∩TC(d)

tf(t, d).w(t)

Further, defining WC(d) =
∑

t∈T (d)−TC(d) tf(t, d).w(t) and

using the fact that T (e, d)− TC(d) ⊆ T (d)− TC(d), we also
have the following upper bound on score(e, d):

score+
C(e, d) = score−C(e, d) + WC(d)

On the other hand, if GetTerms has been invoked on e ear-
lier, then T (e, d) (which is the set obtained as a result of
that invocation) is available in the cache; in this case, we
can compute score(e, d) exactly and thus have:

score−C(e, d) = score+
C(e, d) = score(e, d)

The bounds on score(e, d) for entity e ∈ E and segment d
in document D derived above can be used to derive a lower
bound score−C(S, F) and an upper bound score+

C(S, F) for a
given annotation (S, F) of D. These bounds follow trivially
from the definition of score(F, B) in Section 4.1 and are as
follows.

score−C(S,F) =
∑
d∈S

(score−C(F (d), d) − λ)

score+
C(S,F) =

∑
d∈S

(score+
C(F (d), d) − λ)

In the next section, we show how these bounds can be
gainfully used to effectively reduce the number of database
access operations that need to be invoked in course of best
annotation computation.

6. CONTEXT CACHE-BASED BEST ANNO-
TATION COMPUTATION

In this section, we present algorithms to compute the best
annotation for a given document D that make effective use of
the context cache contents to reduce database access opera-
tions. The algorithm AllTerms, presented in Section 6.1 uses
the cache in a conventional manner to eliminate the over-
heads of repeated database accesses; this algorithm forms
our baseline. Next, in Section 6.2, we present the algorithm
AllSegments that reduces the number of GetEntities invoca-
tions while computing the best entity for a segment. Finally,

in Section 6.3, we present the algorithm that additionally
uses a greedy cache refinement strategy to rapidly converge
to the best annotation; this algorithm is actually used in
EROCS and is therefore called the EROCS algorithm.

6.1 Eliminating Repeated Database Access
The most straightforward use of this cache is to eliminate

repeated invocations of GetEntities(t) or GetTerms(e) for
the same term t or the same entity e respectively. This sug-
gests an algorithm that first invokes GetEntities(t) for each
term t in the document, and populates the cache with the
pairs (e, t) for each e in the result. After this cache popu-
lation step, the index on entities is used to determine, for
each entity in the cache, the terms in the document that
belong to that entity. Using this information, the algorithm
readily computes the best matching entity for each docu-
ment segment; once this is done, BestAnnot is invoked to
compute the best annotation for the document. We call this
algorithm AllTerms.

Despite eliminating repeated invocations, AllTerms does
not scale well (cf. Section 7). The reason is that there exist
several terms in the document that appear in the context
of a large number of entities. Invoking GetEntities on such
terms is excessively expensive. Moreover, being low weight,
these terms do not contribute much to the score of any en-
tity in case they appear only a few times in the document.
In the next section, we develop an optimization that can
potentially avoid invocations of GetEntities on such terms.

6.2 Reducing GetEntities Invocations
Consider any algorithm for finding the best matching en-

tity for the given segment d. Starting with no prior in-
formation about the best entity, the search space for this
algorithm is the entire entity set E. The purpose of invok-
ing GetEntities for terms in d is to build up a set of entities,
hopefully much smaller in size than E, that would form a
reduced search space in the algorithm’s quest for the best
matching entity; for the algorithm to be correct, however, it
needs to ensure that this reduced search space contains the
entity being sought.

The algorithm AllTerms follows a naive, conservative ap-
proach and invokes GetEntities for all terms in d — it thus
builds up the set of all entities that are potentially relevant
to d; clearly, the best matching entity is guaranteed to be in
this set. Next, we present an optimization that can be used
to build the search space in a manner that does not require
GetEntities to be invoked on all terms in d, but at the same
time ensures that the best matching entity is included in
this search space.

6.2.1 Term Pruning Strategy
Let EC(d) be the set of entities such that each e ∈ EC(d)

has appeared in the result of at least one GetEntities invoked
so far for terms in the segment d. We call the cache complete
with respect to the segment d iff the best matching entity
for d is guaranteed to be present in EC(d).

The idea is to populate the cache by invoking GetEntities
on the terms t ∈ T (d) in decreasing order of tf(t, d).w(t),
stopping as soon as the cache becomes complete with respect
to d. The challenge in implementing this optimization lies
in efficiently checking for completeness of the cache at any
point. Next, we present an efficient criteria for the same.

Consider any e ∈ E − EC(d). By definition, we have

 672

T (e, d) ∩ TC(d) = φ, which implies score−C(e, d) = 0 and,
thus, score+

C(e, d) = WC(d) based on the bounding analysis
of Section 5.2. Now, if there exists an entity e′ ∈ EC(d)
such that score−C(e′, d) > WC(d) then, clearly, score(e, d) <
score(e′, d) and therefore e cannot be the best matching
entity for d. We have thus proved the following:

Claim 3. The context cache is complete with respect to
the segment d if there exists an entity e′ ∈ EC(d) such that
score−C(e′, d) > WC(d).

Since both EC(d) and WC(d) can be progressively main-
tained as the cache is being populated, this criterion can be
checked efficiently.

6.2.2 The AllSegments Algorithm
We now present an algorithm, called AllSegments, that

applies the optimization discussed above while computing
the best matching entities for each segment in the document.

For each segment d in the document, the algorithm suc-
cessively invokes GetEntities on the terms t ∈ T (d) in de-
creasing order of tf(t, d).w(t). The algorithm progressively
maintains the entities in EC(d) in a heap, max-ordered on
score−C(e, d), and also maintains WC(d) during the course of
these invocations. As soon as the top entity in the EC(d)
heap has a value greater than WC(d), the cache is flagged
as complete with respect to d. When this happens, the al-
gorithm stops invoking GetEntities on any more terms, and
moves to the task of finding the best matching entity from
the set EC(d).

At this point, we already have the entities in e ∈ EC(d) in
a heap, max-ordered on score−C(e, d). The algorithm pro-
ceeds by removing the topmost entity e from this heap,
invoking GetTerms(e), and using the result find its exact
score score(e, d). The algorithm repeats the above pro-
cess and maintains the entity e that has maximum score
so far, stopping when the topmost entity e′ is such that
score+

C(e′, d) < score(e, d). It is easy to see that, at this
point, e is the best matching entity for d.

The algorithm starts with an empty cache, but carries the
cache over while computing the best matching entity across
different segments. When the best matching entities for ev-
ery segment in the document have been computed, the algo-
rithm invokes BestAnnot to compute the best annotation
for the document.

6.3 Greedy Iterative Cache Refinement
In this section, we present the EROCS algorithm that uses

a greedy iterative cache refinement strategy to converge to
the best annotation for the given document without comput-
ing the best entities for all segments. The greedy iterative
strategy for computing the best annotations is presented in
Section 6.3.1. A cache refinement heuristic that attempts
to refine the cache in a way that this greedy iterative strat-
egy converges to the best annotation rapidly is presented in
Section 6.3.2.

6.3.1 Greedy Iterative Strategy
Let us revisit the procedure BestAnnot outlined in Fig-

ure 3 that computes the best annotation (S∗, F ∗) of a given
document D. We modify the procedure BestAnnot so that
Lines A03, A04 and A12 invoke the score upper-bound func-
tion score+

C(e, d) instead of the exact score(e, d). Let us call
this modified procedure BestAnnotC .

Procedure BestAnnotErocs(D)
Input: Document D
Output: (best annotation, score)
Begin

B01 Initialize the context cache as empty
B02 Let ((S̄, F̄), s) = BestAnnotC(D)

B03 While score−
C

(S̄, F̄) < score+
C

(S̄, F̄)
B04 Call UpdateCache(S̄, F̄)
B05 Let ((S̄, F̄), s) = BestAnnotC(D)
B06 Return ((S̄, F̄), s)
End

Figure 4: The EROCS Algorithm

Let (S̄, F̄) be the annotation returned by BestAnnotC .
We make the following claim.

Claim 4. score−C(S̄, F̄) ≤ score(S∗, F ∗) ≤ score+
C(S̄, F̄)

Proof. The first inequality follows from score−C(S̄, F̄) ≤
score(S̄, F̄) and score(S̄, F̄) ≤ score(S∗, F ∗). Further, since
BestAnnotC overestimates the score of every segment in
the document, the best score it computes must be an over-
estimate of the actual best score; this gives us the second
inequality.

This result suggests a greedy strategy that iteratively im-
proves the cache contents so that the slack between the up-
per and lower bound scores of the successive best annota-
tions (S̄, F̄) computed by BestAnnotC decreases with ev-
ery iteration.

The resulting procedure, called BestAnnotErocs, ap-
pears in Figure 4. Starting with an empty cache, it re-
peatedly calls BestAnnotC , which computes a best match-
ing annotation (S̄, F̄) based on the current cache, and then
calls the subroutine UpdateCache (discussed later in Sec-
tion 6.3.2), that updates the cache using (S̄, F̄). The pro-
cedure terminates whenever we find that the best annotation
returned by BestAnnotC has score+

C(S̄, F̄) = score−C(S̄, F̄);
at this point, by Claim 4, we know that (S̄, F̄) is the best
annotation.

Since score−C(e, d) and score+
C(e, d) are computed based

on the contents in the context-cache, each invocation to
BestAnnotC can be executed efficiently. In fact, since
score+

C(d, e) for most segments d and entities e remains the
same across successive invocations of BestAnnotC , EROCS
actually uses lazy, incremental techniques in BestAnnotC

to compute the successive best annotations efficiently.

6.3.2 Cache Refinement
For a given annotation (S, F), let us define slackC(S, F) =

score+
C(S, F) − score−C(S, F). Let (S̄1, F̄1) and (S̄2, F̄2) be

the best annotations returned by BestAnnotC on two suc-
cessive invocations in the course of the algorithm. The
goal of the cache refinement strategy, to be developed in
this section, is to choose a cache update at the interven-
ing cache refinement step such that the decrease in slack,
slackC(S̄1, F̄1) − slackC(S̄2, F̄2), is maximized.

To start with, let us assume that the only cache update
operation allowed is GetEntities. Then, the task reduces to
finding the term t∗ ∈ T (D) − TC(D) for which GetEntities
should be invoked next; here T (D) is the set of terms in the
document D, and TC(D) is the set of terms in D for which
GetEntities has already been invoked.

Now, given our constraint, the state of the cache at each it-
eration would be such that it has been populated using only

 673

Procedure UpdateCache(S̄, F̄)
Input: current best annotation
Begin

C01 If the current cache is complete with respect to each d ∈ S̄

C02 Let d∗ = argmaxd∈S̄ slackC(F̄ (d), d)
C03 Call GetTerms(F̄ (d∗))
C04 Else
C05 Let t∗ = argmaxt∈T (D)−TC(D) tf(t, D).w(t)
C06 Call GetEntities(t∗)
End

Figure 5: Cache Refinement Algorithm

invocations of GetEntities. It is easy to show that in such a
state, for all annotations (S, F) of the document D, we have
slackC(S, F) = WC(D) =

∑
t∈T (D)−TC(D) tf(t, D).w(t) (cf.

Section 5.2). Clearly, the difference in slack between (S̄1, F̄1)
and (S̄2, F̄2) is then always equal to tf(t∗, D).w(t∗), where
t∗ is the term picked by our cache refinement strategy. This
gives us an optimal cache refinement strategy: at each cache
refinement step, invoke GetEntities on the term t∗ ∈ T (D)−
TC(D) with the maximum tf(t∗, D).w(t∗).

Alternatively, let us assume that the cache is complete
with respect to each segment in the document D, and the
only cache update operation allowed is GetTerms. Then,
the task reduces to finding the entity e∗ ∈ E − E(D) for
which GetTerms should be invoked next; here, E(D) is the
set of entities for which GetTerms has already been invoked.
However, now no obvious global property of the kind seen
above holds, and we need to devise heuristics, taking cue
from the current best annotation (S̄1, F̄1). Instead of trying
to maximize the slack decrease across two successive optimal
annotations, we make the assumption that the current an-
notation (S̄1, F̄1) would remain the optimal even after the
update. Under this assumption, the goal of the cache re-
finement strategy is to find the entity e∗ such that invoking
GetTerms on this entity maximizes the slack decrease for
the current best annotation (S̄1, F̄1).

For a given segment d and entity e, define slackC(e, d) =
score+

C(e, d)−score−C(e, d). Then, we have slackC(S̄1, F̄1) =∑
d∈S̄1

slackC(F̄1(d), d). Clearly, a principled way to max-

imize the reduction of slackC(S̄1, F̄1) is to maximize the
reduction of the largest slackC(F̄1(d), d) in the summation.
This leads to the following cache refinement strategy: at
each cache refinement step, invoke GetTerms on the best
matching entity for the segment in S̄1 with the maximum
slack.

In EROCS, we follow a cache refinement strategy that
is a hybrid of the two. Specifically, at each cache refine-
ment step, it checks whether the cache is complete with
respect to all the segments in the current best annotation
(S̄, F̄). If this is false, it invokes GetEntities on the term
t∗ ∈ T (D) − TC(D) with the maximum tf(t∗, D).w(t∗); if
this is true, it invokes GetTerms on the best matching en-
tity for the segment in S̄ with the maximum slack. This
strategy appears formally as the procedure UpdateCache

in Figure 5.
Until the point the cache becomes complete with respect

to at least one segment in the document, this strategy en-
forces the GetEntities-only constraint and makes decisions
that are the best with respect to that constraint. After the
point when the cache is complete with respect to all the
segments in the document, it enforces the GetTerms-only

constraint and makes decisions that are (heuristically) the
best with respect to that constraint. In general, the strat-
egy favours GetEntities initially and GetTerms later, which
is justified since the initial terms contribute more towards
decreasing the slack than the latter terms.

In Section 7, we show that this hybrid strategy works well
in practice. As a part of our future work, we plan to address
the problem of finding a provably good strategy for cache
refinement.

7. EXPERIMENTAL STUDY
The techniques proposed in this paper are based on two

main contributions. The first contribution is the propo-
sition that entity identification should be done at a fine-
grained level, i.e. by matching entities with segments within
the document, rather than simply matching with the entire
document. The second contribution is the efficient imple-
mentation of this proposition as a greedy iterative cache
refinement strategy. In this section, after discussing the ex-
perimental setup, we evaluate the efficacy of fine-grained
matching (Section 7.1) and of greedy iterative cache refine-
ment (Section 7.2) against less sophisticated alternatives.
Next, we study the effect of varying the value of the pa-
rameter λ on the accuracy of the techniques (Section 7.3).
Finally, we study the improvement in the accuracy of the
current best annotation as the greedy iterative cache refine-
ment progresses (Section 7.4).

Platform. The implementation was done in Java with
J2SE v1.4.2 (approx. 2000 lines of code) and executed on
a 2.4 GHz Machine with 4GB RAM running Windows XP
SP1. The relational DBMS used was IBM DB2 UDB v8.1.5
co-located on the same machine. Communication between
EROCS and DB2 was through JDBC. We used the IBM
DB2 UDB Net Search Extender v8.1 as our text index over
the database; this was because of convenience and easy avail-
ability. A more specialized text index on the database, we
believe, would achieve even better performance than that
reported in this section.

Structured Dataset. This study used a subset of the
Internet Movie Database4 , with movies as the entities of
interest. The database contains roughly 4 million records
and has size 2GB across eight tables. The Movies table
(401660 rows) contains names of movies and the Persons ta-
ble (287398 rows) contains a list of persons along with their
names. The remaining six tables relate rows in these two
tables. The Actors (1619647 rows) and Actresses (776396
rows) tables relate the movies with their cast along with
the corresponding character names. The Directors (244394
rows), Producers (150838 rows), Writers (232420 rows) and
Editors (46795 rows) tables relate the movies with their
designated crew. The entity template is defined so that the
Movies table is the pivot table (the total number of enti-
ties are therefore 401660) and other tables are the context
tables.

Document Dataset. The documents used in this study
were assorted movie reviews downloaded from the Great-
est Films5 website. These reviews were processed using a
part-of-speech tagger, and the noun-phrases identified as
the relevant terms. We removed the names of the movies

4http://www.imdb.com
5http://www.filmsite.org

 674

in the review text, but retained this information separately
for evaluation purposes. To control the quality and have
multiple entities in the documents, we decomposed these
base documents into segments of approximately 8 sentences
each, and classified each segment as good or bad based on the
average weight of terms contained in the segment. This gave
us a set of good and a set of bad documents for each movie.
Now, given the number of entities per document (K) and
the fraction of good segments (α) as parameters, we gen-
erated a random document by picking a random sequence
of K distinct movies, and for each movie in the sequence,
including a good segment with probability α and a bad seg-
ment with probability (1 − α). Note that the length of the
document is a multiple of K, and is not considered as a sepa-
rate parameter. Our final repository of documents included
50 documents for each combination of K = 1, 2, . . . , 10 and
α = 0.0, 0.1, . . . , 1.0.

Parameter Settings. EROCS has only one parameter, λ;
unless otherwise stated, its value is fixed at 4. In Section 7.3,
we justify this choice, and also study the effect of varying
the value of λ.

Accuracy Metric. We use an annotation accuracy mea-
sure that not only considers the accuracy of the set of entities
identified, but also the accuracy of the embeddings of these
entities in the document as specified by the annotation. Let
e be the entity a given sentence actually belongs to, and
let E′ be the set of entities that best match the segment
containing this sentence according to the given annotation.6

Then, precision and recall for this sentence are computed as
|E′ ∩ {e}|/|E′| and |E′ ∩ {e}| respectively. The accuracy of
the annotation for the document is then computed as the
harmonic mean of the average precision and recall over the
sentences in the document.7

7.1 Efficacy of Fine-Grained Entity Matching
In this experiment, we show that EROCS’s strategy for

identifying entities that best-match the document at a fine-
grained, individual segment level leads to greater accuracy
than a technique that simply identifies the entities that best-
match the entire document.

For the sake of this experiment, assume that the number of
entities (K) in the given document is known apriori. Given
this information, our alternative algorithm (called TopK)
picks all the entities with top K matching scores with re-
spect to the entire document considered as a single segment,
and then uses BestAnnotC to compute the best annotation
considering only these entities.

We compared the accuracy of EROCS and TopK for doc-
uments with varying quality (α), as well as varying enti-
ties contained within (K). We first fixed α = 0.8 and var-
ied K = 1, 2, . . . , 10, and then fixed K = 10 and varied
α = 0.0, 0.1, . . . , 1.0. For each combination, we computed
the average accuracy of each algorithm for the 50 documents
in the repository for that combination. The results are plot-
ted in Figure 6 and Figure 7 respectively.

Discussion. We discuss the results in Figure 6 first. When

6We assume that an annotation may associate multiple en-
tities with a segment in case all these entities have the max-
imum score.
7The harmonic mean of precision and recall is a popular
measure of accuracy in the Information Retrieval literature,
and is known as the F-measure [3].

0 2 4 6 8 10

#Entities/Document (K)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

EROCS
TopK

Figure 6: Accuracy of EROCS, TopK for varying K

0.0 0.2 0.4 0.6 0.8 1.0

Document Quality (alpha)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

EROCS
TopK

Figure 7: Accuracy of EROCS,TopK for varying α

the document has exactly one entity, the two algorithms are
identical, and both are able to identify the best entity per-
fectly. However, for document with multiple entities, TopK’s
accuracy falls drastically. This is because in TopK considers
the entire document as a single segment. As a result, un-
related terms in different, well separated parts of the doc-
ument interfere, leading to irrelevant entities being scored
high. EROCS, in contrast, compares the best score for the
entire document as a single segment with the best score for
each possible partitioning of the document; this allows it to
exploit the substructure within the document to filter out
such irrelevant entities. From the figure, we see that EROCS
is able to maintain an accuracy close to 0.8 with increasing
K, whereas the accuracy of TopK deteriorates to about 0.3
for the same documents.

Next, consider the results in Figure 7. The increase in ac-
curacy for both the algorithms with increasing α is because
documents with higher α have better clues in terms of higher
weight terms. However, the significant gap between the ac-
curacy of EROCS and TopK persists irrespective of the qual-
ity of the documents. Even for the lowest-quality documents
considered, i.e. α = 0, EROCS was able to achieve an accu-
racy of 0.45; in contrast, for the highest-quality documents
considered, i.e. α = 1, TopK could merely achieve an accu-
racy of 0.36.

Overall, these experimental results clearly illustrate that
the fine-grained, segment-level entity matching strategy pro-

 675

0 2 4 6 8 10

#Entities/Document (K)

0

10

20

30
T

im
e

(s
ec

on
ds

)

AllTerms
AllSegments
EROCS

Figure 8: Execution Efficiency of AllTerms, AllSeg-

ments, EROCS for varying K

posed in this paper has significant advantage in terms of
accuracy over the simpler-minded alternative.

7.2 Efficacy of Greedy Iterative Cache Refine-
ment

In the previous section, we established the need for fine-
grained, segment-level entity matching. The algorithm pro-
posed in Section 4.3 is clearly an efficient algorithm in terms
of complexity for performing the same; in this section, we
validate the efficacy of greedy iterative cache refinement
(Section 6.3) as an implementation strategy for the proposed
algorithm. The validation is against the following alterna-
tives that were used to motivate the strategy in Section 6.

• AllTerms, that does not exploit term-pruning (Sec-
tion 6.1).

• AllSegments, that exploits term-pruning, but does not
exploit greedy cache-refinement (Section 6.2).

We compare EROCS, which uses greedy iterative cache re-
finement, with these two alternatives with respect to exe-
cution efficiency and space overheads. The execution effi-
ciency was measured in terms of clock time while the space
overheads were measured in terms of the number of (entity,
term) pairs computed and maintained in the cache.

As in the previous experiment, we first fixed α = 0.8 and
varied K = 1, 2, . . . , 10, and then fixed K = 10 and varied
α = 0.0, 0.1, . . . , 1.0. For each combination, we computed
the average time and space overheads of each algorithm over
the 50 documents in the repository for that combination.

The execution efficiency and space overhead results are
plotted for varying K in Figure 8 and Figure 9, and for
varying α in Figure 10 and Figure 11 respectively.

Discussion. Figure 8 shows that for all values of K consid-
ered, EROCS achieves at least 60% reduction in execution
time over its nearest competitor, AllSegments; this large gap
between EROCS and AllSegments shows that the greedy
cache-refinement strategy is indeed effective in reducing the
number of segments for which the scores were computed ex-
actly. Notice that EROCS takes 0.55s for K = 1 and 8.6s
for K = 10, scaling linearly with increasing K; this implies a
sub-second execution time for each additional entity, which
is encouraging. The gap between AllSegments and AllTerms

0 2 4 6 8 10

#Entities/Document (K)

0

50000

100000

150000

200000

#E
nt

it
y-

T
er

m
 R

el
at

io
ns

hi
ps

AllTerms
AllSegments
EROCS

Figure 9: Space Overhead of AllTerms, AllSeg-

ments, EROCS for varying K

is relatively small, and decreases as K increases. This is be-
cause an increase in K implies increase in document size,
which leads to an increase in the number of segments for
which AllSegments needs to compute the exact score; as a
result, any gains AllSegments has over AllTerms due to the
term-pruning optimization become negligible as K increases.

Figure 9 compares the space overheads of the three al-
gorithms for varying K. It is interesting to see the rapid
rate at which the space overhead for AllTerms grows with
increasing K – from 9111 at K = 1 to 142211 at K = 10.
This is because AllTerms gets the entity set for each dis-
tinct term in the document, and maintains this information
in the cache. This includes even low weight terms that oc-
cur in a large fraction of the entities in the database; more-
over, many of these entities have only this one word in the
document. AllTerms thus results in a large number of (en-
tity, term) relationships in the cache, a majority of them
unnecessary. AllSegments and EROCS, in contrast, exploit
the term-pruning optimization for each segment, avoiding
terms with lower weight. For AllSegments, this optimiza-
tion results in a highly reduced space overhead of 3398 at
K = 1 and 37992 at K = 10. EROCS further exploits the
greedy cache-refinement strategy to avoid computing exact
scores for several segments, resulting in space overhead of
a mere 505 at K = 1 (a reduction of almost 95% over All-
Terms and 85% over AllSegments), and 10181 at K = 10
(a reduction of almost 93% over AllTerms and 73% over
AllSegments). Moreover, for EROCS, these overheads scale
up linearly, with a slope of about 1000 per additional entity,
which is reasonable.

In Figure 10, we notice that with increasing document
quality (α), the execution time for EROCS and AllSegments
decreases, while the execution time for AllTerms increases.
Figure 11 shows a similar trend for space overheads as well.
This can be explained as follows. As the number of higher
weight terms in the document increase, the distribution of
weights in most segments becomes more skewed; this can be
effectively exploited by the term-pruning optimization. On
the other hand, increase in higher weight terms in the docu-
ment also implies increase in the number of distinct terms in
the document (recall that a higher weight term is present in
lesser number of entities); since AllTerms necessarily queries
all distinct terms, this leads to an increase in its execution

 676

0.0 0.2 0.4 0.6 0.8 1.0

Document Quality (alpha)

0

10

20

30
T

im
e

(s
ec

on
ds

)

AllTerms
AllSegments
EROCS

Figure 10: Execution Efficiency of AllTerms, AllSeg-

ments, EROCS for varying α

0.0 0.2 0.4 0.6 0.8 1.0

Document Quality (alpha)

0

50000

100000

150000

200000

#E
nt

it
y-

T
er

m
 R

el
at

io
ns

hi
ps

AllTerms
AllSegments
EROCS

Figure 11: Space Overhead of AllTerms, AllSeg-

ments, EROCS for varying α

time and space overhead.
The results in Figure 10 show that AllSegments performs

worse than AllTerms at smaller values of α. This happens
because our implementation of AllTerms batches multiple
invocations of GetEntities together. At smaller values of α,
the weights of the terms in the document are low, and thus
the term-pruning strategy is not effective. As a result, both
AllTerms and AllSegments invoke GetEntities for almost the
same number of terms. However, because of the batched im-
plementation, AllTerms is able to perform these invocations
more efficiently as compared to AllSegments. For larger α,
as discussed above, the term-pruning strategy becomes ef-
fective, resulting in improved performance of AllSegments
as compared to AllTerms.

Overall, the experimental results in this section clearly
establish the efficacy of the greedy cache-refinement strategy
used in EROCS.

7.3 Effect of Varying λ

The annotation scoring function for EROCS has a param-
eter, λ; this parameter specifies the penalty to be paid by an
annotation for each segment it contains. In this experiment,
we explore the effect of varying the value of λ on EROCS’s
accuracy.

0 2 4 6 8

Lambda

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Figure 12: Accuracy of EROCS for varying λ

We generated set of 50 documents with K = 10 and
α = 0.8, and studied the average accuracy of EROCS on
documents in this set as λ was varied from 0 to 8. Figure 12
reports the accuracy as a function of λ.

Discussion. For λ = 0, the accuracy is rather poor, sug-
gesting that it is a good idea to penalize each segment with
λ > 0; as discussed in Section 4.1, this guarantees that an-
notations containing segments with score less than λ are not
output as the optimal. We further note that, interestingly,
as long as λ > 0, the accuracy remains stable with respect
to variations in λ. This robust behavior is desirable, since it
obviates the need of tuning the parameter. The plot shows
that for our document set, λ = 4 gives the best accuracy;
this is the reason for our fixing this value as the default in
this experimental study.

7.4 Progressive Accuracy Improvement with
Greedy Iterative Cache Refinement

The greedy iterative cache refinement strategy in EROCS
has the advantage that at any point in time, the algorithm
has a “current best” annotation. With successive iterations,
this current best annotation keeps improving in accuracy,
converging to the final best annotation when the algorithm
terminates. In this experiment, we explore how the accuracy
of this current best annotation progresses during the course
of the algorithm.

We generated set of 50 documents with K = 10 and α =
0.8, and studied the average accuracy of EROCS on this set
as a function of the fraction of completion time. The results
are plotted in Figure 13.

Discussion. The results show that the accuracy increases
roughly linearly with time; that is, the improvement in ac-
curacy is uniformly distributed across the iterations, except
at the very beginning and at the very end. We also experi-
mented with other values of K and α, and found that this
general trend remains the same.

This behavior lets us reason about a variant of the given
algorithm that, given a time bound, returns the best anno-
tation it is able compute in this time. The results of this
experiment suggest that the accuracy of this variant would
gracefully (i.e. linearly) degrade with the time quota allot-
ted. This is a useful property that can be exploited while
deploying EROCS in real-time scenarios.

 677

0 20 40 60 80 100

% of Completion Time

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

of
 C

ur
re

nt
 S

ol
ut

io
n

Figure 13: Accuracy of current best annotation as

EROCS progresses

8. CONCLUSION
In this paper, we presented a system for inter-linking in-

formation across structured databases and documents. We
presented efficient techniques for identification and embed-
ding of entities relevant to a given document. This involved
principled development of an effective successive approxima-
tion algorithm that tries to keep the amount of information
retrieved from the database in course of the computation
as small as possible. The linkages discovered as a result of
the ideas in the paper can be profitably exploited in several
applications in the database-centric as well as IR-centric do-
mains, and may serve a purpose of bridging the two.

Acknowledgments. We thank Sreeram Balakrishnan for inter-

esting discussions and help, and Laura Haas and Nelson Mattos

for their continued support. Meghana Kshirsagar contributed to

the initial codebase of EROCS. We also thank the anonymous

reviewers of this paper for their valuable feedback.

9. REFERENCES
[1] Agichtein, E., and Ganti, V. Mining reference

tables for automatic text segmentation. In SIGKDD
(2004).

[2] Agrawal, S., Chaudhuri, S., and Das, G.

DBXplorer: A System for Keyword-Based Search over
Relational databases. In ICDE (2002).

[3] Baeza-Yates, R., and Ribeiro-Neto, B. Modern
Information Retrieval. Addison Wesley/ACM, 1999.

[4] Barsalou, T. View objects for relational databases.
Tech. Rep. STAN-CS-90-1310, CS Dept, Stanford
University, 1990. Ph.D. thesis.

[5] Barsalou, T., Keller, A. M., Siambela, N., and

Wiederhold, G. Updating relational databases
through object-based views. In SIGMOD (1991).

[6] Bhalotia, G., Hulgeri, A., Nakhe, C.,

Chakrabarti, S., and Sudarshan, S. Keyword
Searching and Browsing in Databases using BANKS.
In ICDE (2002).

[7] Borthwick, A., Sterling, J., Agichtein, E., and

Grishman, R. Exploiting diverse sources via
maximum entropy in named entity recognition. In
Sixth Workshop on Very Large Corpora (1998).

[8] Chakrabarti, S. Breaking through the syntax
barrier: Searching with entities and relations. In
PKDD (2004).

[9] Chandel, A., Nagesh, P., and Sarawagi, S.

Efficient batch top-k search for dictionary-based entity
recognition. In ICDE (2006).

[10] Chaudhuri, S., Ganti, V., and Motwani, R.

Robust identification of fuzzy duplicates. In ICDE
(2005).

[11] Chen, P. P.-S. The Entity-Relationship
Model–Toward a Unified View of Data. ACM TODS
1, 1 (1976).

[12] Cohen, W., and Sarawagi, S. Exploiting
dictionaries in named entity extraction: Combining
semi-markov extraction processes and data integration
methods. In SIGKDD (2004).

[13] Doan, A., and Halevy, A. Semantic Integration
Research in the Database Community: A Brief
Survey. AI Magazine: Special Issue on Semantic
Integration (2005).

[14] Hristidis, V., Gravano, L., and

Papakonstantinou, Y. Efficient IR-Style Keyword
Search over Relational Databases. In VLDB (2003).

[15] IBM. IBM DB2 UDB Net Search Extender :
Administration and User Guide (version 8.1), 2003.

[16] Li, X., Morie, P., and Roth, D. Semantic
Integration in Text: From Ambiguous Names to
Identifiable Entities. AI Magazine: Special Issue on
Semantic Integration (2005).

[17] Mansuri, I., and Sarawagi, S. Integrating
unstructured data into relational databases. In ICDE
(2006).

[18] Premerlani, W. J., and Blaha, M. R. An
Approach for Reverse Engineering of Relational
Databases. CACM 37, 5 (1994).

[19] Roy, P., Mohania, M., Bamba, B., and Raman, S.

Towards automatic association of relevant
unstructured content with structured query results. In
CIKM (2005).

[20] Sarawagi, S. Automation in information extraction
and integration (tutorial). In VLDB (2002).

[21] Shanmugasundaram, J., Tufte, K., He, G.,

Zhang, C., DeWitt, D., and Naughton, J.

Relational databases for querying XML documents:
Limitations and opportunities. In VLDB (1999).

[22] Walker, M. H., and Eaton, N. J. Microsoft Office
Visio 2003 Inside Out. Microsoft Press, 2003.

[23] Winkler, W. E. The state of record linkage and
current research problems. Tech. rep., U.S. Census
Bureau, 1999.

 678

