
Maintaining XPath Views in Loosely Coupled Systems

Arsany Sawires †∗

arsany@cs.ucsb.edu
Junichi Tatemura ‡

tatemura@sv.nec-labs.com
Oliver Po ‡

oliver@sv.nec-labs.com

Divyakant Agrawal ‡
agrawal@sv.nec-labs.com

Amr El Abbadi †
amr@cs.ucsb.edu

K. Selçuk Candan ‡
candan@sv.nec-labs.com

† Department of Computer Science ‡ NEC Laboratories America
University of California Santa Barbara 10080 North Wolfe Road, Suite SW3-350

Santa Barbara, CA 93106 Cupertino, CA 95014

ABSTRACT
We address the problem of maintaining materialized XPath
views in environments where the view maintenance system
and the base data system are loosely-coupled. We show that
the recently proposed XPath view maintenance techniques
require tight coupling, and thus are not practical for loosely-
coupled systems. Our solution adapts to loose-coupling by
using information that is fully available through standard
XPath interfaces. This information consists of the view def-
inition, the update statement, and the current materialized
view result. Under this model, incremental maintenance is
not always possible; thus, maintaining the consistency of the
views requires frequent view recomputations. Our goal is to
reduce the frequency of view recomputation by detecting
cases where a base update is irrelevant to a view, and cases
where a view is self maintainable given a base update. We
develop an approach that reduces the irrelevance and self
maintainability tests, respectively, to checking the intersec-
tion and containment of XPath expressions. We present ex-
perimental results showing the effectiveness of the proposed
approach in reducing view recomputations.

1. INTRODUCTION
View materialization is widely used in data management

systems for improving query performance and for data inte-
gration purposes. Therefore, extensive research efforts have
addressed the problems introduced by view materialization;
such as view maintenance [13] and answering queries using
views [14]. With the emergence of XML as a universal semi-
structured data model, it has become necessary to study
the problems related to view materialization in the XML
domain. Thus, the research community has recently shown

∗This work has been done during the author’s internship at
NEC Laboratories America.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

growing interest in the problem of maintaining views de-
fined over semi-structured data [2, 30, 31, 18, 16, 10, 26, 23,
20, 11], and the problem of answering queries using these
materialized views [25, 8, 4, 29, 19, 24].

In this paper we address the problem of maintaining ma-
terialized views defined using XPath expressions over XML
base data. The view maintenance problem is generally con-
cerned with updating the materialized view result such that
it remains consistent with any updates that occur at the
base data. We have recently proposed an incremental main-
tenance approach for XPath views [26]. As we show in Sec-
tion 2.2, this approach, along with other ones [23, 20, 10],
assume that the view maintenance system and the base data
system are tightly coupled. This assumption is valid in some
settings, e.g. when the views are maintained within the same
DBMS as the base data to improve query performance.

The assumption of tight coupling, however, seriously con-
flicts with the growing interest in seamless data dissemina-
tion and application integration over the web. The emer-
gence of the Service Oriented Architecture (SOA) and Web
Services [3] is an obvious evidence of the need for building
loosely-coupled systems that can seamlessly communicate
through universally-standard interfaces.

In this paper, we develop a solution for the problem of
maintaining materialized XPath views in environments where
the view maintenance system and the base data system
are loosely-coupled. This is typical in many scenarios such
as middle-tier caching applications. We adapt to loose-
coupling by assuming a partial information model in which
we use only information that can be communicated through
standard XPath interfaces [1]. This information consists of
the view definition, the update statement, and the current
materialized view result. Both the view definition and the
update statement are given as standard XPath expressions.

As we show later, under this partial information model, in-
cremental maintenance is not always possible. Thus, main-
taining the views consistency generally requires frequent view
recomputation at the base data side, which is usually an ex-
pensive operation in terms of communication and processing
time. Our goal is to reduce the frequency of view recompu-
tation by detecting cases where a base update is irrelevant
to a view (and thus, the update can be ignored), and cases
where a view can be self-maintained given a base update
(and thus, there is no need for any queries or recomputa-

583

tions at the base data source).
We develop an update Irrelevance Test (IRT), and a view

Self Maintainability Test (SMT). The IRT and the SMT are
respectively reduced to checking the intersection [15] and
containment [21] of XPath expressions.

If the IRT determines that an update is irrelevant to a
view, we say that the IRT is positive; otherwise, it is neg-
ative. The SMT is conducted only if the IRT is negative
(because the update can not be ignored); if the SMT deter-
mines that the view can be self-maintained, we say that the
SMT is positive; otherwise it is negative. If both the IRT
and the SMT are negative, then the view must be recom-
puted from the base data.

We show that, under the partial information model, the
IRT and the SMT cannot be complete. In other words, false
negatives are inevitable. Fortunately, false negatives do not
compromise the correctness of the approach because they
can not result in inconsistent views. Note however that false
negatives are undesirable because they would cause unnec-
essary view recomputation. Therefore, we strive to tighten
the derived conditions to reduce the false negatives. On the
other hand, the IRT and the SMT must not have any false
positives because they can cause the materialized view re-
sults to be inconsistent with the base data. In other words,
the IRT and the SMT must be sound.

In previous research, the update irrelevance and view self
maintainability have been studied in the context of rela-
tional data and SQL views [6, 5, 17, 12]. In the context of
semi-structured data models, some research has addressed
the problem considering limited forms of query languages [31,
16]. To the best of our knowledge, this is the first paper to
study the IRT and the SMT for XML data and XPath views.

The rest of this paper is organized as follows: Section 2
presents the formal data and query model, and shows the
need for the partial information model in loosely-coupled
environments. Section 3 develops the logic for the IRT and
the SMT for XPath views. Section 4 discusses the main
implementation aspects. Section 5 reports our experimental
results showing the effectiveness of the approach in reducing
view recomputations. Finally, Section 6 concludes the paper
and briefly discusses some possible extensions.

2. PROBLEM MODEL
This section presents the formal model used throughout

the paper. Subsection 2.1 presents the data and query model.
Subsection 2.2 shows the need for the partial information
model in loosely-coupled systems.

2.1 Data and Query Model
Base Data (BD): The base XML data is modeled as an

unordered node-labeled tree. The node labels range over an
infinite alphabet Σ. The root of the tree is a special node
that identifies the XML document. In the examples, we use
uppercase letters for the node labels; and we use numeric
subscripts to differentiate the nodes that have the same la-
bel. Thus, a node label and a numeric subscript together
represent a unique node id. In order to allow the applica-
tion of the proposed approach in situations where schema
information is unavailable, or when the schema evolves fre-
quently, we do not assume the availability of any schema
information. Figure 1 shows an example of a BD tree.

XPath Expressions: We consider a practical fragment
of XPath, referred to as XP {[],∗,//} [21]. This fragment

A1

B1

C1 E1
D1

X1 Y1
Z2

B3

D3

X3

A3

M1 A2

B2

C2 D2

X2 Y2

Figure 1: Base Data BD

allows branching predicates “[]”, wild cards “*”, and de-
scendent edges “//” (besides child edges “/”). An XPath
expression E in this fragment is visually represented as a
tree pattern of arity-1 [21], i.e. a tree pattern with a single
node designated as the return node. This node, referred to
as Ret(E), identifies the final result of the expression. The
root node of a tree pattern identifies the BD against which
the expression is issued. In the figures, we underline the root
node, and we use boldface for the return node. Figure 2 illus-
trates an expression V with its pattern tree representation,
and its evaluation on the BD instance of Figure 1.

A

B

C

D

A1

B1

E1
D1

X1 Y1
Z2

A2

B2

C2 D2

X2 Y2

=

B3

D3

X3

A3

M1

C1

Figure 2: View V, and View Result VR

In the examples throughout the paper, we refer to a spe-
cific node of an expression by its label. To avoid confusion,
the expressions in the examples do not have multiple nodes
with the same label. Note that this is not a required as-
sumption, we use it only for the clarity of the presentation.

For an expression E , we use some formal terms to refer
to parts of E . Below, we define these terms and we use the
expression V in Figure 2 as an example:
- Spine(E) is the linear path of nodes and edges starting
with the root node and ending with the return node. For
example, Spine(V) = BD//A/B/D. We say that a node or
an edge is spinal if it belongs to Spine(E) and non-spinal
otherwise.
- Prefixn(E) is the expression E with n being the return
node and with all the nodes in the subtree of n removed.
For example, PrefixB(V) = BD//A/B.
- Prefix′

n(E) is similar to Prefixn(E), but includes the
branching predicates at n. For example, Prefix′

B(V) =
BD//A/B[C]
- Subn(E) is the expression represented by the subtree of E
rooted at n. For example, SubB(V) = B[C]/D

584

We define Res(E) as the final result set of an expression E .
For example, in Figure 2, Res(V) = {D1, D2}. We say that
an expression E reaches a node m in BD iff m ∈ Res(E).

We also use some formal definitions to refer to the inter-
mediate result sets of an expression besides its final result
set. We define Expn(E) as the expression E with n being
the return node. For example, in Figure 2, ExpB(V) =
BD//A/B[C][D]. We define the intermediate result of an
expression E at one of its nodes n as the result set of the
expression Expn(E), i.e. Res(Expn(E)). For notation sim-
plicity, we refer to this intermediate result set as Resn(E).
For example, ResB(V) = {B1, B2}.

For a node n in an XPath expression, we define e(n) as
the type of edge (/ or //) leading to n. We also define n ↑ as
the parent node of n, and n ↓ as the spinal child node of n
(defined only if n is spinal). For example, in the expression
V of Figure 2, e(B) = /, B ↑= A, A ↑= BD, and B ↓= D.

XPath Views: A view V is defined by an XPath expres-
sion. The materialized view result VR is the collection of
trees rooted at the nodes of the set Res(V). The shaded
trees in Figure 2 form the result of the view V shown in the
same figure.

Base Updates: A base update is defined 1 as a triplet
〈U ,Utype,Udata〉. U is an XPath expression that specifies
the BD nodes at which the update should take place. For ex-
ample, in Figure 1, if U = BD/A/B[E]/D, then the update
operation takes place at D1 since Res(U) = {D1}. Utype
is either Add, Del, or Modify; the semantics of each of
these update types are defined below and illustrated by ex-
amples on the BD of Figure 1 and the update expression
U = BD/A/B[E]/D.

Base Additions: If Utype = Add, then Udata represents
an XML data tree to be added as a child to each node that
U reaches. In the example, using Udata =< Z/ > adds a
new node with label Z as a child of node D1.

Base Deletions: If Utype = Del, then the update deletes
all the nodes that U reaches along with their subtrees. In the
example, using U as a deletion update, deletes the subtree
rooted at D1.

Base Modifications: If Utype = Modify, then the update
modifies the labels of all the nodes that U reaches to some
new label specified by Udata. In the example, using Udata =
W modifies the label of D1 from D to W .

2.2 The Partial Information Model
First, we point out the technical challenges of applying the

XPath incremental maintenance techniques [26, 23, 20, 10]
in loosely-coupled environments. Based on that, we propose
a practical partial information model which is realistic for
these environments. For our first objective, we use a simple
example of a typical incremental maintenance scenario.

Example: Consider Figure 2, and consider an update with
U = BD/M//B, Utype = Add, and Udata =< C/ >. Before
the update happens, VR is given by the shaded trees in
Figure 2. When the update operation is executed, the base
query processor will add a node labeled C as a child of node
B3, let the id of the new node be C3.

In order to report this update operation to the view main-

1This language is consistent with (and subsumed by) the
current W3C working draft for an XML update facility [1].

tenance system, incremental view maintenance algorithms
assume that what is reported is not merely the update state-
ment, i.e. the triplet 〈U ,Utype,Udata〉, but the update path.
In this example, the update path is M1−A3−B3−C3. Ob-
viously, this update path carries more detailed information
about the update operation than the update statement does:
(1) it includes node ids specifying where exactly in the BD
the update took place, and (2) it does not include any of
the symbols ∗ or //, which make the update statement less
specific.

By analyzing the update path, an incremental mainte-
nance algorithm finds out that a node labeled C is being
added as a child of B3, and thus, it suspects that the pred-
icate of the second step of V is now true at node B3. So, it
needs to verify if B3 has any children labeled D to satisfy
the third step of V. To find the answer, the algorithm has
to issue the query q = B3/D against BD. Note that q starts
with a specific node id, rather than the BD root. This tells
the base query processor to start evaluating q at B3 rather
than at the root of the BD. Thus, the query processor is
likely to access a smaller portion of BD, giving the incre-
mental maintenance its main advantage over recomputing
V over the entire BD. If B3 already had a child labeled C
even before the update happened, then the result of q must
not be added to VR because it would be a duplicate of data
that is already in VR. To detect such a case, incremental
maintenance algorithms require that VR includes not only
node labels but also node ids, so that node ids can be com-
pared to avoid duplication.

This example shows that a general incremental mainte-
nance technique has to make three main assumptions: (1)
The base query processor can answer queries that start with
node ids rather than the BD root. (2) VR includes node ids
besides the node labels, and (3) The update path informa-
tion is available rather than only the update statement.

Satisfying these assumptions require a non-standard inter-
face between the base data system and the view maintenance
system. The reason is that the XPath standard [1] does not
include node ids in the query statement or in the returned
query answer. Also, the update path information, which
includes both node ids and intermediate query results, can
not be provided to the view maintenance system through
standard interfaces.

In fact, none of the major DBMS vendors’ XML query
processors satisfy any of the three assumption mentioned
above. This demonstrates that a practical partial informa-
tion model is needed for scenarios where the view mainte-
nance system is loosely coupled with the base data system.

In our partial information model, we make none of the
three assumptions mentioned above. According to this model,
the available information is exactly: (1) the update state-
ment, i.e. the triplet 〈U ,Utype,Udata〉, (2) the view defini-
tion V, and (3) the current view result VR, which includes
only node labels without node ids.

Obviously, incremental maintenance is not always possible
under this model. For example, the maintenance scenario
in the example shown above can not be carried out under
this model. Nevertheless, it is possible to use the available
partial information to reason about the update irrelevance
(IRT) and the view self maintainability (SMT), and thus to
avoid unnecessary view recomputation. The following exam-
ples give some intuitions behind this reasoning. Section 3,
develops the general IRT and SMT for XPath views.

585

Example: A positive IRT. Let V = BD/A/B/C, U =
BD/M/B/C, and Utype = Del. Regardless of the content of
BD, which is not available to the view maintenance system,
it is guaranteed that U is irrelevant to V, i.e. the IRT is
positive. The reason is that any node deleted by U must
have its first ancestor labeled M , while any node in VR
must have its first ancestor labeled A. Since there cannot
be any single node labeled M and A at the same time, we
are certain that U can not affect VR. Thus, we can safely
ignore the update.

Example: A positive SMT. Let V = BD/A/B/C, U =
BD/A/B/C/D, and Utype = Del. In this case, regardless
of the BD, VR can be maintained using only the available
partial information, i.e. the SMT is positive. To see this,
recall that VR for V is a collection of trees with all the
roots labeled C. It is easy to see that every node labeled D
that is a child of a root of a VR tree would be deleted by
U . Moreover, U would not delete any node from VR other
than those identified by this criterion. Therefore, we can use
an expression S = VR/C/D, to reach and delete the exact
set of nodes that need to be deleted from VR in order to
incorporate the effect of the base deletion. In this way, we
have self maintained VR using the expression S ; we call S
a Self Maintenance Expression (SME).

Since the partial information model does not provide com-
plete information about the exact effect of the update oper-
ation on a specific instance of the BD, it may not be possible
to prove the irrelevance or self maintainability under some
base updates. In this case, the IRT and the SMT must act
conservatively by returning a negative result. Recall that
false negatives are acceptable (but undesirable), while false
positives are not acceptable. The following example shows
a case of a false negative.

Example: A falsely negative IRT. Consider Figure 2, given
an update operation with U = BD//A/B[X]/D, and Utype =
Del. This update does not affect VR; in fact it does not even
affect BD at all. However, there is no way of verifying this
fact given the available partial information. The reason is
that it is possible to have a hypothetical BD instance with
a certain node which both V and U could reach. An exam-
ple of such a document is < A >< B >< C/ >< X/ ><
D/ >< /B >< /A >. Since the IRT does not have access
to the actual BD, it has to act conservatively by returning
a negative result.

3. THE IRT AND SMT
In this section, we develop a logic-based approach for the

IRT and the SMT for XPath views. For each of the three
types of base updates (additions, deletions, and modifica-
tions), we identify all the different types of effects that the
update could cause to VR. For each type of effect, we derive
a necessary condition that must be satisfied in order for this
type to take place. If the condition is not satisfied, then it
is guaranteed that the corresponding type of effect did not
occur; and thus, the update is irrelevant to the view w.r.t.
this type. On the other hand, if the condition is satisfied,
then the update irrelevance can not be concluded; and thus,
the IRT is negative.

If the IRT is negative, the SMT is conducted to explore the
possibility of writing a correct self maintenance expression
(SME) that can be used to update the current VR. An SME
is correct if it can be used to reflect the exact effects of the
base update on VR. For each type of effect, we derive a

condition which is sufficient for writing a correct SME. If
this condition is satisfied, then the view is guaranteed to be
self maintainable under the given update w.r.t. this type. In
this case, the SME is also given by the test procedure. If
the condition is not satisfied, then the SMT is negative; and
the view result must be recomputed from the base data.

In the following subsections, we develop the IRT and the
SMT logic for each of the three types of base updates: ad-
ditions, deletions, and modifications.

3.1 Base Additions
A base addition adds a tree Udata to the nodes which U

reaches. Note that only the node labels, without ids, of the
Udata are available to the IRT and the SMT.

A base addition can affect VR in two ways: (1) by adding
a subtree as a child of a node that belongs to the current
VR; we call this an internal addition since it happens inside
the current VR, or (2) by adding an entire new VR tree; we
call this an external addition. We further classify external
additions into two types: explicit and implicit. An exter-
nal addition is explicit if the new VR tree is fully included
in Udata, and it is implicit otherwise. For simplicity, we
will refer to explicit external additions as explicit additions,
and to implicit external additions as implicit additions. The
following subsections develop the IRT and SMT logic for
the three types of addition effects: internal, explicit, and
implicit additions.

It is possible to show that a single base addition may
cause any combination of the three types of addition effects.
Thus, for a given base addition, the IRT and SMT have to
be conducted for all the three types of addition effects.

3.1.1 Internal Additions
For an example of an internal addition, consider the BD,

the view V, and the base addition with U and Udata as
shown in Figure 3. In this example, U reaches Y1 (i.e.
Y1 ∈ Res(U)), and adds W1 to it. As shown on the figure,
after the update occurs, W1 becomes part of the shaded VR
tree. This is an internal addition since the reached node, Y1,
belongs to the current VR (i.e. the view result before the
update occurs).

A

B
C

D

A

B

D

Y

E

A1

B1
C1 E1

D1

Y1

W1

D2

Y2

T
T1

Figure 3: Internal addition via intermediate result

The IRT. As mentioned above, to develop the IRT logic
for some type of effect, we need to derive a necessary con-
dition that must be satisfied in order for that type of ef-
fect to happen. Examining the example shown above re-
veals that the internal addition happened because there is a

586

node, D1, which belongs to both the final view result Res(V)
and the intermediate result of U at its spinal node D, i.e.
ResD(U). Thus, U was able to reach Y1 through D1. In
other words, a necessary condition for this scenario to take
place is that the intersection of Res(V) and ResD(U) (i.e.
Res(ExpD(U))) is not empty. This condition is formally
stated as: ∃ node μ ∈ Spine(U)s.t.

Res(V) ∩ Res(Expμ(U)) is not empty (1)

Before discussing how to test Condition 1, we need to
explore any other scenarios of internal additions.

A

B

A

D

Y

A1

B1

D1

X1 Y1

*

W1

C C1

Figure 4: Internal addition via a // edge

Consider the case in Figure 4; in this example, the final
result set of the view is Res(V) = {B1}. Obviously, none of
the intermediate results of U includes B1. Yet, U reaches Y1

in VR. In this case, U used a spinal descendent edge // to
bypass the root B1 and reach inside VR.

The existence of a spinal descendent edge is necessary
for this scenario. We formulate this necessary condition by
referring to the spinal node μ which is the destination of
the descendent edge, in this case μ = D. Thus, we get the
following necessary condition for this scenario: ∃ node μ ∈
Spine(U) s.t.

e(μ) = // ∧
Res(V) ∩ Res(Expμ↑(U)//∗) is not empty (2)

The notation used between the parentheses in the right
operand of the intersection operator is used for concatenat-
ing expression fragments. In this case, it means: the Exp
expression, followed by “//”, followed by “*”. We use this
notation to form expressions using expression fragments. In
the example of Figure 4, the right operand of the intersec-
tion operator of Condition 2 is Res(ExpA(U)//∗) which is
Res(BD/A[C][//D/Y]//∗) which intersects Res(V) at B1.

There is no way for U to reach inside VR without having
some spinal node μ satisfying at least one of Conditions 1
or 2. Thus, the disjunction of these two conditions forms a
necessary condition for an internal addition to happen. If
the IRT can test this disjunctive condition and determine
that it is not satisfied, then it can safely conclude that the
base addition is irrelevant to the view w.r.t. internal addi-
tions.

However, under the partial information model, the IRT
does not have enough information to test neither Condi-
tion 1 nor Condition 2. The reason is that no intermediate
results and no node ids are available. Thus, the actual data
sets for which the intersection test should be conducted are

not available. Only the expression that generates each set
is available. Therefore, the intersection test must be con-
ducted intensionally rather than extensionally [12]. In other
words, the test must be conducted independently of the ac-
tual BD instance. We use the following definition for the
BD-independent intersection test.

Definition 1. For two XPath expressions E1 and E2,
Intersect(E1, E2) is TRUE iff there exists a hypothetical BD
instance in which Res(E1) ∩ Res(E2) is not empty.

Section 4 shows the implementation of the XPath intersec-
tion test according to Definition 1.

Using the notion of XPath intersection in Definition 1,
Conditions 1 and 2 are respectively reduced to:

Intersect(V, Expμ(U)) (3)

e(μ) = // ∧ Intersect(V, Expμ↑(U)//∗) (4)

Since Definition 1 is independent of any specific BD in-
stance, the intersection of two XPath expressions according
to this definition is necessary but not sufficient for the in-
tersection of the two sets generated by the expressions from
a specific BD instance. Thus, Conditions 3 and 4 are nec-
essary but not sufficient for U to reach a node inside VR.
This is the main source of false negatives of the IRT 2.

Having these false negatives, we are faced with the ques-
tion of whether it is possible to refine (i.e. tighten) Condi-
tions 3 and 4 in order to reduce the false negatives of the
IRT. Fortunately, the available partial information can be
used for such a refinement. The key idea is to use the cur-
rent materialized VR. First, we refine Condition 3, then we
refine Condition 4.

In the example of Figure 3, for the effect to take place,
the expression VR/D[T]/Y (where D[T]/Y is the subtree
expression of U at node D) must reach some node in VR
(in the example, it reaches Y1). Without this condition,
U as a whole expression can not reach any node in VR.
This condition is formally stated as: for a node μ satisfying
Condition 3, it is also necessary to satisfy

Res(VR/Subμ(U)) is not empty (5)

Similarly, we refine Condition 4. In the example of Fig-
ure 4, for the effect to take place, the expression p = VR/ ∗
//D/Y (where D/Y is the subtree expression of U at node
D) must reach some node in VR (in the example, it reaches
Y1). Note the hypothetical “*” label added on the descen-
dant edge of U in the figure, and used in expression p to
account for the bypassed root B1. The condition that ex-
pression p reaches a node in VR is formally stated as: for a
node μ satisfying Condition 4, it is also necessary to satisfy

Res(VR/ ∗ //Subμ(U)) is not empty (6)

Based on this analysis, we state the following lemma:

Lemma 1. A base addition is irrelevant to a view w.r.t.
internal additions if the following holds: �μ ∈ Spine(U) s.t.

(Cond 3 ∧ Cond 5) ∨ (Cond 4 ∧ Cond 6) (7)

Note that detecting irrelevance using this lemma is sound
but not complete since the conditions used are independent

2The other source is the insufficiency of Condition 2 per se
for U to reach inside VR.

587

of the BD. Thus, the IRT may have false negatives as men-
tioned earlier. The conditions used in this lemma can not be
further refined under the partial information assumption.

The SMT. If the IRT is negative, then the SMT is con-
ducted to explore the possibility of writing a correct Self
Maintenance Expression (SME) S . For internal additions,
S is correct iff it reaches exactly the nodes that U reaches
in VR. We say that S is complete if it reaches all nodes
that U reaches in VR, and we say that it is safe if it does
not reach any node that U does not reach. Thus, a view
is self maintainable under a given update (i.e. the SMT is
positive) if it is possible to write a complete and safe SME
S .

To guarantee completeness, we make use of the fact that U
can not reach any node in VR unless at least one of the dis-
juncts of Condition 7 is satisfied at some node μ ∈ Spine(U).
For the example in Figure 3, the left disjunct of Condition 7
holds; all the nodes that U reaches in VR are reached by the
expression VR/D/Y ; thus, this expression is complete for
this example. In general, if the left disjunct of Condition 7
holds, then the SME defined as:

S = VR/Subμ(U) (8)

reaches all the nodes that U reaches in VR. Similarly, using
the example of Figure 4, we deduce that if the right disjunct
of Condition 7 holds, then the SME defined as:

S = VR/ ∗ //Subμ(U) (9)

reaches all the nodes that U reaches in VR. Thus, Expres-
sions 8 and 9 are complete for the scenarios illustrated in
Figures 3 and 4 respectively.

A

B

A

B

*

A

B

*

B1

B2

A1

A1

B

Figure 5: Multi-component SME

Note that there may be multiple nodes μ ∈ Spine(U) that
satisfy Condition 7 through one, or both, of its disjuncts.
For example, consider the view and update in Figure 5. In
this example, Spine(U) has node A satisfying the right dis-
junct, and node B satisfying the left disjunct. Thus, there
are two possible scenarios by which U can reach nodes in-
side VR; these scenarios are illustrated by the two mappings
shown in the figure. One mapping maps the spinal node B
of U to the tree root B1, and the other maps a hypothetical
“*” node on Spine(U) to the same tree root. For the SME
S to be complete in this case, it has to incorporate both
scenarios; thus, it must have the two components shown in
the figure in correspondence to the two mappings. In this
example, U reaches both nodes B1 and B2 in VR. For S to
reach both these nodes, it must use both the components
shown in the figure.

The discussion above shows that it is always possible to
generate a - possibly multi-component - SME that is com-
plete for internal additions. The question now is: is this
SME always safe? Unfortunately, the answer is “No”. For
example, consider the case in Figure 3 and assume that node
E1 does not exist in BD. In this case, B1 /∈ ResB(U), and
thus, D1 /∈ ResD(U). Therefore, U does not reach any node
in VR. Using Lemma 1, the IRT is negative. Thus, the
SMT is conducted and the SME S = VR/D[T]/Y is gen-
erated based on Expression 8. This expression is unsafe
because it would reach Y1 which is not reached by U .

The unsafe behavior in this example is due to the fact that
there exists a node, D1, such that D1 ∈ Res(V) while D1 /∈
ResD(U); and S could not discern this fact. This observa-
tion suggests that one way to guarantee safety in this exam-
ple is to guarantee that Res(V) ⊆ ResD(U). i.e., Res(V) ⊆
Res(ExpD(U)). If this condition is true, then S will never
unsafely reach a node in VR through a node in Res(V), be-
cause all the nodes in Res(V) are also in ResD(U), and thus
are reached by U .

We note that this condition is only sufficient but not nec-
essary for safety. For example, D2 in the example in Figure 3
does not satisfy it since D2 ∈ Res(V) while D2 /∈ ResD(U);
and yet, S does not reach Y2 through D2.

We use this observation to refine the condition, and thus
reduce the false negatives of the SMT. To do the refinement,
we need to study the difference between the case of D1/Y1

on one hand, and the case of D2/Y2 on the other hand. In
the former, Y1 was unsafely reached through D1 because
S does not discern the reason for which Y1 is not reached
by U . This reason is that U has a predicate constraint that
node B must have a child E. The absence of E1 violated this
constraint; S can not discern this fact since (1) the predicate
constraint [E] is not part of S , and (2) a node like E1, which
could have satisfied this constraint, is outside VR, which is
the only part of BD that is available to S . In the case of
D2/Y2, on the other hand, the absence of a child labeled T
at D2 is enough for S to discern that U does not reach Y2.
S could verify this constraint since (1) the predicate [T] is
part of S , and (2) any node that could satisfy the constraint
must be within VR.

This demonstrates that all the constraints - i.e. pred-
icates, label tests, and axis tests - of U that S can ver-
ify would not cause S to be unsafe. Since S , in this case,
is defined by Expression 8 as VR/SubD(U), the only con-
straints of U that S can not discern within VR are those that
are not included in the expression VR/SubD(U), i.e. the
constraints included in the expression PrefixD(U). There-
fore, if Res(PrefixD(U)) is guaranteed to be a superset
of Res(V), then we guarantee that the SME S will never
unsafely reach a node in VR through a node in Res(V), be-
cause all the nodes in Res(V) are also in Res(PrefixD(U)),
and thus are either (1) reached by U , or else (2) will not
be reached by S because the constraints included in S will
excluded these nodes. The general form of this safety con-
dition is:

Res(V) ⊆ Res(Prefixμ(U)) (10)

Using similar logic, we derive a sufficient condition for
safety for the other case of internal effects shown in Fig-
ure 4. In this case, the SME S is defined by Expression 9
as VR/ ∗ //Subμ(U); and thus, the constraints that are not
included in S are the constraints included in the expression

588

Prefix′
μ↑(U)//∗. Hence, the general safety condition for

this scenario is:

Res(V) ⊆ Res(Prefix′
μ↑(U)//∗) (11)

As in the argument for the IRT, under the partial infor-
mation model, no intermediate results, and no node ids are
available. Thus, in Conditions 10 and 11, the actual data
sets for which the containment test should be conducted are
not available. Only the expression that generates each set
is available. Thus, we need to conduct the containment test
independently of the BD. We define containment for XPath
expressions as:

Definition 2. For two XPath expressions E1 and E2,
Contains(E1, E2) is TRUE iff ∀ BD, Res(E2) ⊆ Res(E1).

Section 4 discusses the implementation of the XPath con-
tainment test according to Definition 2.

Using this definition, and the analysis mentioned above,
we state the following lemma:

Lemma 2. A view is self maintainable under a base ad-
dition w.r.t. internal additions if ∀μ ∈ Spine(U),

(Cond 3 ∧ Cond 5) ⇒ Contains(Prefixμ(U),V), AND
(Cond 4 ∧ Cond 6) ⇒ Contains(Prefix′

μ↑(U)//∗,V)

Since the XPath containment tested by Lemma 2 is BD-
independent, the SMT according to this lemma can result
in false negatives. For example, the SMT is negative when
conducted for the expressions V and U in Figure 3. For
the BD shown in the figure; this is a false negative since
the SME S as defined by Expression 8 reaches the set {Y1}
which is exactly the set of nodes reached by U .

3.1.2 Explicit Additions
Consider the example in Figure 6. In this example, U

reaches B1 and adds to it the tree rooted at C1. This con-
sequently adds the shaded tree as an entire new tree to VR.
This is an explicit addition since the added VR tree is fully
included in Udata.

A

B

A

B

A1

B1

D1

X1 Y1

C C1

D

E1

Figure 6: Explicit Addition Effect

The IRT. For an explicit addition to happen, as shown
in this example, it is necessary that V reaches a node in the
newly added tree Udata. Recall that for an internal addition
to happen, as shown in Figures 3 and 4, it is necessary that
U reaches a node in a VR tree. Comparing these two facts
shows that there is a symmetry between internal additions
and explicit additions by switching the roles of the VR tree
and Udata, and the roles of V and U . A logical analysis that

is symmetric to the analysis for internal additions leads to
symmetric necessary conditions for explicit additions. We
refer to the node on Spine(V) which is analogous to node μ
on Spine(U) as ν; in Figure 6, ν = B.

Based on the symmetry, we derive the following conditions
as analogous to Conditions 3, 4, 5, and 6, respectively:

Intersect(U ,Expν(V)) (12)

e(ν) = // ∧ Intersect(U , Expν↑(V)//∗) (13)

Res(Udata/Subν↓(V)) is not empty (14)

Res(Udata//Subν(V)) is not empty (15)

Note that Conditions 14 and 15 are not exactly symmetric
to Conditions 5 and 6. This is because internal and explicit
additions are not exactly symmetric. In Figures 3 and 4
(internal additions), Ret(V) is mapped to the root of the
VR tree; while in Figure 6 (explicit additions), the parent
of Ret(U) is mapped to the root of Udata.

For the same reason, the node Ret(V) is excluded from
the set of spinal nodes for which the conjunction (Cond 12∧
Cond 14) is checked since V has to reach a node in Udata,
and not the parent of Udata. The reason is that if, due to the
addition, the parent of Udata, which is B1 in the example, is
added to Res(V), then this is an implicit addition because
some of the descendants of this parent, e.g. E1, are not
included in Udata. Based on this analysis, we state the
following lemma:

Lemma 3. A base addition is irrelevant to a view w.r.t.
explicit additions if the following two conditions hold:
� ν ∈ (Spine(V) − Ret(V)) s.t.

(Cond 12 ∧ Cond 14) (16)

� ν ∈ Spine(V) s.t.
(Cond 13 ∧ Cond 15) (17)

The SMT. Since the new tree added to VR is fully in-
cluded in Udata, which is part of the update statement, it is
possible in some cases to self maintain the view by extracting
the added tree, or trees, from Udata. Self maintainability is
possible w.r.t. explicit additions if it is possible to write an
SME S which reaches exactly the nodes that V reaches in
Udata. Using the symmetry mentioned above between in-
ternal and explicit additions, we state a sufficient condition
for the SMT as in the following lemma:

Lemma 4. A view is self maintainable under a base addi-
tion w.r.t. explicit additions if the following two conditions
hold:
∀ν ∈ (Spine(V) − Ret(V)),

(Cond 16) ⇒ Contains(Prefixν(V),U)

∀ν ∈ Spine(V),

(Cond 17) ⇒ Contains(Prefix′
ν↑(V)//∗,U)

3.1.3 Implicit Additions
Consider the example in Figure 7. The base addition adds

the tree Y1/Z1 as a child to X1; this in turn adds X1 to
ResX(V). Thus A1 is added to ResA(V), and B1 is added
to Res(V). This causes an implicit addition since it adds
the shaded tree, which is not included in Udata, to VR.

The IRT. As shown by this example, a necessary condi-
tion for an implicit addition is that the added tree Udata

589

A

X

A

B

A1

B1

C1

X

Y

X1

Y1

Z Z1

Figure 7: Implicit Addition Effect

includes a match of a non-spinal subtree of V. In this exam-
ple, Udata is the tree Y1/Z1 which matches the non-spinal
subtree of V at Y , i.e. SubY (V). This condition is formally
stated as: ∃ non-spinal node ν in V s.t. Res(Udata/Subν(V))
is not empty. In the case where e(ν) is “//” instead of “/”,
this condition becomes: Res(Udata//Subν(V)) is not empty.
Thus, in either case, a necessary condition for an implicit
additions is: ∃ non-spinal node ν in V s.t.

Res(Udata.e(ν).Subν(V)) is not empty (18)

In fact, we can refine this necessary condition by making it
stricter to reduce the false negatives. The example in Fig-
ure 7 shows that it is necessary that U reaches a node which
becomes in Resν↑(V) after the update happens. In this ex-
ample, U reaches X1 which becomes in ResX(V) after the
update. If this condition is not satisfied, then the addition
can not lead to adding X1 to ResX(V), and adding A1 to
ResA(V), and thus can not cause the implicit addition. Note
that the node reached by U may be spinal or non-spinal.
This condition is formally stated as: Res(U) ∩ Resν↑(V) is
not empty. In the partial information model, as mentioned
before, we conduct a BD-independent intersection test to
check this condition. Thus, this condition is:

Intersect(U , Expν↑(V)) (19)

This analysis leads to the following lemma:

Lemma 5. A base addition is irrelevant to a view w.r.t.
implicit additions if: � non-spinal node ν ∈ V s.t.
(Cond 18 ∧ Cond 19).

The SMT. Unlike the case with explicit additions, an
implicitly added VR tree is not available as part of Udata,
thus it can not be extracted from the available partial infor-
mation. Hence, self maintenance is not possible for implicit
additions, i.e. if the IRT is negative w.r.t. implicit additions,
then the SMT is also negative w.r.t. implicit additions.

3.2 Base Deletions
Like base additions, we classify the effects of a base dele-

tion into two types: internal deletions and external dele-
tions. An internal deletion happens when U reaches and
deletes a node that is in the current VR. An external dele-
tion, on the other hand, happens when an entire tree is
deleted from VR. The following subsections illustrate these
two types of deletion effects and develop the IRT and SMT
logic for each of them.

Note that both the characterizations of internal and ex-
ternal deletions apply to the special case in which U reaches

and deletes the root of some VR tree. For the clarity of
the derived general conditions, we keep this border-line case
covered by both types of effects instead of removing it from
one and keeping it in the other. This does not cause any
duplication problems.

It is possible to show by examples that a single base dele-
tion can result in both internal and external deletion effects.
Thus, for a given base deletion, the IRT and SMT have to
be conducted for both types of effects.

3.2.1 Internal Deletions
For an example of an internal deletion, consider Figures 3

and 4, and assume the base update is a deletion. In these
examples, U reaches and deletes Y1 which is in the current
VR. The IRT and SMT conditions for internal deletions are
the same as those for internal additions. In both cases, U
reaches a node inside the current VR and affects it.

3.2.2 External Deletions
For an example of an external deletion, consider Figure 8.

In this figure, U reaches B1 and deletes it. Thus, the shaded
tree is deleted from VR. This is an external deletion since
B1 is not in the current VR.

A

B

A

B

A1

B1

D1

X1 Y1

C1

D

E1 E

X

F1 F

Figure 8: External Deletion Effect

This example shows an external deletion happening by
deleting a node, B1, which belongs to some spinal interme-
diate result of V, namely, ResB(V). External deletions can
also happen by deleting a node that belongs to a non-spinal
intermediate result. An example of such a case is an up-
date that reaches and deletes E1 from ResE(V). Based on
the type of the deleted node (spinal or non-spinal), we can
classify external deletions into explicit and implicit, as we
do for external additions; however, we do not make such
distinction because the conditions for both cases are exactly
the same.

The IRT. The examples discussed above show that exter-
nal deletions could happen when U reaches a node in some
intermediate result of V. Formally speaking, ∃ν ∈ V s.t.
Condition 12 holds.

It is also possible that an external deletion happens with-
out satisfying Condition 12. For example, in Figure 8, as-
sume that U = BD/A/B/C. In this case, U reaches C1 and
deletes it. This causes an external deletion to the shaded
tree even though C1 does not belong to any intermediate
result of V. In this case, the update indirectly deleted D1,
which belongs to ResD(V), through deleting its ancestor C1.
Obviously, the “//” edge in V between B and D is what al-
lowed the external deletion even though U does not reach

590

any node in any intermediate result of V. This condition is
formally stated as: ∃ν ∈ V s.t. Condition 13 holds.

Thus, a necessary condition for an external deletion to
happen is that some node is deleted by the base deletion
from some intermediate result Resν(V), either directly
(Cond 12) or indirectly (Cond 13). Based on this analysis,
we state the following lemma:

Lemma 6. A base deletion is irrelevant to a view w.r.t.
external deletions if VR is not empty (trivial case), and �ν ∈
V s.t. (Cond 12 ∨ Cond 13)

Recall that, in the case of base additions, Conditions 12
and 13 are respectively refined by, i.e. conjuncted with,
Conditions 14 and 15. These refining conditions have no
counterparts in the case of base deletions because they use
Udata, which is available only with base additions. Thus, we
expect that processing base deletions would result in more
false negatives than processing base additions. Our experi-
mental results in Section 5 confirmed this expectation.

The SMT. If the IRT of external deletions is negative,
then this implies that one or more trees may be deleted from
the current VR. Self maintainability for external deletions
is possible if it is possible to write an SME S which exactly
identifies the roots of the VR trees that must be deleted from
the current VR collection. This is generally not possible
because the materialized VR does not include node ids or
intermediate results. For example, in Figure 8, if F1 did not
exist, then U would not reach B1, and thus the shaded tree
must not be deleted from VR. Since, there is no information
available to the IRT or SMT on whether there exists an F
child of B1 or not, there is no way to determine whether the
shaded tree must be deleted or not. Thus, self maintenance
is generally not possible for external deletions.

However, there is a special case in which it is possible to
determine, for each tree in the current VR, whether it must
be deleted or not. If node ν that caused the IRT to be neg-
ative, based on Condition 12 or Condition 13, is one of the
descendants of Ret(V), i.e. if ν ∈ SubRet(V)(V), then the in-
formation in each VR tree is sufficient to determine whether
the tree must be deleted or not. For example, in Figure 8,
assume that U = BD/A//X. In this case, U reaches X1 and
deletes it. This deletes X1 from ResX(V), and consequently,
deletes D1 from ResD(V), i.e. from Res(V). This causes
an external deletion since the shaded tree would be deleted
from VR. In this case, it is possible to determine, using the
available information, that the tree must be deleted from
VR. The reason is that the deletion of X1 is reflected as
an internal deletion in the current VR. Thus, by processing
internal deletions first, it is always possible to self maintain
VR given that ν ∈ SubRet(V)(V).

There is another case in which external deletions can be
trivially self maintained. If it is guaranteed that the base
deletion deletes all the nodes in some intermediate result
of V, either directly (Cond 12), or indirectly (Cond 13),
then all the trees in VR would be deleted. Thus, the SMT
is trivially positive. Based on this analysis, we state the
following lemma:

Lemma 7. A view is self maintainable under a base dele-
tion w.r.t. external deletions if ∀ν ∈ (V − SubRet(V)(V)),

(Cond 12) ⇒ Contains(U , Expν(V)), AND
(Cond 13) ⇒ Contains(U , Expν↑(V)//∗)

3.3 Base Modifications
In this section, we use the following definition for base

modifications.

Definition 3. For a base modification update with ex-
pression U, Unew is the expression U after modifying the
label of its return node to Udata, i.e. to the new label im-
posed by the update operation.

For example, if U = A/B[E]/C, and Udata = K, then
Unew = A/B[E]/K.

The effects of a base modification can be internal (modify-
ing the label of a node in VR), or external. External effects
of a base modification can be either additions or deletions
of entire VR trees. The following subsections develop the
IRT and SMT logic for the three types of effects that a base
modification can cause: internal modifications, external ad-
ditions, and external deletions. Like the case with additions
and deletions, for a given base modification, the IRT and
SMT have to be conducted for all the three types of effects.

3.3.1 Internal Modifications
For an example of an internal modification, consider Fig-

ures 3 and 4, and assume that the base update is a mod-
ification with Udata = K. In this case, U reaches Y1 and
changes its label to K, this is an internal modification since
the modified node is in the current VR. The IRT and SMT
conditions for internal modifications are the same as those
for internal additions and deletions.

3.3.2 External Additions
For an example of an external addition, consider Figure 6,

and assume that U = A/K, and that B1 is originally labeled
K, and changed by the update to B. This effect adds B1 to
ResB(V), and consequently adds the shaded tree to VR.

The IRT. A necessary condition for this type of effect to
happen is that Res(Unew) intersects with Resν(V) for some
ν ∈ V. The following lemma uses this condition to detect
irrelevant modifications w.r.t. external additions.

Lemma 8. A base modification is irrelevant to a view w.r.t.
external additions if: �ν ∈ V s.t. Intersect(Expν(V),Unew)

The SMT. Self maintainability is not possible for this
type of effect because the tree that should be added to VR
is not available as part of the update statement.

3.3.3 External Deletions
For an example of an external deletion, consider Figure 6,

and assume that the update changes the label of B1 to K.
This deletes B1 from ResB(V), and consequently deletes the
shaded tree from VR.

The IRT. This case is similar to the case of external
deletions explained in Section 3.2.2. The difference is that
the modified node has to be in some intermediate result
and not just an ancestor of some node in an intermediate
result. It is also necessary that the new label imposed by
the update does not match the label test of this intermediate
result. Thus, we state the following lemma:

Lemma 9. A base modification is irrelevant to a view w.r.t.
external deletions if: �ν ∈ V s.t.

(Cond 12) ∧ (Udata does not match ν) (20)

591

The SMT. By the similarity to the external deletion ef-
fects as mentioned above:

Lemma 10. A view is self maintainable under a base mod-
ification w.r.t. external deletions if: ∀ν ∈ (V−SubRet(V)(V)),
Cond 20 ⇒ Contains(U , Expν(V))

4. IMPLEMENTATION
This section discusses the implementation of the XPath

intersection test (for the IRT) and the XPath containment
test (for the SMT).

XPath Intersection. As shown in Section 3, the IRT
involves checking that two expressions in XP {[],∗,//} do not
intersect according to Definition 1. This requires verifying
that there is no hypothetical BD instance in which the final
result sets of the two expressions intersect. We used an
approach that is similar to [15]. First, we reduce the problem

from the domain of XP {[],∗,//} to the simpler domain of
XP {∗,//}; then we solve the problem in the simpler domain.

Lemma 11. For two XPath expressions E1 and E2,
Intersect(E1, E2) ⇒ Intersect(Spine(E1), Spine(E2)).
Proof. Intersect(E1, E2) ⇒ ∃BD instance s.t. Res(E1) ∩
Res(E2) is not empty. Let m ∈ Res(E1)∩Res(E2). For every
expression E , Res(E) ⊆ Res(Spine(E)) (because Spine(E)
is just a relaxation of all the branching predicates of E).
Therefore, m ∈ Res(Spine(E1)) and m ∈ Res(Spine(E2)).
Thus, Intersect(Spine(E1), Spine(E2)). �

Hence, to verify that two expressions E1 and E2 do not
intersect, we extract the linear expressions Spine(E1) and
Spine(E2), and verify that there is no hypothetical linear
string (over the infinite label alphabet Σ) that matches both
of these expressions. For this purpose, we note that any
expression in XP {∗,//} can be represented by a finite state
automaton. For example, Figure 9 shows two expressions
and their respective representations.

A B C

* A//B/C

A D C

A/D/*/C
*

Figure 9: Automata representation of expressions

Our problem now becomes: given two automata as in
Figure 9, is there any string that is accepted by both au-
tomata? For example, the two expressions in Figure 9 inter-
sect because both automata accept the string A/D/B/C.
To check if there exists such a common string, we simply
extended the classical algorithm of automata intersection
(cross product of states) by adding the logical rule that the
symbol “*” matches any symbol, and we used the classical
emptiness test (search for a path between initial and final
states). Thus, we verify the emptiness of the intersection in
O(n ∗m), where n and m are the sizes of the two automata.
Some straightforward optimizations have been applied to
this basic implementation.

Obviously, if this automata test determines that the lin-
ear expressions Spine(E1) and Spine(E2) do not intersect,
then we are sure that the expressions E1 and E2 do not in-
tersect either. Thus, this test maintains the IRT correctness

because it can not result in any false positives. One may
wonder, however, whether this test could result in any false
negatives, which is acceptable but undesirable as explained
before. A false negative may result if it is possible that
Spine(E1) and Spine(E2) intersect while E1 and E2 do not.
Fortunately, this can not happen; the following lemma states
this fact 3.

Lemma 12. For two XPath expressions E1 and E2,
Intersect(Spine(E1), Spine(E2)) ⇒ Intersect(E1, E2).
Proof. Intersect(Spine(E1), Spine(E2)) ⇒ ∃BD instance
s.t. Res(Spine(E1))∩Res(Spine(E2)) is not empty. Let m ∈
Res(Spine(E1))∩Res(Spine(E2)). Construct a new instance
BD′ from BD as follows: (1) add branches to the ancestors
of m such that all the predicates (non-spinal nodes) of E1 are
satisfied. (2) add branches to the ancestors of m such that all
the predicates (non-spinal nodes) of E2 are satisfied. Since

the predicates in XP {[],∗,//} are not mutually-exclusive, it is
always possible to realize these two steps together. In BD′,
m ∈ Res(E1) ∩ Res(E2). Thus, Intersect(E1, E2). �

The proof of this lemma depends on the fact that the
branching predicates can not be mutually exclusive, and
thus we can satisfy any combination of predicates together
at any node. Although this is true for the abstract data and
query model of XP {[],∗,//}, it is not true in practice: the
actual specification of the XML standard requires that the
attributes of any element node have unique names. Thus,
the two predicates [@price < 100] and [@price > 150] are
actually mutually exclusive. Such an implicit uniqueness
constraint is not captured in the abstract data and query
model. Fortunately, this issue can be fixed by a simple en-
coding of the XPath expressions: we include any attribute
predicates of a node as part of the node label, and we de-
fine the logic that compares two labels such that it takes
into account the attribute predicates rather than only the
equality of the element names. For example, the labels
Book[@price < 100] and Book[@price > 150] are not com-
patible; while Book[@price < 100] and Book[@price < 150]
are compatible.

XPath Containment. To check the containment be-
tween two expressions in XP {[],∗,//}, we implemented a prac-
tical algorithm presented in [21]. This algorithm is based on
finding a homomorphism between two tree patterns, and it
runs in O(n ∗ m), where n and m are the sizes of the two
tree patterns. The algorithm is sound but incomplete; as
mentioned before, soundness is sufficient for the correctness
of the SMT. In this work, the algorithm is given for boolean
(i.e. arity-0) tree patterns; we used a technique, described
in the same work, to apply the algorithm to expressions of
arity-1.

Since we include the attribute predicates of a node with
the node label as explained above, we define the logic that
maps between the nodes of the tree patterns in the ho-
momorphism algorithm such that it takes into account the
predicate containment relationships. For example, the label
Book[@price < 100] subsumes the label Book[@price < 50],
and thus it can be mapped to it in the homomorphism.

Note that even when an attribute predicate of a node is
included as part of the node label as described above, we
still need to create a separate node in the tree pattern to
represent the attribute predicate. This is needed to enable

3This holds for the schemaless model that we are using.

592

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Number of views

A
bs

. s
av

in
g Base Additions

Base Deletions

(a) Abs. saving vs. Num of Views

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100

Number of views

R
el

. s
av

in
g

Base Additions

Base Deletions

(b) Rel. saving vs. Num of Views

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Probability of "//"

R
el

. s
av

in
g

Base Additions
Base Deletions

(c) Rel. Saving vs. Prob. of “//”

Figure 10: The approach benefit in avoiding view recomputation (savings)

the homomorphism algorithm to discover the containment
in some cases. For example, consider the two expressions
A[//@a]/B and A/B[@a], the fact that the former expres-
sion contains the latter one can not be discovered by the ho-
momorphism algorithm unless the attribute predicates are
represented by separate nodes in the tree patterns.

5. EXPERIMENTS
We conducted experiments to evaluate the effectiveness of

the proposed approach in avoiding unnecessary view recom-
putation. We used the XMARK benchmark [27] to generate
synthetic BD instances. We also used an Xpath expression
generator [9] to generate view definitions and update state-
ments over the base XML document. This XPath expres-
sion generator takes as input some numeric parameters that
control some properties of the generated expressions, such
as the number of steps, the number of predicates, and the
probabilities of using the symbols “*” and “//”.

The performance results for base modifications are similar
to those for base deletions, while they are both different from
base additions. Thus, we show and compare the results for
base additions and deletions.

We used two metrics to evaluate the benefits of the ap-
proach: Absolute saving, and Relative saving. The former is
the number of views for which recomputation is avoided be-
cause either the IRT or the SMT was positive. The latter is
defined as: (Absolute saving/(Absolute saving + false nega-
tives)); this metric measures how close the amount of saving
is to the optimal possible saving. The optimal possible sav-
ing is the actual number of views that were not affected by
a base update, which is equal to (Absolute saving + false
negatives). Thus, this metric shows the impact of the false
negatives on the savings achieved by the approach. To sup-
press the effect of outliers, for each experimental setup, we
generate 10 base updates and take the average.

We conducted two main experiments. In the first experi-
ment, we fixed the parameters used for the XPath generator
and varied the number of views in the system. Figure 10(a),
shows that the Absolute saving scales well with the num-
ber of views in the system. Both Figures 10(a) and 10(b)
show that the savings for base additions are larger than the
savings for base deletions. This is consistent with the ex-
pectation made in Section 3.2.2 due to the unavailability
of Udata in the update statement of base deletions. To fur-
ther confirm this, we traced back the conditions which result
in the majority of the false negatives for base deletions: it
turned out that the vast majority of these false negatives
result from the IRT of external deletions, which would have
used Udata if it were available as in the case of base addi-
tions.

In the second experiment, we fixed the number of views
and the parameters used to generate them; and we varied
one of the parameters used for generating the update ex-
pressions. We conducted several experiments of this type
by changing the parameter to be varied. We have observed
that, for most of the parameters, varying the parameter
value resulted in no change in the savings performance. How-
ever, this was not the case for the parameters that control
the probabilities of using the symbols “*” and “//” in the
update expression. Figure 10(c) illustrates the Relative sav-
ing performance results of an experiment in which we varied
the probability of an edge in U being “//” from 0.0 (no //
edges) to 1.0 (all the edges are //).

This figure shows that increasing the probability of the
symbol “//” reduces the Relative saving performance in the
case of base deletions. However, the performance is almost
not affected in the case of base additions. The Absolute
saving performance also follows the same trend. A similar
performance trend was observed with increasing the proba-
bility of the symbol “*” in the update statement.

This reduction in savings is due to the fact that the sym-
bols “//” and “*” make the update statement less specific
as mentioned in Section 2.2, and thus reduce the amount
of information that is known about the actual effect of the
update operation on BD. The IRT and the SMT for base
additions, unlike those for base deletions, are able to make
up for the missing information because Udata is available as
part of the update statement of base additions.

6. CONCLUSION AND DISCUSSION
We have presented a practical solution for maintaining

materialized XPath views in environments where the view
maintenance system and the base data system are loosely-
coupled. Our approach reduces the frequency of view recom-
putation by conducting an update Irrelevance Test (IRT)
and a view Self Maintainability Test (SMT). We have imple-
mented the approach using XPath intersection and contain-
ment checking techniques. The experimental results show
that the proposed approach is very effective in avoiding un-
necessary view recomputation, especially for base addition
updates.

We have assumed that the base update expressions are
available to the view maintenance system; this is obviously
a minimum requirement for any view maintenance solution.
In reality, however, true loose coupling implies that the base
data server does not even know about the “client” systems
that are maintaining views computed from its base data.
So, how would it report the update expressions to these
unknown clients? This can be done by allowing clients to
register with the server, or by providing a service (by the

593

server) that returns the update expressions that took place
since a given time-stamp.

The query language which is supported in this paper is
XP {[],∗,//}. Although practical for many purposes, this lan-
guage lacks some desirable XML querying features; most im-
portantly, it lacks the power of binding variables. A query
language with this power, such as XPath 2.0/XQuery 1.0 [1],
can specify queries of arbitrary arity, and can include gen-
eral value-based join conditions in addition to the structure-
based join conditions. We plan to extend the results of this
paper to allow such powerful query languages.

In this paper we have assumed a non-ordered tree model
to represent XML documents. While this model is valid
for most data-centric applications, it is not generally suf-
ficient for document-centric applications. Considering the
document order, and order-based predicates in the queries,
raise some non-trivial issues in the problem of maintaining
XPath views. Under the tight-coupling model, the problem
can be solved by using node ids that capture the document
order [10, 11]. Finding solutions (or partial solutions) under
the loose-coupling model requires further investigation.

In Section 4, we have exploited the uniqueness constraint
on attribute names to avoid some false negatives of the IRT.
This idea can be generalized to exploiting schema informa-
tion, if available, to reduce the false negatives of the IRT
and/or the SMT. This research direction can leverage the
works that have used schema information in the XPath in-
tersection [7], and containment [28, 22] tests.

7. REFERENCES
[1] http://www.w3c.org/.

[2] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis

Vassalos, and Janet L. Wiener. Incremental maintenance

for materialized views over semistructured data. In VLDB,

pages 38–49, 1998.

[3] Gustavo Alonso and Fabio Casati. Web services and

service-oriented architectures. In ICDE, page 1147, 2005.

[4] Andrey Balmin, Fatma Ozcan, Kevin S. Beyer, Roberta

Cochrane, and Hamid Pirahesh. A framework for using

materialized xpath views in xml query processing. In

VLDB, 2004.

[5] José A. Blakeley, Neil Coburn, and Per-Ake Larson.

Updating derived relations: detecting irrelevant and

autonomously computable updates. ACM Trans. Database

Syst., 14(3):369–400, 1989.

[6] José A. Blakeley, Per-Ake Larson, and Frank Wm. Tompa.

Efficiently updating materialized views. In SIGMOD

Conference, pages 61–71, 1986.

[7] Stefan Böttcher. Testing intersection of xpath expressions

under dtds. In IDEAS, pages 401–406, 2004.

[8] Li Chen, Elke A. Rundensteiner, and Song Wang. Xcache:

a semantic caching system for xml queries. In SIGMOD

Conference, page 618, 2002.

[9] Yanlei Diao and Michael J. Franklin. Query processing for

high-volume xml message brokering. In VLDB, pages

261–272, 2003.

[10] Katica Dimitrova, Maged El-Sayed, and Elke A.

Rundensteiner. Order-sensitive view maintenance of

materialized xquery views. In ER, pages 144–157, 2003.

[11] Maged El-Sayed, Elke A. Rundensteiner, and Murali Mani.

Incremental maintenance of materialized xquery views. In

ICDE, page 129, 2006.

[12] Ashish Gupta and José A. Blakeley. Using partial

information to update materialized views. Inf. Syst.,

20(8):641–662, 1995.

[13] Ashish Gupta and Inderpal Singh Mumick. Maintenance of

materialized views: Problems and techniques and

applications. IEEE Data Eng. Bull., 18(2):3–18, 1995.

[14] Alon Y. Halevy. Answering queries using views: A survey.

VLDB J., 10(4):270–294, 2001.

[15] Beda Christoph Hammerschmidt, Martin Kempa, and

Volker Linnemann. On the intersection of xpath

expressions. In IDEAS, pages 49–57, 2005.

[16] Cheng Hua, Ji Gao, Yi Chen, and Jian Su.

Self-maintainability of deletions of materialized views over

xml data. In International Conference on Machine

Learning and Cybernetics, volume 3, pages 1883 – 1888,

2003.

[17] Alon Y. Levy and Yehoshua Sagiv. Queries independent of

updates. In VLDB, pages 171–181. Morgan Kaufmann,

1993.

[18] Hartmut Liefke and Susan B. Davidson. View maintenance

for hierarchical semistructured data. In DaWaK, pages

114–125, 2000.

[19] Bhushan Mandhani and Dan Suciu. Query caching and

view selection for xml databases. In VLDB, pages 469–480,

2005.

[20] Hidetaka Matsumura and Keishi Tajima. Incremental

evaluation of a monotone xpath fragment. In CIKM, 2005.

[21] Gerome Miklau and Dan Suciu. Containment and

equivalence for a fragment of xpath. J. ACM, 51(1):2–45,

2004.

[22] Frank Neven and Thomas Schwentick. Xpath containment

in the presence of disjunction, dtds, and variables. In

ICDT, pages 315–329, 2003.

[23] Makoto Onizuka, Fong Yee Chan, Ryusuke Michigami, and

Takashi Honishi. Incremental maintenance for materialized

xpath/xslt views. In WWW, pages 671–681, 2005.

[24] Nicola Onose, Alin Deutsch, Yannis Papakonstantinou, and

Emiran Curtmola. Rewriting nested xml queries using

nested views. In SIGMOD, 2006.

[25] Yannis Papakonstantinou and Vasilis Vassalos. Query

rewriting for semistructured data. In SIGMOD Conference,

pages 455–466, 1999.

[26] Arsany Sawires, Junichi Tatemura, Oliver Po, Divyakant

Agrawal, and K. Selçuk Candan. Incremental maintenance

of path expression views. In SIGMOD Conference, 2005.

[27] Albrecht Schmidt, Florian Waas, Martin L. Kersten,

Michael J. Carey, Ioana Manolescu, and Ralph Busse.

Xmark: A benchmark for xml data management. In VLDB,

pages 974–985, 2002.

[28] Peter T. Wood. Containment for xpath fragments under

dtd constraints. In ICDT, pages 300–314, 2003.

[29] Wanhong Xu and Z. Meral Özsoyoglu. Rewriting xpath

queries using materialized views. In VLDB, pages 121–132,

2005.

[30] Yue Zhuge and Hector Garcia-Molina. Graph structured

views and their incremental maintenance. In ICDE, pages

116–125, 1998.

[31] Yue Zhuge and Hector Garcia-Molina. Self-maintainability

of graph structured views. Technical report, Computer

Science Department - Stanford University, 1998.

594

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

