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ABSTRACT
We study the query answering using views (QAV) problem for tree
pattern queries. Given a query and a view, the QAV problem is tra-
ditionally formulated in two ways: (i) find an equivalent rewriting
of the query using only the view, or (ii) find a maximal contained
rewriting using only the view. The former is appropriate forclas-
sical query optimization and was recently studied by Xu and Oz-
soyoglu for tree pattern queries (TP). However, for information in-
tegration, we cannot rely on equivalent rewriting and must instead
use maximal contained rewriting as shown by Halevy. Motivated
by this, we study maximal contained rewriting for TP, a core sub-
set of XPath, both in the absence and presence of a schema. In the
absence of a schema, we show there are queries whose maximal
contained rewriting (MCR) can only be expressed as the unionof
exponentially many TPs. We characterize the existence of a maxi-
mal contained rewriting and give a polynomial time algorithm for
testing the existence of an MCR. We also give an algorithm for
generating the MCR when one exists. We then consider QAV in
the presence of a schema. We characterize the existence of a maxi-
mal contained rewriting when the schema contains no recursion or
union types, and show that it consists of at most one TP. We give
an efficient polynomial time algorithm for generating the maximal
contained rewriting whenever it exists. Finally, we discuss QAV in
the presence of recursive schemas.

1. INTRODUCTION
With the popularity of XML for data exchange as well as for

representing and manipulating semistructured data, therehas been
substantial work on optimizing XML queries. XPath [29] is the
language recommended by W3C for navigation of XML documents
and for information extraction. It is a core sublanguage of other ma-
jor XML query languages like XQuery [30] and XSLT [28]. There
has been much work on efficient XPath evaluation [11], indexing
techniques [21, 24], structural join algorithms [1, 5], studies on
expressive power [4], and containment and equivalence of XPath
queries [2, 8, 17, 18, 10, 25].

One of the touted applications of XML is the integration of infor-
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mation from multiple sources. The sources are regarded as views
and queries need to be answered using the (materialized) views.
This is the well-known query answering using views (QAV) prob-
lem. For relational databases, this problem has been studied exten-
sively (e.g., see [16, 13]). In particular, [22] discusses an efficient
algorithm for finding maximal contained rewriting for conjunctive
relational queries using views. The QAV problem for XML is re-
ceiving increasing attention.

The QAV problem is traditionally formulated in two different
ways. Theequivalent rewriting formulation, motivated by classical
query optimization, is given a queryQ and viewV ,find if there is
a rewriting ofQ usingV that is equivalent toQ. Using material-
ized views for speeding up query processing has been studiedin
the context of semistructured data for regular path queries[12, 6].
Deutsch and Tannen [9] have studied and characterized the query
reformulation problem for XQuery in the context of XML publish-
ing. Chen and Rudensteiner [7] and Yang et al. [27] as well as
Balmin et al. [3] use heuristic approaches for using materialized
views for speeding up XPath query evaluation. Tang and Zhou [23]
and Xu and Ozsoyoglu [26] conduct a theoretical study QAV for
XPath fragments corresponding to tree patterns. All these works
focus on equivalent rewriting (or its restriction).

However, there are several situations where we cannot find a
rewriting that is equivalant to the query because of the datasources’
limited coverage, which is very common in information integra-
tion scenario [22]. Instead, we search for amaximally-contained
rewriting, which provides the best possible answer, given the avail-
able sources. The problem definition is that givenQ andV , find
if there is a rewriting ofQ usingV that is contained inQ (over
all possible databases) and is maximal. That is, the rewriting pro-
duces sound answers (contained) and no other contained rewriting
produces more answers (maximal). It is well-known that contained
rewriting is more appropriate forinformation integration[13, 15,
22].

Our focus in this paper is the contained rewriting problem for
tree pattern (TP) queries.Tree patterns capture a fragment of XPath,
specificallyXP/,//,[ ], consisting ofchild, descendant, and
branching. We illustrate the problem next.
Rewriting without schema: Figure 1(b) shows a materialized view
computed by the expressionV , “//Trials//Trial” on some database
containing clinical trials and patient data. Figure 1(a) shows one
possible databaseD thatV ’s result might have come from, in which
we have numbered nodes for easy reference. We consider this
D in the rest of this example. The materialized view contains
all Trial elements fromD, i.e., 3, 11, 14. Consider the query
Q, //Trials[//Status]//Trial. Of the two Trials elements (2, 13)
in D, only 2 has aStatus descendant. So, by applyingQ on
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〈PharmaLab〉 (1)
〈Trials @type=“T1”〉 (2)

〈Trial〉 (3) 〈Patient〉 (4) John Doe〈/Patient〉 ...
〈Status〉 (10) Complete〈/Status〉 〈/Trial〉

〈Trial〉 (11) 〈Patient〉 (12) Jennifer Bloe〈/Patient〉 ...〈/Trial〉
〈/Trials〉
〈Trials @type = “T2”〉 (13)

〈Trial〉 (14) 〈Patient〉 (15) Mary Moore〈/Patient〉 ...〈/Trial〉
〈/Trials〉

〈/PharmaLab〉

〈Trial〉 (3) 〈Patient〉 (4) John Doe 〈/Patient〉...
〈Status〉 (10) Complete 〈/Status〉 〈/Trial〉

〈Trial〉 (11) 〈Patient〉 (12) Jennifer Bloe 〈/Patient〉 ...〈/Trial〉
〈Trial〉 (14) 〈Patient〉 (15) Mary Moore 〈/Patient〉 ...〈/Trial〉

(a) A Sample XML Document D (b) The View V of Sample XML Document D.

Figure 1: Example: Maximal Containment Rewriting Without Schema
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Figure 2: Example: Maximal Containment rewriting with schema. Rewriting XPath expression for (e) is //name.

D, the twoTrial subelements (3, 11) of 2 will be returned. Now
suppose only the materialized result ofV (Figure 1(b)) is avail-
able (as a data source). To answerQ using (only) V , we can
apply somecompensation query E to the result ofV . The query
is thus rewritten asE ◦ V , where◦ denotes composition. In our
example, a compensation query is “.[//Status]”. The composi-
tion “.[//Status]”◦“ //Trials//Trial” is actually the queryR, “//Tri-
als//Trial[//Status]”. We call R a rewriting (query). It is acon-
tained rewriting sinceR is contained inQ, i.e., on every database,
the result of applyingR is a subset of that of applyingQ. The rea-
son is descendants ofTrial are also descendants ofTrials. For our
example databaseD, R returns the firstTrial element (3) , but not
the second (11). Thus, usingR we get sound answers toQ but
not all of them. As our techniques will show, among all contained
rewritings,R is themaximal contained rewriting (MCR) in that it
is not possible to get more (sound) answers toQ usingV . These
notions are made precise in Section 2. In this example, we have no
knowledge of the schema.
Rewriting with schema: Consider Figure 2(a). It shows a schema
for auctions in schematic form. AnAuction consists of zero or
more (edge label ‘*’)open auctions and an optional (‘?’)closed
auction. An open auction has a mandatory (no label)item and
an optional (‘?’) bids and so on. Consider the viewV , //Auc-
tion//person and the queryQ, //Auction[//item]//name. To obtain
the MCR, notice that fromperson elements returned byV , we can
easily extract their descendantnames. However, we need to en-
sure the ancestorAuction of the person has a descendantitem.
According to the schema (Figure 2(a)),item cannot appear be-
low person, so we have no apparent way of ensuring the ancestor
Auction of person has a descendantitem. However, the schema
has the following constraints: there are three paths fromAuction
to person, one passing throughopen auction and two through
closed auction. Both open auction andclosed auction have a
mandatory childitem. So everyAuction that has a descendantper-
son must have a descendantitem. Thus, we can safely extract the
names of thepersons returned byV . Thus, we can use the com-
pensation query “//name” and obtain the contained rewritingR,
“ //name ◦ //Auction//person”, i.e., “//Auction//person//name”.
The details of inferring constraints from the schema will beex-
plained in Section 4. We will showR is the MCR, given the schema

of Figure 2(a). R is not equivalent toQ, however, since given a
database instance of the schema of Figure 2(a),Q will also find
item names but notR.

In general, given a viewV in XP/,//,[ ] which is materialized,
and a queryQ in XP/,//,[ ] to be answered, we consider the prob-
lem finding the maximal query rewriting both in the absence and
presence of a schema. In this paper, we make the following contri-
butions:

• We characterize the existence of contained rewriting in the
absence of schema and show that testing existence of MCR
can be done in polynomial time (Section 3.1). We also show
that in the worst case, the maximal contained rewriting, when
it exists, can only be expressed as a union of exponentially
many queries inXP/,//,[ ]. This shows that the size of the
MCR can be exponential in the size of the query (Section 3.2).
We develop an algorithm for generating the MCR, when it
exists, in Section 3.3. The algorithm has an exponential worst
case complexity, which is also the worst case the MCR size.

• We consider QAV in the presence of a schema without re-
cursion and union types. To obtain the MCR, we extract
the essence of a schema using five types of constraints (Sec-
tions 4.1 and 4.2). These include the well-knownsibling con-
straints [25] as well as new constraints such ascousin con-
straints (e.g., as shown in Figure 2(a), “everyAuction having
descendantperson must also have descendantitem”). We
provide a chase procedure w.r.t. these constraints and show
it preserves equivalence w.r.t. the schema (Section 4.3).

• We characterize the existence of MCR in the presence of
schema with no recursion or union types (Section 4.4). Fi-
nally, we use the chased view to develop an efficient algo-
rithm for obtaining the MCR of a query w.r.t. a schema.
Based on our algorithm, we are able to show that in the pres-
ence of a schema, the MCR, when it exists, can be expressed
by exactly a singleXP/,//,[ ] query (Section 4.4).

• We discuss issues arising in solving the contained rewriting
problem in the presence of recursive schemas (Section 5).

Some background appears in Section 2. Related work appears
in Section 6. We summarize the paper and discuss future work in
Section 7.
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2. PRELIMINARIES
XML Databases & Tree Patterns: An XML database is a finite
rooted ordered treeD = (N , E , r, λ), whereN represents element
nodes,E represents parent-child relationship,λ, the labeling func-
tion, assigns a tag to each node, andr is the root. In this paper, we
do not consider order. Elements may have associated attributes. At-
tributes and leaf elements have associated values. Figure 1shows a
sample XML database.

A tree pattern query (TPQ) [2] is a pairQ = (N, E), where
(N, E) is a rooted tree, with nodes inN labeled by tags, and with
E = Ec ∪ Ed consisting of two kinds of edges, calledpc-edges
(Ec) andad-edges (Ed), corresponding to the child (/) and descen-
dant (//) axes of XPath. A distinguished node inN corresponds
to the answer element. Figure 2(b)-(d) are examples of TPQs.In
each figure, we identify the distinguished node by placing anas-
terisk (‘*’) next to it. E.g., the queryQ in Figure 2(c) represents
the XPath expression//Auction[//item]//name. TPQs capture the
XPath fragmentXP/,//,[ ] . Notationally, we writerel(x, y) ∈ Q

to mean thatQ contains arel-edge fromx to y, whererel is one of
pc or ad.

Answers for TPQs are captured using matchings. Amatching
of a TPQQ to a databaseD is a functionh : Q→D that maps
nodes ofQ to nodes ofD such that: (i) structural relationships
are preserved – wheneverpc(x, y) ∈ Q, h(y) is a child ofh(x)

in D and wheneverad(x, y) ∈ Q, there is a path fromh(x) to
h(y) in D; and (ii) for each nodex ∈ N, its tag matches the tag
of h(x) in D. We useĥ(x) to denote the element ofD rooted at
the nodeh(x), A TPQ may have multiple matchings to a database.
The answer to a TPQQ with distinguished nodex on databaseD
is Q(D) = {ĥ(x) | h : Q→D is a matching}. Notice thatQ(D)

is a set of elements.
QAV: Let Q, Q ′ be any queries. ThenQ is contained inQ ′,
Q ⊆ Q ′, provided for every databaseD, Q(D) is a subset of
Q ′(D). For the class of queries considered in this paper, the exis-
tence of a homomorphism fromQ ′ to Q is a necessary and suf-
ficient condition forQ ⊆ Q ′ [2, 17]. Q is equivalent to Q ′,
Q ≡ Q ′, whenQ ⊆ Q ′ and Q ′ ⊆ Q. We write Q ⊂ Q ′

to indicateQ ⊆ Q ′, but Q 6≡ Q ′. Let Q be a query andV a
view, both inXP/,//,[ ] . ThenQ is said to beanswerable using V

provided there is acompensation query E such that therewriting
query R ≡ E ◦ V is contained inQ, and for some databaseD,
R(D) 6= ∅ [13, 22]. We call this rewritingR a contained rewriting
(CR) ofQ usingV .1 We require CRs to be tree pattern queries, i.e.,
expressible inXP/,//,[ ]. A maximal contained rewriting (MCR) R

is a contained rewriting that is maximal, i.e., there is no other con-
tained rewritingR ′ such thatR ⊂ R ′. We allow MCRs to be unions
of one or more CRs, i.e., unions of expressions inXP/,//,[ ] .
Schema: We study QAV in the presence of a schema. We model
schema of XML databases using schema graphs (see Figure 2(a)for
an example). A schema graph is a directed edge labeled and node
labeled graphS = (N, E). S has a node corresponding to each
element of the schema it models. This node is labeled with the
element tag.S has an edge(u, v) wheneverv is a subelement of
u.2 Edges are labeled by one of the quantifiers ‘1’ (one), ‘+’ (oneor
more), ‘?’ (zero or one), ‘*’ (zero or more). The default label is ‘1’
and is usually omitted. Additionally,S may have sequence nodes
and union nodes. These nodes are unlabeled. Sequence nodes are
used to model groups of subelements occurring with a common

1In practice, what we really need to answerQ usingV , is for the
compensation queryE to be applied to the materialized results of
V . But our analysis requires working with the rewriting queryR.
2We blur the distinction between elements and attributes.

cardinality. Union nodes are used to model union types. Schema
graphs can model DTDs as well as a core fragment of the structural
aspects of XML schema. Unless otherwise specified, we consider
schemas without union types and recursion. We assume the reader
is familiar with the notion of a database conforming to a schema,
as defined, e.g., in [18].

Query containment can be relativized to a schema. E.g., letS

be a schema andQ, Q ′ queries. ThenQ is S-contained inQ ′,
writtenQ ⊆S Q ′, provided on all databasesD that conform toS,
Q(D) ⊆ Q ′(D). Other notions follow easily. LetS be a schema,
andQ andV be as above. ThenQ is answerable using V w.r.t. S

provided there is acompensation query E such that therewriting
query R ≡ E ◦ V is contained inQ w.r.t. S, i.e.,R ⊆S Q, and
for at least one databaseD, R(D) 6= ∅. Contained and maximal
contained rewritings are defined as for the schemaless case,except
we use⊆S instead of⊆.
Problem Statement: We would like to characterize whether a tree
pattern query can be answered using a tree pattern view and develop
algorithms for testing this as well as for generating the MCRif it
exists. We wish to do this both in the absence of a schema and inthe
presence of a schema. Unless otherwise specified, we assume the
schema contains no union types or recursion. We discuss recursive
schemas in Section 5.

3. MAXIMAL CONTAINED REWRITING
WITHOUT SCHEMA

When no schema is available, we do not have any constraints
on which elements may (not) appear as (transitive) subelements of
which other elements. This raises the questions: (i) how do we
detect if a query is answerable using a view?, (ii) can the MCR
be expressed as a TPQ?, (iii) how do we generate the MCR? We
address these questions below.

3.1 Testing Existence of Rewriting
Our approach for testing the existence of MCR makes use of the

notion of embedding. LetQ and V be tree pattern queries. An
embedding is a partial matchingf : Q ; V that preserves node
tags and structural relationships, and additionally is upward closed:
if f is defined on a nodex ∈ Q, it is also defined on all ancestors
of x in Q.

*

B

/A

C

B

/A

*D

Query Q2

/B

Query Q1View V

D *

Figure 3: Examples of non-existence of containment mapping

Intuitively, the basic idea of maximal containment rewriting is
to find the set of query nodes that don’t have an embedding in the
view, and appropriately put those nodes under the distinguished
node of the view, such that the structural relationships in the query
are preserved. Such set of un-embedded nodes can be any (possi-
bly empty) subset of the set of all query nodes. Then the question
is, since this set always exists, then does a containment rewriting
always exist? Our answer is “no”. As an example, Figure 3 shows
two queriesQ1 andQ2 that cannot have any MCR against the view
V in the same figure.Q1 fails because it asks ford elements in an
XML document that is rooted atb, while V materializes thec ele-
ments in the document rooted ata. Due to mismatching document
roots expected, the result ofV is useless forQ1 , i.e., Q1 is not
answerable usingV . Now considerQ2. It is straightforward that
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the d node inQ2 has no embedding inV . We could try attach-
ing d under thec node inV , which is the distinguished node ofV .
But the resulting rewriting is not a containment rewriting,since the
parent-child relation betweenb andd node inQ2 is not preserved
in the rewriting.

The distinguished nodes ofQ andV are denoteddQ anddV

respectively. The path from the root of a queryQ (resp. viewV )
to dQ (resp.,dV ) is called thedistinguished path, denoted asPQ

(resp. PV ). To characterize the existence of contained rewritings,
we defineuseful embedding. We first introduce a few notions. Let
f : Q ; D be an embedding. LetP = (x1 , ..., xn) be a path inQ.
We callx2 a successor of x1 in P and so on. Supposexi , i < n, is
the last node inP such thatf(xi) is defined andf(xi) ∈ PV . We
call xi theanchor of P w.r.t. f.

DEFINITION 1 (USEFUL EMBEDDINGS). An embeddingf :

Q ; V is useful provided: (i)f is the empty embedding and the
root of Q is qualified with a ‘//’; OR (ii) (a)∀x ∈ PQ , if f(x)

is defined, thenf(x) ∈ PV ; AND (b) ∀ pathP in Q, one of the
following holds: (I)f is defined on every node inP; OR (II) ∃x ∈ P

such thatx is the anchor ofP andy its successor inP, andeither
f(x) = dV , the distinguished node ofV , or f(x) is a descendant of
dV , or ad(x, y) ∈ Q.

We illustrate this next. Condition (i) says an empty embedding
is useful as long as the query root is qualified with a ‘//’. If not,
the root nodemustbe embedded to the root ofV , for obtaining a
CR, making the embedding non-empty. Condition (ii)(a) saysthat
if every node onPQ has an embedding in the viewV , the target
node must be onPV . Thus the context ofdQ is captured by the
context ofdV . Condition (ii)(b) says the anchor node (if any) w.r.t.
any query pathP must be either mapped todV or its descendant, so
that its successors that don’t have any embedding can be attached
below dV without violation of any query predicates, or it cannot
have a query child connected with a parent-child edge (e.g.,seeb

node in queryQ2 in Figure 3 as a counterexample). By studying
theQ2 andV shown in Figure 3 again, ifdV in V is changed to
beb instead ofc, then we can obtain an MCR ofQ2 by attaching
the d node under theb node inV with a parent-child edge, i.e.,
.[/d]”◦“ /a//b[//c].

A useful embedding intuitively captures which query obligations
are already fulfilled by the view and which ones are left over.We
capture the left-over obligations via the notion of clip-away trees,
defined next. Letf : Q ; V be a useful embedding. Call a node
x ∈ Q a terminal node if f(x) is defined andx has at least one (pc-
or ad-) childy ∈ Q such thatf(y) is not defined. Figure 4(a)-(b)
shows a useful embedding. The embedding is defined only on the
Trials node (id 1) inQ. Thus, it is a terminal node: it has two
childrenStatus (id 2) andPatient (id 3) which are not embedded
into V . For each childyi of a terminal nodex such thatf(yi) is
undefined, letTyi

be the subtree ofQ rooted atyi and letT ′

yi
be

the tree obtained by adding a dummy root as the parent of the root
of Tyi

, the type of the edge connecting the dummy root to the root
of Tyi

being the same as the edge type of(x, yi) in Q. Figure 4(c)
illustratesT ′

2 andT ′

3 for the two children2 and3 of the terminal
nodeTrials (1) there. Finally, theclip-away tree (CAT) induced by
the useful embeddingf is obtained by merging the dummy roots
of all the treesT ′

yi
identified above and changing the tag of the

dummy root to match the tag of the distinguished node ofV . E.g.,
doing so forT ′

2 andT ′

3 results in the CAT shown in Figure 4(d).
Finally, the rewritingRf induced byf can be obtained by merging
the root of the CAT with the distinguished node ofV , and marking
the distinguished node inRf based on the distinguished node ofQ,
as shown in Figure 4(e) (Patient in our example).

CAT

Query Q

Status

//Trials

Patient *
dummy

Patient

dummy

Status
View V

//Trials

Trial*

1
3

CAT

(a) (b)
(c)

(d)

2
T’_3T’_2

f

Trial

Patient Status

*

//Trials

Trial

Status Patient

Rewriting R_f
(e) 

Copy of V.

Figure 4: Useful Embeddings, Clip-away Tree, and Rewriting.

Our first result shows that useful embeddings completely char-
acterize the existence of an MCR in the absence of a schema.

THEOREM 1. [Existence of MCR] : Let Q and V be tree
patterns. ThenQ is answerable usingV , i.e., there exists an MCR
of Q usingV , iff there is a useful embeddingf : Q ; V .

The proof will appear in the full paper. In the sequel, we only
consider useful embeddings unless otherwise stated.

Figure 6 presents our algorithm for generating useful embed-
dings, which is the basis for the test for the existence of MCR. We
use the queryQ and viewV in Figure 5 to illustrate the algorithm.
Nodes are numbered (Arabic forV and Roman forQ) in Figure 5.
The algorithm consists of 4 key steps.

(1) Assign alabel entry set for the query root. The root’s label
entry set is of the formL, whereL is a set of node id’s fromV . If
the query root is ‘//t’ the label is the set of the nodes with tagt on
the distinguished path ofV . E.g., the query rootI is assigned the
label{1, 2}, i.e.,label(I) = {1, 2} (Figure 5(a)). If the query root is
‘/t’ then if we can’t find a matching root (‘/t’) in V we exit with
failure (line 1.2).

(2) We assign label entries for other nodesx, by making a top-
down pass onQ. The latter label entries are of the formi : L,
wherei is a node id inV andL is a set of node id’s inV . It says if
an embedding maps the parent ofx to i, then it can mapx to one
of the nodes inL. We overload notation and uselabel(u) to denote
the label entry set of any query nodeu and writei ∈ label(u) to
meani ∈ L, for some label entryj : L in label(u). If there is
no suchj : L in label(u), we write i 6∈ label(u). Line 2.1 adds
a label entryi : L to label(x) providedi ∈ label(y), wherey is
the parent ofx andL is the set of nodes inV to which x can be
consistently embedded. Line 2.2 prunes those nodes fromL not on
PV wheneverx is onPQ . (RecallPV is the distinguished path of
V .) E.g., in Figure 5(a), we obtainlabel(II) = 1 : {2}, 2 : {}. The
first label entry says if the root (nodeI) is mapped to the view node
1, thenII can be mapped to one of2. Note that we cannot mapII
to 3 since3 is not onPV (See Definition 1). The same reasoning
explains why the second label entry ofII in Q is 2 : {}. Other label
entry sets are obtained similarly.

Steps (3) and (4) of the algorithm make a bottom-up and a top-
down pass respectively, pruning label entries. If the root is ‘/t’
and its label entry set becomes empty, we exit with failure (line
3.2). Otherwise, when the algorithm terminates, we are leftwith a
compact encoding of a set of useful embeddings that can be used
to generate the MCR. In the following, for a view nodei, whenever
(i : L) 6∈ label(x), for anyL 6= {}, we write(i : {}) ∈ label(x),
even when the entry(i : {}) does not explicitly appear inlabel(x).
This convention is consistent with the meaning of label entries. The
pruning rules, used to prune label entries, follow. We next define
and explain the pruning rules used in Steps (3) and (4).
Distinguished Path (DP) [used in Step (3) of the algorithm]: Fol-
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Figure 5: Illustrating the labeling and generation of useful & good embeddings. Nodes numbered partially to avoid clutter.

lowing condition (ii)(a) in Definition 1, the DP rule is designed
for the nodes on the distinguished paths (PQ , PV ) of the query
and the view. Supposerel(x, y) ∈ Q, and(j : {}) ∈ label(y).
Then for every entryi : L ∈ label(x), such thatj ∈ L, whenever
j 6∈ PV , then deletej from L. In Figure 5(a), letx andy be nodes
VIII and IX. Then we can remove5 from the second label entry
4 : {5} ∈ label(VIII) using this rule, since(5 : {}) ∈ label(IX) and
5 is not on the distinguished path ofV (illustrated in Figure 5(b)).
Thus, this label entry henceforth becomes(4 : {}).
Special Nodes (SN) [used in Step (3)]: SN rule is designed for the
condition (ii)(b) in Definition 1, focusing on a parent-child edge
from an anchor node to its successor. Supposepc(x, y) ∈ Q and
(j : {}) ∈ label(y). Then for every(i : L) ∈ label(x) such that
j ∈ L, if j is not the distinguished node ofV or its descendant, then
deletej from L. In Figure 5(b), letx andy be nodesVII andVIII in
Q. Note: pc(VII, VIII) ∈ Q and(4 : {}) ∈ label(VIII). Using the
SN rule, we can delete4 from the label entry(3 : {4}) of VII since4

is not the distinguished node ofV nor its descendant. This renders
the above label entry(3 : {}). The figure shows the propagation of
this up the treeQ in successive applications of the SN rule.
Embedding Rule (ER) [used in Step (4)]: ER rule is applied to
construct the general embeddings based on the node tags and struc-
tural relationships. Supposerel(x, y) ∈ Q, (i : L) ∈ label(y),
andi 6∈ label(x). Hererel is pc or ad. Then remove(i : L) from
label(y). In Figure 5(a), letx andy be the nodesII andIII in Q.
Supposelabel(III) also contained the entry3 : {4}. Then since3
does not appear in the label entry list of the parentII, we can apply
this rule to delete the entry3 : {4} from label(III). Notice that this
rule is always applied from the parent to the child, not vice versa.
Steps (3) and (4) of the algorithm: In step (3), we apply the rules
DP and SN bottom-up. Initially, SN is not applicable to any node,
while DP is applicable tox = VIII and y = IX. Then we can
remove5 from the second label entry4 : {5} ∈ label(VIII), since
(5 : {}) ∈ label(IX) and5 is not on the distinguished path ofV

(line 3.1). Then successive applications of SN eliminate the entries
knocked off in Figure 5(b) and as explained before. No other entries
in Figure 5(b) are affected. Step (4) does not change anything so,
when it terminates, the algorithm leaves behind the labeledquery
tree shown in Figure 5(b). Notice that the entry2 ∈ label(I) cannot
be eliminated. Since we did not encounter a case where the root is
‘/t’ and has an empty label entry set, we conclude the query has an
MCR.

When the algorithm terminates, if it delivers at least one useful
embedding, then MCR must exist, else not. The embeddings en-
coded in the labeling are obtained by following the chain of labels
from the query root down. We have the following result, where|Q|

denotes the number of nodes inQ.
THEOREM 2. [Useful Embeddings] : AlgorithmUseEmb

terminates in timeO(| Q | × | V |2). It correctly concludes
whether a query has an MCR using a view.

The correctness follows from Theorems 1. The complexity is
established as follows. Line 1 takesO(| V |) time for initializing

Algorithm UseEmb(query Q, view V) {
1. Determine label of Q’s root;

Let x beQ’s root;
1.1. if (x is ‘//t’) label(x) = {i ∈ V | i.tag = ‘t’ &

i is on the distinguished path ofV }
else if (x is ‘/t’) {

1.2. if V ’s root, sayi, is ‘/t’) { label(x) = {i}
elselabel(x) = {}; return(‘no MCR exists’).}

//* Initialize the label entry lists for the root’s descendants. *//
2. Traverse Q top-down, from root’s children.

Let x be current node andy its parent inQ.
2.1. for everyi ∈ label(y) { add the entry(i : L) to label(x),

whereL = {j ∈ V | rel(y, x) ∈ Q, the relationship
rel betweeni andj is satisfied inV & j.tag = x.tag}.

2.2. if (x is on the distinguished path ofQ) delete allj ∈ L not on the
distinguished path ofV . }

//* Prune label entries. *//
3. Traverse Q bottom-up. for each nodex {

3.1. if SN rule or DP rule is applicable tox,
apply it to prune its label entry set;

3.2. if (x is the root, and is ‘/t’, andlabel(x) becomes empty)
return(‘no MCR exists’).}

//* Prune top-down. *//
4. Traverse Q top-down. Let x be the current node.

wheneverlabel(x) was updated in step (3),
propagate the changes downward, using the ER rule.}

Figure 6: Testing existence of MCR.

the query root label. The loop in line 2 takes timeO(| Q | × | V |2

), since for each edge(y, x) we can compute the initial label fory
from that ofx in time proportional to the product of the size ofy’s
label and| V |, a factor that is upper bounded by| V |2. Lines 3
and 4 can both be completed inO(| Q | × | V |) time. Thus, the
overall time complexity isO(| Q | × | V |2).

3.2 MCR Size
In this section, we determine the size of an MCR. Clearly, if we

take the union of all possible CRs, the result is guaranteed to be the
MCR. However, this is both inefficient and may containredundant
CRs, i.e., CRs that are contained in other CRs. A CR generatedby
an embedding isirredundant if it is not contained in a CR generated
by any other embedding. We could obtain all CRs, then test for
redundancy and then take the union of irredundant CRs. It is easy
to see the union of all irredundant CRs is equivalent to the MCR, by
definition. We develop a more efficient procedure for constructing
the MCR in this section.

WhenAlgorithm UseEmb terminates (Figure 6) with a non-
empty set of label entries, it leaves a compact encoding of a set
of useful embeddings. However, some of them lead to redundant
CRs. Thus, first we want to eliminate such embeddings. E.g., in
Figure 5(b), there are three embeddings:h1 : I 7→ 1, II, VI 7→
2, III, VII 7→ 6, IV, VIII 7→ 7; h2 : I 7→ 1, VI 7→ 2, VII 7→
6, VIII 7→ 7; andh3 : I 7→ 2. Each embedding leads to a CR that
can be expressed as aXP/,//,[ ] query. Of these, it can be shown
that the CR generated fromh1 contains the CR generated from
h3 , so the latter CR is redundant. The CR generated fromh1 is
irredundant, but surprisingly, is not the only one. It turnsout we
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Figure 7: Irredundant CRs.

can obtain additional irredundant CRs fromh1 itself by choosing
not to embed certain nodes. We will later return to this pointas
well as to the CR generated byh2 .

In this paper, we call an embeddingg anextension of an embed-
dingf (f arestriction of g) providedg is defined on every node that
f is defined on (and maybe more). Notice that we do not require
that f(x) = g(x) whenever both are defined onx. This nonstan-
dard notion of extension turns out to be the appropriate one for our
purposes. We show two more examples of (ir)redundancy in Fig-
ure 7(a) and (b), making an important point. Figure 7(a) shows a
queryQ1 and a viewV1 . There are two interesting embeddings
from Q1 to V1: (i) f1 : embed botha andb or (ii) f2: embed only
a. The CRs induced by the embeddings –R11 andR12 – are also
shown. Even thoughf1 is an extension off2 , neither of the CRs
is contained in the other. This example shows the MCR cannot al-
ways be expressed as a single TPQ and may need to be expressed
as the union of CRs, each being a TPQ.

In Figure 7(b), there are several embeddings fromQ2 toV2 . The
embeddings (i)f1 : embeda and bothb’s, and (ii)f2 : embeda and
the left b (but not the right b), yield the two CRsR21 and R22

shown in the figure and they do not contain each other. However,
consider the embedding (iii)f3 : embeda and the rightb (but not
the leftb). It is easy to check the resulting CR,
//a//b[//b//c]//d, is contained inR21 and so is redundant. So,
sometimes, restrictions of embeddings yield redundant CRs, some-
times not.This makes obtaining irredundant CRs challenging.We
will address this challenge in the next subsection.

The last question for this subsection is how many irredundant
CRs are there in general? This has a bearing on the size of the
MCR and thus on the complexity of generating MCRs. We give an
example below to show that this number can be exponential in the
size of the query.

EXAMPLE 1. [Size of MCR] : Figure 8 shows a queryQ and
a viewV , both inXP/,//,[ ]. The MCR ofQ usingV involves the
union of four irredundant CRs. If the root//a in Q hasn branches
//a//a/b/c/di, wheredi ’s are distinct tags,1 ≤ i ≤ n, then the
MCR will be the union of2n irredundant CRs.

It is easy to check that the MCR above is not expressible as a
single TPQ. Indeed, the XPath standard also includes aself-or-
descendant axis, permitting a limited form of disjunction. It is
important to note that even with the addition of this axis, wecan-
not express the above MCR as a single TPQ (enriched with this
predicate).

3.3 MCR Generation
We next address the generation problem of the MCR. The main

challenge is that there are exponentially many possible embeddings,
not all of which yield irredundant CRs. Indeed, some embeddings
that are restrictions of others yield irredundant CRs and some don’t
(Figure 7)! We need to characterize exactly when embedding a
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node isnot mandatory for obtaining an irredundant CR so that we
can identify the right embeddings that will yield irredundant CRs.

As a motivating example, consider Figure 9. For the query root
and its two ad-childrenb, we have the choice of embedding them
into the viewV or not. If we do not embed the query root, the
resulting CAT will be the queryQ itself. The resulting CRQ ◦ V

is //a//b//a[//b/c]//b[d] is redundant, since it is contained in the CR
R4 in Figure 9. However, when we embed//a but choose not to
embed one or more of theb children, the resulting CR isR2 (don’t
embed leftb), R3 (don’t embed rightb), orR4 (don’t embed either
b), which are all irredundant.

We have the following result on whennot embedding a node
would still yield an irredundant CR. By a pc-path we mean a se-
quence of nodes(x1 , ..., xk), k ≥ 1, such that there is a pc-edge
from xi to xi+1 , 1 ≤ i < n. For an embeddingf, we say a node
v ∈ Q is special, if f mapsv to the distinguished node ofV , v

has a pc-childu in Q, andf is undefined onu. We say that two
nodes inQ are incomparable provided neither of them is an an-
cestor of the other. The following technical lemma serves two pur-
poses. First, it lets us eliminate those useful embeddings produced
by Algorithm UseEmb that will give redundant CRs. Second,
it guides us in obtaining all irredundant CRs from the remaining
embeddings, by choosing to embed or not, certain query nodes.

LEMMA 1. [Irredundant CRs] : Let Q andV be queries in
XP/,//,[ ]. Supposef : Q ; V is a useful embedding andT is
the CAT induced byf. Then the CRT ◦ V is irredundant iff: for
every nodex ∈ Q for whichf(x) is undefined, one of the following
holds:

1. there is no extensiong of f such thatg is defined onx, or

2. ∃ a nodez ∈ Q: Q contains a pc-path fromx to z, andz is
special for every extensionh of f that is defined onz, or

3. x is the distinguished node ofQ, and every extensionh of
f that is defined onx, mapsx to dV , the distinguished node
of V , and there is a nodey ∈ Q, incomparable withx, such
thath(y) is undefined.

Not all useful embeddings lead to irredundant CRs. In order
to generate a compact expression for the MCR, we need to iden-
tify embeddings leading to CRs which are not contained in other
CRs. We call a (useful) embeddinggood provided it yields an ir-
redundant CR. As an example, in Figure 9, consider the embed-
ding, sayf, that is defined only on the root//a. There are em-
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Algorithm MCRGen(query Q, view V) {
1. Run Algorithm UseEmb (Figure 6);
2. Generate all embeddings from the final labeled treeQ;
3. If (there are embeddingsf, g s.t.g is an extension off) {

if (∃x ∈ Q : x ∈ dom(g) − dom(f)) {
if (x does not satisfy the conditions in Lemma 1){

discardf. } } }
4. for each remaining embeddingh {

for each (x ∈ Q : h(x) is defined&x doesn’t have pc-parent{
let f be identical toh except it’s undefined

onx and its descendants;
if x satisfies Condition 2 or 3 in Lemma 1 w.r.t.h andf) {

mark nodex w.r.t. embeddingh. } }
generate all additional embeddings by making
embedding of marked nodes optional.}

5. for each embedding generatedf {
produce the CAT corresponding tof and create

the CRRf induced byf.}
return(the union of all CRs generated above).}

Figure 10: Generating the MCR.

beddings which extend this by mapping one or both theb’s. How-
ever, no extension is defined on the pc-childc or d as the case may
be. Thus, each of theb nodes acts as bothx and z in the theo-
rem. The CAT induced byf is b[//b/d]//b[c] and the resulting
CR//a//b[//b/d]//b[c] (R4 in the figure) is indeed irredundant.
Similarly, each of the embeddings used in Figure 9 and Figure8 can
be shown to yield irredundant CRs. The proof of this lemma will
appear in the full paper.
Algorithm MCRGen (in Figure 10) makes use of Lemma 1

to produce the MCR. It first obtains all useful embeddings using
Algorithm UseEmb (Lines 1-2). It then eliminates those em-
beddings that will give redundant CRs, by a straight application
of Lemma 1 (Step 3). Step 4 is interesting since it uses the same
lemma but in a different direction. Finally, it produces theCAT for
each embedding it generates and takes the union of the resulting
CRs (Step 5).

We illustrate Algorithm MCRGen next. Continuing with the
query/view in Figure 5(a), line (1) yields the final labeled query
tree in Figure 5(b). We obtain the three embeddingsh1 , h2, h3

shown in Section 3.2 (line 2). It is easy to see thath1 is an exten-
sion ofh3 and nodeVI ∈ dom(h1) − dom(h3) does not satisfy
conditions 2-3 in Lemma 1. So, we droph3 (line 3). It turns out
h2 cannot be dropped since there is noII ∈ dom(h1)−dom(h2)

satisfies Lemma 1. Forh1 , we will then mark nodeII (and nothing
else) [Line 4]. It turns out that forh2 no nodes can be marked. The
embedding resulting from markingII for h1 is identical toh1 ex-
cept it’s undefined onII and its descendants. This latter embedding
happens to coincide withh2 . So, the only two good embeddings
areh1 andh2 . Finally, we generate the two CRs corresponding to
h1 andh2 (shown in Figure 5(c)) and take their union (line 5). We
have the following:

THEOREM 3. [MCR Generation] : For a given tree pattern

queryQ and viewV such thatQ is answerable usingV , Algorithm
MCRGen correctly produces the MCR ofQ usingV .

While Algorithm MCRGen has an exponential worst case time
complexity in the size of the query (we know the MCR may be the
union of exponentially many tree pattern CRs in the worst case), it
tries to minimize the generation of embeddings that are not good,
i.e., those that will yield redundant CRs. We now move to QAV in
the presence of schema.

4. MAXIMAL CONTAINED REWRITING
WITH SCHEMA

We first make precise what it means to rewrite a query using a
view in the presence of schema. Letinst(S) denote the set of legal
database instances that conform to a given schemaS. We say query
Q is rewritable using viewV (both fromXP/,//,[ ]) in the presence
of schemaS, provided there is an expressionE such that on every
legal instanceT ∈ inst(S), E(V(T )) ⊆ Q(T ), and additionally,
there existsT ∈ inst(S) such thatE(V(T )) 6= ∅. We requireE to
be expressible inXP/,//,[ ] .

As explained in the introduction, generating MCR of a query
using a view in the presence of a schema involves reasoning about
the structure of the schema. In this section, we identify thetypes of
constraints that affect QAV forXP/,//,[ ] (Section 4.1), and develop
algorithms: (i) for inferring them from the schema (Section4.2),
(ii) for applying the constraints to the view (Section 4.3),and finally
(iii) for generating an MCR if one exists (Section 4.4). Throughout,
we assume the schema contains no recursion or union types. We
discuss recursive schemas in Section 5.

4.1 Constraints from Schema
As we will show, the essence of a schema can be captured by

using five types of constraints on legal instances of the schema.
These are defined and explained next. We call a node with taga,
ana node. We have:
Sibling constraint (SC): A sibling constraint (SC) [25] is of the
form a : b ↓ c, and denotes that whenever ana node has ab child
node, then thea node must also have ac child node.
Functional constraint (FC): A functional constraint (FC) [25] is
of the forma → b, and says that noa node has more than oneb
child node.
Cousin constraint (CC): A cousin constraint (CC) is of the form
a : b ⇓ c, and says that everya node that has ab descendant node
must also have ac descendant node.
Parent-child constraint (PC): A parent-child constraint (PC) is of
the forma ⇓1 b, and says that whenever ab node is a descendant
of ana node, it is necessarily a child.
Intermediate node constraint (IC): An intermediate node con-
straint (IC) is of the forma

c
→ b, and says whenever there is a

path from ana node to ab node, there is ac node on the path.
Satisfaction of constraints by an instance is straightforward and

is omitted. The notion of legal instance of a schema is similarly
omitted here for brevity. The reader is referred to [18] for more de-
tails. Of these, SC, FC have been previously studied by Wood [25],
whereas the remaining constraints are new. Note that a special case
of SC is the constrainta : {} ↓ c, which says everya node necessar-
ily has ac child. Similarly, a special case of CC isa : {} ⇓ c, which
says everya node necessarily has ac descendant. We illustrate the
constraints next.

Consider the schema of Figure 2(a). According to the schema,
we can observe the following: (1) Everybids must have at least
oneperson node, i.e.,bids : {} ↓ person holds in every legal in-
stance of this schema. (2)buyer can only be the child of node
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closed auction, i,e.,
closed auction ⇓1 buyer holds. (3) EveryAuction node has at
most oneclosed auction child, i.e.,Auction→ closed auction
holds. (4) Observe that any path fromAuction to person in Fig-
ure 2(a) must pass through either aclosed auction node or through
anopen auction node. Each of the latter node types is guaranteed
to have a descendant of typeitem. Thus,Auction : person ⇓ item
holds. (5) Suppose the edge fromitem to name was absent. Then
every path fromclosed auction to name would pass throughper-

son, i.e.,closed auction
person
−→ name would hold.

4.1.1 Properties of Constraints
We say that a constraintσ is implied by a schemaS, S |= σ, pro-

vided every legal instanceT of S satisfiesσ. Sibling constraints,
as introduced by Wood [25], are more general than those consid-
ered here, in that they are of the forma : S ↓ c, wherea, b are
node tags andS is aset of tags. It says if ana node has children
corresponding to each tag inS, then it must have ac child. Corre-
spondingly, in general, a schema can imply a cousin constraint of
the forma : S ⇓ c, with corresponding meaning. A key result is
that for the class of schemas we consider, the cardinality ofthe set
can never be more than one.

LEMMA 2 (SCS & CCS ARE UNARY). LetS be a schema
without union types or recursion anda : S ↓ c anda : S ⇓ c any
sibling and cousin constraints. ThenS |= a : S ↓ c iff S |= a : b ↓ c,
for someb ∈ S. Similarly, S |= a : S ⇓ c iff S |= a : b ⇓ c, for
someb ∈ S.

We note that Wood [25] proved a similar result for SCs for a
different class of schemas called “duplicate free” schemas.

One of the byproducts of the proof of Lemma 2 is the following
lemma, which yields an efficient algorithm for inferring CCsfrom
schemas. Define aguaranteed path in S to be a path such that all
the edge labels are either ‘1’ or ‘+’. E.g., in Figure 2(a), there are
three paths fromclosed auction to name all of which are guaran-
teed. Basically, thenS |= a : b ⇓ c iff on every path froma to b

there is a nodex such that there is a guaranteed path fromx to c.

LEMMA 3 (CC CHARACTERIZATION). LetS be a schema and
a : b ⇓ c a cousin constraint. ThenS |= a : b ⇓ c iff every path
in S from a to b passes through some nodex such that there is a
path fromx to c all of whose edge labels are not equal to ‘*’, ‘?’.

In the sequel, unless otherwise specified, by aconstraint, we
mean one of SC, FC, PC, IC, CC. We useΣ to denote the set of
constraints implied by a schemaS. We will discuss how to derive
them fromS in the next section. As a last desirable property of
constraints, we have the following result, where⊆Σ denotes con-
tainment w.r.t. databases satisfying the constraintsΣ.

THEOREM 4. [Containment with Schema] : Let S be a
schema without recursion and union types and letΣ be the set
of constraints implied byS. Let Q,Q ′ be any two queries in
XP/,//,[ ]. ThenQ ⊆S Q ′ iff Q ⊆Σ Q ′.

This result is important for the QAV problem, specifically for
generating the MCR.

4.2 Inference
How do we infer the aforementioned constraints given a schema?

Wood [25] gives efficient algorithms for inferring both SCs and
FCs. We address the inference of the rest in this section.

For a PCa ⇓1 b, we just need to make sure no path froma to b

in the schemaS passes through an element node with a tag6= a, b.

Algorithm extractConstraints(S) {
1. guarantPath(x, y) ← arc(x, y, ℓ), (ℓ = ‘1 ′ ∨ ℓ = ‘+ ′).

guarantPath(x, y) ← arc(x, z, ℓ), (ℓ = ‘1 ′ ∨ ℓ = ‘+ ′),
guarantPath(z, y).

2. cousin(x, y, z) ← path(x, y), ¬avoid(x, y, z).
avoid(x, y, z) ← arc(x, y, ℓ), ¬guarantPath(x, z),

¬guarantPath(y, z).
avoid(x, y, z) ← arc(x, w, ℓ), ¬guarantPath(x, z),

¬guarantPath(w, z), avoid(w, y, z).
path(x, y) ← arc(x, y, ℓ).
path(x, y) ← arc(x, u, ℓ), path(u, y).

3. inter(x, y, z) ← path(x, y), ¬bypass(x, y, z).
bypass(x, y, z) ← arc(x, y, ℓ), x 6= z, y 6= z.
bypass(x, y, z) ← arc(x, u, ℓ), x 6= z, u 6= z, bypass(u, y, z).

}

Figure 11: Algorithms for Inferring CCs and ICs expressed as
Datalog programs.

This can be done easily in polynomial time in the size ofS. We
omit the details.

Figure 11 gives an algorithm for inferring CCs and ICs. For
clarity, we present the algorithms as simple datalog programs, al-
though more efficient implementation is possible. The base predi-
catearc(x, y, ℓ) says there is an edge fromx to y whose label isℓ.
The program forcousin(x, y, z), i.e., for x : y ⇓ z, says this con-
straint is implied byS provided there is a path fromx to y, but
none of these paths avoids those nodes from which there is a guar-
anteed path toz. The program forinter(x, y, z), i.e.,x

z
→ y says it

is implied byS provided there is a path fromx to y and none of the
x → y paths bypassesz. While more efficient implementations are
possible, it is trivial to see that both CCs and ICs can be inferred
from a schemaS in timeO(|S|3), where|S| denotes the number of
nodes inS. Indeed, we have the following result, where for infer-
ring SCs and FCs, we use Wood’s algorithms [25]. The complexity
bound follows easily from the arity of the Datalog program used to
express Algorithm extractConstraints.

THEOREM 5. [Constraint Inference] : Given a schemaS,
all SCs, FCs, CCs, PCs, and ICs implied byS can be inferred in
timeO(|S|3).

4.3 Chasing the View
Before we can check the existence of MCR, we need to apply the

constraints inferred from the schema to the view. We formalize this
next by adapting the well-known chase procedure [8]. Given atree
pattern view (query)V and a setΣ of constraints, thechaseof V

w.r.t. Σ, written ChaseΣ(V), is obtained by a repeated application
of the followingchase rulesuntil there is no change toV .

• PC: wheneverad(a, b) ∈ V and a ⇓1 b ∈ Σ, replace
ad(a, b) by pc(a, b) in Q.

• SC: wheneverpc(a, b) ∈ Q, a : b ↓ c ∈ Σ, addpc(a, c) to
Q if it is not already present.

• FC: wheneverQ contains ana node with two pc-children
both taggedb anda → b, merge those twob nodes.

• IC: wheneverad(a, b) ∈ Q anda
c
→ b ∈ Σ, then replace

ad(a, b) by ad(a, c) andad(c, b) in Q. That is, insertc as
an intermediate node in betweena andb using ad-edges.

• CC: wheneverad(a, b) ∈ Q anda : b ⇓ c ∈ Σ, addad(a, c)

to Q if not already present.
Notice that only when rules SC, IC, CC are applied, new nodes

are introduced. The shape ofV is always preserved as a tree during
the chase. It is easy to see the chase always terminates sincethere
are no cycles in the schema graph. The following result brings out
the value of chasing.
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Figure 12: Illustrating explosion of chase with DAG schemas.

THEOREM 6. [Properties of Chase] : Let Q andQ ′ be any
TPQs,S a given schema, andΣ the set of constraints implied byS.
ThenQ ⊆S Q ′ iff Q ⊆Σ Q ′ iff ChaseΣ(Q) ⊆ ChaseΣ(Q ′).

This theorem suggests a method for testing the existence of MCR
for a query using a view, in the presence of a schema. We could
chase both the query and the view and then look for useful embed-
dings.However, it is important to note that the chase may take time
exponential in the schema size in the worst case.This is because
the schema graph is a DAG. An application of chase using all con-
straintsΣ inferred from the schema will result in an explosion in
the size of ChaseΣ(V). Figure 12 shows such a schema and view,
which explodes when chased. Note that in the schema, every node
of type a necessarily has a child of typeb and a child of typec,
and similarly for these latter node types, etc. The view is simply
/a, whereas the chased view contains 13 nodes! In fact, the figure
for “chased view” does not even show all possible nodes that would
be added by chasing with redundant constraints implied byS. By
stacking the diamonds several times, we could make the size of the
chased view exponential in the number of diamonds, and hencein
the schema size. Thus, an approach based on exhaustive chasewill
take exponential time to compute in the worst case. In the next
section, we show fortunately we do not have to chase exhaustively.

4.4 Generating MCR
A direct application of “useful embeddings” from the schema-

less case will not work when there is schema. The reason is it is
possible that the CAT induced by an embedding, when composed
with the view, leads to a rewriting query that is unsatisfiable w.r.t.
the schema. As an example, consider the queryQ ≡ //a//b and
the viewV ≡ //b. Suppose according to the schemaS, no a

node can be a descendant of anyb node.3 Then the rewriting query
//b//a//b, while correct from a schemaless perspective, leads to
an unsatisfiable query w.r.t.S . This motivates the following.

DEFINITION 2 (USEFUL EMBEDDINGS WITH SCHEMA). Let
Q, V,S be a query, view, and schema, andΣ the set of constraints
implied byS. Then an embeddingf : Q ; ChaseΣ(V) is a useful
embedding provided it satisfies the conditions in Definition1, and
additionally∀x ∈ Q such thatf(x) is undefined, there is a path
from tag(dV ) to tag(x) in the schema graph, wheretag(u) de-
notes the tag of a nodeu, anddV is the distinguished node ofV .

It is now easy to establish the counterpart of Theorem 1 in the
presence of a schema. Embedding from a query to schema graph is
defined in the same way as between queries.

THEOREM 7. [Existence of MCR] : Let Q, V , andS be a
query, view, and schema respectively. ThenQ is answerable using
V in the presence ofS iff: (i) there is a useful embedding from

3This can be inferred by examining the schema graph. However,
we don’t need to infer such constraints explicitly.

f : Q ; ChaseΣ(V), whereΣ is the set of constraints implied by
S and (ii) there is a total embedding fromT ◦V to the schema graph
of S, whereT is the CAT induced byf.

As hinted at in the last section, this theorem does not immedi-
ately yield an efficient algorithm for testing the existenceof MCR.

We show that by conducting chase in a “goal-directed” fashion,
we can indeed check existence of MCR as well as construct one if
it exists, in time polynomial in the sum of sizes of the query,the
view, and the schema. The first observation is that to test whether
Q ⊆Σ Q ′, it suffices to test ChaseΣ(Q) ⊆ Q ′. The reason is that
on databasesD satisfyingΣ, Q(D) = ChaseΣ(Q). Thus, we do
not need to chaseQ ′. In the context of QAV, this means it suffices
to chase the view alone.

The following lemma is key to showing that we can indeed con-
duct the chase in a goal-directed way. Intuitively, what we want to
do is for each nodea in Q but not inV , force it to appear inV
by chase if its presence is guaranteed byS. We do not care about
nodes that arenot present inQ. By avoiding those nodes, we can
make sure that we only need to conduct the chase at most| Q |

times, where|Q| is the number of nodes inQ.
Recall that during the chase either a node type is added to the

view, or two nodes are merged, or an ad-edge is converted to a pc-
edge. Of these node type addition alone is responsible for the high
complexity so we will focus on that. The node type may be added
as a leaf (for SC and CC) or as an intermediate node (for IC). Inthe
lemma below, we useQ − V to denote the set of nodes (tags) inQ

but notV .

LEMMA 4. [Intelligent Chase] : Supposeα ∈ Q − V be
a node type that appears inQ but not inV and letΣ be the set
of constraints implied by a schemaS. Supposeα ∈ ChaseΣ(V).
Then there is a constraintσ ∈ Σ such that chasingV w.r.t. σ would
addα to V , i.e.,α ∈ Chase{σ}(V).

The lemma says there is no need to add a node type ever to the
chase unless it also appears inQ. Furthermore, such a node can
be added to the chase in one application of a chase rule using some
constraintσ ∈ Σ. This means we can stop the chase when for
every node typea originally in Q − V , eithera has been added to
the chase ofV , or it can never be added. The latter condition can
be easily checked by testing whether any rule that has node type
a as a “consequent” (conclusion) can be fired. Thus, this lemma
guarantees there is no need to apply the chase rules any more than
|Q − V | times.

The above lemma can be proved based on the following facts: (1)
each chase rule has at most 2 antecedents and one consequent:e.g.,
a : b ⇓ c has antecedentsa andb and consequentc; (2) whenever
we have a pair of chase steps of the formα : β R1 γ andeither
α : γ R2 δ or γ : β R2 δ, whereR1, R2 are any of the chase rules
SC, IC, CC,α, β occur in the chase so far,δ ∈ Q − V butγ 6∈ Q,
then we can always addδ to the chase usingα : β R3 δ, for some
R3 ∈ {SC, IC, CC}. The lemma is proved from this.

In view of the lemma, if there is a way to add to the chase a node
type occurring inQ (but not inV ) it is possible to do so directly
without having to add node types not occurring inQ. E.g., consider
a view//a//b. Suppose we usea

c
→ b to chase it to//a//c//b

andc : b ⇓ d to derive//a//c[//d]//b. Then it is possible for
us to directly add the last added noded as a descendant ofa, to
yield //a[//d]//b. The reason isa

c
→ b andc : b ⇓ d together

imply a : b ⇓ d. Thus we could completely bypass addingc if we
wanted to.

Notice that the complexity of the intelligent chase isO(| Q −

V | . | V |2): in each step, we search and locate a constraint
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Algorithm MCRGenSchema(query Q, view V , schema S) {
1. Use Algorithm extractConstraints to derive constraintsΣ implied byS;
2. for each node typex ∈ Q − V {
2.1. if (∃ a constraintσ ∈ Σ: chasingV with σ givesx)

addx to V at the appropriate place;}
3. Let the result beV ′;
//* V ′ is actually the result of “intelligent” chase. *//
4. Use Algorithm UseEmb (Figure 6) to label the nodes ofQ using

label entries and prune them as appropriate;
5. If (the label entry of the root becomes empty && root is ‘/t’)

return(“no MCR exists”).
6. Pick any embedding encoded by he label entries left onQ’s nodes,

by following the chain of the entries from the root down.
7. Form the CAT and the CRR using the chosen embedding.
8. if (there is no total embedding fromR to the schemaS)

return(“no MCR exists”).
9. return(R). }

Figure 13: Testing Existence of and Generating the MCR with
Schema.

that might yield the node we wish to add and then test if the chase
rule is applicable, a step that costs at mostO(| V |2) operations,
since the constraints have at most two antecedents (which have to
be located inV ) and one conclusion (which is known). The number
of iterations isO(| Q−V |). Thus, the intelligent chase plays a key
role in our overall polynomial time algorithm for testing existence
of MCR and eventually generating MCR in the presence of schema.

We finally give the algorithm for testing the existence of MCR
in the presence of schema.

EXAMPLE 2. [Size of MCR] : Consider the schema, query,
and view shown in Figure 2(a),(b), and (d). UsingAlgorithm
extractConstraints, we can infer several constraints from
the schema (line 1), including1.person : {} ↓ name,
2.item : {} ↓ name, 3.closed auction : {} ⇓ name,
4.open auction : {} ⇓ name, 5.Auction : person ⇓ item, etc.
Note thatitem is the only node inQ − V and it can be added in
one step using constraint5 above (line 2). This leads to the view
in Figure 2(c) (calledV ′ in line 3). In line 4, we will determine
that nodesAuction and item in Q can be mapped to the corre-
sponding nodes inV ′. More precisely, the label of the query root
will be 1 and that ofitem will be (1 : {2}), where1 (2) is the
node id ofAuction (item) node inV ′. Line 5 does not apply and
line 6 generates the only embedding encoded in the labeling,as
described above. In line 7, the corresponding CAT is the treeper-
son//name. This leads to the CRAuction[//item]//person//name.
In line 8, we check that there is indeed a total embedding from
this CR to the schemaS of Figure 2(a). So, in line 9, we output
R, namelyAuction[//item]//person//name. Notice that we have
written the rewritten queryR usingV ′. Dropping nodes fromR

that were not present inV gives the rewriting queryR ′, namely
Auction//person//name, which is equivalent toR in the presence
of schemaS.

The next example illustrates some nuances of the above algo-
rithm.

EXAMPLE 3. [Size of MCR] : Consider Figure 14, showing
the schema (a), view (b), query (d), view chased using intelligent
chase (c), and MCR (e). Note that during the chase, we cannot
distinguish between the twobids nodes. Thus, we chase them uni-
formly, thus creating the same substructure below eachbids node.
The query is labeled usingAlgorithm UseEmb. Note that the
label of the distinguished nodebids only includes(1 : {5}) and not
(1 : {4}), just as for the schemaless case. This is because this node
must be mapped on to the distinguished path by any useful embed-
ding. Figure 14(d) shows the result after Algorithm UseEmb ter-
minates, i.e., after labels are pruned. At this point, the label entries

in Q encode two embeddings fromQ to the chased viewV ′. We
can pick either of them. No matter which one we pick, notice that
it embeds away all the nodes ofQ. Thus, the CAT tree is just the
trivial tree with one nodebids, i.e., CAT corresponds to the identity
compensation query. We need to compose it with theoriginal view
V , to get the rewriting query shown in Figure 14(e). The readeris
invited to check it is indeed the maximal contained rewriting.

The following theorem is key to the correctness and efficiency of
the above algorithm.

THEOREM 8. [Uniqueness of embedding] : Let Q, V , and
S be the input query, view, and schema to Algorithm MCRGen-
Schema. Then after line 5 of the algorithm, every embedding that
is encoded by the label entries at the nodes ofQ will embed the
same set of nodes ofQ.

The theorem says that if at all more than one embedding is en-
coded by the label entries that are left after pruning is completed,
then all of them will be defined on the same set of nodes ofQ, al-
though they may not agree on where the nodes are mapped. This
is significant, since from the point of view of CAT formation,what
matters is which nodes are embedded (or not), not where they are
embedded. This means all the embeddings that are left over es-
sentially induce the exact same CAT, indicating they all induce the
same CR. Since the embeddings that were pruned by the algorithm
generate redundant CRs, this means in the presence of a schema
(without recursion or union types),the MCR of a query using a
view consists of at most one tree pattern CR, a result that is not
obvious.

Consider any of the examples in Figures 5, 7, 8, and 9 (from
the schemaless section), where the MCR was the union of two or
more CRs. In all those cases, either the query, or the view, orthe
rewriting involved repeating tags on the same path. This will be
inconsistent with a non-recursive schema. Thus, the MCR remains
a single TPQ.

Theorem 8 is proved using the following steps. (1) If a path
of Q is completely embedded intoV , then choosing not to embed
some of its nodes will lead to redundant CRs. Also, it does not
matter where nodes on the path are mapped as long as they are al
completely embedded. (2) If a path has a terminal nodex (i.e.,
descendants ofx on the path are not embedded), then by definition
x and all its ancestors must be mapped toPV , the distinguished
path ofV . Since the schema graph contains no cycles (as there is
no recursion), each of these nodes must map to a unique node on
PV .

Finally, we can show the following:

THEOREM 9. [QAV with Schema] : Algorithm MCRGen-
Schema correctly decides whether a queryQ is answerable using
a view V in the presence of schemaS. Furthermore, the rewrit-
ing queryR returned by it is the MCR. The algorithm takes time
O(max{| S |3, | Q | .(| Q | + | V |)2, | Q − V | . | V |2)).

The first two claims follow from the preceding theorem. The
complexity is established as follows. Line 1 (constraint extraction)
takesO(| S |3) time as already discussed. Line 2 is essentially
intelligent chase and so takesO(| Q − V | . | V |2) time, as
discussed earlier. Line 4 takes timeO(| Q | .( size of view)2) and
since we are applying this step (i.e., Algorithm UseEmb) to chased
view, in the worst case, the size of the view might be| Q | + | V |.
Line 5 is negligible. Line 8 checks whether the rewriting query R is
embeddable into the schema graphS. This can be done by simply
checking for every edge inR whether there is a path/edge between
corresponding tags inS, as the case may be.
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Figure 14: Illustrating Algorithm MCRGenSchema.

In sum, when schema is available, we have shown the MCR is
a single TPQ and its existence and generation can both be donein
polynomial time.

5. DISCUSSION: RECURSIVE SCHEMAS
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Figure 15: Example: MCR for Schema with Recursions.

QAV in the presence of recursive schemas shares certain com-
mon traits with QAV without schemas and also with QAV with
non-recursive schemas (without union).

Compared with schema without recursion, the difference forQAV
schemas with recursion is that, instead of the MCR consisting of a
single TPQ, it may be the union of contain multiple TPQs. E.g.
Figure 15 shows a recursive schema and a queryQ and viewV .
The MCR is the union of four TPQsR1-R4 . The query, view, and
CRs are all satisfiable w.r.t. the schema. This example showsthat
the size of MCR may be exponential when the schema contains re-
cursion. What is the source of this exponentiality? We offeran
insight below.

Recall that the exponential size of the MCR with no schema
stems from the optionality of embedding, i.e., for certain query
nodes that are embeddable in the view, we have the choice of em-
bedding them or not: if we don’t use the embedding, the nodes will
be put into the clip-away tree (CAT) and be attached below thedis-
tinguished node of view. One observation is that such attachment
will result in the repetition of node tags on the same path. Thus
if such repetition is allowed by the cycles in a schema, MCRs that
are unions of exponentially many CRs can also arise for schema
with recursion, with a corresponding implication for the worst-case
complexity of generating the MCR.

Note that the presence of a recursive schema, just like a non-
recursive schema, does impose some constraints on legal database
instances. We need to establish whether additional types ofcon-
straints are needed for capturing the effect of a recursive schema,

on top of the five types needed for the non-recursive case. Sec-
ondly, we need to ascertain whether the chase terminates andin
how many steps.

For a recursive schema, constraint inference procedure forthe
five constraint types should be modified as follows. It turns out
inference of all constraint types but the PC constraint, remains un-
changed. Cycles have the effect of permitting arbitrarily long paths
in the instance, with node tag repetitions. This only impacts con-
straints that are related to path length. Among the five constraint
types, PC is the only such type. The modified inference for PC is
as follows: for any two nodesp andq, if there is no node between
p andq in the schema, andp, q are not in any cycle, i.e., there is
no path fromp (q) to itself in the schema, thenp ⇓1 q holds.

Compared with the MCRGen algorithm for the schemaless case
shown in Figure 10, the only modification is in deciding which
nodes can have choice of embedding. To be more specific, for ev-
ery query nodep on the distinguished path of queryQ, assume
its corresponding node in the schema isp’, also assume the corre-
sponding node of the distinguished node of view V,dV , is dV ’. If
there exists a schema path fromdV ’ to p’, then we have the choice
of embedding thep node or not, i.e.,p node can either be embed-
ded into the view or be put into the clip-away tree and be attached
underdV . More work is needed for solving QAV completely for
recursive schemas. However, the insights generated from QAV for
recursion-free (and union-free) schemas is promising.

6. RELATED WORK
Query answering using views has been studied extensively for

the relational model [13]. This problem has been rigorouslystudied
for the class of ’ regular path queries [12, 6] and in semistructured
graph databases [20]. Deutsch and Tannen have studied the prob-
lem of query reformulation in the context of relational-to-XML
publishing. They reduce the QAV problem for XQuery to relational
query reformulation under constraints. They show that their ex-
tended chase and back chase procedure is complete for this problem
for a subclass of XQueries. Tang and Zhou [23] conducted a formal
analysis of QAV for XPath, but they adopt a tuples-of-nodes se-
mantics, which is at variance with the standard. Xu and Ozsoyoglu
[26] specifically focused on rewriting TP queries using material-
ized views and is the closest to our work by far. They characterized
existence of rewrites for various subclasses ofXP/,//,[ ],∗, which
includes wildcards, and analyzed the complexity of finding min-
imal equivalent rewrites. The major difference between allthese
works and the problem we consider is that we focus on contained
rewriting (which is more suited for information integration) as op-
posed to equivalent rewriting (more suited for classical query opti-
mization). Besides, neither of [23] or [26] consider the problem in
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the presence of schema.
It turns out there are dramatic differences between these prob-

lems as far as XPath goes. For instance, [26] show that forQ, V ∈
XP/,//,[ ],∗, with roots as distinguished nodes, there exists a rewrit-
ing of Q usingV iff Q ⊆ V . This doesn’t hold in our setting. E.g.,
let Q be//a andV be//b. In the absence of any schema knowl-
edge,Q is answerable usingV : Q ◦ V , i.e.,//b//a is a contained
rewriting. ButQ andV are incomparable. In their setting, even in
the absence of schema, the rewrite query is always expressible in
the same language as query, i.e., there is no need for adding union.
In sharp contrast, for us, the rewriting query is in general express-
ible only as a union of tree pattern queries, which may be exponen-
tially many in the worst case. It is remarkable even without adding
wildcard (which together with branching is known to be a source of
high complexity even for containment [17]), the complexityof the
QAV problem for this class can be high. Analyzing the problemin
the presence of a schema, to the best of our knowledge, is novel.

There has been much related work on semantic caching [7], heuris-
tic uses of materialized views for speeding up XPath query pro-
cessing [3], query evaluation against a set of materializedviews in
a schema evolution scenario [19], and determining XPath views to
materialize based on mining [27]. While the goals are similar to
ours at a high level, the methodologies and the results are substan-
tially different from us.

Last but not the least, there has been much work XPath con-
tainment and equivalence in the absence and presence of schema
(e.g., see [8, 2, 17, 18]). The connection between QAV and con-
tainment is well understood. Our embeddings are essentially par-
tial homomorphisms, but they raise challenges that are unique to
them: e.g., some embeddings that are restrictions of other embed-
dings sometimes generate redundant CRs and sometimes irredun-
dant CRs. This needs careful handling. The notion of chase iswell
known in the database literature. While numerous papers have used
it before, it had to be tailored to the particular class of constraints
we have, to make the procedure intelligent and efficient.

7. SUMMARY AND DISCUSSION
Motivated by information integration applications, we studied

the problem of answering tree pattern queries using tree pattern
views by (maximal) contained rewriting. We studied this first in
the absence of schema and showed that in the worst case, the size
of the maximal contained rewriting can be exponential in thesize
of the query. However, we are able to test the existence of MCRin
polynomial times. We also developed an algorithm for generating
the MCR when one exists, based on our characterization of MCR.

When a schema (without recursion and union types) is given, the
MCR consists of a single CR which is a TPQ. Besides showing this,
we developed algorithms for testing the existence of MCR as well
as for generating it. Both of them take polynomial time in thesum
of sizes of the query, the view, and the schema. Our approach is
based on capturing the essence of semantic information in a schema
using five classes of constraints. We also gave a simple algorithm
for inferring all constraints implied by a given schema, which is
then exploited in the chase.

There are three orthogonal directions for future work: (i) larger
query classes (e.g., inclusion of wildcard, limited forms of dis-
junction, and order), (ii) larger classes of schema (e.g., with union
types, recursion, etc.), and (iii) other data integration models such
as GLAV [15]. Contained rewriting for XQuery is also an impor-
tant problem with significant impact.

We conducted a series of experiments to measure the perfor-
mance gains and the overhead (for testing query answerability) and
report the results in [14]. They confirm exactly what one would

expect from use of materialized views for query answering: sub-
stantial savings and minor overhead.
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