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ABSTRACT

We study the query answering using views (QAV) problem feetr
pattern queries. Given a query and a view, the QAV problemais t
ditionally formulated in two ways: (i) find an equivalent neting

of the query using only the view, or (ii) find a maximal contin
rewriting using only the view. The former is appropriate éteis-
sical query optimization and was recently studied by Xu azd O
soyoglu for tree pattern queries (TP). However, for infotiorain-
tegration, we cannot rely on equivalent rewriting and mostdad
use maximal contained rewriting as shown by Halevy. Moguat
by this, we study maximal contained rewriting for TP, a carb-s
set of XPath, both in the absence and presence of a scheni Int
absence of a schema, we show there are queries whose maxim
contained rewriting (MCR) can only be expressed as the uofon
exponentially many TPs. We characterize the existence aba-m
mal contained rewriting and give a polynomial time algaritfor
testing the existence of an MCR. We also give an algorithm for
generating the MCR when one exists. We then consider QAV in
the presence of a schema. We characterize the existenceafia m
mal contained rewriting when the schema contains no remuisi
union types, and show that it consists of at most one TP. We giv
an efficient polynomial time algorithm for generating thexinzal
contained rewriting whenever it exists. Finally, we disc@AV in

the presence of recursive schemas.

1. INTRODUCTION

With the popularity of XML for data exchange as well as for
representing and manipulating semistructured data, thesdeen
substantial work on optimizing XML queries. XPath [29] isth
language recommended by W3C for navigation of XML documents
and for information extraction. Itis a core sublanguagetb&éoma-
jor XML query languages like XQuery [30] and XSLT [28]. There
has been much work on efficient XPath evaluation [11], inagxi
techniques [21, 24], structural join algorithms [1, 5], dig&s on
expressive power [4], and containment and equivalence @itiXP
queries [2, 8, 17, 18, 10, 25].

One of the touted applications of XML is the integration dbin
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mation from multiple sources. The sources are regardedeagsvi
and queries need to be answered using the (materialized}y vie
This is the well-known query answering using views (QAV) pro
lem. For relational databases, this problem has been stedten-
sively (e.g., see [16, 13]). In particular, [22] discussesefiicient
algorithm for finding maximal contained rewriting for conjtive
relational queries using views. The QAV problem for XML is re
ceiving increasing attention.

The QAV problem is traditionally formulated in two differen
ways. Theequivalent rewriting formulation, motivated by classical
query optimization, is given a que and viewV find if there is
a rewriting of Q usingV that is equivalent t@). Using material-

aj,zed views for speeding up query processing has been stidied

the context of semistructured data for regular path quéti2s6].
Deutsch and Tannen [9] have studied and characterized @1y qu
reformulation problem for XQuery in the context of XML pusthi-

ing. Chen and Rudensteiner [7] and Yang et al. [27] as well as
Balmin et al. [3] use heuristic approaches for using maieed
views for speeding up XPath query evaluation. Tang and ZB8l [
and Xu and Ozsoyoglu [26] conduct a theoretical study QAV for
XPath fragments corresponding to tree patterns. All theseksv
focus on equivalent rewriting (or its restriction).

However, there are several situations where we cannot find a
rewriting that is equivalant to the query because of the slatiaces’
limited coverage, which is very common in information integ
tion scenario [22]. Instead, we search fomaximally-contained
rewriting, which provides the best possible answer, given the avail-
able sources. The problem definition is that giverandV, find
if there is a rewriting ofQ usingV that is contained irQ (over
all possible databases) and is maximal. That is, the regritiro-
duces sound answers (contained) and no other containeimgwr
produces more answers (maximal). It is well-known that aiored
rewriting is more appropriate fanformation integratiorj13, 15,

22].

Our focus in this paper is the contained rewriting problem fo
tree pattern (TP) querie$ree patterns capture a fragment of XPath,
specificallyXP’+//l | consisting othild, descendant, and
branching. We illustrate the problem next.

Rewritingwithout schema: Figure 1(b) shows a materialized view
computed by the expressidn “//Trials//Trial” on some database
containing clinical trials and patient data. Figure 1(ajvgs one
possible databade thatV’s result might have come from, in which

we have numbered nodes for easy reference. We consider this
D in the rest of this example. The materialized view contains
all Trial elements fromD, i.e., 3, 11, 14. Consider the query
Q, /[Trials[//Status]//Trial. Of the two Trials elements (2, 13)

in D, only 2 has aStatus descendant. So, by applyin@ on



(PharmaLab (1)
(Trials @type="T1’) (2)
(Trial) (3) (Patien} (4) John Doe(/Patient ...
(Status (10) Complete(/Statug (/Trial)
(Trial) (11) (Patienj (12) Jennifer Bloe(/Patien; ...(/Trial)
([Trials)
(Trials @type = “T2") (13)
(Trial) (14) (Patien} (15) Mary Moore (/Patien} ...(/Trial)

(Trial) (3) (Patient) (4) John Doe (/Patient)...
(Status) (10) Complete (/Status) (/Trial)
(Patient) (12) Jennifer Bloe (/Patient) ...(/Trial)

(Patient) (15) Mary Moore (/Patient) ...(/Trial)

(Trial) (1)
(Trial} (14)

([Trials)
(/PharmalLab
(a) A Sample XML Document D (b) The View V of Sample XML DocumerD.
Figure 1. Example: Maximal Containment Rewriting Without Schema
Auctions //Auchtion [ QUC“{\” ]
Auct?ron person -« item nar‘ne*
x> ~7 (b) View Vv (c) CQuery Q
open__auction closed__auction
itern © 7 bids  Buyer TIAGetion |
B : I :
\person . person
r“lame naHr‘ne *

a) Schema S

d) Maximal Contained Rewriting R

Figure 2: Example: Maximal Containment rewriting with schema. Rewriting XPath expression for (€) is//name.

D, the twoTrial subelements (3, 11) of 2 will be returned. Now
suppose only the materialized result 6f(Figure 1(b)) is avail-
able (as a data source). To answgrusing (only) V, we can
apply somecompensation query E to the result ofV. The query
is thus rewritten ag& o V, whereo denotes composition. In our
example, a compensation query i$//Status]”. The composi-
tion “.[//Status]”o"//Trials//Trial” is actually the quernyR, “//Tri-
als//Trial[//Status]”. We call R a rewriting (query). It is acon-
tained rewriting sinceR is contained inQ, i.e., on every database,
the result of applyin@ is a subset of that of applyin@. The rea-
son is descendants dfial are also descendants Gials. For our
example database, R returns the firsfrial element (3) , but not
the second (11). Thus, usifywe get sound answers @ but
not all of them. As our techniques will show, among all coméai
rewritings, R is themaximal contained rewriting (MCR) in that it
is not possible to get more (sound) answerftasingV. These
notions are made precise in Section 2. In this example, we hav
knowledge of the schema.

Rewriting with schema: Consider Figure 2(a). It shows a schema
for auctions in schematic form. AAuction consists of zero or
more (edge label “*open_auctions and an optional (“?'tlosed_
auction. An open_auction has a mandatory (no labétgm and
an optional (‘?") bids and so on. Consider the vieW, //Auc-
tion//person and the quer®, //Auction[//item]//name. To obtain
the MCR, notice that fromperson elements returned by, we can
easily extract their descendamames. However, we need to en-
sure the ancestokuction of the person has a descendaitem.
According to the schema (Figure 2(a))em cannot appear be-
low person, so we have no apparent way of ensuring the ancestor
Auction of person has a descendaitem. However, the schema
has the following constraints: there are three paths fAaration

to person, one passing throughpen_auction and two through
closed_auction. Both open_auction andclosed_auction have a
mandatory childtem. So even/Auction that has a descendgrgr-
son must have a descendatgm. Thus, we can safely extract the
names of thepersons returned by/. Thus, we can use the com-
pensation query/fname” and obtain the contained rewriting,
“/Iname o //Auction//person”, i.e., “//Auction//person//name”.
The details of inferring constraints from the schema will ebe
plained in Section 4. We will shoR is the MCR, given the schema
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of Figure 2(a). R is not equivalent tadQ, however, since given a
database instance of the schema of Figure Zayyill also find
item names but nQqR.

In general, given a view in XP/>//>U which is materialized,
and a quenQ in XP/+//U to be answered, we consider the prob-
lem finding the maximal query rewriting both in the absence an
presence of a schema. In this paper, we make the followinggicon
butions:

e \We characterize the existence of contained rewriting in the
absence of schema and show that testing existence of MCR
can be done in polynomial time (Section 3.1). We also show
that in the worst case, the maximal contained rewriting,iwhe
it exists, can only be expressed as a union of exponentially
many queries irXP/>//>!". This shows that the size of the
MCR can be exponential in the size of the query (Section 3.2).
We develop an algorithm for generating the MCR, when it
exists, in Section 3.3. The algorithm has an exponentiastvor
case complexity, which is also the worst case the MCR size.

We consider QAV in the presence of a schema without re-
cursion and union types. To obtain the MCR, we extract
the essence of a schema using five types of constraints (Sec-
tions 4.1 and 4.2). These include the well-knasilsling con-
straints [25] as well as new constraints such@msisin con-
straints(e.g., as shown in Figure 2(a), “evelyction having
descendanperson must also have descendatgm”). We
provide a chase procedure w.r.t. these constraints and show
it preserves equivalence w.r.t. the schema (Section 4.3).

We characterize the existence of MCR in the presence of
schema with no recursion or union types (Section 4.4). Fi-
nally, we use the chased view to develop an efficient algo-
rithm for obtaining the MCR of a query w.r.t. a schema.
Based on our algorithm, we are able to show that in the pres-
ence of a schema, the MCR, when it exists, can be expressed
by exactly a singl&XP’>//-I query (Section 4.4).

We discuss issues arising in solving the contained rewgritin
problem in the presence of recursive schemas (Section 5).

Some background appears in Section 2. Related work appears
in Section 6. We summarize the paper and discuss future work i
Section 7.



2. PRELIMINARIES

XML Databases & Tree Patterns: An XML database is a finite
rooted ordered treB = (N, &, 1, A), where\ represents element
nodes.£ represents parent-child relationshiyp the labeling func-
tion, assigns a tag to each node, ansd the root. In this paper, we
do not consider order. Elements may have associated a¢tsibit-
tributes and leaf elements have associated values. Figievls a
sample XML database.

A tree pattern query (TPQ) [2] is a pairQ = (N, E), where
(N, E) is a rooted tree, with nodes X labeled by tags, and with
E = Ec U E4 consisting of two kinds of edges, callgd-edges
(E.) andad-edges E 4), corresponding to the child (/) and descen-
dant (/) axes of XPath. A distinguished nodeNhcorresponds
to the answer element. Figure 2(b)-(d) are examples of TR@s.
each figure, we identify the distinguished node by placingagn
terisk (**') next to it. E.g., the quenQ in Figure 2(c) represents
the XPath expressiofiAuction[//item]//name. TPQs capture the
XPath fragmenkP’//>l!. Notationally, we writerel(x,y) € Q
to mean thaf) contains ael-edge fromx toy, whererel is one of
pc or ad.

Answers for TPQs are captured using matchingsmatching
of a TPQQ to a databas® is a functionh : Q — D that maps
nodes ofQ to nodes ofD such that: (i) structural relationships
are preserved — whenevpe(x,y) € Q, h(y) is a child ofh(x)
in D and whenevend(x,y) € Q, there is a path fron(x) to
h(y) in D; and (ii) for each node € N, its tag matches the tag
of h(x) in D. We useh(x) to denote the element @& rooted at
the nodeh(x), A TPQ may have multiple matchings to a database.
The answer to a TPQ with distinguished node on databas®
isQ(D) ={h(x) |h:Q—=Disa matching Notice thatQ(D)
is a set of elements.
QAV: Let Q,Q’ be any queries. TheR is contained inQ’,
Q C Q/, provided for every databade, Q(D) is a subset of
Q’(D). For the class of queries considered in this paper, the exis-
tence of a homomorphism froi®’ to Q is a necessary and suf-
ficient condition forQ C Q' [2, 17]. Q is equivalent to Q’,
Q = Q',whenQ € Q'andQ’ C Q. We writeQ C Q’
to indicateQ C Q’, butQ # Q’. LetQ be a query and/ a
view, both inXP”//>l!. ThenQ is said to beanswerable using V
provided there is @ompensation query E such that theewriting
query R E o V is contained inQ, and for some databage,
R(D) # 0 [13, 22]. We call this rewritinQR a contained rewriting
(CR) of Q usingV.! We require CRs to be tree pattern queries, i.e.,
expressible irkP/>//*I. A maximal contained rewriting (MCR) R
is a contained rewriting that is maximal, i.e., there is nweotton-
tained rewritingR’ such thaR C R’. We allow MCRs to be unions
of one or more CRes, i.e., unions of expression¥m// !
Schema: We study QAV in the presence of a schema. We model
schema of XML databases using schema graphs (see Figuffer2(a)
an example). A schema graph is a directed edge labeled amd nod
labeled grapls = (N,E). S has a node corresponding to each
element of the schema it models. This node is labeled with the
element tag.S has an edgéu, v) wheneven is a subelement of
u.2 Edges are labeled by one of the quantifiers ‘1’ (one), ‘+' (one
more), “?’ (zero or one), **’ (zero or more). The default [zl
and is usually omitted. Additionall§ may have sequence nodes

cardinality. Union nodes are used to model union types. 18ahe
graphs can model DTDs as well as a core fragment of the stalctu
aspects of XML schema. Unless otherwise specified, we censid
schemas without union types and recursion. We assume ttlerrea
is familiar with the notion of a database conforming to a scage
as defined, e.g., in [18].

Query containment can be relativized to a schema. E.g§ let
be a schema an@, Q’ queries. TherQ is S-contained inQ’,
written Q Cs Q’, provided on all databasé3 that conform taS,
Q(D) C Q’(D). Other notions follow easily. Les be a schema,
andQ andV be as above. TheQ is answerable using V wir.t. S
provided there is @ompensation query E such that theewriting
query R = E o Vis contained inQ w.r.t. S, i.e.,R Cs Q, and
for at least one databage, R(D) # (. Contained and maximal
contained rewritings are defined as for the schemaless easept
we useCs instead ofC.

Problem Statement: We would like to characterize whether a tree
pattern query can be answered using a tree pattern view aabbge
algorithms for testing this as well as for generating the MER
exists. We wish to do this both in the absence of a schema dhd in
presence of a schema. Unless otherwise specified, we aseame t
schema contains no union types or recursion. We discusesieeu
schemas in Section 5.

3. MAXIMAL CONTAINED REWRITING
WITHOUT SCHEMA

When no schema is available, we do not have any constraints
on which elements may (not) appear as (transitive) subeienos
which other elements. This raises the questions: (i) how do w
detect if a query is answerable using a view?, (ii) can the MCR
be expressed as a TPQ?, (iii) how do we generate the MCR? We
address these questions below.

3.1 Testing Existence of Rewriting

Our approach for testing the existence of MCR makes use of the
notion of embedding. Le® andV be tree pattern queries. An
embedding is a partial matching : Q ~ V that preserves node
tags and structural relationships, and additionally isanoelosed:
if fis defined on a node € Q, it is also defined on all ancestors
of xin Q.

/A /B /A

[ I I

B D B

I [
View V Query Q1 || Query Q2

Figure 3: Examples of non-existence of containment mapping

Intuitively, the basic idea of maximal containment rewngiis
to find the set of query nodes that don’t have an embeddingein th
view, and appropriately put those nodes under the distingua
node of the view, such that the structural relationshipsiédquery
are preserved. Such set of un-embedded nodes can be aniy (poss
bly empty) subset of the set of all query nodes. Then the oprest
is, since this set always exists, then does a containmemitireyv

and union nodes. These nodes are unlabeled. Sequence nedes ag|ways exist? Our answer is “no”. As an example, Figure 3 show

used to model groups of subelements occurring with a common

In practice, what we really need to answ@rusingV, is for the
compensation query to be applied to the materialized results of
V. But our analysis requires working with the rewriting qué&ry

2We blur the distinction between elements and attributes.
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two querieQ; andQ; that cannot have any MCR against the view
V in the same figureQ; fails because it asks fat elements in an
XML document that is rooted at, while V materializes the ele-
ments in the document rooteda@t Due to mismatching document
roots expected, the result &f is useless foiQ, i.e., Q; is not
answerable usiny. Now considerQ,. Itis straightforward that



the d node inQ2 has no embedding iY. We could try attach-
ing d under thec node inV, which is the distinguished node bf
But the resulting rewriting is not a containment rewritis@ce the
parent-child relation betweemandd node inQ; is not preserved
in the rewriting.

The distinguished nodes @ andV are denotedlg anddv
respectively. The path from the root of a qué&y(resp. viewV)
to dg (resp.,dv) is called thedistinguished path, denoted a®q
(resp. Pv). To characterize the existence of contained rewritings,
we defineuseful embedding. We first introduce a few notions. Let
f:Q ~» D be an embedding. L& = (x1, ..., xn ) be a path imQ.
We callx, asuccessor of x; in P and so on. Suppose, i < n, is
the last node irP such thatf(x;) is defined and(xi) € Py. We
call x; theanchor of P w.r.t. f.

DEFINITION1 (USEFULEMBEDDINGS). An embeddingf :

Q ~ Vs useful provided: (i)f is the empty embedding and the
root of Q is qualified with a ‘//’; OR (ii) (a)Vx € Pq, if f(x)

is defined, therf(x) € Pv; AND (b) V pathP in Q, one of the
following holds: (I)f is defined on every node iy OR (Il) 3x € P
such thatx is the anchor oP andy its successor i, andeither
f(x) = dv, the distinguished node &f, or f(x) is a descendant of
dv, orad(x,y) € Q. [

We illustrate this next. Condition (i) says an empty embeddi
is useful as long as the query root is qualified with a ‘//". dtn
the root nodenustbe embedded to the root ®f, for obtaining a
CR, making the embedding non-empty. Condition (ii)(a) St
if every node onPq has an embedding in the vieW, the target
node must be o’y . Thus the context oflg is captured by the
context ofdy . Condition (ii)(b) says the anchor node (if any) w.r.t.
any query pat? must be either mapped tb, or its descendant, so
that its successors that don't have any embedding can hshatta
below dv without violation of any query predicates, or it cannot
have a query child connected with a parent-child edge (segh
node in queryQ; in Figure 3 as a counterexample). By studying
the Q2 andV shown in Figure 3 again, ily in V is changed to
beb instead ofc, then we can obtain an MCR @J, by attaching
the d node under thé node inV with a parent-child edge, i.e.,
[/d]” o fallb[/lc).

A useful embedding intuitively captures which query obligas
are already fulfilled by the view and which ones are left oWe
capture the left-over obligations via the notion of clipesamwtrees,
defined next. Lef : Q ~ V be a useful embedding. Call a node
x € Q aterminal nodeif f(x) is defined ana has at least one (pc-
or ad-) childy € Q such thatf(y) is not defined. Figure 4(a)-(b)

1//Trials

v
/Trials . ~ 3 dummy  dummy
Trial % Status : i _2 H T'73rH
777777777 Status Patient
View VvV
©)
@ (b) \LL
yTrials | Trial
Co of V. K
d ! il . R — / \\

S Trial e Status Patient
CAT

@)

CAT . - ..
[ status Patient X

Rewriting R_f
e)

Figure 4: Useful Embeddings, Clip-away Tree, and Rewriting.

Ouir first result shows that useful embeddings completely-cha
acterize the existence of an MCR in the absence of a schema.

THEOREM 1. [Existence of MCR] : Let Q andV be tree
patterns. ThelQ is answerable usiny, i.e., there exists an MCR
of Q usingV, iff there is a useful embedding: Q ~ V. [

The proof will appear in the full paper. In the sequel, we only
consider useful embeddings unless otherwise stated.

Figure 6 presents our algorithm for generating useful embed
dings, which is the basis for the test for the existence of MGR
use the query) and viewV in Figure 5 to illustrate the algorithm.
Nodes are numbered (Arabic forand Roman foQ) in Figure 5.
The algorithm consists of 4 key steps.

(1) Assign alabel entry set for the query root. The root’s label
entry set is of the fornk, wherelL is a set of node id’s fronV. If
the query root is//t’ the label is the set of the nodes with tagn
the distinguished path df. E.g., the query root is assigned the
label{1, 2}, i.e.,label (1) = {1, 2} (Figure 5(a)). If the query root is
‘/t’ then if we can’t find a matching root (t’) in V we exit with
failure (line 1.2).

(2) We assign label entries for other nodesby making a top-
down pass orQ. The latter label entries are of the forim: L,
wherei is a node id inv andL is a set of node id’s ifV. It says if
an embedding maps the parentxofo i, then it can mayx to one
of the nodes ifi.. We overload notation and usabel (1) to denote
the label entry set of any query nodeand writei € label(u) to
meani € L, for some label entry : L in label(u). If there is
no suchj : L in label(u), we writei ¢ label(u). Line 2.1 adds
a label entryi : L to label(x) providedi € label(y), wherey is
the parent ofx andL is the set of nodes iV to whichx can be
consistently embedded. Line 2.2 prunes those nodeslfroot on
Pyv wheneverx is onPq. (RecallPy is the distinguished path of

shows a useful embedding. The embedding is defined only on theV.) E.g., in Figure 5(a), we obtalabel (I11) = 1: {2}, 2:{}. The

Trials node (id 1) inQ. Thus, it is a terminal node: it has two
childrenStatus (id 2) andPatient (id 3) which are not embedded
into V. For each childy; of a terminal nodex such thatf(y;i) is
undefined, lefly, be the subtree o) rooted aty; and IetTh’|i be
the tree obtained by adding a dummy root as the parent of tite ro
of T, ,, the type of the edge connecting the dummy root to the root
of Ty, being the same as the edge typéxafy;) in Q. Figure 4(c)
illustratesT, and T3 for the two children2 and3 of the terminal
nodeTrials (1) there. Finally, theclip-away tree (CAT) induced by
the useful embedding is obtained by merging the dummy roots
of all the treesT, identified above and changing the tag of the
dummy root to match the tag of the distinguished nod¥ oE.g.,
doing so forT, andT; results in the CAT shown in Figure 4(d).
Finally, the rewritingR¢ induced byf can be obtained by merging
the root of the CAT with the distinguished node\dfand marking
the distinguished node R; based on the distinguished node(f

as shown in Figure 4(epPéatient in our example).
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first label entry says if the root (nodlgis mapped to the view node
1, thenll can be mapped to one 2f Note that we cannot ma
to 3 since3 is not onPy (See Definition 1). The same reasoning
explains why the second label entrylbin Q is 2 : {}. Other label
entry sets are obtained similarly.

Steps (3) and (4) of the algorithm make a bottom-up and a top-
down pass respectively, pruning label entries. If the redyt’
and its label entry set becomes empty, we exit with failuiee(l
3.2). Otherwise, when the algorithm terminates, we arenift a
compact encoding of a set of useful embeddings that can lik use
to generate the MCR. In the following, for a view nodevhenever
(i: L) & label(x), for anyL # {}, we write (i : {}) € label(x),
even when the entrii : {}) does not explicitly appear ifabel (x).
This convention is consistent with the meaning of labelieatThe
pruning rules, used to prune label entries, follow. We neting
and explain the pruning rules used in Steps (3) and (4).
Distinguished Path (DP) [used in Step (3) of the algorithm]: Fol-



/la 1 | | /la 1 /a1
h ) a L2 /a L2 ! > ! >
== —_ =
sap {20 A0 g @ B2 2E | wen2g A0 oy 2 BT s @) <" L
wobe 4y AN
ab ok %.{a}*? neviee 2:{6},3:{4} %.{6}7'(3 neviee 2:{6},3:{ SN: @) | 4 b ok7 4ap CH*\7
Ny &7y Ke IvVille 45} 67} 6:{7} Ivvitie 4'53»{657} 5cde 5c a e
view v dv I1xe dv Ixe c@ b
Query Q Q R_h1 £ R_h2

@

b
® (c)

Figure5: Illustrating the labeling and generation of useful & good embeddings. Nodes numbered partially to avoid clutter.

lowing condition (ii)(a) in Definition 1, the DP rule is desigd
for the nodes on the distinguished patfits, ( Pv) of the query
and the view. Suppose(x,y) € Q, and(j : {}) € label(y).
Then for every entry : L € label(x), such thaj € L, whenever

j ¢ Py, then deletg from L. In Figure 5(a), lekk andy be nodes
VIII andIX. Then we can removg from the second label entry
4 : {5} € labe (VIII) using this rule, sincé5 : {}) € label(1X) and

5 is not on the distinguished path ¥f (illustrated in Figure 5(b)).
Thus, this label entry henceforth beconfiés {}).

Special Nodes (SN) [used in Step (3)]: SN rule is designed for the
condition (ii)(b) in Definition 1, focusing on a parent-ahiedge
from an anchor node to its successor. Suppmse,y) € Q and

(j : {}) € label(y). Then for every(i : L) € label(x) such that

j € L, if j is not the distinguished node dfor its descendant, then
deletej from L. In Figure 5(b), lekx andy be node%/1l andVIIl in

Q. Note: pc(VII, VIII) € Q and(4 : {}) € label(VIIl). Using the
SN rule, we can deletefrom the label entry3 : {4}) of VII since4

is not the distinguished node ¥f nor its descendant. This renders
the above label entr{3 : {}). The figure shows the propagation of
this up the tre&) in successive applications of the SN rule.
Embedding Rule (ER) [used in Step (4)]: ER rule is applied to
construct the general embeddings based on the node tagsand s
tural relationships. Supposel (x,y) € Q, (i : L) € label(y),
andi & label(x). Hererel is pc or ad. Then remove : L) from
label(y). In Figure 5(a), lekx andy be the nodes$l andlll in Q.
Supposdabel (111) also contained the entd/: {4}. Then since3
does not appear in the label entry list of the paténive can apply
this rule to delete the entd/: {4} from label(I11). Notice that this
rule is always applied from the parent to the child, not vieesa.
Steps (3) and (4) of the algorithnn step (3), we apply the rules
DP and SN bottom-up. Initially, SN is not applicable to anglep
while DP is applicable to«c = VIII andy = IX. Then we can
remove5 from the second label entdy : {5} € label(VIII), since
(5 : {}) € label(I1X) and5 is not on the distinguished path &f
(line 3.1). Then successive applications of SN eliminagedhtries
knocked off in Figure 5(b) and as explained before. No othaies

in Figure 5(b) are affected. Step (4) does not change aryson
when it terminates, the algorithm leaves behind the labglety
tree shown in Figure 5(b). Notice that the entrg label (1) cannot
be eliminated. Since we did not encounter a case where tlhésroo

Algorithm UseEmb(query Q, view V) {
1. Determine label of Q’s root;
Letx be Q’s root;
if (xis'/It') label(x) ={i € V|itag="1T&
iis on the distinguished path &f }
elseif (x is '/t') {
if V's root, sayi, is ‘/t') { label(x) = {i}
elselabel (x) = {}; return('no MCR exists’).}
/I* Initialize the label entry lists for the root's descemds *//
2. Traverse Q top-down, from root’s children.
Let x be current node ang its parent inQ.
2.1. foreveryi € label(y) { add the entry(i : L) tolabel(x),
whereL = {j € V | rel(y, x) € Q, the relationship
rel betweeni andj is satisfied inV & j.tag = x.tag}.
if (x is on the distinguished path @) delete allj € L not on the
distinguished path o¥/. }
[/I* Prune label entries. *//
3. Traverse Q bottom-up. for each nodex {
3.1. if SN rule or DP rule is applicable to,
apply it to prune its label entry set;
3.2. if (x is the root, and is ‘/t', andibel (x ) becomes empty)
return(‘no MCR exists’).}
/I* Prune top-down. *//
4. Traverse Q top-down. Let x be the current node.
whenevetabel (x) was updated in step (3),
propagate the changes downward, using the ER jule.

Figure6: Testing existence of MCR.

1.1

1.2.

2.2.

the query root label. The loop in line 2 takes ti@¢ Q | x | V 2

), since for each edgy, x) we can compute the initial label for
from that ofx in time proportional to the product of the size$§

label and| V |, a factor that is upper bounded by |*. Lines 3
and 4 can both be completed®(| Q | x | V |) time. Thus, the
overall time complexity i©O(] Q | x | V |?).

3.2 MCRSize

In this section, we determine the size of an MCR. Clearly,ef w
take the union of all possible CRs, the result is guaranteee the
MCR. However, this is both inefficient and may contaédundant
CRs, i.e., CRs that are contained in other CRs. A CR genebsted
an embedding isredundant if it is not contained in a CR generated
by any other embedding. We could obtain all CRs, then test for
redundancy and then take the union of irredundant CRs. Hsg e
to see the union of all irredundant CRs is equivalent to theRyigy

*/t’ and has an empty label entry set, we conclude the query has andefinition. We develop a more efficient procedure for corsing

MCR.
When the algorithm terminates, if it delivers at least onefuis

embedding, then MCR must exist, else not. The embeddings en-

coded in the labeling are obtained by following the chainadiels
from the query root down. We have the following result, whéye
denotes the number of nodes@n

THEOREM 2. [Useful Embeddings] : Al gori t hmUseEnb
terminates in timeO(] Q | x | V [?). It correctly concludes
whether a query has an MCR using a view.

The correctness follows from Theorems 1. The complexity is
established as follows. Line 1 takey| V |) time for initializing
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the MCR in this section.

WhenAl gor i t hm UseEnb terminates (Figure 6) with a non-
empty set of label entries, it leaves a compact encoding @&ta s
of useful embeddings. However, some of them lead to redundan
CRs. Thus, first we want to eliminate such embeddings. Eng., i
Figure 5(b), there are three embeddings: : | — 1, II,VI —

2, NV = 6, IVVIIT — 7; hy : 1 — 1, VI — 2 VIl —
6,VIIl — 7;andhs : | — 2. Each embedding leads to a CR that
can be expressed asx®’*//°!! query. Of these, it can be shown
that the CR generated from; contains the CR generated from
hs, so the latter CR is redundant. The CR generated fignis
irredundant, but surprisingly, is not the only one. It tumg we



Figure7: Irredundant CRs.

can obtain additional irredundant CRs frdm itself by choosing
not to embed certain nodes. We will later return to this paisit
well as to the CR generated by .

In this paper, we call an embeddigganextension of an embed-
ding f (f arestriction of g) providedg is defined on every node that
f is defined on (and maybe more). Notice that we do not require
thatf(x) = g(x) whenever both are defined an This nonstan-
dard notion of extension turns out to be the appropriate oneur
purposes. We show two more examples of (ir)redundancy in Fig
ure 7(a) and (b), making an important point. Figure 7(a) shaw
query Q; and a viewV;. There are two interesting embeddings
from Q1 to V;: (i) f1: embed bothu andb or (ii) f2: embed only
a. The CRs induced by the embedding®» andR;, — are also
shown. Even thouglfi; is an extension of,, neither of the CRs
is contained in the othefl his example shows the MCR cannot al-
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Figure 8: Sizeof MCR.

node isnot mandatory for obtaining an irredundant CR so that we
can identify the right embeddings that will yield irreduntl&€Rs.

As a motivating example, consider Figure 9. For the query roo
and its two ad-childrefb, we have the choice of embedding them
into the viewV or not. If we do not embed the query root, the
resulting CAT will be the query) itself. The resulting CRQ o V
is //al/bl/a[/Ib/c]//b[d] is redundant, since it is contained in the CR
R4 in Figure 9. However, when we embéda but choose not to

ways be expressed as a single TPQ and may need to be expresse@imbed one or more of thechildren, the resulting CR i8, (don't

as the union of CRs, each being a TPQ.

In Figure 7(b), there are several embeddings f@mto V,. The
embeddings (if1: embeda and bothb’s, and (ii)f,: embeda and
the leftb (but not the rightb), yield the two CRsR,; andRz»
shown in the figure and they do not contain each other. However
consider the embedding (iif: embeda and the right (but not
the leftb). Itis easy to check the resulting CR,
//a//bl//b//cl//d,is contained irR2; and so is redundant. So,
sometimes, restrictions of embeddings yield redundant, €6tae-
times not. This makes obtaining irredundant CRs challengitg
will address this challenge in the next subsection.

embed lefbb), R3 (don’t embed righb), or R4 (don’'t embed either
b), which are all irredundant.

We have the following result on whemot embedding a node
would still yield an irredundant CR. By a pc-path we mean a se-
qguence of nodeéxq, ..., xx), k > 1, such that there is a pc-edge
from x; toxi4+1, 1 <1 < n. For an embedding, we say a node
v € Q is special, if f mapsv to the distinguished node of, v
has a pc-childt in Q, andf is undefined on.. We say that two
nodes inQ areincomparable provided neither of them is an an-
cestor of the other. The following technical lemma serves pwr-
poses. First, it lets us eliminate those useful embeddingduced

The last question for this subsection is how many irredundan by Al gori t hm UseEnb that will give redundant CRs. Second,
CRs are there in general? This has a bearing on the size of theit guides us in obtaining all iredundant CRs from the rerimgjn
MCR and thus on the complexity of generating MCRs. We give an €mbeddings, by choosing to embed or not, certain query nodes
example below to show that this number can be exponentidiein t LEMMA 1. [Irredundant CRs] : LetQ andV be queries in
size of the query. XP/+//\l1 Supposef : Q ~ V is a useful embedding anbl is

EXAMPLE 1. [Sizeof MCR] : Figure 8 shows a quer@ and the CAT induced byf. Then the CRT o V is irredundant iff: for
aviewV, both inXP’>//-l!. The MCR ofQ usingV involves the every nodex € Q for which f(x) is undefined, one of the following
union of four irredundant CRs. If the rogfa in Q hasn branches holds:

//a//a/b/c/di, whered;'s are distinct tags] < i < n, then the 1. there is no extensiom of f such that is defined onx, or
MCR will be the union o2™ irredundant CRs. ]
2. 3anodez € Q: Q contains a pc-path fromto z, andz is

It is easy to check that the MCR above is not expressible as a special for every extensidn of f that is defined om, or

single TPQ. Indeed, the XPath standard also includeslfaor-
descendant axis, permitting a limited form of disjunction. It is
important to note that even with the addition of this axis, cae-

not express the above MCR as a single TPQ (enriched with this
predicate).

3.3 MCR Generation Not all useful embeddings lead to irredundant CRs. In order
We next address the generation problem of the MCR. The main to generate a compact expression for the MCR, we need to iden-

3. x is the distinguished node @, and every extensioh of
f that is defined o, mapsx to dv, the distinguished node
of V, and there is a nodg € Q, incomparable with, such
thath(y) is undefined. [

challenge is that there are exponentially many possibleeidings,
not all of which yield irredundant CRs. Indeed, some embmagkli
that are restrictions of others yield irredundant CRs amaesdon’t

tify embeddings leading to CRs which are not contained ireioth
CRs. We call a (useful) embeddimmod provided it yields an ir-
redundant CR. As an example, in Figure 9, consider the embed-

(Figure 7)! We need to characterize exactly when embedding a ding, sayf, that is defined only on the rogt/a. There are em-
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Algorithm MCRGen(query Q, view V) {
1. Run Algorithm UseEmb (Figure 6);
2. Generate all embeddings from the final labeled @ee
3. If (there are embeddings g s.t. g is an extension of) {
if(3x € Q:x € dom(g) — dom(f)){
if (x does not satisfy the conditions in Lemma{1)
discardf. } } }
4. for each remaining embeddirg{
foreach & € Q : h(x) is defined&x doesn’t have pc-parert
let f be identical toh except it's undefined
onx and its descendants;
if x satisfies Condition 2 or 3in Lemma 1 w.itt.andf) {
mark nodex w.r.t. embeddingh. } }
generate all additional embeddings by making
embedding of marked nodes optiongl.
5. for each embedding generatéd
produce the CAT corresponding foand create
the CRR ¢ induced byf.}
return(the union of all CRs generated above).

Figure 10: Generatingthe MCR.

beddings which extend this by mapping one or bothttlse How-
ever, no extension is defined on the pc-childr d as the case may
be. Thus, each of the nodes acts as both andz in the theo-
rem. The CAT induced by is b[//b/d]//blc] and the resulting
CR//a//bl//b/d]//blc] (R4 in the figure) is indeed irredundant.
Similarly, each of the embeddings used in Figure 9 and Fig§usn
be shown to yield irredundant CRs. The proof of this lemma wil
appear in the full paper.

Al gorit hm MCRGen (in Figure 10) makes use of Lemma 1
to produce the MCR. It first obtains all useful embeddingsgisi
Al gori thmUseEnb (Lines 1-2). It then eliminates those em-
beddings that will give redundant CRs, by a straight appbtica
of Lemma 1 (Step 3). Step 4 is interesting since it uses thesam
lemma but in a different direction. Finally, it produces ®AT for
each embedding it generates and takes the union of theingsult
CRs (Step 5).

We illustrate Algorithm MCRGen next. Continuing with the
query/view in Figure 5(a), line (1) yields the final labeledegy
tree in Figure 5(b). We obtain the three embeddihgsh., h;
shown in Section 3.2 (line 2). It is easy to see thatis an exten-
sion ofh; and nodeVl € dom(hy) — dom(hs) does not satisfy
conditions 2-3 in Lemma 1. So, we drég (line 3). It turns out
h, cannot be dropped since there islh@ dom(h;)— dom(h;)
satisfies Lemma 1. Fat;, we will then mark nodél (and nothing
else) [Line 4]. It turns out that fdi, no nodes can be marked. The
embedding resulting from markind for h; is identical toh; ex-
cept it's undefined ofl and its descendants. This latter embedding
happens to coincide with,. So, the only two good embeddings
areh; andh,. Finally, we generate the two CRs corresponding to
hy andh; (shown in Figure 5(c)) and take their union (line 5). We
have the following:

THEOREM 3. [MCR Generation] : For a given tree pattern
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queryQ and viewV such thaQ is answerable usiny, Algorithm
MCRGen correctly produces the MCR QfusingV. [

While Algorithm MCRGen has an exponential worst case time
complexity in the size of the query (we know the MCR may be the
union of exponentially many tree pattern CRs in the worsg);ds
tries to minimize the generation of embeddings that are notlg
i.e., those that will yield redundant CRs. We now move to QAV i
the presence of schema.

4. MAXIMAL CONTAINED REWRITING
WITH SCHEMA

We first make precise what it means to rewrite a query using a
view in the presence of schema. liestS) denote the set of legal
database instances that conform to a given sch&nvsie say query
Q is rewritable using view (both fromXP/*// 11 in the presence
of schemas, provided there is an expressi@rsuch that on every
legal instancel € inst(S), E(V(T)) € Q(T), and additionally,
there existsI € inst(S) such thatt (V(T)) # 0. We requireE to
be expressible ixpP/»// 1.

As explained in the introduction, generating MCR of a query
using a view in the presence of a schema involves reasonimgt ab
the structure of the schema. In this section, we identifytypes of
constraints that affect QAV foxP’//>l! (Section 4.1), and develop
algorithms: (i) for inferring them from the schema (Secti8g),

(ii) for applying the constraints to the view (Section 4&)d finally

(iii) for generating an MCR if one exists (Section 4.4). Thghout,

we assume the schema contains no recursion or union types. We
discuss recursive schemas in Section 5.

4.1 Constraintsfrom Schema

As we will show, the essence of a schema can be captured by
using five types of constraints on legal instances of theraahe
These are defined and explained next. We call a node with tag
ana node. We have:

Sibling constraint (SC): A sibling constraint (SC) [25] is of the
forma: b | ¢, and denotes that whenever amode has & child
node, then the node must also havecachild node.

Functional constraint (FC): A functional constraint (FC) [25] is
of the forma — b, and says that na node has more than orte
child node.

Cousin constraint (CC): A cousin constraint (CC) is of the form
a:b | c, and says that every node that has & descendant node
must also have a descendant node.

Parent-child constraint (PC): A parent-child constraint (PC) is of
the forma |J1 b, and says that wheneveibanode is a descendant
of ana node, it is necessarily a child.

Intermediate node constraint (IC): An intermediate node con-
straint (IC) is of the forma - b, and says whenever there is a
path from ana node to & node, there is a node on the path.

Satisfaction of constraints by an instance is straightéwdiand
is omitted. The notion of legal instance of a schema is sigila
omitted here for brevity. The reader is referred to [18] farende-
tails. Of these, SC, FC have been previously studied by W[ [
whereas the remaining constraints are new. Note that asdjpasie
of SCis the constraint : {} | c, which says every node necessar-
ily has ac child. Similarly, a special case of CCas: {} || ¢, which
says everyr node necessarily hasadescendant. We illustrate the
constraints next.

Consider the schema of Figure 2(a). According to the schema,
we can observe the following: (1) Evebjds must have at least
oneperson node, i.e.bids : {} | person holds in every legal in-
stance of this schema. (Buyer can only be the child of node



closed_auction, i,e.,

closed_auction |J1 buyer holds. (3) EveryAuction node has at
most oneclosed_auction child, i.e., Auction — closed_auction
holds. (4) Observe that any path frokuction to person in Fig-

ure 2(a) must pass through eithell@sed_auction node or through
anopen_auction node. Each of the latter node types is guaranteed
to have a descendant of tyjiem. Thus,Auction : person | item
holds. (5) Suppose the edge fratem to name was absent. Then
every path frontlosed_auction to name would pass througper-

. . erson
son, i.e.,closed_auction P — name would hold.

4.1.1 Propertiesof Constraints

We say that a constraintis implied by a schem&, S &= o, pro-
vided every legal instancé of S satisfieso. Sibling constraints,
as introduced by Wood [25], are more general than those donsi
ered here, in that they are of the form: S | ¢, wherea,b are
node tags an@ is aset of tags It says if ana node has children
corresponding to each tag i then it must have a child. Corre-
spondingly, in general, a schema can imply a cousin constodi
the forma: S | ¢, with corresponding meaning. A key result is
that for the class of schemas we consider, the cardinalitiefet
can never be more than one.

LEMMA 2 (SCs& CCs AREUNARY). LetS be a schema
without union types or recursion and: S | c anda: S || ¢ any
sibling and cousin constraints. Thén=a:S | ciff SEa:b | ¢,
for someb € S. Similarly, S = a:S | ciff SEa:b | c, for
someb € S. [

We note that Wood [25] proved a similar result for SCs for a
different class of schemas called “duplicate free” schemas

One of the byproducts of the proof of Lemma 2 is the following
lemma, which yields an efficient algorithm for inferring Ctem
schemas. Define guaranteed path in S to be a path such that all
the edge labels are either ‘1’ or ‘+'. E.g., in Figure 2(akrinare
three paths fronslosed_auction to name all of which are guaran-
teed. Basically, the = a: b || c iff on every path froma to b
there is a node such that there is a guaranteed path froto c.

LEMMA 3 (CC CHARACTERIZATION). LetS be aschemaand
a:b | c acousin constraint. Thefi = a:b | c iff every path
in S from a to b passes through some noxlesuch that there is a
path fromx to c all of whose edge labels are not equal to **', ‘®’.

In the sequel, unless otherwise specified, bgoastraint, we
mean one of SC, FC, PC, IC, CC. We usdo denote the set of
constraints implied by a schenta We will discuss how to derive
them fromS in the next section. As a last desirable property of
constraints, we have the following result, whé&re denotes con-
tainment w.r.t. databases satisfying the constraints

THEOREM 4. [Containment with Schema] : Let S be a
schema without recursion and union types andXdbe the set
of constraints implied byS. Let Q,Q’ be any two queries in
XP/»//l ThenQ Cg Q'iff Q Cx Q. "

This result is important for the QAV problem, specificallyr fo
generating the MCR.

4.2 Inference

How do we infer the aforementioned constraints given a seffem
Wood [25] gives efficient algorithms for inferring both SCsda
FCs. We address the inference of the rest in this section.

Fora PCa |1 b, we just need to make sure no path franto b
in the schema@ passes through an element node with astag, b.
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Algorithm extractConstraints{) {
1. guarantPath(x,y) « arc(x,y,?), (L = 1"V ="+").
guarantPath(x,y) « arc(x,z,0), (L =1"V {="+"),
guarantPath(z, y).
2. cousin(x, vy, z) « path(x,y), —avoid(x, y, z).
avoid(x, y, z) « arc(x,y, £), ~guarantPath(x, z),
—guarantPath(y, z).
avoid(x, y, z) « arc(x,w, £), —~guarantPath(x, z),
—guarantPath(w, z), avoid(w, y, z).
path(x,y) « arc(x,y, €).
path(x,y) « arc(x,u, ¢), path(u,y).
3. inter(x, vy, z) « path(x,y), —bypass(x, v, z).
bypass(x, y, z) « arc(x,y, ), x # z,y # z.
bypass(x, y, z) « arc(x,w, ), x # z,u # z, bypass(u, y, z).

¥
Figure 11: Algorithms for Inferring CCsand | Cs expressed as
Datalog programs.

This can be done easily in polynomial time in the sizeSofWe
omit the details.

Figure 11 gives an algorithm for inferring CCs and ICs. For
clarity, we present the algorithms as simple datalog prograal-
though more efficient implementation is possible. The baedip
catearc(x, y, £) says there is an edge frontoy whose label i€.
The program forcousin(x, y, z), i.e., forx : y | z, says this con-
straint is implied byS provided there is a path from to y, but
none of these paths avoids those nodes from which there iara gu
anteed path te. The program fointer (x, y, z), i.e.,x = y says it
is implied byS provided there is a path fromtoy and none of the
x — y paths bypasses While more efficient implementations are
possible, it is trivial to see that both CCs and ICs can beriate
from a schemd in time O (|S|?), where|S| denotes the number of
nodes inS. Indeed, we have the following result, where for infer-
ring SCs and FCs, we use Wood'’s algorithms [25]. The comiglexi
bound follows easily from the arity of the Datalog prograredio
express Algorithm extractConstraints.

THEOREM 5. [Constraint Inference] :  Given a schems,
all SCs, FCs, CCs, PCs, and ICs implied®yan be inferred in
time O(|S|?). '

4.3 ChasingtheView

Before we can check the existence of MCR, we need to apply the

constraints inferred from the schema to the view. We forpesthis
next by adapting the well-known chase procedure [8]. Givarea
pattern view (query) and a sef of constraints, thehaseof V
w.r.t. X, written Chase(V), is obtained by a repeated application
of the following chase rulesntil there is no change g.

e PC: wheneverad(a,b) € Vanda{{1b € Z, replace

ad(a,b) bypc(a,b)in Q.

e SC:whenevepc(a,b) € Q,a:b | c € £, addpc(a,c)to
Q ifitis not already present.

e FC: wheneverQ contains ana node with two pc-children
both tagged anda — b, merge those twb nodes.

e IC: wheneverad(a,b) € Q anda = b € X, then replace
ad(a,b) byad(a,c)andad(c,b) in Q. Thatis, insert as
an intermediate node in betweerandb using ad-edges.

e CC:whenevend(a,b) € Qanda:b |} ¢ € £,addad(a,c)
to Q if not already present.

Notice that only when rules SC, IC, CC are applied, new nodes
are introduced. The shapefis always preserved as a tree during
the chase. Itis easy to see the chase always terminatesisatee
are no cycles in the schema graph. The following result Isrimgt
the value of chasing.
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Figure 12: Illustrating explosion of chase with DAG schemas.

THEOREM 6. [Propertiesof Chasg] : Let Q andQ’ be any
TPQs,S a given schema, ardthe set of constraints implied k.
ThenQ Cg Q'iff Q Cx Q' iff Chase:(Q) C Chase (Q').

This theorem suggests a method for testing the existenc&€& M

f: Q ~ Chase (V), whereX is the set of constraints implied by
S and (ii) there is a total embedding frof V to the schema graph
of S, whereT is the CAT induced by. [

As hinted at in the last section, this theorem does not immedi
ately yield an efficient algorithm for testing the existen¢&/CR.

We show that by conducting chase in a “goal-directed” fashio
we can indeed check existence of MCR as well as constructfone i
it exists, in time polynomial in the sum of sizes of the quéhge
view, and the schemda he first observation is that to test whether
Q Cs Q/, it suffices to test Chas¢Q) C Q. The reason is that
on databaseB satisfyingZ, Q(D) = Chase (Q). Thus, we do
not need to chas@’. In the context of QAV, this means it suffices
to chase the view alone.

The following lemma is key to showing that we can indeed con-
duct the chase in a goal-directed way. Intuitively, what vestto

for a query using a view, in the presence of a schema. We could (g is for each node: in Q but not inV, force it to appear iV

chase both the query and the view and then look for useful émbe
dings. However, it is important to note that the chase may take time
exponential in the schema size in the worst cadas is because
the schema graph is a DAG. An application of chase using al co
straintsX inferred from the schema will result in an explosion in
the size of Chasg V). Figure 12 shows such a schema and view,
which explodes when chased. Note that in the schema, eveley no
of type a necessarily has a child of tygeand a child of typec,

and similarly for these latter node types, etc. The view nspty

/a, whereas the chased view contains 13 nodes! In fact, theefigur
for “chased view” does not even show all possible nodes thatav

be added by chasing with redundant constraints implied by
stacking the diamonds several times, we could make the the o
chased view exponential in the number of diamonds, and hience
the schema size. Thus, an approach based on exhaustivenitiase
take exponential time to compute in the worst case. In theé nex
section, we show fortunately we do not have to chase exhalsti

4.4 Generating MCR

A direct application of “useful embeddings” from the schema
less case will not work when there is schema. The reasonss it i

possible that the CAT induced by an embedding, when composed

with the view, leads to a rewriting query that is unsatistair.t.

the schema. As an example, consider the qugry //a//b and

the viewV = //b. Suppose according to the schedano a
node can be a descendant of angyode® Then the rewriting query
//b//a//b, while correct from a schemaless perspective, leads to
an unsatisfiable query w.r&. This motivates the following.

DEFINITION 2 (USEFUL EMBEDDINGS WITH SCHEMA. Let
Q,V, S be a query, view, and schema, andhe set of constraints
implied by S. Then an embeddinfy: Q ~» Chase (V) is a useful
embedding provided it satisfies the conditions in Definitlorand
additionally Vx € Q such thatf(x) is undefined, there is a path
from tag(dv) to tag(x) in the schema graph, wheteg(u) de-
notes the tag of a node, anddy is the distinguished node af.

It is now easy to establish the counterpart of Theorem 1 in the

by chase if its presence is guaranteedSoyWe do not care about
nodes that areot present inQ. By avoiding those nodes, we can
make sure that we only need to conduct the chase at mQst
times, whereQ| is the number of nodes iQ.

Recall that during the chase either a node type is added to the
view, or two nodes are merged, or an ad-edge is convertedde a p
edge. Of these node type addition alone is responsible éohitih
complexity so we will focus on that. The node type may be added
as a leaf (for SC and CC) or as an intermediate node (for IGhen
lemma below, we us® — V to denote the set of nodes (tags)dn
but notV.

LEMMA 4. [Intelligent Chase] :  Supposex € Q — V be
a node type that appears @ but not inV and letX be the set
of constraints implied by a schenth Supposex € Chase (V).
Then there is a constrainte X such that chasiny w.r.t. o would
addactoV,i.e.,a € Chasgs (V). [

The lemma says there is no need to add a node type ever to the
chase unless it also appearsQn Furthermore, such a node can
be added to the chase in one application of a chase rule uzing s
constraintoc € X. This means we can stop the chase when for
every node type originally in Q — V, eithera has been added to
the chase oW, or it can never be added. The latter condition can
be easily checked by testing whether any rule that has nqae ty
a as a “consequent” (conclusion) can be fired. Thus, this lemma
guarantees there is no need to apply the chase rules any naore t
|Q — V| times.

The above lemma can be proved based on the following fagts: (1
each chase rule has at most 2 antecedents and one conseqgent:
a:b | c has antecedentsandb and consequent (2) whenever
we have a pair of chase steps of the fosm 3 Ry vy and either
«: YRz o0ry: B R26, whereRy, R, are any of the chase rules
SC, IC, CC, 3 occur in the chase so far,c Q — V buty ¢ Q,
then we can always addto the chase using : 3 R3 6, for some
R; € {SC, IC, CG. The lemma is proved from this.

In view of the lemma, if there is a way to add to the chase a node
type occurring inQ (but not inV) it is possible to do so directly
without having to add node types not occurringJnE.g., consider

presence of a schema. Embedding from a query to schema graph i & View//a//b. Suppose we use < b to chase itto//a//c//b

defined in the same way as between queries.

THEOREM 7. [Existence of MCR] : LetQ, V, andS be a
query, view, and schema respectively. Tlgis answerable using
V in the presence of iff: (i) there is a useful embedding from

3This can be inferred by examining the schema graph. However,
we don’t need to infer such constraints explicitly.
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andc: b |l d to derive//a//cl//d]//b. Then it is possible for
us to directly add the last added nodeas a descendant af, to
yield //al//d]//b. The reason ist — b andc : b |} d together
imply a : b |} d. Thus we could completely bypass addini we
wanted to.

Notice that the complexity of the intelligent chased$| Q —
V| .|V |*): ineach step, we search and locate a constraint



Algorithm MCRGenSchema(query Q, view V, schema S) {
1. Use Algorithm extractConstraints to derive constraltsnplied by S;
2. foreachnodetype € Q — V {
2.1. if(Jaconstrainb € X: chasingV with o givesx)
addx to V at the appropriate placé;
3. Letthe result b&/’;
II* V" is actually the result of “intelligent” chase. *//

4. Use Algorithm UseEmb (Figure 6) to label the node€otising
label entries and prune them as appropriate;
5. If (the label entry of the root becomes empty && root j&")
return(“no MCR exists”).
6. Pick any embedding encoded by he label entries lefQ&nodes,

by following the chain of the entries from the root down.

7. Form the CAT and the CR using the chosen embedding.

8. if (there is no total embedding froR to the schem&)
return(“no MCR exists”).

9. retunR). }

Figure 13: Testing Existence of and Generating the M CR with
Schema.

that might yield the node we wish to add and then test if theseha
rule is applicable, a step that costs at mo$t V |?) operations,
since the constraints have at most two antecedents (whightba
be located i) and one conclusion (which is known). The number
of iterations isO(] Q — V' |). Thus, the intelligent chase plays a key
role in our overall polynomial time algorithm for testingistence
of MCR and eventually generating MCR in the presence of sehem
We finally give the algorithm for testing the existence of MCR
in the presence of schema.

EXAMPLE 2. [Size of MCR] : Consider the schema, query,
and view shown in Figure 2(a),(b), and (d). UsiAggorithm
extract Constrai nts, we can infer several constraints from
the schema (line 1), includingperson : {} | name,
2.item :{} | name, 3.closed_auction : {} | name,
4.open_auction : {} |l name, 5.Auction : person || item, etc.

Note thatitem is the only node inQ — V and it can be added in
one step using constraifitabove (line 2). This leads to the view
in Figure 2(c) (calledv’ in line 3). In line 4, we will determine
that nodesAuction anditem in Q can be mapped to the corre-
sponding nodes iiv'. More precisely, the label of the query root
will be 1 and that ofitem will be (1 : {2}), where1 (2) is the
node id ofAuction (item) node inV’. Line 5 does not apply and
line 6 generates the only embedding encoded in the labeding,
described above. In line 7, the corresponding CAT is theere
son//name. This leads to the CRuction[//item]//person//name.

In line 8, we check that there is indeed a total embedding from
this CR to the schem& of Figure 2(a). So, in line 9, we output
R, namelyAuction[//item]//person//name. Notice that we have
written the rewritten querR usingV’. Dropping nodes fronR
that were not present i gives the rewriting querR’, namely
Auction//person//name, which is equivalent t® in the presence
of schemas. ]

The next example illustrates some nuances of the above algo-
rithm.

ExampPLE 3. [Sizeof MCR] : Consider Figure 14, showing
the schema (a), view (b), query (d), view chased using igeit
chase (c), and MCR (e). Note that during the chase, we cannot
distinguish between the twids nodes. Thus, we chase them uni-
formly, thus creating the same substructure below dads node.

The query is labeled usingl gori t hm UseEnb. Note that the
label of the distinguished nodeds only includes(1 : {5}) and not

in Q encode two embeddings fro@ to the chased view’. We
can pick either of them. No matter which one we pick, notic th
it embeds away all the nodes @Qf. Thus, the CAT tree is just the
trivial tree with one nodéids, i.e., CAT corresponds to the identity
compensation query. We need to compose it withatiginal view
V, to get the rewriting query shown in Figure 14(e). The reasler
invited to check it is indeed the maximal contained rewgtin u

The following theorem is key to the correctness and effigieric
the above algorithm.

THEOREM 8. [Uniqueness of embedding] : LetQ, V, and
S be the input query, view, and schema to Algorithm MCRGen-
Schema. Then after line 5 of the algorithm, every embeddiag t
is encoded by the label entries at the nodeg)okill embed the
same set of nodes @J. [

The theorem says that if at all more than one embedding is en-
coded by the label entries that are left after pruning is detef,
then all of them will be defined on the same set of node® oél-
though they may not agree on where the nodes are mapped. This
is significant, since from the point of view of CAT formatiomhat
matters is which nodes are embedded (or not), not where tieey a
embedded. This means all the embeddings that are left over es
sentially induce the exact same CAT, indicating they allicelthe
same CR. Since the embeddings that were pruned by the &lgorit
generate redundant CRs, this means in the presence of a&chem
(without recursion or union typesjhe MCR of a query using a
view consists of at most one tree pattern,@Result that is not
obvious.

Consider any of the examples in Figures 5, 7, 8, and 9 (from
the schemaless section), where the MCR was the union of two or
more CRs. In all those cases, either the query, or the vietheor
rewriting involved repeating tags on the same path. Thi$ bval
inconsistent with a non-recursive schema. Thus, the MCRiiesn
a single TPQ.

Theorem 8 is proved using the following steps. (1) If a path
of Q is completely embedded intg, then choosing not to embed
some of its nodes will lead to redundant CRs. Also, it does not
matter where nodes on the path are mapped as long as they are al
completely embedded. (2) If a path has a terminal nodee.,
descendants of on the path are not embedded), then by definition
x and all its ancestors must be mappedPtp, the distinguished
path of V. Since the schema graph contains no cycles (as there is
no recursion), each of these nodes must map to a unique node on
Py.

Finally, we can show the following:

THEOREM 9. [QAV with Schema] :  Algorithm MCRGen-
Schema correctly decides whether a quérys answerable using
a view V in the presence of schend&d Furthermore, the rewrit-
ing queryR returned by it is the MCR. The algorithm takes time
O(max{| S QI.(QI+IVDAHIQ—VI.IV]). '

The first two claims follow from the preceding theorem. The
complexity is established as follows. Line 1 (constrairttaation)
takesO(| S |°) time as already discussed. Line 2 is essentially
intelligent chase and so také¥(| Q — V | . | V |?) time, as
discussed earlier. Line 4 takes tird| Q | .( size of view?) and
since we are applying this step (i.e., Algorithm UseEmb)tased
view, in the worst case, the size of the view might/teg | + | V |.

(1:{4}), just as for the schemaless case. This is because this nodeLine 5 is negligible. Line 8 checks whether the rewriting iR is

must be mapped on to the distinguished path by any usefulé&mbe
ding. Figure 14(d) shows the result after Algorithm UseE®b t
minates, i.e., after labels are pruned. At this point, thela&ntries
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embeddable into the schema graphThis can be done by simply
checking for every edge iR whether there is a path/edge between
corresponding tags if, as the case may be.
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Figure 14: Illustrating Algorithm M CRGenSchema.

In sum, when schema is available, we have shown the MCR is
a single TPQ and its existence and generation can both beidlone
polynomial time.

5. DISCUSSION: RECURSIVE SCHEMAS
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//a//blcl[d]l U //a//b[//b/d]l[c] U

//a//b[d1//blc] U //a//b[//b/d1//blc].

Figure 15: Example: MCR for Schema with Recursions.

QAV in the presence of recursive schemas shares certain com-
mon traits with QAV without schemas and also with QAV with
non-recursive schemas (without union).

Compared with schema without recursion, the differenc©iv
schemas with recursion is that, instead of the MCR congjsifra
single TPQ, it may be the union of contain multiple TPQs. E.g.
Figure 15 shows a recursive schema and a q@emand viewV.

The MCR is the union of four TPQR;-R4. The query, view, and
CRs are all satisfiable w.r.t. the schema. This example sktoats
the size of MCR may be exponential when the schema contains re
cursion. What is the source of this exponentiality? We oéfer
insight below.

Recall that the exponential size of the MCR with no schema
stems from the optionality of embedding, i.e., for certairey
nodes that are embeddable in the view, we have the choice-of em
bedding them or not: if we don’t use the embedding, the nodiks w
be put into the clip-away tree (CAT) and be attached belovditie
tinguished node of view. One observation is that such attect
will result in the repetition of node tags on the same pathusTh
if such repetition is allowed by the cycles in a schema, MGRs t
are unions of exponentially many CRs can also arise for sahem
with recursion, with a corresponding implication for theratecase
complexity of generating the MCR.

Note that the presence of a recursive schema, just like a non-
recursive schema, does impose some constraints on legdladat
instances. We need to establish whether additional typesrof
straints are needed for capturing the effect of a recursikiersa,
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on top of the five types needed for the non-recursive case- Sec
ondly, we need to ascertain whether the chase terminategnand
how many steps.

For a recursive schema, constraint inference procedurénhéor
five constraint types should be modified as follows. It turos o
inference of all constraint types but the PC constraint,aiesun-
changed. Cycles have the effect of permitting arbitranhg paths
in the instance, with node tag repetitions. This only impamin-
straints that are related to path length. Among the five caimst
types, PC is the only such type. The modified inference for$C i
as follows: for any two nodep andq, if there is no node between
p andq in the schema, ang, g are not in any cycle, i.e., there is
no path fromp (q) to itself in the schema, then|}1 q holds.

Compared with the MCRGen algorithm for the schemaless case
shown in Figure 10, the only modification is in deciding which
nodes can have choice of embedding. To be more specific, for ev
ery query nodep on the distinguished path of quefy, assume
its corresponding node in the schemaisalso assume the corre-
sponding node of the distinguished node of viewdV, is dv’. If
there exists a schema path fran’ to p’, then we have the choice
of embedding the node or not, i.e.p node can either be embed-
ded into the view or be put into the clip-away tree and be h#dc
underdy. More work is needed for solving QAV completely for
recursive schemas. However, the insights generated froxhfQA
recursion-free (and union-free) schemas is promising.

6. RELATED WORK

Query answering using views has been studied extensively fo
the relational model [13]. This problem has been rigorossiyglied
for the class of * regular path queries [12, 6] and in sem@stmed
graph databases [20]. Deutsch and Tannen have studieddbe pr
lem of query reformulation in the context of relationalX®AL
publishing. They reduce the QAV problem for XQuery to relatil
query reformulation under constraints. They show thatrthei
tended chase and back chase procedure is complete forabispr
for a subclass of XQueries. Tang and Zhou [23] conductednadbr
analysis of QAV for XPath, but they adopt a tuples-of-nodes s
mantics, which is at variance with the standard. Xu and Oagloy
[26] specifically focused on rewriting TP queries using mate
ized views and is the closest to our work by far. They charetd
existence of rewrites for various subclassex®f//*!*, which
includes wildcards, and analyzed the complexity of finding-m
imal equivalent rewrites. The major difference betweerttalse
works and the problem we consider is that we focus on cordaine
rewriting (which is more suited for information integratjoas op-
posed to equivalent rewriting (more suited for classicargopti-
mization). Besides, neither of [23] or [26] consider thelpem in



the presence of schema.

It turns out there are dramatic differences between thesie- pr

lems as far as XPath goes. For instance, [26] show thad i €

XP/>//>Lh* with roots as distinguished nodes, there exists a rewrit-

ing of Q usingV iff Q C V. This doesn’t hold in our setting. E.g.,

letQ be//a andV be//b. In the absence of any schema knowl-

edge,Q is answerable usiny: Q o V,i.e.,//b//ais a contained

rewriting. ButQ andV are incomparable. In their setting, even in

the absence of schema, the rewrite query is always explessib
the same language as query, i.e., there is no need for addiog. u
In sharp contrast, for us, the rewriting query is in genexakess-
ible only as a union of tree pattern queries, which may be espo
tially many in the worst case. It is remarkable even withaldiag
wildcard (which together with branching is known to be a seiof
high complexity even for containment [17]), the complexifythe
QAV problem for this class can be high. Analyzing the probiem

the presence of a schema, to the best of our knowledge, i$ nove
There has been much related work on semantic caching [#isheu
tic uses of materialized views for speeding up XPath queoy pr

cessing [3], query evaluation against a set of materiakieds in
a schema evolution scenario [19], and determining XPaths/ie
materialize based on mining [27]. While the goals are sintita
ours at a high level, the methodologies and the results dstau-
tially different from us.

expect from use of materialized views for query answeringy-s
stantial savings and minor overhead.
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