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ABSTRACT
XML message filtering problem involves searching for instances of
a given, potentially large, set of patterns in a continuous stream of
XML messages. Since the messages arrive continuously, it is es-
sential that the filtering rate matches the data arrival rate. Therefo-
re, the given set of filter patterns needs to be indexed appropriately
to enable real-time processing of the streaming XML data. In this
paper, we propose AFilter, an adaptable, and thus scalable, path ex-
pression filtering approach. AFilter has a base memory requirement
linear in filter expression and data size. Furthermore, when additio-
nal memory is available, AFilter can exploit prefix commonalities
in the set of filter expressions using a loosely-coupled prefix ca-
ching mechanism as opposed to tightly-coupled active state repre-
sentation of alternative approaches. Unlike existing systems, AFil-
ter can also exploit suffix-commonalities across filter expressions,
while simultaneously leveraging the prefix-commonalities through
the cache. Finally, AFilter uses a triggering mechanism to prevent
excessive consumption of resources by delaying processing until a
trigger condition is observed. Experiment results show that AFilter
provides significantly better scalability and runtime performance
when compared to state of the art filtering systems.

1. INTRODUCTION
XML message filtering systems are used for sifting through real-

time messages to support publish/subscribe [11, 25, 26], real-time
business data mining, accounting, and reporting for enterprises. A
filtering system continuously evaluates a given set of registered fil-
ter predicates on real-time message streams to identify the relevant
data for higher-level processing. Thus, XML filtering problem is
concerned with finding instances of a given, potentially large, set of
patterns in a continuous stream of data trees (or XML messages).
Specifically, if

���������
	������ � denotes a stream of XML messages,
where

�
�
is ����� XML message in the stream, and

��� � ������������� � is a
set of filter predicates (described in an XML query language, such
as XPath or XQuery [1]) then an XML filtering system identifies
(in real-time) � � � ����������� � �! 

triplets, such that the message
� �

sa-
tisfies the filter query

� �
. The set

���"� �
includes each instantiation

of the query (referred to as path-tuples in [14]).
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1.1 Existing Approaches and Challenges
Obviously, the XML filtering problem is related to, but diffe-

rent from, the more traditional stored XML data retrieval problem,
where given a stored collection of XML data objects and a que-
ry, the system needs to identify those data instances which satis-
fy the given query. XML query processing approaches concentrate
on finding effective mechanisms for matching query strings to in-
dexed data strings [9] or indexing data paths and data elements to
efficiently check structural relationships. In contrast, in XML filte-
ring, instead of the data (which is transitionary), the collection of
filter patterns themselves need to be indexed.
Automata-based Schemes. The state of the art in XML filtering in-
clude, finite state automaton(FSA)-based schemes, YFilter [4, 13]
XScan [18], and XQRL [15]. In these, each data node causes a state
transition in the underlying finite state automata representation of
the filters. The active states of the machine usually correspond to
the prefix matches identified in the data. In general, for deep and re-
cursive XML data, the number of active states can be exponentially
large [7,8,13,16]. In fact, [16] shows that for a linear filter, an ea-
ger deterministic FA has #%$�&('*) +,&(-/.�0�- + � 0�132 � '
0�465 .�0�798�:%2
+,; 7
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tiple path expressions, [16] shows that an eager DFA may result in#%$�U6V6W
� X�Y
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V ] T active states. Furthermore, most of the

states may never lead to results. [16] showed that using a lazy (as
opposed to eager) scheme may reduce the number of active states
to #%$ � '*0�4�5 .�0�7<8�:<_ ZS`
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. YFilter uses a non-
deterministic FA for reducing the number of automata states. Ho-
wever, since during runtime each NFA state can be visited (and
inserted into runtime storage) multiple times, as stated in [13], de-
ep documents could theoretically cause an exponential blow-up in
the number of active, run-time states.
Push Down Approaches. XPush [17], instead, translates the col-
lection of filter statements into a single deterministic pushdown au-
tomaton. The eager Xpush machine still needs exponential num-
ber of states. However, [17] also proposes a lazy implementati-
on, which delays the discovery of the states and avoids redun-
dant state enumeration, to bring the memory requirement down to

$
��c*d?e/f<g��c<d T V , where & is the number of filter queries, h is the selec-

tivity of the predicates, and i is the number of predicates per query.
SPEX [23] uses a network of transducers to evaluate regular path
expressions with XPath-like qualifiers. For representing the trans-
ducer stack, SPEX needs memory quadratic in stream depth. Like
SPEX, XSQ [24] uses a push-down transducer based approach for
XPath filtering, where stacks keep track of matching begin and end
tags and buffers store potential results to compute predicates.
Alternative Memory Organizations. PathM [12] uses a stack
representation (where one stack is associated to each query no-
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de) of data to obtain a memory requirement bound by the si-
ze of the query times the document depth. TurboXPath [19]
avoids the translation of the query into a finite state machine
and requires memory only linear in query size. [7] also devia-
tes from automata and transducers to achieve #%$ � '
0�465 1��M>!0 2.�0 � 460�0 ��� 460�-�'*4!1����6& ��& . + 8�+ 2 ;�� � $�. + 8�+ .�0�7<8�: T�T space and#%$ � '
0�4�5 1���>?0 2 . + 8�+ 1���>?0*2 .�0 � 460�0 ��� 460�-�'*4!1����6& � & . +�8S+ T
time per registered query. XTrie [10] represents path expressions
as strings and indexes them into a trie structure, which leverage
prefix commonalities in filters. The trie is used for detecting the
occurrence of matching substrings as the input document is par-
sed. FiST [21] also represents queries as sequences; however, unli-
ke XTries, these sequences represent each filter query wholistically
and, thus, each query pattern is filtered independently without le-
veraging any prefix sharing. In fact, most schemes can not exploit
both prefix and suffix commonalities. Yet, as experiments in Secti-
on 8 show, the best results are obtained when both prefix and suffix
sharing are exploited simultaneously.

1.2 Contributions of this Paper
We first note that the execution time of any filtering scheme is

lower bounded by the result enumeration step: since a given data
path can result in exponential (in depth) number of matches1, major
savings in execution time can only come from effective prefix and
suffix sharing across filters. However, sharing can be costly: if all
matching prefixes are enumerated and stored naively as automata
states, this may require extensive storage and time [7, 13, 16].

We note that a new and adaptive design, which can leverage
different, hitherto conflicting, approaches simultaneously can help
with both storage and execution time challenges. Such a mecha-
nism should� leverage both prefix and suffix commonalities across filter

statements for reducing overall filtering time,� avoid unnecessarily eager result/state enumerations (such as
NFAs enumeration of active states), and� decouple memory management task from result enumeration
to ensure correct results even when memory is tight.

With these in mind, we introduce AFilter (Section 2), which en-
compasses the following advantages:
Simultaneous Prefix and Suffix Sharing: The proposed approach
benefits from prefix commonalities across path expressions, while
simultaneously leveraging suffix commonalities to reduce the cost
of exploration of the potential matches.
Delayed State/Result Enumeration: As opposed to the rather wa-
steful active state enumeration mechanisms of finite-state-machine
based approaches, AFilter uses a lazy mechanism to discover rele-
vant matches only when an interesting trigger condition occurs. In
the proposed scheme, the trigger conditions are associated with the
leafs (last name tests) of query patterns to benefit from the general-
ly more stringent data selectivities at the leaves.
Decoupling of Prefix-Caching (Efficiency) from Result Enume-
ration (Correctness): AFilter can function correctly with a runti-
me representation linear in filter and message depth. Query and data
representations are discussed in Sections 3 and 4, respectively. Fur-
thermore, AFilter can also leverage an on-demand prefix-caching
mechanism (PRCache, Section 5), which can exploit additional me-
mory to reduce filtering time, even if filter steps are clustered under
common filter suffixes (Sections 6, 7).

Although the eventual goal of AFilter is to provide filtering for a
large class of XQuery [1] statements, in this paper we focus on path

1Consider the extreme query “ �	��
��	��
��	�
 ” and a data path of depth � . The total
number of matches will be �����	��� , i.e., exponential in the query depth.
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Figure 1: Overview of the AFilter architecture

expressions of type,
������ ���	� ���

. Such path expressions are compo-
sed of query steps, each consisting of an axis (parent/child “/” or an-
cestor/descendant “//”) test between data elements and a label test
(including the “*”wildcard). In this respect, our approach is analo-
gous to that of YFilter [4, 13], though we differ significantly in ap-
proach and provide significantly better performance, as evidenced
in Section 8. The effective use of such path expressions in more
complex scenarios, which could include predicates, twig queries of
form

� �	� � � ���� ���
[21], other types of axes [6], and more complete

XQuery statements, have been discussed elsewhere [13,14,18,20].
Therefore, within the context of these existing path expression ba-
sed frameworks, in this paper, we only focus on the efficient and
scalable filtering of the

�!���	� ���� ���
statements.

2. AFILTER: PATH EXPRESSION FILTE-
RING THROUGH PREFIX-CACHING
AND SUFFIX CLUSTERING

AFilter is composed of three components (Figure 1): A linear
size data structure, called PatternView, to index registered pattern
expressions; a runtime data structure called StackBranch , (linear in
the depth of the message tree) to represent the current data branch;
and PRCache, which stores prefix sub-matches for re-use.

2.1 “PatternView” to Index Filter Patterns
PatternView is a collection of linear size data structures that re-

present the query patterns that are registered in the system:� AxisView: AxisView is a directed graph capturing the query
steps registered in the system. Each node in the graph corre-
sponds to a label and each edge corresponds to a set of axis
tests. Each edge is annotated with a set of axis assertions that
needs to be verified to identify matches.� PRLabel-tree: PRLabel-tree is an (optional) “trie” data
structure which clusters path expressions based on the com-
monalities in their prefixes. This is used for enabling prefix-
based sharing of subresults across path expressions.� SFLabel-tree: SFLabel-tree is an (optional) “trie” data
structure which clusters path expressions based on their over-
lapping suffixes. It is used for clustering the evaluation of the
assertions on the AxisView edges.

PatternView is incrementally maintainable. To complement the li-
near space PatternView data structure for registered filter expres-
sions, we also use a compact stack-based representation (Stack-
Branch ) of the data being processed.

2.2 “StackBranch ” for Encoding Data
StackBranch is a linear size data structure which represents the

current root-to-element path being considered. StackBranch uses
one stack per AxisView node. As the streaming data is consu-
med, the stacks are populated with stack objects. Pointers associa-
ted with these stack objects maintain the ancestor/descendant and
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Figure 2: (a) AxisView for path expressions,
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	���-�� ; (b) PRLabel-tree
and (c) SFLabel-tree corresponding to the same queries

parent/child relationships across objects in stacks. StackBranch is
used for identifying if there are any matches in the current branch
when trigger conditions, associated with the leaves, are observed.

2.3 “PRCache” for Sharing Matches
The linear PatternView and StackBranch data structures over-

viewed above constitute the base resources needed for filtering of
path expressions. However, when there is additional memory, AFil-
ter can further exploit the overlaps in the prefixes of queries using
a third, memory-adaptive, component.

PRCache is a cache structure for prefix-based sharing of subre-
sults across path expressions. It leverages the clustering opportuni-
ties provided by the PRLabel-tree to eliminate redundant proces-
sing in AFilter. PRCache temporarily stores potential sub-matches;
i.e., it is analogous to the concept of active states in finite state ma-
chine based schemes. However, in AFilter, a path is materialized
and cached only if it is included in at least one match. Further-
more, since the correctness is independent of whether subresults
are available in PRCache or not, the loosely-coupled structure (as
opposed to hard coded data structures of existing filtering mecha-
nisms) enables limiting the memory usage and provides opportuni-
ties for deployments in systems with bounded buffers.

3. PATTERNVIEW: A COMPACT REPRE-
SENTATION OF FILTER EXPRESSIONS

PatternView is a linear space data structure for representing re-
gistered filter expressions.

3.1 AxisView: Axis-clustered Representation
of Filters

A filter expression, of type
� ���	� ���� ���

, is a sequence of steps whe-
re each step has a navigation axis (parent-child or descendent) and
a label (name test) predicate. The AxisView data structure captures
and clusters all axes of all filter expressions registered in the system
in the form of a directed graph (Figure 2(a)).

Let �� ��� � ������������� � be a set of filter expressions. Let�  ����� ��� ������������� \ � , where
���  “

� 4 � ��8 ”, be the label al-
phabet composed of the element names in the filter expressions
in � . Let also

� �  ��� ��� � � be the alphabet extended with
the wildcard symbol,

� � ���	�� � . The corresponding AxisView,��� $�� T  $ � �� %� ��! T
, structure is a labeled directed graph:� For each,

�#"%$ � � ,
�

contains a node & " .� If there is an axis, “
�&" � ��' ” or “

�#" ��� ��' ”, in filter predicates
in � , then

 
contains an edge ( 0 �  � ; � i  from & ' to & " .� Each edge, ( 0 � , has an associated annotation,

��! $)( 0 �
T
; each

annotation contains a set of assertions that, if verified, can be
used to identify a filter result.

Let “
�#" � ��' ” or “

�#" ��� ��' ” be the 1 ��� axis in a filter pattern,� �
. Furthermore, let ( 0 �  � ; � i  be the edge from & ' to & " .

Then, the set of annotations associated with ( 0 � contains an
assertion +91�1�0�4�8 �

$ �*! $+( 0 �
T
, such that

– if the axis is of the form “
� " � � ' ” then

	 if
��'

is the last label test in the filter pattern,���
, then +91�1�0�4�8 � is “ $ ����� 1 T�, ” else +91�1�0�4�8 � is

“ $ ��� � 1 T.- ”
– if the axis is of the form “

�#" ��� ��' ” then

	 if
��'

is the last label test in
���

, then +91�1�0�4�8 � is
“ $ ��� � 1 T�,/, ” else +91�1�0�4�8 � is “ $ ����� 1 T.- - ”.

The two symbols, 0 and 0�0 , in the assertions denote the trig-
ger conditions (through parent/child and ancestor/descendent
axes respectively).

EXAMPLE 1 (AXISVIEW EXAMPLE). Consider the followi-
ng four filter expressions:� �!� 1����.�����+�����= ,� � 	 1����+�����=�����+�����= ,� � � 1����+�����=���- , and� � � 1��+��*	2��- .
Figure 2(a) illustrates the corresponding AxisView data structure.

Note that, unlike state machine-based schemes (such as YFil-
ter [13]), AxisView is not an NFA traversed in a forward manner
to generate partial matches. Instead, AxisView acts as a blueprint
for the construction of the run-time data structure, StackBranch ,
which is traversed in the reverse direction and only when a trigger
condition is observed. In fact, if no trigger conditions are observed
in the XML data stream, it is possible that no traversal will occur.

3.2 Space Complexity of the AxisView Data
Structure

If the size of � is 1���>?0 $�� T , the size of
�
� $�� T is also 1���>?0 $�� T ;

in other words, the AxisView data structure is linear in the size
of filter statements. Furthermore, AxisView is incrementally main-
tainable. Details are omitted as both results are straightforward.

3.3 PRLabel-tree and SFLabel-tree
Query path expressions can also overlap in terms of their pre-

fixes and suffixes. Most existing schemes rely on either prefix or
suffix commonalities, but not both. AFilter, on the other hand, le-
verages both types of overlaps through (optional) linear trie-based
data structures, PRLabel-tree and SFLabel-tree.

EXAMPLE 2 (PRLABEL-TREE AND SFLABEL-TREE).
Reconsider the expressions in Example 1. Figure 2 depicts the pre-
fix and suffix labels computed using PRLabel- and SFLabel-trees.
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The use of PRLabel-tree for enabling prefix-based sharing of
subresults across path expressions is discussed in detail Section 5.
The use of SFLabel-tree for pruning unpromising trigger conditions
is discussed in Section 6.

Note that, as long as the prefix and suffix labels are chosen
such that they enable efficient discovery of parent/child and an-
cestor/descendant relationships in PRLabel-tree and SFLabel-tree,
the actual data structures do not need to be maintained in the memo-
ry. Candidate labeling schemes for the PRLabel-tree and SFLabel-
tree include the positional encoding or the extended Dewey [22].

4. STACKBRANCH FOR COMPACT DATA
ENCODING

As its name implies, StackBranch uses a stack representation
of the active XML data branch. In the literature, due to their
compact representation of the XML data paths, stacks have been
used to implement structural join operators on stored data. The
relevant work includes TwigStack/ PathStack [9] and and Stack-
Tree-Desc/Anc [3]. More recently, stack-based schemes are also
being considered for XML filtering schemes, such as XSQ [24],
PathM [12], and XPush [17]. StackBranch leverages the AxisView
graph discussed in the previous section to construct a highly com-
pact representation of the runtime state of the data, suitable for both
prefix- and suffix-clustered operations.

StackBranch , ��� $�� T  � � "�� � " $ � � � , of � is a set of
stacks corresponding to the nodes of the AxisView,

��� $�� T $ � �� %� ��! T
. StackBranch contains one stack for each node in the

AxisView; i.e., only one stack for each symbol in the label alphabet.
Stacks are also included for the root (

� 4 � ��8 ) and the “*” wildcard.
At any given point in time, StackBranch represents the data path

from the root of the current document to the last seen element. Thus,
as the streaming data is consumed (in a document-order manner),
these stacks are populated appropriately with stack objects.

4.1 XML Message Stream
We use the conventional well-formed XML message model,

where each message in the stream is an ordered tree of elements.
The beginning of each element is marked with a start tag and its
end is marked with an end tag; all the descendant elements start
and end between these two tags. If

�
is an XML message, then

��� ���
denotes the � ��� element seen during the document-order (pre-order)
traversal of

�
. The label,

� '  8S+ � $ �	� ��� T $ � denotes the label of
this element and .�0�7<8�:�$ ��� ��� T is its depth in the message. An XML
stream is, then, a sequence

���������(	6��� �� � of XML messages.

4.2 Maintaining StackBranch
The runtime state of StackBranch is affected when a start tag of

an XML element is encountered or when an end tag is seen.
Each time a start tag is observed in the data stream, a new stack

object is created and is pushed into the stack corresponding to the
element label. Each stack object contains the index of the element,
its depth in the message, and as many pointers as the out-degree
of the corresponding node in the AxisView data structure. Each
pointer corresponds to an edge in the AxisView and points to the
topmost object in the stack corresponding to the destination of the
edge. If any of the queries also contain the “*” wildcard symbol,
then for each new stack object inserted into its own stack, a cor-
responding stack object is created and inserted into the special � �
stack. The push algorithm is depicted in Figure 3.

EXAMPLE 3 (START TAG OBSERVED IN DATA).
Figure 4(a) shows the stacks of an empty Stack-
Branch corresponding to the AxisView in Example 1 and Figure 2.

Push: (When a start tag, 
�� G� , for ��� ��� is seen in the input stream)
/*

Create a new stack object for the new element and push it
into the corresponding stack ... Let 8 denote the number of
outgoing edges of node & ' (corresponding to label

��'
) in

the AxisView data structure.*/
1. Create an object � of the form

��������� ��� ��!#" �$��� �%� �&�'�(�)!�* g �,+(+(���)!�*.- /0/
2. If the " -21 edge ��3�� 4)/ of node 5 G points to node 5 e , then �)!�* 1 will point

to the topmost element of stack 6 e . If 6 e is empty, then �)!�* 1 �87
3. push � into stack 6 G .

/* Create a new stack object for the
new element and push it into the special “ 	 ” stack ......Let4 denote the number of outgoing edges of the special node& � corresponding to the 	 wildcard*/

4. Create an object � of the form

�9���$�#� ���0�)!#" �$�:� ��� �&�,�(�)!�* g �,+(+(�2�)!�* N /#/
5. If the " -�1 edge ��3��&4)/ of node 5 D points to node 5 e , then �)!�* 1 will

point to the topmost (non “i”) element of stack 6 e . If 6 e is empty, then
��!�* 1 �;7

6. push � into stack 6 D .

Figure 3: The push step is called each time an open tag is seen
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Figure 4: (a) An empty StackBranch corresponding to the
AxisView in Figure 2, (b) the status of the StackBranch after
<a><d><a><b>, and (c) its status after <a><d><a><b><c>

There is one stack per label symbol (independent of the number of
filter statements). Figure 4(b) shows the state of StackBranch after
the stream <a><d><a><b> is observed. Figure 4(c), shows the
StackBranch after the next tag, <c>, is observed in the stream.

When <c> is observed in the data, a new stack object - � is crea-
ted an inserted into the � b stack. This new stack object has two
out-going pointers, corresponding to the edges ( 0=< and ( 0=> in the
AxisView (Figure 2). These pointers point to the topmost objects of
the destination stacks.
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Pop: (When a stop tag, 
 � � G� , for ��� �%� is seen in the input stream)

1. Remove and eliminate the topmost object in stack 6 G .2. Remove and eliminate the topmost object in stack 6 D .

Figure 5: The pop step is executed each time a close tag is seen

Then, a new stack object, - � � (again corresponding to <c>) is
created and pushed into the � � stack. This object has a pointer,
corresponding to edge ( 0 � , pointing the topmost object in � Y .

Note that, stack ��� \�^�^ � always contains a single object. The spe-
cial stack for “*”, on the other hand, contains one stack object for
every element observed on the current root-to-node branch.

As soon as the end tag of an element is seen, the corresponding
stack object can be popped and eliminated (along with its pointers)
from the data structure. The pop algorithm is shown in Figure 5.

EXAMPLE 4 (END TAG OBSERVED IN DATA). If after
seeing the data stream <a><d><a><b><c>, we encounter the
end tag </c>, then, StackBranch reverts back to its state in
Figure 4(b) from its state in Figure 4(c).

4.2.1 Total Time Complexity of the Push and Pop
Each push operation has to create a new stack object and

set all of its pointers to the topmost objects in the destination
stacks. Therefore, given an XML message,

�
, and a set of fil-

ter expressions,
�

, the worst case total cost of the push opera-
tions is #%$�1���>?0 $ �(T 2 ) + � �<+�& ��'<8 �
� $�� T�T . Since the maxi-
mum number of outgoing edges in a StackBranch node is

� � � �
(i.e., ) + � �<+�& ��'<8 �
� $�� T�� � � � � ), the complexity of push
is #%$�1���>?0 $ �(T�T . The total cost of the pop operation is simply#%$�1���>?0 $ �(T�T .
4.2.2 Space Complexity of StackBranch

The size of the StackBranch depends on how many stack objects
are stored at a given point in time and the number of pointers asso-
ciated with these objects:� Number of objects: The total number of objects in the Stack-

Branch at any point in time is
� U�.��
	 where, . is the depth

of the last seen start tag. The factor of U comes from the fact
that objects may need to be created for the � � stack along
with their own stacks.� Number of pointers: For each object in the StackBranch ,
the maximum number of outgoing pointers is limited with
the out-degree of the corresponding node in the AxisView.
Again, the maximum number of outgoing edges is limi-
ted with the size of the label alphabet

� � . Therefore, the
worst case number of pointers in StackBranch is bounded byU�. � � � � ; i.e. it is independent of the number of queries.

In other words, since StackBranch associates only one stack per
label symbol (as opposed to one stack for each filter query step) the
memory requirement is linear in the message depth. In contrast, for
instance, the memory requirement of PathM [12] is bound by the
size of the query times the document depth.

4.3 TriggerCheck: Identifying Candidate As-
sertions

As mentioned in the introduction, as opposed to the finite auto-
mata based systems which traverse the state automata as they con-
sume the input stream, AxisView and StackBranch structures are
not traversed until a trigger condition is observed. To benefit from
the generally more stringent selectivities in the leaves of XML data,
we use the leaves of filter predicates as triggers. Thus, we consider
the trigger assertions ( 0 or 0�0 ) associated with the AxisView ed-
ges corresponding to the pointers of the StackBranch objects. In

Sq_root bad
e2

e1

e2

e3

e4

(q2,3)
(q1,2)

SSS

(q2,1)

(q3,1)

b1a1

a2

d1

Figure 6: The <b> tag seen in the data triggers two asser-
tions, $ � 	 � U T , , for query

� �  ����.�����+�����= and $ � U ���?T , , for��	  ����+�����=�����+ ����= ; only the relevant stacks in Figure 4 are
shown in this figure

particular, if the edge associated with a newly created pointer has a
trigger assertion associated with it, then we know that the new stack
object corresponds to the last node of at least one filter expression
registered in the system. This is a trigger condition.

EXAMPLE 5 (CHECKING TRIGGER CONDITIONS). In Figu-
re 6, the stack object = � corresponding to the <b> open tag is
pushed into the stack �� . The AxisView edge ( 0 � , corresponding
to the outgoing pointer, has a total of four assertions: $ � 	 � U T�,/, ,
$ � U ���!T ,/, , $ � U � 	 T - - , and $ ���,� 	 T - - . Two of these, $ � 	 � U T , , for fil-
ter

�!�  ����.�����+�����= and $ � U ���!T�,/, for
��	  ����+�����=�����+�����= , are

trigger assertions.
Note also that, although the path expression

� 	 
����+�����=�����+ ����= has two = s, only the last (leaf) label test is trig-
gered.

Once trigger assertions are identified, the system needs to verify
whether these assertions correspond to any actual matches or not. In
some cases, it is easy to deduce that trigger assertions are not pro-
mising. For instance, for a filter expression to have a match, there
must be at least one pointer between all the relevant stacks. Also,
the number of label tests in the filter query should be less than or
equal to the depth of data. If these conditions do not hold, there can
not be any matches. These pruning conditions can be implemen-
ted efficiently and can be useful, especially if the leaves have less
stringent selectivities than earlier label tests in a given filter query.
If an assertion is not pruned, then the StackBranch pointers have
to be followed (or traversed) to identify whether there are actual
matching path expressions.

Figure 7 shows the trigger phase operations. The processing of
all non-pruned candidate assertions is performed by traversing the
pointers outgoing from the triggering stack object (Step 3b). The
traversal operation (discussed in Section 4.4) will return the subre-
sults for all validated candidate assertions. These validated asserti-
ons will then be expanded by mapping with the matching subresults
(Step 3c) and will be returned as results.

4.3.1 Time Complexity of the TriggerCheck Phase
Given an XML document,

�
, and a set of path expressions,

�
,

if we consider the extreme case where all insertions result in can-
didate assertions for all edges in the AxisView, then in the worst-
case, there will be #%$�1���>?0 $ �(T 2�1��M>!0�$�� T�T TriggerCheck conditions
which will need to be traversed for verification.

4.4 Pointer Traversal for Enumerating Mat-
ches

In this paper, we consider the general filtering problem, where
the system returns all matching elements along the matched fil-
ter expressions (referred to a path-tuples in [14])2. Note that not
2This is not a strong requirement; more traditional XPath semanti-
cs, where only the element matching the last label test is returned,
is a straightforward subset of the algorithms presented here.
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TriggerCheck: (For an object � � �$�#� ���0�)!#" �$��� ��� �&�,�%��!�* g �.+(+(�2�)!�* O /0/ pu-
shed into stack 6 G ):1. !#��� �=* ����� 3%!�� �

2. * ����� 3%! � �
3. For each �)!�* 1 of �

/* Identify the candidate assertions*/
(a) ����5 � �� �
	���� ����!��	 ��� ������������� � 1 �������=*�� 5 � �
	����  � �
	���� ��� �! �
	��"� �����#�$������� � 1 �%�&���=*�� 5�� �
	��'�

/* ...if -�+�&(. is not empty validate the candidate
assertions by traversing the pointers*/

(b) if ����5 �)(� �
then

i. !#��� �=* �*��� 3%!��8!#��� �=* �*��� 3%!� !�*+�-,)� *+�.� �
����5 � � ���0�)!#" �$�:� ��� �&���)!�* 1 �
/* Final-

ly, merge the validated candidate assertions with
the returned subresults. This step will be referred
to as 0 � 7*+�&(.
$�4!0�1�'
;H8 � � � 8�0�) 7<4!0�1�'
;H8 T in the rest
of the paper*/

(c) for all *.� !#��� �=* ����� 3�!
i. let � �
	���� �&� � B � be the head of *

ii. * ����� 3%! � * ����� 3%!/ �#� ��	 ���1032�� � � �4 * /
4. Repeat the same process for � pushed into stack 6 D

Figure 7: The TriggerCheck step is executed each time a new
stack object is created

all candidate assertions triggered in the TriggerCheck step corre-
spond to an actual match. Some triggered assertions, on the other
hand, may correspond to multiple matches. Therefore, triggered as-
sertions need to be verified and the corresponding matches must be
identified. This process involves traversal of the pointers embedded
in the StackBranch structure from the stack object, where a trigger
condition is identified, back to the root object,

� \�^�^
� .

EXAMPLE 6 (TRAVERSING STACKBRANCH ). Figure 6
shows the two candidate assertions triggered due to the <b>
tag seen in the data. Since the pointer associated with the cor-
responding stack object, = � , points to the object + 	 in stack � Y ,
verification of this trigger will require the system to traverse the
corresponding pointer towards the stack object + 	 . Note that the
pointer is traversed only once (in a grouped manner) for both
candidates, $ �!��� U T.- - and $ ��	6���?T.- - , asserted by the trigger.

The stack object + 	 , on the other hand, has two outgoing poin-
ters, one pointing to stack � _ and the other to � � \�^�^ � . These poin-
ters are associated with AxisView edges, ( 0 � and ( 0 	 , respectively;
therefore whether these pointers will be traversed or not depends
on whether the local assertions associated with these two edges
are compatible with the two candidate assertions, $ � � � U T - - and
$ ��	6���?T.- - . We say that a candidate assertion +91�1�0�4�8 �  $ � � � 1 � T is
compatible with a local assertion +<1�1�0�4�8 �  $ ����� 1 ��T if

� �  ���
and 1 �  1 � � 	 .

Figure 8 illustrates the traversal process:
(a) First the pointer associated with edge ( 0 	 , from + 	 to

� 4 � ��8 ,
is considered (Figure 8(a)). In this case, the only common fil-
ter query between the sets of candidate and local assertions
is
��	

. However, the required steps of the trigger assertion and
the local assertion ( U and 5 respectively) do not match; natu-
rally, a query step U can only be preceded by a query step 	 .
Therefore, this pointer does not lead into further traversals.

(b) When the outgoing pointer associated with edge ( 0 � , from + 	
to . � , is considered (Figure 8(b)), however, we find that there
is a common query,

�!�
, which has matching assertions (steps

1 and 2, respectively). Therefore, there is a possible match
and the outgoing pointers associated with . � should be fur-
ther traversed.

(c) In the next step (Figure 8(c)), the outgoing edge, ( 0 � from . � is
considered. In this case, the candidate $ � � � 	 T - - matches the
local assertion $ �!��� 5 T . Therefore, the pointer can be traver-
sed to its destination,

� 4 � ��8 . Since the root is reached, this
identifies a match for filter expression,

�?�
. The match consists

of stack objects, . � , + 	 , and = � .
(d) Since the stack based representation guarantees that any

stack object under + 	 in the stack � Y will also be an ancestor
of = � and since the candidate assertion being checked for ( 0 �
is an ancestor/descendent axis, we need to look further down
the stack to see if there are any further potential matches.

In this example, the � Y stack contains the stack object + �
under + 	 ; therefore, + � needs to be considered. In this case,+ � only has one single outgoing pointer, corresponding to
the edge ( 0 	 ; however, as before, the local filter conditions of
( 0 	 do not match the incoming candidates. Hence, this object
can not lead into further matches.

The traverse logic underlying this example is shown in Figure 9.

4.4.1 Time Complexity of the Traverse Operations
Since the number of candidate and local assertions to match

against each other can be fairly large, a hash-join based scheme
(which, for each incoming candidate assertion $ ��� 1 T , searches for
the hash of $ ��� 176 	

T
in the set of local assertions corresponding

to a given pointer) is used for identifying the matches at Steps 7c
and 7(e)v of the algorithm in Figure9; therefore, the cost of the
matching of incoming and local assertions is linear in the number
of assertions.

Some traversed candidate assertions result in matches, whi-
le others fail to return any (sub)results. Thus, the total cost of
the traverse operations involves both. In the worst case (when
the selectivities are less stringent at the leaves) the failing as-
sertions will be recognized only when the traversal is alrea-
dy close to the query root object,

� \�^�^
� . Thus, the worst ca-

se complexities of both of these terms are similar. For a trig-
gered candidate assertion, the number of traversals on Stack-
Branch is bounded by ) + � � '
0�465 .�0�7<8�:

� Y
[ ]��

Y
b
"
_ Z
X
��� . Note

that ) + � 1�8�+�-�i .�0�7<8�: � . + 8�+ .�0�7<8�: .
Since for lazy automata-based approaches [16], enumerating and

storing each new state would cost time, there is a close correspon-
dence between their time and space complexities. Note that, the
above worst case time for AFilter is similar to the state enumeration
complexity, #%$ � '
0�465 .�0�7<8�:<_ ZS`

\
Z�Z

^/a \
ZMb W

\
]
� ^
V
�
V _

Y
�
Y T

, achieved
by [16] using lazy DFA. [16] shows that this is significantly lower
in complexity then the (theoretical) worst case of eager solutions.

In the case of AFilter, however, the above worst case complexi-
ty arises only when the basic, memoryless algorithm is used; i.e.,
when AFilter does not remember earlier traversals. Although this
can be an advantage in low-memory installations, where the AFil-
ter algorithm can work even when other algorithms may fail due to
lack of sufficient memory, when there is extra memory, the filtering
cost can be significantly reduced if positive (success) or negative
(failure) results could be cached and reused.

5. PRCACHE: PREFIX-CACHING SUP-
PORT FOR ELIMINATING REDUN-
DANT POINTER TRAVERSALS

Let us reconsider Steps 7(d)i and 7(e)viA of the traverse algo-
rithm in Figure 9. In these steps, for a given set ( -�+�&(. � ( 098�� ) of can-
didate assertions, the corresponding pointer, 7<8S4 8 , is (recursively)
traversed to verify the assertions and collect possible submatches.
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Figure 8: (a,b) Grouped verification of the candidate assertions associated with the two outgoing pointers of + 	 , (c) a successful
match, and (d) a no match case

As we stated earlier, for a given candidate assertion, traversal of
a pointer can either be successful, i.e., can lead into one or more
(sub)matches, or may fail to provide any results.

Note that if the same stack object is visited more than once du-
ring the filtering of an XML document (for example due to similar
trigger conditions observed in the data), then it is possible that tra-
versals originating from this object will repeatedly try to validate
the same candidate assertions. This is wasteful: since stacks grow
from root to the leaves in a monotonic fashion, it is straightforward
to see that for a given stack object, repeated evaluations of the same
candidate assertion will always lead to the same result.

Therefore, to avoid repeated traversals of the pointers in Stack-
Branch for the same assertions, PRCache caches the success or fai-
lure of the candidate assertions associated with each traversed poin-
ter (along with the results obtained during the first ever traversal of
this pointer). This enables future traversals involving the same as-
sertions to be resolved through an efficient table lookup.

5.1 Prefix-Caching for a Single Filter
Repeated traversals of the same step of the same filter expressi-

on is especially common in (a) tree structured data, where a shared
portion of the data needs to be considered for multiple XML da-
ta branches or (b) in recursive data with repeated element names
which can trigger the same filter multiple times.

Given a pointer, 7<8S4 , and an assertion, +91�1�0�4�8 , associated with
this pointer, PRCache caches the 8�4�+���0�4!1�0�4!0�1�'
;H8 , returned in
Steps 7(d)i and 7(e)viA of the Traverse algorithm (in Figure 9) for
the ��+91�1�0�4�8 � 7<8�4  pair. Thus, next time the same assertion needs to
be validated through the same pointer, the algorithm simply returns
the corresponding matches from the PRCache; in other words, each
prefix of each query is discovered only once.

This loosely-coupled memory structure enables AFilter to scale
to the available memory space: unlike the existing mechanisms, if
the cache storage space is limited, AFilter can completely eliminate
the use of PRCache or can use cache replacement policies (such as
LRU) to keep an upperbound on the number of cached prefixes,
maximizing the utilization of the cache.

A second and (in terms of memory) cheaper caching alternative
is to cache only the failed verifications (i.e., assertions with empty
matches in 8S46+���0�4?1�0�46061�'
; 8 ). In this approach, since the positive re-
sults are not cached, the same sub-matches may be identified mul-
tiple times. However, it eliminates repeated �<+��M; 8S46+���0�4?1�0�1 and
since positive results are not cached, it has a significantly lower
(linear in the number of query steps) cache storage demand.

5.2 Sharing Caches across Filter Expressions
A cached result for an assertion +91�1�0�4�8 �  $ �!��� 1 �/T can be used

for another assertion +91�1�0�4�8 	  $ � 	 � 1 	 T , if we can ensure that+91�1�0�4�8 � and +91�1�0�4�8 	 have identical intermediate results. In other
words, prefix-commonalities across filter statements can be exploi-
ted for improving the utilization of the PRCache entries.

AFilter exploits prefix-commonalities through PRLabel-tree
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Figure 10: (a) PRLabel-tree and (b) SFLabel-tree for
� � 

����+�����=�����- , ��	 �����+ ����=�����. , and
� �  ���60 ����+�����=�����.

(trie) data structure which labels common prefixes across path ex-
pressions. The entries in PRCache are then hashed in such a way
that query steps sharing the same prefix also share cached results.

EXAMPLE 7 (PREFIX SHARING). Consider� �!� 1����+�����=�����- ,� ��	 1����+�����=�����. , and� ��� 1���60 ����+�����=�����. .

Figure 10(a) depicts the prefix clustering of individual query steps.
Any assertions clustered under the same prefix ID in this figure
can be cached under the same cache index. In this example, pairs,$ � � � 5 T - $ � 	 � 5 T and $ � � � 	 T - $ � 	 � 	 T , of assertions can be cached un-
der the same prefixes, 7*460 � and 7<4!0 	 , respectively.

6. SHARING WITH SUFFIX-
COMPRESSED AXISVIEW

Prefix caching is useful in eliminating redundant traversals of the
StackBranch pointers. However, even when such redundant traver-
sals are eliminated, the cost of the Step7c of the traversal algorithm
(Figure 9), where candidate assertions are matched against the local
assertions associated with the outgoing pointers, can be high.

As discussed in Section 4.4, StackBranch implements this
through a hash-join; thus, the cost of the operation is linear in
the number of candidate assertions to be matched. Naturally, re-
ducing the number of candidate assertions would also reduce the
time spent at the Step7c of Traversal. Since traversals are from the
leaves toward the root, clustering assertions in terms of shared suf-
fixes would reduce the number of candidate assertions to consider.

EXAMPLE 8 (SUFFIX SHARING). Let us consider� � � 1����+�����= ,� � 	 1����+�����=�����+�����= , and� � � 1����-�����+�����= ,
which all share a common suffix ( ����+�����= ). The corresponding
SFLabel-tree structure (shown in Figure 13(a)) captures this suf-
fix overlap.

Note that the original AxisView data structure, shown in Figu-
re 13(b), does not capture the suffix commonality ( ����+�����= ) across
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Traverse: !�*+�-,)� *+�.� ���9� � ���)!�* �
/* If no edges to traverse, return back*/

1. if �)!�*9� 7 then return
�

2. assume �)!�* points to ��������� � ���0�)!#" �$��� �'� �&�,�%�)!�* g �.+(+(����!�* B /0/
/* Eliminate those conditions that do not satisfy the

parent/child conditions*/
3. eliminate from � all � � �
	 ��� ��� ��� such that ��� ��!#" �$��� �'� � (� ��� 2
4. if � � �

then return
�

5. * ����� 3%! � �

/* If “
� 4 � ��8 ” is reached, then a match is found*/

6. if �	� is “ 	 * � �,! ” then
(a) * �*��� 3%! �
�
(b) return * ����� 3%!

/* Otherwise, for all outgoing pointers...*/
7. for , � 2 to � do

(a) let � ��� be the edge corresponding to the pointer �)!�*� of ��
(b) ����5 � � � � � � � �

/* ..consider all incoming candidates to find matching
local assertions (this step is implemented best using a
hash-join)*/

(c) for � F �
� �
	 F ��� F ���%��� �  � �
	 F ��� F ��� � ��� �

i. for ��� � � ��	��)��������� � ����� � ���'�  � �
	��)�"������� � � ���!� � � �'�
such that 	 F ��� 	 � then

A. if � � ��� � F � 2 then ����5 � � � ��� � ������5 � � � �����  � � � �
/* ..if

there are any matching local assertions, verify them by
recursively traversing the corresponding pointer*/

(d) if ����5 � � � ��� �1(� �
then

i. !�*+�-,)� *+�.� * ����� 3%!��!�*+�-,)� *+�.� �
����5 � � � � � �2� ���0�)!#" ���:� �'� �&���)!�* � �
ii. * ����� 3%! � � �)�9�)5 � �$* ����� 3%!&�.����#!�*�� ,)� *��,� * �*��� 3%!��

+.+.+ /* Continued..*/

... +&+.+ /* Continued..*/

/* We need to also consider those stack objects
that are below the current object; they may be relevant
to the query*/

(e) for all ��� � � ��� � ���0�)!#" �$�:� �	� �&�.�%��!�*�� �g �.+(+(�2�)!�*�� �B /#/ under ��� in the
stack

i. let �)!�*�� �� be the , -21 pointer of �� �
ii. let � ��� be the edge corresponding to the pointer �)!�*�� ��

iii. ����5 � � � � � � � �

/* ...objects further down the stack can not be
parents; so, ignore parent/child assertions*/

iv. eliminate from � all �	� �
	 �"� � � ���
v. for � F �$5

� �
	 F ��� F ��� � ��� �
A. for ��� � � �
	�������� ��� � ������� � ���  � �
	��)�"������� � �

����� � ���'� such that 	 F ��� 	 � then
- if � � ��� � F �.2 then ���)5 � � � ��� � � ���)5 � � � ��� �  � � � �

/* if there are any matching local
assertions, we need to verify them by recursively
traversing the corresponding pointer*/

vi. if ����5 � � � � � �1(� �
then

A. !�*+�-,)� *+�.� * ����� 3%! �
!�*+�-,)� *+�.� ������5 � � � ��� �2� ���0�)!#" �$��� �	� � �2��!�*�� �� �

B. * ����� 3%! �;�.��� ��5 � ��* ����� 3�!&�&��� �#�#!�*+�-,)� *+�.� * ����� 3%!��
/* Return all the collected subresults along with the

validated assertions*/
8. return * �*��� 3%!

/* NOTE: This is a simplified representation
of the traverse(). The actual implementation contains further op-
timizations....The join operations in Step 7c is implemented using
a hash-join.... Also, Step 7(e)v is implemented in a way that bene-
fits from the assertion matching already performed in Step 7c for
earlier objects*/

Figure 9: The Traverse step is called for verifying a set of candidate assertions;
�

is the set of candidate assertions, 7<8S4 is the pointer
being followed, and . is the depth of the source stack object

the three filter statements. The edge ( 0 � in the AxisView triggers each
of these three queries independently. A suffix-compressed AxisView
reduces the amount of triggering and the traversals by clustering
the shared suffixes in the AxisView, as shown in Figure 13(c). In
this suffix-compressed AxisView example, there is only one trigger
associated with edge ( 0 � which clusters all three queries.

In the suffix-compressed AxisView, assertions are not made in
terms of query IDs and steps, but in terms of edge IDs in the
SFLabel-tree tree. The StackBranch is traversed towards the

��\�^P^
�

in a suffix clustered manner: matching of the candidate assertions
and the local assertions (to decide which pointers to traverse for
which assertions) is performed by checking if two corresponding
edges are neighbors in the SFLabel-tree tree or not.

Once the
� \�^�^

� is reached and the matches are being compiled
by tracing the matching results back (Steps 7(d)ii, 7(e)viB of the
traverse algorithm in Figure 9), the individual assertions clustered
under the successful suffix labels are used to expand submatches to
identify the individual results.

7. PREFIX-BASED CACHING WITH
SUFFIX-COMPRESSION

A label in a suffix-compressed AxisView clusters suffixes of the
filter patterns, whereas PRCache caches intermediary results based
on the common prefixes of the filters. As shown in Figure 11, the-
re may be many to many relationships between prefix and suffix
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Figure 11: Many-to-many rel. between suffix-and-prefix labels
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Figure 12: Although the two assertions, $ � + � 1�+ T and $ � = � 1�= T ,
share the same prefix, two different suffix label labels, 1�' � � and1�' � � , place these two assertions into separate clusters. Thus, if
in AxisView, assertions are clustered under suffixes, then these
two assertions can not benefit from each others’ prefix caches

labels. Unfortunately, suffixes and prefixes are not always compa-
tible and suffix-based clustering can prevent prefix-based caching
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Figure 14: Early unfolding of suffix clusters: since -�+�&�� can be
served from the cache, the corresponding cluster with the suffix
label, 1�' � � , is unfolded; the corresponding pointer will be tra-
versed in an unclustered manner (while the unaffected pointers
continue to be traversed in a suffix-compressed manner with
suffix labels, 1�' � 	 and 1�' � � )

opportunities. In particular, some of the prefix commonalities in
filter statements will be hidden by suffix labels (Figure 12). This
naturally reduces the utilization rate of the cache.

EXAMPLE 9 (SUFFIX VS. PREFIX SHARING). Let us recon-
sider the following three filter statements, first considered in Exam-
ple 7 and Figure 10:� �!� �����+ ����=�����- ,� � 	 �����+ ����=�����. , and� � � �����0�����+�����=�����. .

It is easy to see that the prefixes ( ����+�����= ) of filter statements
� �

and
��	

overlap, whereas the suffixes ( ����+�����=�����. ) of
��	

and
� �

are
also identical. The corresponding PRLabel-tree and SFLabel-tree
data structures are shown in Figures 10(a) and 10(b), respectively.

This leads to a conflict: for prefix sharing, $ � 	 � 	 T needs to be ab-
le to access the cached results of $ �!��� 	 T ; on the other hand, to bene-
fit from suffix clustering, $ ��	6� 	 T needs to be clustered with $ � � � U T ,
under the suffix label, 1�' � 	 .

Thus, benefiting from prefix caching, while also exploiting suf-
fix clustering, requires unfolding (or unclustering) of suffix-based
clusters as needed. There are two unfolding alternatives, early and
late unfolding, both of which we discuss below.

7.1 Early Unfolding of Suffix Clusters
During the backward traversal of the StackBranch , the early

unfolding mechanism un-clusters a suffix-label as soon as the sy-
stem determines that one of the candidate assertions contained in a
suffix-based cluster can be delivered from the cache. Let us assume
that, during the pointer traversal step, we identify that a candidate
assertion, $ ����� 1 ��T , clustered under the suffix label, 1�' � � , can bene-
fit from a result already in PRCache. In early unfolding, the suffix
label, 1�' � � , will be immediately unfolded and all the candidate as-
sertions clustered under 1�' � � will be further verified individually.

PRCache

suf1suf2suf3suf4suf5
suf6

can7can12can58

{...can7...}{...can12...}{...can23...} {...can4...}

{can58, can12}

can4can23

Figure 15: Late unfolding of suffix clusters, with candidate as-
sertion removal and branch pruning

EXAMPLE 10 (EARLY UNFOLDING). Figure 14 illustrates
this process with an example. If prefix caching is not used, the in-
coming suffix-label 1�' � � will result in traversals of suffix labels,1�' � 	 , 1�' � � , and 1�' � � , on three outgoing pointers.

Let us assume that, the suffix label 1�' � � , clusters two candidate
assertions, -�+�&�� and -�+�&�< and the assertion -�+�&�� can be served
from the cache. In this case, to benefit from the cached results, the
early unfolding mechanism would stop traversing the pointer cor-
responding to 1�' � � in the suffix domain. Instead, it would traverse
the pointer for the individual non-cached assertion ( -/+,& < in this
example). The pointers that can not benefit from the cache will con-
tinue to be traversed in a suffix clustered manner ( 1�' � 	 and 1�' � � ).

While PRLabel-tree and SFLabel-tree data structures are con-
structed, prefix IDs are associated with the suffix labels (Figu-
re 11). When an assertion with a given prefix ID, 7*460 � is cached
in PRCache, an '*& � �6; . � 1�' � � � bit for each suffix label, 1�' � � $
1�' � �<� � 0�1 � 7<4!0 � � , is set (Figure 11(b)). If a suffix label with a set
unfold bit needs to be traversed, that suffix label will be imme-
diately unclustered and the individual assertions will be traversed
independently.

7.2 Late Unfolding of Suffix Clusters
Unfolding has an associated cost in terms of the lost assertion

clustering opportunities. Especially in cases where (a) suffix clu-
sters are large, but (b) the prefix cache hit rate is low (i.e., when
only a few candidate assertions per suffix cluster can actually be
served from the prefix cache), early unfolding can cause unneces-
sary performance degradations. In such cases, it may be more ad-
vantageous to delay the unfolding of suffix-clusters.

EXAMPLE 11 (LATE UNFOLDING). Consider Figure 15,
where the suffix label 1�' � 	 contains a candidate assertion, -�+�& � ,
which can be served from the cache early in the traversal process.

In this case, early unfolding would require unfolding of all the
assertions clustered under the label 1�' � 	 . However, if 1�' � 	 is un-
folded at this stage, none of the subsequent steps can be performed
in the suffix clustered domain.
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In contrast, late unfolding refrains from immediately un-
clustering the set of candidate assertions under 1�' � 	 . While -�+�& �
is served locally from the cache, the edge corresponding to the
suffix-based label 1�' � 	 continues to be traversed using the suffix
label, instead of being traversed as individual assertions.

The challenge with such a delayed (or late) unfolding mecha-
nism, however, is to ensure that cluster domain traversal does not
cause redundant work for the already cached result. In the above
example, since -/+,& � will eventually be served from the cache, this
assertion should be removed from further consideration to prevent
redundant work: in other words, the semantics of the suffix-label,1�' � 	 , needs to be modified to exclude -/+�& � (illustrated with a cross
on -�+�& � in Figure 15). Thus, when an assertion with a given prefix
ID, 7*460 � is cached in PRCache, a 4!0�) � ��0 � 1�' � � � � 7*460 � � bit is set for
each suffix label, 1�' � � $ 1�' � �<� � 0�1 � 7*460 � � (Figure 11(b) illustrates1�' � �<� � 0�1 � 7*460 � � ).
7.2.1 Pruning Redundant Prefix Cache Accesses

If an assertion can be served from the cache, its prefixes do not
need to be served from their own caches. Therefore, if an assertion
is marked for removal from its suffix cluster, its prefixes should also
be removed from their corresponding suffix-labels.

EXAMPLE 12 (PRUNING CACHE ACCESSES). This is illu-
strated in Figure 15: let us assume that candidate assertions -�+�& > ,-/+�& �M	 , -�+�& 	 � , and -�+�& � � , are all prefixes of the candidate asserti-
on -/+�& � , which is removed from consideration. The cache will not
be accessed for such non-maximal prefixes.

In AFilter, when a suffix label, 1�' � � is traversed, each 7*460 � such
that 4!0�) � ��0 � 1�' � � � � 7*460 � � is being set, is also inserted into a pru-
ne set. This is achieved by setting a 7*46'<& 0�-/+,-�:*0 � 7*4!0 � � bit. No-
te that, if 7*4!0 " is a prefix of 7<4!0 � , then 4!0�) � ��0 � 1�' � � � � 7*4!0 � ���460�) � ��0 � 1�' � � � � 7<4!0 " � , and

7*4�'*&"0�-/+�-�:*0 � 7*460 � ��� 7*4�'*&"0�-/+�-�:*0 � 7*460 " � �
This is used for pruning non-maximal prefixes of removed prefix
labels from further consideration.

7.2.2 Pruning Redundant Traversals
Under late unfolding, if all candidates clustered under a suffix

label are removed (i.e., can be served from the cache), the corre-
sponding pointer does not need to be further traversed.

EXAMPLE 13 (PRUNING TRAVERSALS). In Figure 15, 1�' �=<
clusters only two candidate assertions, -�+�& � � and -/+�& �M	 , both of
which have been marked for removal from consideration. Therefo-
re, the corresponding pointer does not need to be further traversed.

Pruning condition for suffix, 1�' � � , is checked by considering
whether

� 7*460 � $ 7<4!0 �<� � 0�1 � 1�' � � � the removal bit 4!0�) � ��0� 1�' � � � � 7*460 � � is set or not (Figure 11(a) illustrates 7*460 �<� � 0�1 � 1�' � � � ).
The performance of late unfolding depends on how easy it is to

look into the clusters for checking (a) if any of the clustered asser-
tions can be served from the cache, (b) if any of such assertions are
in the removal list, or (c) if each candidate clustered under a suffix
label is a prefix of another one which has already been removed.

We note that the cost of checking if any of the clustered asser-
tions can be served from the cache is the same an early unfolding
scheme would have to pay to use the PRCache. On the other hand,
as described above, sharing of the removal bits between prefixes re-
quires the propagation of the removed prefixes along the traversal
path using the 7*4�'*&"0�-�+�-�:*0 � 7*460 �<� ����� � bits. As evidenced in the
next section, despite this overhead, late unfolding provides the best
of both prefix caching and suffix-clustering approaches, and thus
significantly outperforms all alternatives.

Acronym Filtering approach

YF YFilter
AF-nc-ns AFilter, no cache, no suffix compression
AF-nc-suf Suffix Compressed AFilter, no cache
AF-pre-ns AFilter, prefix caching only, no suffix compression
AF-pre-suf-early Suffix Compressed AFilter, prefix cache, early unfolding
AF-pre-suf-late Suffix Compressed AFilter, prefix cache, late unfolding

Table 1: Notation used for various filtering deployments
Parameter Values

Number of filter statements 10K-100K
XML message depth �
	
Average XML filter depth �
�
Maximum XML filter depth 15
XML message size 6000 bytes

Table 2: Experiment parameters (unless specified otherwise)

8. EXPERIMENTAL EVALUATION
In the previous sections, we discussed the various components

of the AFilter algorithm for efficient and adaptive filtering of path
expressions. In this section, we provide an extensive evaluation
of AFilter through comparisons of the various properties of AFil-
ter with those of a state-of-the-art XML filtering algorithm, YFil-
ter [13]. We chose YFilter for comparison, as both AFilter and
YFilter primarily perform filtering of path expressions. Unlike
AFilter, however, YFilter relies on a finite state automata based ap-
proach and requires maintenance of all active states in the memory.
Furthermore, YFilter exploits only prefix commonalities between
filter statements, while AFilter can exploit both. Therefore, YFil-
ter provides opportunities for a one-to-one comparison of various
novel approaches underlying AFilter. Table 1 provides an overview
of different filtering setups, with various AFilter components are
turned on and off, we compared against YFilter.

We have implemented AFilter in Java (JDK 1.5). For compari-
son purposes, we used the YFilter implementation available at [2].
All experiments were conducted on a 1.7GHZ Pentium 4 machi-
ne with 1GB RAM. For the experiments reported in this section,
unless stated otherwise, we generated XML data using the NITF
DTD available through the YFilter test suites [2] and the ToXgene
data generator [5]. The filter queries were generated using YFilter’s
query generator. Table 2 lists the various parameters and parameter
value ranges we used for generating the data and filter queries we
are reporting in this section. We also experimented with different
parameters (such as query/data depth, message size, and skewness);
results were consistent with the sample we are reporting.

8.1 Time vs. Number of Filter Expressions
Figure 16 shows the effect of the number of expressions on the

time required for filtering a given set of filter expressions. For this
experiment, we varied the number of filter expressions from 10K
to 100K and we observed the filtering performance of different
schemes. AFilter’s performance varies depending on the scheme
chosen. As expected the low memory AxisView-only (no-caching,
no-suffix clustering) scheme takes more time than the others, inclu-
ding YFilter. Path-caching-only AFilter gives comparable results to
YFilter, especially for smaller filter sets. On the other hand, when
both suffix and path caching are used, the performance of AFilter
becomes significantly better than YFilter, requiring only less than
15-30% of YFilter for large filter sets.

8.2 Comparison of Compression Approaches
Figure 17 compares the three suffix-compressed approaches to

AFilter: suffix-compressed AxisView with no prefix caching (AF-
nc-suf), suffix-compressed AxisView with prefix caching and ear-
ly unfolding (AF-pre-suf-early), and suffix-compressed AxisView
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Figure 16: AFilter with suffix-clustering + prefix caching (with
late unfolding) provides the best performance

Comparison of Suffix-based Techniques 
(*,// wildcard prob=~0.1)

0

10

20

30

40

50

60

70

80

90

10 30 50 70 90

tim
e 

(m
s)

#filter(1000)

AF-pre-suf-early

AF-pre-suf-late

AF-nc-suf

Figure 17: Comparison of different suffix-based approaches

with prefix caching and late unfolding (AF-pre-suf-late). As ex-
pected, when the number of filter statements are large, the loss in
the suffix clustering opportunities due to early unfolding renders
the AF-pre-suf-early scheme worse among the three. On the other
hand, caching with late-unfolding (AF-pre-suf-late) brings together
the desirable properties of both prefix caching and suffix-clustering,
and performs significantly better than all other alternatives.

8.3 Time vs. Probability of Wildcards
Figure 18 shows the effects of different types and probabilities

of wildcards on the various filtering schemes. As can be seen in this
figure, both “*” and “//” affect the performance of YFilter. In con-
trast, the suffix-compressed AFilter schemes are less affected by the
increase in the number of wildcards in the queries. One exception
is the early-unfolding approach which is affected by the increase
in the ‘*” wildcards; however, as expected, the suffix-compressed
AFilter with prefix caching and late unfolding is minimally affected
by the increase and outperforms all other alternatives.

8.4 Cache size vs. Time
Figure 19 shows that AFilter does indeed benefit from larger ca-

che space, when available. As expected increasing the cache size
improves AFilter’s performance. Naturally, beyond some point, ha-
ving more cache space does not help.

8.5 Number of Filters vs. Index Space
Figure 20(a) compares the amount of base memory requirement

(i.e., AxisView) against the memory requirement of YFilter. As il-
lustrated here, the base version of AFilter can run with lower availa-
ble index memory than YFilter. Note that, for this dataset (since
the number of unique labels are large and the depth of the data
is relatively smaller), the index memory requirement significantly
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Figure 19: Impact of cache size on AFilter performance

dominated the runtime memory requirement for both YFilter and
StackBranch (Figure 20(b)).

8.6 Results for a Different Data Set
In order to verify that the above results hold across different da-

ta characteristics, we also experimented with a different DTD. For
these experiments, we used the book DTD available at [1]. This
DTD has a higher recursion rate and a smaller number of unique la-
bels. In order to see the performance of different schemes in light-
and heavy-usage usage of wildcards, we experimented with diffe-
rent wildcard (“*” and “//”) occurance probabilities and different
filter set sizes . Note that the numbers of distinct path expressions
(of a given depth) generated under these scenarios are smaller since
there are fewer unique labels.

Figure 21 shows the results of YFilter against the suffix-
compressed AFilter schemes (as shown before, without suffix
clustering the runtime of AFilter is worse than YFilter). Suffix-
clustering improves the performance. Once again, suffix-clustering
with prefix-caching and late-unfolding outperforms other alternati-
ves and consistenly requires less than 50% of YFilter.

9. CONCLUSIONS
In this paper, we introduced, AFilter, for filtering path expressi-

ons. In addition to the overview in Section 1.1, here we provide a
short summary of how AFilter compares with the earlier work.

Automata-based schemes, such as YFilter, consume input sym-
bols and traverse a state space. Active states have to be identified
and maintained in an internal storage before the next symbol is con-
sidered. The number of active states that have to be maintained in
memory for the automata-based schemes can be exponentially lar-
ge [7, 13, 16]. In contrast, AFilter operates in two stages:

(a) As each symbol is consumed, AFilter constructs an interme-
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Figure 21: Filtering performances of the suffix supported AFil-
ter schemes against YFilter for a different dataset.

diary StackBranch data structure. StackBranch is a linear en-
coding of the XML data path. Unlike YFilter’s state stora-
ge, StackBranch does not contain any explicitly enumerated
states or prefix matches.

(b) When a trigger condition is observed, the path-encoding
pointers in StackBranch are traversed backward to stitch the
individual “query steps” and to find and unfold path matches.

The stack-based linear data storage mechanism is analogous to the
data indexing schemes used in TwigStack/ PathStack [9] and mo-
re recently in PathM [12]. However, unlike these schemes, Stack-
Branch leverages the AxisView graph to construct a highly com-
pact representation of the run-time state of the data, when there
are multiple filter queries (with prefix and suffix-overlaps).

A primary advantage of AFilter is that when memory is tight, the
pointers of StackBranch can be followed one-at-a-time, without ha-
ving to allocate more-than-linear memory to store prefix matches.
Thus, AFilter provides tradeoff between memory and performance
and can work with only linear memory, when needed. In fact, AFil-
ter uses an on-demand prefix caching mechanism (PRCache) which
can exploit additional memory when available and can selectively
cache prefixes. This triggering-initiated, lazy-enumeration scheme
also benefits significantly from the more stringent selectivities of
leaves (typical in practice).

Furthermore, unlike automata-based solutions (and many others)
which are suitable only for prefix sharing, AFilter exploits simulta-
neously various sharing opportunities: common steps (AxisView),
common prefixes (PRLabel-tree), and common suffixes (SFLabel-
tree). Tries are fundamental data structures, used in many works
(including YFilter [13] and XTries [10]) where prefix sharing is
needed. Unlike most schemes (such as XTries) which use tries for
matching path-segments, AFilter uses the PRLabel-tree/ SFLabel-
tree to generate prefix and suffix labels that are used to annotate
AxisView edges. Thus, both prefix- and suffix-sharing can be ex-

ploited simultaneously leading to significantly higher savings than
is achieved by relying only one alternative (Section 8).

The experiment results in Section 8 showed that AFilter brings
together the desirable properties of effective memory utilizati-
on, trigger-based result enumeration, and prefix-caching/suffix-
clustering to enable scalable and high performance path expression
filtering. In fact, the best results are obtained when both prefix and
suffix clustering are exploited simultaneously.
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