
Adaptive Execution of Variable-Accuracy Functions ∗

Matthew Denny
U.C. Berkeley, EECS Dept.

387 Soda Hall
Berkeley, CA 94720-1776, USA

mdenny@cs.berkeley.edu

Michael J. Franklin
U.C. Berkeley, EECS Dept.

387 Soda Hall
Berkeley, CA 94720-1776, USA

franklin@cs.berkeley.edu

ABSTRACT
Many analysis applications require the ability to repeatedly
execute sophisticated modeling functions, which can each
take minutes or even hours to produce a single answer. Be-
cause of this expense, such applications have largely been
unable to directly use such models in queries, with either on-
demand or continuous query processing technology. Query
processors are hindered in their ability to optimize expen-
sive modeling functions due to the “black box” nature of
existing user-defined function (UDF) interfaces. In this pa-
per, we address the problem of querying over sophisticated
models with the development of VAOs (Variable-Accuracy
Operators). VAOs use a new function interface that exposes
the trade-off between compute time and accuracy that ex-
ists in many modeling functions. Using this interface, VAOs
adaptively run each function call in a query only to an accu-
racy needed to answer the query, thus eliminating unneeded
work. In this paper, we present the design of VAOs for a set
of common query operations. We show the effectiveness of
VAOs using a prototype implementation running financial
queries over real bond market data.

1. INTRODUCTION

1.1 Motivation
Many important applications require the repeated use of

expensive analysis functions. For example, power compa-
nies use models that predict power usage based on vari-
able inputs such as weather conditions. These companies
need to run queries using analysis functions to determine
the weather conditions that would cause different parts of
their grids to become overloaded [5]. As another example,
consider securities traders who use numerical models to price
securities based on market data. In order to monitor contin-

∗This work was funded in part by NSF under ITR grants IIS-
0086057 and SI-0122599, by the IBM Faculty Partnership
Award program, and by research funds from Intel, Microsoft,
and the UC MICRO program. Denny was supported in part
by the Siebel Scholars Fellowship.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

uous query results involving these prices, traders must re-
run the models as the underlying market data changes. A
further example of such applications is in the area of supply
chain management (SCM), where users will soon be able to
run inventory replenishment models in real-time in response
to data provided by emerging RFID technology [12].

Unfortunately, such sophisticated applications often have
serious performance problems. In many of these applica-
tions, the models require minutes or even hours to compute
a single data point, even on modern processors (e.g. [28,
11]). Thus, function execution can easily become a bottle-
neck. For streaming systems where the function arguments
are data streams, the problems are exacerbated; A system
may not have the processing power to keep up with the in-
coming stream updates. At present, analysts have to choose
between using less complex (and hence, less accurate) mod-
els and running the models less frequently. Neither option
is optimal.

If these functions are run in the context of a query, the
query processor may be able to reduce the compute cost.
While today’s query processors attempt to avoid expensive
function calls by either predicate re-ordering [23, 3, 22, 21]
or caching [20, 7], such work fails to address the remaining
problem of optimizing the execution of the function calls
that still have to be run. As a result, the applicability of
those solutions is limited. In this paper, we address this
problem via a new query processing approach called VAOs
(Variable-Accuracy Operators). VAOs are based on the in-
sight that many modeling functions, (such as those imple-
menting certain numeric functions) allow a trade-off between
compute time and accuracy. VAOs are built upon a new in-
terface to User Defined Functions (UDFs) that provides the
system with finer-grained control over function execution,
and thus more opportunity for optimization. That is, in
contrast to current systems, where UDFs export a “black
box”, all-or-nothing interface, VAOs are able to adaptively
vary the compute time in functions where if more work is
applied, a more accurate answer is obtained.

VAOs perform common query operations (e.g. predicate
evaluation, aggregates) that require the execution of expen-
sive functions. In a query plan, VAOs replace both the mod-
ule that executes a function, as well as the operator that
evaluates the result. For the example query plan in Figure
1 for a MAX aggregate over a function result, a single VAO
would replace both the function execution and aggregation
modules shown. Using the new UDF interface, the VAO
adaptively adjusts the amount of work done by the function
according to the accuracy needed by the given operation.

547

execute f(R.a)

max(f(R.a))

i Mac

Select max(f(R.a))
From R

Relation R

Results

Query

CQ System

VAO
Functionality

Figure 1: An example system running a simple MAX

query. A MAX VAO combines the function execution

with the aggregate calculation, enabling adaptive, incre-

mental execution of the expensive function.

In our figure, the VAO needs to allocate work so that it
accurately determines the largest value produced without
performing unneeded work on function executions that ulti-
mately produce smaller values. As we will show later, these
VAOs often yield drastic performance improvements.

1.2 Example Application
To both demonstrate the need for VAOs and illustrate the

VAOs approach, we detail the bond trading application from
above, which we will use as a running example throughout
the paper. As mentioned above, traders often use bond mod-
els to find a price for a given bond. For bonds that do not
trade on an open market, pricing data is often not made
public, and traders must use models to obtain prices. These
models output a bond price based on input data about the
bond and current economic data such as interest rates. As
economic and bond data changes, bond traders may want to
run models on each bond in real-time, and answer queries
such as:

Q1: Find all bonds priced above $100.
Q2: Find the value of my bond portfolio, which is a
weighted sum of bond prices.
Q3: Find the best performing (i.e. highest valued) bond.

In these queries, models must execute quickly because
traders need to run a model for each bond issue each time an
input changes. In the case of interest rate inputs, the rate
is typically calculated using the price of a U.S. Treasury
Bond, which changes every 2 minutes on average1. There-
fore, models must be run quickly in order to be practical.

Unfortunately, bond models such as [11] can be compu-
tationally expensive, requiring time on the order of min-
utes or more. These models require numerical solutions for
partial differential equations (PDEs) that cannot be solved
analytically. These numerical PDE solvers return approx-
imate prices, where the accuracy of the resulting price de-
pends on the amount of compute work used in the solver.

1Determined by observing real-time interest rate data
on [30] from 10/13/04 to 11/09/04.

While we concentrate on bond models in this example, sim-
ilar PDE solvers are used in fields as varied as fluid mechan-
ics [29], semiconductor process design [13], and high-energy
physics [24]2 .

Similar to the processing shown in Figure 1, queries Q1-
Q3 can be run in CQ engines with the models supplied as
UDFs. Given this architecture and “black box” UDF inter-
face, however, CQ engines cannot control the accuracy of
UDF calls. Therefore, these engines must always run mod-
els so all answers are accurate enough to answer any query.
In financial applications, this means running all models with
an error of less than $.01. Since prices can only be accurate
to $.01 anyway, models can effectively report a price as a
single real number.

In many cases, these systems often do too much work to
process a query. For instance, consider a system running
query Q3 over 2 bonds which are worth $105 and $95, re-
spectively. Suppose that a model call reports both bond
values within $.01 accuracy. In this case, the system could
determine the max value without running the lower valued
bond to as high of accuracy, thus requiring much less work.

1.3 Overview
To deal with this problem, we present VAOs, which are

operators that combine the function execution and the oper-
ations over the results. By combining these two operations,
the VAO can change the function execution based on the
operations performed on the results.

VAOs use a UDF interface which lets them control the
work-accuracy trade-off inherent in many functions. Using
this interface, functions return upper and lower bounds, not
single values. The initial bounds from a function are initially
very coarse, as they result from the minimal amount of com-
pute work for the function. If the bounds are not accurate
enough to produce an answer for the operator, the VAOs
can use the new interface to refine the bounds, which also
requires more CPU cycles. A wide variety of numeric func-
tions have an inherent work-accuracy trade-off, and we have
modified a variety of numeric algorithms to accommodate
the VAO interface.

For a VAO MAX operator in the above example, suppose
the functions provide initial bounds of [$98, $110] and [$90,
$101]. Since these bounds overlap, the operator must re-
fine the bounds so that a) maximum value is found, and
b) the value is within a certain error tolerance (e.g. $.01
for bonds). As the VAO can make refinements over either
(or both) bounds, each VAO needs a refinement strategy
that attempts to conserve work by considering both query
operation the data involved.

We have designed VAOs for selection predicates and 4
aggregates. To evaluate our designs, we implemented pro-
totype VAOs and ran experiments using real bond data
and models. Under realistic market conditions, these ex-
periments show that VAOs run functions up to two orders
of magnitude faster than traditional operators. In addi-
tional experiments on synthetic data, we found that VAOs
are robust in many experiments explicitly designed to stress
VAOs.

2While a survey of PDE solvers can be found in Chapter 12
of [2], we discuss PDE solvers in more detail in Sections 2
and 4.

548

1.4 Contributions and Roadmap
The contributions of this paper are as follows:

• We describe a new UDF interface which exploits the
trade-off between work and accuracy inherent in many
expensive functions.

• We discuss our modifications to a large class of numeric
algorithms which allows them to be implemented with
the VAO interface.

• We present a new class of continuous query operators,
the VAOs, which use the new interface. VAOs ad-
just the work in a function according to the accuracy
needed by the query.

• We discuss experimental results with VAO prototypes.
In experiments using real bond data and models, VAOs
provide up to two orders of magnitude improvement
over traditional operators. With synthetic data, VAOs
exhibit robust performance in many experiments de-
signed to stress VAOs.

The rest of this paper is as follows. Section 2 presents
related work. Section 3 gives a general overview of query
processing with VAOs, as well as a detailed description of
the new UDF interface. Section 4 describes the modifica-
tions needed for numeric algorithms implemented with the
VAOs interface, and Section 5 discusses the designs of spe-
cific VAOs. Section 6 discusses performance results, and
Section 7 concludes the paper.

2. RELATED WORK
While previous database research deals with expensive

function optimization, this prior work attempts to avoid
function calls instead of optimizing the execution of calls
that must be made. Therefore, most of this work is com-
plementary to VAOs. Work on static queries concentrates
either on predicate re-ordering [3, 22, 21] or caching [20].
Most continuous query research [14, 15, 16] does not con-
centrate on expensive predicate evaluation. The work in
the TCQ system [16, 23], however, uses a query processing
mechanism called an Eddy, which can potentially re-order
predicates to avoid expensive function calls.

Our work in [7] presents CASPER, a caching system for
expensive functions in continuous query systems. CASPER
caches predicate result ranges, which are ranges of param-
eters where the results of expensive predicates are known.
To compute these predicate result ranges, CASPER uses a
new UDF interface. We view the integration of VAOs with
CASPER, which entails integrating their UDF interfaces, to
be interesting future work.

In addition to UDF optimizations, the database commu-
nity has done significant work on using approximate an-
swers to reduce the cost of expensive operations, which is
the general approach of VAOs. Much of this work, how-
ever, uses probabilistic techniques which require specialized
assumptions about the data and the expensive operations.
For example,the approximate predicates presented in [27] are
cheaper versions of exact predicates with known false posi-
tive and false negative probabilities. VAOs function in situ-
ations where neither such predicates nor the corresponding
probabilities exist. Other approximation techniques [4, 9,
10] require probability distributions over the data. To adapt
these techniques to the queries presented here, a probability

distribution would be needed that relates both the underly-
ing data and the outputs of the functions. VAOs require no
such distribution.

The online aggregation work in [19] uses a principle sim-
ilar to VAOs of continually refining error bounds until the
answer has similar accuracy. The online aggregation system
computes probabilistic error bars for aggregates by sampling
relational data, and does not support user-defined functions.
In contrast to this probabilistic approach, the systems in [26,
25] compute approximate aggregation queries by using de-
terministic error bounds. This work deals with aggregates
over data coming from a large number of distributed data
sources, and is focused on reducing communication cost of
data transfer rather than compute cost.

In the scientific computing literature, there is a wide body
of work on efficient solvers for expensive numerical functions.
Many of these solvers, including those for PDEs, ordinary
differential equations, and numerical integration problems,
have the VAOs property that more work gives more accurate
answers. As mentioned above, these solvers are used in fields
as disparate as fluid mechanics [29], semiconductor process
design [13], and high-energy physics [24]. A survey of these
solvers and their applications can be found in any numerical
analysis textbook (e.g. [2]), and the literature is much too
vast to cite here.

In the scientific computing literature, the most related
work to VAOs is Adaptive Mesh Refinement for PDEs [1].
As we explain later in Section 4, many PDE solvers require
the creation of a mesh, or multidimensional grid, of values
which determines both the accuracy and compute time of a
solution. Adaptive mesh refinement iteratively changes the
mesh size in order to find a solution of acceptable accuracy
while conserving compute cycles. These techniques are de-
signed primarily to optimize the solution to a single numer-
ical function, and do not address the execution of multiple
functions needed by a declarative continuous query.

3. GENERAL OVERVIEW
In this section, we give an overview of both VAOs and

the new UDF interface that they use. VAOs change the
processing of queries with any UDF that a) returns a real
number, and b) has an inherent trade-off between work and
accuracy. In this section, we first describe traditional op-
erators processing UDFs with “black box” interfaces, and
then show how VAOs improve upon these operators using
the new interface.

3.1 Traditional Operators
Figure 2 shows how traditional operators process results

of UDFs. In this figure, we show a system processing a se-
lection predicate “model(IR.rate,BD) > 100”, which would
be a predicate similar to that found in Q1 from Section 1.
In this predicate, BD is a relation containing a tuple for
each bond in the market, and IR is a stream that contains
the interest rate in the field IR.rate. model() is a function
that takes an interest rate and a BD tuple, and returns a
price for a bond at the given rate. In this example, model()
is based on PDE solvers which require more compute time
for higher accuracy. Section 4 provides more information on
PDE solvers commonly used in bond models.

In this figure, the system first executes model() in a func-
tion execution module, and then evaluates the result with

549

BD

IR

execute
model(IR.rate, BD)

σ
model(IR.rate, BD) > $100

result: $105

. . .

. . .

. . .

. . .

Output/True

Figure 2: Evaluation of model(IR.rate, BD) > $100 for a

sample tuple pair with traditional operators.

a selection operator. For simplicity, we assume the absence
of caching; function caches as described in [20] can be used
with both traditional operators and VAOs, and do not affect
our discussion of function execution.

Note that the selection operator is separate from the ex-
ecution module, and has no control over UDF execution.
Therefore, the function call costs are completely dependent
on the function itself and its arguments. A function always
runs with the same accuracy, which must be sufficient to
answer any predicate. In our example, model() determines
each price to an accuracy within $.01. Since any error below
$.01 in a price is effectively irrelevant, the price returned can
be used in any operator evaluation.

In many cases, however, model() does not need to return
a value with such high accuracy. For the model() value of
$105 in Figure 2, model() could have been run with any ac-
curacy within $5, and the predicate would still evaluate to
true. Since the selection operator has no control over func-
tion execution, model() always runs with $.01 accuracy and
the corresponding cost. Even if the operator could change
function accuracy, the operator does not know the accuracy
needed a priori for each set of input tuples. While an accu-
racy of $5 may be enough for the model() result in Figure
2, results for other IR, BD tuple pairs may be closer to the
predicate constant and require higher accuracy.

3.2 VAOs
Figure 3 shows a system with VAOs executing the same

predicate described above. Here, the inputs to the function
flow into the VAO, which is responsible for executing the
function and applying the predicate. With this architec-
ture, the VAO can use the selection operator to influence
the function execution.

To control the function execution, VAOs take advantage
of an iterative interface for user-defined functions. With
this interface, VAOs can iteratively increase the accuracy of
function results by using more CPU cycles. For many func-
tions, particularly those of numerical nature, this interface

BD

IR

execute
model(IR.rate, BD)

σ
model(IR.rate, BD) > $100

result object

. . .

. . .

(a) [$98, $110]

BD

IR

execute
model(IR.rate, BD)

σ
model(IR.rate, BD) > $100

result object
(new bounds)

Output/True

. . .

. . .

[$101, $108]

.

.

VAO VAO

iterate()

(b)

Figure 3: Evaluation of model(IR.rate, BD) > $100 for a

sample tuple pair with VAOs. (a) shows the function re-

turning a result object, and (b) shows the VAO iterating

over the object to refine the bounds.

works quite well. For example, many numerical solutions
for root finding and integration3 are based on iterative tech-
niques, and thus can be implemented in this interface. Even
for functions that are not iterative in nature, such as PDE
solvers, we can often still use the VAO interface. Section 4
details how such solvers can be implemented with this in-
terface.

With the iterative interface, the first call to a UDF returns
a result object to the VAO instead of a value. Each object
provides:

• H and L: Numeric data members which are high and
low error bounds, respectively, for the function value.

• iterate(): A member function which the VAO can call
to refine the bounds, at the cost of more CPU cycles.

• minWidth: A numeric data member which indicates
the bounds width (H − L) under which the answer is
considered as accurate as possible and no more iter-
ate() calls should be run.

Unlike traditional operators, VAOs operate over result ob-
ject bounds instead of single values, and they can iteratively
refine these bounds in order to obtain an answer. All result
object processing is encapsulated in VAOs, unless function
results or result aggregates are in the operator output. In
this case, the query also needs to specify a precision con-
straint, which is a maximum bounds width for the output.
Precision constraints have been used in other query process-
ing work, such as [25, 26].

Figure 3(a) shows initial bounds for an example result
object. Each object initially provides very coarse-grained

3Elementary iterative root finders are surveyed in Chapter
2 of the textbook [2]. The same book also covers iterative
numerical integration techniques in Chapter 4.

550

bounds that require the minimal compute time for a func-
tion. In this case, the bounds encapsulate the predicate con-
stant, and the predicate result is unknown. In this case, the
VAO sends the object back to the executor, which iterates
over the object to get more accurate bounds.

A selection VAO iterates until either a) the bounds no
longer contain the selection constant, or b) the bounds width
falls below minWidth. The latter condition is a stopping
condition needed by most iterative techniques. Without
this, a VAO could iterate over an object infinitely many
times, eventually resulting in infinitely small error bounds
4. Here, the minWidth for all model() results is $.01. If
the bounds still contain the constant and have width less
than minWidth, the operator considers the function value
equal to the constant, and produces the appropriate result.

In Figure 3(b), we show the result of an iteration over
our example object. The new bounds are both greater than
$100, so the operator knows that the predicate is true. Note
that the error bounds are still much larger than $.01, which,
as we show in our experiments, often results in a drastic
compute time savings over “black box” function execution.

Given this design, VAO UDFs obviously have a differ-
ent cost model than traditional UDFs. Consider f(〈args〉),
which denotes a function call with argument value list
〈args〉. If f is implemented as a traditional UDF, assume
the call has an execution cost5 costtrad(f, 〈args〉). Now con-
sider the function implemented in the VAOs interface. For
iteration i where Ff,〈args〉,i is the state of the system im-
mediately before the ith iteration, the cost of the iteration
is:

costiter(f, 〈args〉,Ff,〈args〉,i) =

getstate(f, 〈args〉,Ff,〈args〉,i) +

execiter(f, 〈args〉,Ff,〈args〉,i) +

storestate(f, 〈args〉,Ff,〈args〉,i)

Here, execiter is the cost of the actual iteration execution.
In addition, the iteration must also get and store state in the
result object, which is represented by getstate and storestate,
respectively. If a function requires N iterations, the system
will save work using VAOs if:

costtrad(f, 〈args〉) >
PN

i=1
costiter(f, 〈args〉,Ff,〈args〉,i)

Our explanation of VAOs above holds for simple operators
such as selection, where the operator considers one result
object at a time. VAOs that consider sets of result objects,
such as the MAX operator discussed in Section 1, are more
complicated. For example, iterating over any result object
comprising an aggregate value may affect the error of the
aggregate. Such VAOs must choose iterations from among
the objects in the set in order to obtain an answer. Each of

4Actually, enough iterate() calls on a limited-precision ma-
chine would eventually result in round-off error for many
numerical methods. In many cases, this error could signif-
icantly change the answer. See Chapter 1 of [2] for further
information on round-off error.
5We assume this cost includes argument and output value
marshalling. The work in [21] provides a more detailed
breakdown of UDF cost, but this level of detail is not nec-
essary here.

these VAOs requires an iteration strategy, which chooses it-
erations that compute an answer without excessive compute
work.

A VAO with an iteration strategy requires two changes
to our VAOs description above. First, the VAO must
choose each iteration according to its strategy, which
takes some amount of compute time. To account
for this, we add the cost of choosing an iteration,
chooseIter(f, args〉,Ff,〈args〉,i), to the cost of each itera-
tion. We will discuss this cost in Section 5 for each operator
for completeness, but this cost is not significant in our ex-
periments. Second, these VAOs require information on the
relative costs and benefits of different iterations in order to
choose between them. Result objects supply this informa-
tion with the following additional data members:

• estCPU : The estimated CPU cost of the next call to
iterate().

• estL and estH : Estimates on the L and H bounds that
would result from the next call to iterate().

A result object must update these estimates each time an
iteration is run. In the next section, we discuss how each
VAO uses this information to choose iterations. In Section 4,
we discuss how this information can be easily obtained for
a large class of numerical functions.

4. VAO FUNCTIONS
As discussed earlier, VAOs can be used to process queries

with UDFs where there is a trade-off between accuracy and
compute time. While many numeric functions exhibit this
quality, current solvers must be modified to accommodate
the VAO interface. We have designed such modifications
for a wide variety of solvers, including partial and ordinary
differential equation solvers, numerical integrators, and root
solvers. Due to lack of space, we only report on our PDE
(partial differential equation) solver here; the rest of the
solvers are discussed in [8]. While we continue to use a bond
model as our running example, we note once again that these
solvers are used in applications ranging from high-energy
physics to semiconductor process design, and thus have a
wide range of applicability.

Before describing our modifications, we first give a brief
statement of the PDE problem, as well describe a common
solver technique. In many UDFs such as bond models, the
output is the solution to a function which does not have a
closed form. A partial differential equation may be known,
which describes the change in function value with respect to
the changes in parameter values. For example, consider a
bond model where a price depends on the result of a function
F (x,t), where x is the interest rate and t is the time. Here,
time is measured from 0 (the current time) to time tmat

(the time that the bond matures). In many cases, we do
not know F , but we do know a PDE describing F ; Figure 6
shows a PDE used in a real bond model [28]. In this PDE,
all variables are known a priori except for x, t, F, and the
partial derivatives of F. In addition to the PDE, we often
know the value of F at specific boundary conditions. For
example, we know that the value of a bond is 0 after the
last payment is made at maturity, so F (x, tmat) = 0 for all
x. Given a PDE and a set of boundary conditions, we need
a solver that numerically approximates the value of F for
a given set of parameters. For a bond model, we typically

551

1

2
σ

2 δ2F

δx2
(x, t) + [κµ − (κ + q)x]

δF

δx
(x, t) +

δF

δt
(x, t) − rF (x, t) + C = 0

Figure 4: Sample PDE

want the value F (xcur, 0), where xcur is the current interest
rate and 0 is the current time.

PDEs such as the one shown in Figure 6 are solved us-
ing finite differencing. Finite differencing solutions involve
finding a mesh of function solutions at different parameter
values. The mesh contains the solution at the desired pa-
rameters, as well as the solutions known from the boundary
conditions. Figure 7 shows a mesh of F solutions from our
example bond model at different x and t values. In this fig-
ure, there is an entry for the needed solution, F (xcur, 0), as
well as a whole column of solutions for the boundary condi-
tion t = tmat. In our example mesh, the entries are equally
spaced on the x and t dimensions, with adjacent entries sep-
arated by step sizes of ∆x and ∆t, respectively.

xcur

t = 0 t = tmat

F(x,t)

∆ x

∆ t

0

0

0

0

Figure 5: Mesh of solutions at different x and t for our sam-

ple PDE, with step size ∆x and ∆t and boundary conditions

filled in.

To solve this mesh, a finite differencing solver first fills in
the values known from the boundary conditions. In our ex-
ample, all mesh entries are 0 in the column where t = tmat.
Using these values, the solver then incrementally computes
mesh entries with the PDE, using finite difference estimates
for the partial derivatives. In our example, the solver works
backwards from the values where t = tmat, and continues un-
til it has the solution for the needed mesh entry, F (0, xcur).
The finite difference estimates depend on the solver used,
and a survey of PDE solvers can be found in Chapter 12
of [2].

Like many numerical techniques, PDE solvers provide ap-
proximations to the true answer, and both the error and
compute work needed depends on the step sizes. The com-
pute work is proportional to the number of mesh entries,
which is inversely proportional to the step sizes. As the step
sizes decrease and more work is added, however, the error
typically goes down. For our example PDE, the solver used
in our experiments yields error of the form O(∆t + ∆x2).
Unfortunately, we often only have a form for the error, which
is difficult to determine exactly. Since we need real-valued
error bounds for the VAOs interface, we estimate the error

using extrapolation techniques6, which use the big-O error
form and solutions at different step sizes to derive a function
for the error.

Since these extrapolation techniques vary based on the
form of the error, we explain them in terms of our example
PDE. Given the error form above for our PDE, we approx-
imate the function for the error with K1 ∆t + K2 ∆x2,
where K1 and K2 are constants. This formula ignores any
higher order terms hidden by the big-O form, but it pro-
vides a starting point for estimating the error. To estimate
K1 and K2, we compute the same PDE solution multiple
times with different step sizes. Suppose we compute three
solutions to our PDE (F1-F3) with the same x and t values,
but using different step sizes as shown in Table 1. While
F1 is computed with step sizes ∆t∗ and ∆x∗, F2 and F3 are
computed with one of the two step sizes cut in half, making
them more accurate.

Value ∆t ∆x formula

F1 ∆t∗ ∆x∗ A + K1∆t∗ + K2∆x2

∗

F2
∆t∗

2
∆x∗ A + 1

2
K1∆t∗ + K2∆x2

∗

F3 ∆t∗
∆x∗

2
A + K1∆t∗ + 1

4
K2∆x2

∗

Table 1: PDE solutions, with associated step sizes and

formulas used in extrapolation.

For each value we compute, we can express the value as
the sum of the accurate answer A and our estimated error
formula. These formulas are shown for each value in Ta-
ble 1. Of course, we do not know A, but we can estimate
K1 and K2 using these formulas and the solutions that we
have computed. Simple arithmetic tells us that F1 − F2 =
1

2
K1 ∆t, and thus K1 = 2 F1−F2

∆t
. Similarly, K2 = 4

3

F1−F3

∆x2 .

If the formula K1 ∆t + K2 ∆x2 characterized the error
exactly, we could compute K1 and K2 exactly, and subtract
off the error terms from the solution to obtain A, the accu-
rate answer. Unfortunately, the formula does not consider
terms hidden in the big-O form. Therefore, the formula only
yields an approximation on the error, and the extrapolation
technique will compute different K1 and K2 values at differ-
ent step sizes. After running each bond in our experiments
at different time and space steps, we found that K1 and
K2 can vary in magnitude by a factor of 1.5 and 2.5, re-
spectively. Since K1 is always positive and K2 was always
negative in our experiments, we know the accurate answer
A is bounded conservatively from below by F1 − 1.5K1 ∆t

and from above by F1 − 2.5K2 ∆x2.
With such extrapolation techniques, we can easily imple-

ment the entire VAO interface for these PDE solvers. When
a new result object is created, it finds L and H as described
above, using very coarse (i.e. large) step sizes. On each it-
eration, the result object halves one of the step sizes, finds
a new solution, and updates the error bounds by updating

6See Chapter 4 of [2] for a discussion of extrapolation tech-
niques.

552

the error formula. The compute work is directly propor-
tional to grid size, so each iteration requires twice the work
of the previous iteration. Note that this error formula can
also estimate the error for other step sizes. The object uses
this formula to both a) ensure that it halves the step size
that yields the most error reduction on each iteration, and b)
update after each iteration the estL and estH fields, which
predict the bounds after the next iteration. The only other
field provided by a result object is estCPU , which estimates
the CPU cost of the next iteration. For most solvers, the
CPU cost in terms of FLOPs7 can be calculated as a func-
tion of the step sizes, so the object can easily keep estCPU

up to date.
In most cases, the cost of this result object compares fa-

vorably to running the PDE solver in a traditional UDF
with high accuracy. If a function call f(〈args〉) is running
the solver, Section 3.2 gives us general equations for the
cost using both the traditional UDF and VAO interfaces.
The cost of the traditional UDF, which is costtrad(f, 〈args〉)
in Section 3.2, is the cost of running the PDE solver
at a fine enough grid to give a result within $.01. On
the other hand, the cost of a VAO iteration, which is
costiter(f, 〈args〉,Ff,〈args〉,i), has several components. In
our experiments, the work done in choosing an iteration
is trivial, so we will assume that chooseIter is negligible.
Also, retrieving and storing result object state (getstate and
storestate) is only a few CPU operations, so we assume that
costiter is roughly the cost of executing the solver (execiter).
We can thus characterize costiter by doubling the work done
in the previous iteration, as shown below:

costiter(f, 〈args〉,Ff,〈args〉,i) ≈

execiter(f, 〈args〉,Ff,〈args〉,i) ≈

2 costiter(f, 〈args〉,Ff,〈args〉,i−1)

Suppose a result object requires N iterations to obtain an
answer within $.01. On the last iteration, the VAO will do as
much work as the traditional UDF PDE solver. Therefore,
the previous iterations add extra overhead compared to the
traditional UDF. Assuming that the initial iteration requires
a relatively small amount of work, the doubling of the work
on each iteration means that:

PN

i=1
costiter(f, 〈args〉,Ff,〈args〉,i) ≈

2 costtrad(f, 〈args〉)

Since the last iteration requires approximately the same
compute time as the traditional UDF, the following equation
also holds:

PN−1

i=1
costiter(f, 〈args〉,Ff,〈args〉,i) ≈

costtrad(f, 〈args〉)

Therefore, if a VAO requires less than N − 1 iterations
for a function, it will save work compared to a traditional
UDFs. In the experiments presented in the next section, we
show that this is usually the case.

5. VAO DESCRIPTIONS
Now that we have discussed the VAO interface and the

implementation of a common numerical function, we now
focus on the designs of specific VAOs. Since we described

7FLoating point OPerations

the selection VAO in the last section, we now concentrate on
aggregation VAOs. The execution module is the same for all
VAOs, so we focus on the operator portion of the VAOs here.
For all aggregates, the VAOs must process a set of result ob-
jects to obtain a single operator output. As explained above,
these VAOs each require an iteration strategy to choose it-
erations that provide an aggregate output without excessive
compute work.

In our designs, each VAO uses a greedy iteration strat-
egy. That is, a VAO continually picks the iteration which is
best among the current choices until the operator produces
an answer. This strategy is based on the insight that iter-
ative techniques converge, meaning that later iterations for
a given result object usually yield less error reduction than
earlier ones. In the case of PDE solvers, later iterations also
often require more CPU cycles than previous ones because
the solver uses more information on each iteration. There-
fore, the iteration that currently yields the most benefit per
CPU cycle is often the best global choice.

Of course, the criteria for choosing the best iteration de-
pends on the operator itself. Below, we describe each VAO
and give the greedy heuristic for choosing an iteration from
among the current objects. We also characterize the cost of
using each heuristic to choose an iteration, which is a cost
represented by chooseIter in the cost equations above.

In our aggregate VAO designs, we assume that the aggre-
gates are in the output of the query. Because the output of
an aggregate over bounded values is also a bounded value,
the user must specify a precision constraint ε with each ag-
gregate. The precision constraint provides a limit on the
bounds width of each resulting aggregate.

5.1 MIN and MAX
Given a set of objects O, the MAX VAO returns the

bounds of an object omax ∈ O such that for all other objects
oi ∈ O, either:

1. omax.L > oi.H, or

2. Both oi and omax have overlapping bounds, and their
respective bound widths are less than their minWidth

values.

In the first case, omax is clearly larger that oi. In the
second, the system cannot determine if omax is larger than
oi because both objects reached their stopping conditions
8. MAX returns bounds on omax no larger than the user-
supplied precision constraint ε. Note that MIN is symmetric
to MAX, so we do not discuss it here in order to conserve
space.

Since bounds for omax within ε can easily be found once
the VAO identifies the object 9, finding omax is the primary
challenge in MAX processing. Suppose the MAX VAO is

8For those familiar with approximate distributed caching
work in [25], this work uses the following alternative defini-
tion for the bounds returned by MAX over bounded data:
[maxoi∈Ooi.L, maxoi∈Ooi.H]. Unlike our definition, the
upper and lower maximum bounds can come from different
objects. However, this property is unacceptable in many ap-
plications which want bounds on the maximum object (i.e.
“Give me bounds on the bond with the largest value.”).
9To find bounds within ε, note that omax.minWidth
must be larger than ε. To ensure this, the current
MAX implementation returns an error if ε is less than
maxoi∈O(oi.minWidth)

553

Object L H estCPU estL estH
o1 97 101 4 98 99
o2 95 103 4 96 101
o3 100 106 4 102 104

Table 2: Data Members for example initial result ob-
jects evaluated by an aggregate VAO.

object

[L, H]

o1 o2 o3

94

98

102

106

Figure 6: L and H bounds from objects in Table 1,

shown graphically.

running over the objects o1-o3 shown in Table 2 (bounds
shown graphically in Figure 4). The VAO needs to run iter-
ations until omax is found, as shown in Figure 5. Here, the
operator knows that o3 = omax because it has the largest
bounds and there is no overlap between o3 and any other
object. Thus, the greedy heuristic should choose the iter-
ation which provides the most overlap reduction per CPU
cycle between omax and the other objects. Unfortunately,
the greedy heuristic has no way of knowing which object is
omax, since finding omax is the objective.

object

[L, H]

o1 o2 o3

94

98

102

106

Figure 7: L and H bounds from Table 1 after MAX

VAO has run iterations and found that omax = o3.

To deal with this problem, the VAO uses an educated
guess for omax, which we define as o′max. The VAO cur-
rently sets o′max to the object with the highest upper bound,
although different criteria can be used if more information

is available. The VAO then iterates over the object that
reduces the total overlap the most per cycle between o′

max

and other objects. When the o′
max guess no longer has the

largest upper bound, the algorithm changes its guess and
chooses another iteration. The algorithm keeps choosing it-
erations until either a) no other objects overlap with o′

max,
or b) o′max and the objects that overlap with it all hit their
stopping conditions.

To demonstrate the MAX heuristic, consider a VAO
choosing an iteration from among o1-o3 in Table 2/Figure
4. Here, o3 is o′max, so the algorithm should choose the
iteration that will reduce the overlap the most, per CPU
cycle, between o3 and the other two objects. To estimate
this overlap reduction for the next iteration of object oi,
the VAO computes the effect on overlap if the bounds of oi

shrink to [oi.estL, oi.estH]. With o1, for example, only
the reduction of o1.H to o1.estH will reduce the overlap be-
tween o1 and o3. Therefore, the overlap reduction is at most
o1.H − o1.estH, limited by the current overlap between o1

and o3. Since this current overlap is o1.H − o3.L, the esti-
mated overlap reduction for o1 is min(o1.H − o3.L, o1.H −
o1.estH) = min(101 − 100, 101 − 99) = 1.

Using similar computations, the estimated overlap reduc-
tion for o2 and o3 is 2 and 3, respectively. Since objects
o1-o3 have the same estimated CPU cost (estCPU), the
VAO chooses to iterate over o3. Here, o3 has the highest
estimated overlap reduction, primarily because o3 is o′max

and the iteration reduces overlap of o3 with both o1 and o2.
In practice, the cost of choosing an iteration is quite rea-

sonable. To choose the first iteration to run, the VAO must
find o′max and compute the overlap reduction estimates for
all objects. This estimate can be computed in constant
time for each object except for o′

max, where iterations re-
duce overlap between o′

max and all other objects. Thus,
computing estimated overlap reduction takes O(N) time for
N objects. Finding the maximum estimate also takes O(N)
time without indexing, though indexes could certainly make
this search more efficient. Once an iteration is run, the VAO
has to update the overlap reduction estimates, which takes
O(N) time if o′max was iterated over and constant time for
any other object. If the algorithm changes its o′

max guess,
the VAO has to recompute the overlap reduction estimates
for each object. These computations take O(N) total time,
as we showed when discussing the algorithm’s initial itera-
tion choice. Overall, the VAO requires at most O(N) time
to choose each iteration. As more iterations are run, how-
ever, N decreases because the VAO eliminates objects from
consideration which have bounds too low to be the maxi-
mum. As we will show in Section 6, the iteration choice
cost is negligible in our experiments compared to function
execution cost.

5.2 AVE and SUM
AVE and SUM are effectively computed by the same VAO.

In addition to an object set O, this VAO also takes a set of
weights W. Each oi ∈ O has a unique associated weight wi

∈ W , where each wi is a nonnegative real number. This
operator effectively finds the weighted sum of the object
values at each extreme; that is, it finds [

P

oi∈O
wi oi.L,

P

oi∈O
wi oi.H]. The operator must make iterations until

these computed bounds are within the specified precision
constraint ε, or the bounds for each oi are narrower than
oi.minWidth. With N objects in O, this operator produces
an average if each wi is 1

N
, and it produces a sum if each wi

554

is 1.
An iteration over an object oi will increase oi.L and/or

decrease oi.H, provided that oi.H − oi.L is not already less
than oi.minWidth. Therefore, the greedy heuristic simply
chooses the iteration that yields the most estimated error
reduction per CPU cycle, weighted by wi. The VAO esti-
mates the weighted error reduction for each object oi with
the formula wi [(oi.estL − oi.L) + (oi.H − oi.estH)]. For
the objects o1, o2, and o3 shown in Table 2, the estimated
error reduction is 1, 1, and 4

3
, respectively. Since the objects

have the same estimated CPU cost in this example, the VAO
iterates over o3.

To initially run the greedy heuristic, the VAO has to com-
pute the estimated error reduction per CPU cycle for each
object. Since each estimate is computed in constant time,
these computations require O(N) total time for N objects.
The VAO can choose the largest error reduction in O(N)
time without indexing. Once the VAO runs an iteration,
it must update the object’s estimated error reduction per
cycle, which again takes constant time. Thus, the VAO can
choose an iteration in O(N) time without indexing. While
the VAO can choose iterations in sub-linear time using in-
dexes such as heap queues [6], we found such optimizations
unnecessary in our current experiments.

6. PERFORMANCE
Now that we have explained the VAO designs and po-

tential applications, we now discuss VAO performance. To
evaluate our designs, we implemented prototype VAOs and
use them to run a variety of experiments. In this section, we
present results on bond trading continuous queries similar
to Q1-Q3 in Section 1. These experiments show two major
results. First, experiments with real bond data and models
show that VAOs often drastically outperform traditional op-
erators under real market conditions. Second, experiments
with synthetic data show that VAOs are robust under many
scenarios explicitly designed to stress VAOs.

All queries in these experiments require a bond model,
which in turn requires interest rates and bond data. In our
experiments, We use the bond model presented in [28], which
requires a numeric PDE solver. To implement this model
with our VAO interface, we used the techniques discussed in
Section 4. For interest rates, we use the 10-year Constant
Maturity U.S. Treasury yield for days between January 3 to
January 31, 1994 [17].

For the bond data, we use both real and synthetic data
sets. For the real data, we use bond data on 500 mortgage
backed securities issued between January and December of
1993 10. For the synthetic data, we designed data sets that
impair the performance of the VAOs. As we show below, the
VAOs are sensitive to the distribution of the function results.
Therefore, we generate bond data such that the results have
a distribution that reduces the performance of the VAOs.
The distributions used are operator-specific, and thus we
discuss them with the results for each operator below.

To create these distributions, we used the following pro-
cess. First, we iterated over each bond in our real data set
until we knew the result for each bond within $.01. We
then used a random number generator [18] to generate a

10Specifically, these bonds are Freddie Mac Gold PC 30-year
Mortgage Backed Securities. We are greatly indebted to
Nancy Wallace at the U.C. Berkeley Haas School of Business
for providing this data.

distribution of bond model results for the same number of
bonds as in our real set. We then create a random one-to-
one mapping between the generated bond results and the
real bonds, and compute the difference between each gener-
ated result and corresponding result from the model. When
executing an iteration over a synthetic bond, we run the
iteration over the corresponding real bond, and then shift
the resulting bounds by the computed difference. This re-
sults in bounds that, given enough iterations, converge to
the desired distribution of results.

All prototype and experiment code was written in C++.
All experiments were run on a Pentium 4 2.4 GHz PC with
1.2 GB of RAM running the Fedora Core 1 Linux distribu-
tion. The prototype processes interest rate streams over the
continuous queries in our experiments, and reports the wall-
clock time for the processing. Although new interest rates
depend on the Treasury price and arrive every 1-4 minutes,
the following experiments show processing time for one in-
terest rate, the opening rate for Jan. 3, 1994. We show one
interest rate because a) the traditional operator experiments
take a large amount of time on one processor, and b) the in-
terest rate value seems to have little effect on the processing
time of our queries. We ran similar experiments with the
high and low interest rate in our data set, and found that
the results show similar trends.

As a baseline, we implemented traditional operators and
used them to run the same queries on the same data. Since
traditional operators cannot adjust function accuracy ac-
cording to query, we implemented a ”black box” version of
the model that always returns an answer with less than $.01
error. To implement this model, we ran each bond through
the model with the VAO interface, and iterated over each
result object until the error was less than $.01. For each
bond, we recorded the step sizes needed to obtain this er-
ror. When we run bonds with the ”black box” interface,
we run the PDE solvers with these step sizes to ensure that
we obtain $.01 error. Note that these function calls often
underestimate the time needed if the function was used in
a production system. In these calls, the model knows a pri-
ori the step sizes needed to get the desired accuracy, and
no further work has to be done to ensure that the error is
acceptable.

Below, we present results on three types of queries: selec-
tion, max aggregation, and sum aggregation.

6.1 Selection Results
In this section, we discuss selection queries which find

bonds that are greater (or less) than some selection constant,
similar to Q1 in Section 1. Here, we first present experiments
using our real bond data, which influenced the design of the
synthetic data experiments which we present later.

Using our real bond data, we ran queries with different
constants using our VAOs, as well as traditional operators.
The constants are set to yield different selectivities for the
operator. Figure 8 and 9 plot the runtimes for different
selectivities for a selection query with a > (greater than)
and < (less than) operator, respectively.

These figures show the runtimes using the both the se-
lection VAO (vao) and a traditional operator (trad). The
traditional operator runtimes are constant because perfor-
mance doesn’t depend on the query. In all these experi-
ments, the selection VAO outperforms the traditional oper-
ator by over two orders of magnitude. In fact, under real

555

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

R
un

tim
e

(S
ec

.)

Selectivity

Selection Queries - Greater Than

vao
trad

Figure 8: Runtimes for selection query with greater than

predicate. Selection predicate set to yield different selectivi-

ties.

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

R
un

tim
e

(S
ec

.)

Selectivity

Selection Queries - Less Than

vao
trad

Figure 9: Same as Figure 8, except query uses less than

predicate.

market conditions, VAOs effectively enable practitioners to
run these queries in real time. Since new interest rates ar-
rive as frequently as every minute, the traditional operator
would require over 100 processors, where the VAOs would
only require a few11.

In addition to the drastic performance improvement from
the VAOs, these graphs exhibit two characteristics that seem
strange at first blush. First, neither graph exhibits a mono-
tonically increasing performance improvement with selectiv-
ity, which is expected of most queries with a selection pred-
icate. Second, note that the runtime for any selectivity s in
Figure 8 is the same as the runtime for 1 − s in Figure 9.

Both of these characteristics appear because the perfor-
mance of the VAO does not depend on selectivity. Instead, it
depends on the proximity of function results to the constant.
For example, consider a VAO with a highly selective con-
stant where many function results are close in value to the
constant. Although the VAO eventually eliminates many
results, it still has to run many results to highly accurate
bounds in order to answer the query. On the other hand,
a less selective VAO with no results near the constant can
answer the query with few iterations over each result. Due
to this property of VAOs, we do not see a monotonically in-
creasing performance improvement with selectivity because
the runtime is determined by the number of bonds that are
close to any constant. In our real data set, this number is
not strongly related to the selectivity of the constant. Also,
note that an experiment with any selectivity s in Figure 8
has the same constant as the selectivity 1 − s in Figure 9,
which explains why such pairs of experiments have identical
runtimes.

Using the knowledge gained from these experiments, we
created experiments explicitly designed to stress selection
VAOs. If the VAO has higher runtime when bonds are close
in value to the constant, we can raise the runtime by de-
creasing the difference between bond model results and the
constant. To do this, we generated several different Gaus-
sian distributions of bond values, and ran experiments with
the selection VAOs. The mean of these distributions was set
to the VAO constant, while we varied the standard devia-
tion to control the distance of the results to the constant.
The results are shown in Figure 10.

11The models are easily parallelizable; see [11] for details

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5

R
un

tim
e

(S
ec

.)

Std. Dev.

Selection - Synthetic Data

vao
trad

Figure 10: Selection VAO and traditional operator with

synthetic data.

In this figure, the pathological case occurs at 0 standard
deviation, where all bonds have the value of the predicate
constant. Here, the VAO is actually more expensive than
the traditional operator. The VAO has to run each model
to the same accuracy as the traditional operator, but it also
has the overhead of the previous iterations. Fortunately, the
VAO performance improves quickly as the standard devia-
tion rises from 0. Since the VAO becomes much cheaper
than the traditional case at only $0.05 standard deviation
and the standard deviation of our real bond prices is approx-
imately $7.7812 , we conclude that the VAO performs quite
well except in the most pathological cases.

6.2 MAX Aggregate Results
Given the selection results, we now turn to queries that

find the largest bond price from our set of bonds, similar
to query Q3 in Section 1. Like the selection VAO, we first
consider experiments over real bond data. In these experi-
ments, we have runtimes for our MAX VAO, a traditional
aggregate operator, and an operator with a theoretically op-
timal iteration strategy (Optimal). In order to provide a

12Although the distribution is somewhat centered around the
mean, it is a real data set and does not resemble a theoretical
distribution.

556

fair comparison, the VAO and the optimal operator return
a bounds with less than $.01 error. This is the same ac-
curacy returned by the “black box” functions used by the
traditional operators.

Unlike the VAO, the optimal operator knows in advance
the bond that has the maximum value. Therefore, it iter-
ates over this bond until the error is less than $.01, and then
iterates over other bonds until no error bounds overlap with
the maximum bounds. As running the maximum bond to
an accuracy higher than $.01 is useless, this operator pro-
vides an optimal iteration strategy, albeit one which requires
knowledge of the maximum bond a priori.

Operator Type Runtime (sec.)
Optimal 108
VAO 111
Traditional 6953

The runtime for each operator is shown above. For tradi-
tional operators, the MAX runtime is effectively identical
to the selection runtime because the same amount of work
is done in the functions. Note that the VAO takes almost
two orders of magnitude less time to answer the query than
the traditional operator. At real market data rates, VAOs
can again run the query with only a few processors, while
traditional operators require over 100.

When comparing the VAO to the optimal operator, the
extra work in the VAO is only 3 seconds, which is less than
3% of the total work in the optimal case. Most of this extra
work comes from the fact that the VAO is initially wrong
in its guess for the maximum bond, and must eventually
correct itself. The remainder of the overhead, which is less
than .1 second, comes from the VAO’s more complex itera-
tion strategy. As stated in Section 5.2, the time to choose an
iteration is linear on the number of bonds that still have the
potential to be the maximum. In our experiments, only 5
bonds meet this criteria after the initial iteration, and each
iteration potentially eliminates another bond. Therefore,
only a small number of bonds were considered for iteration
by the VAO in our experiments.

Given our experiments over real data, we now turn to syn-
thetic data experiments. The MAX VAO is sensitive to the
distribution of results, but in a different manner than the se-
lection VAO. As the MAX VAO must find the maximum re-
sults, the MAX VAO has higher runtime when more results
are clustered around the maximum. To simulate this clus-
tering, we again generated bond model results from a Gaus-
sian distribution, but we only took prices from the lower half
of the distribution. In the worst case of 0 standard devia-
tion, all bonds are the same value, and the VAO must run
all bonds to $.01 accuracy to determine that they are all
the same. As the standard deviation rises, fewer and fewer
bonds have model results near the maximum.

Figure 11 shows the results of the synthetic data exper-
iments with the MAX VAO and the traditional operator.
As in the selection experiments, the MAX VAO only per-
forms worse than the traditional operator in the worst cases.
At $0.10 standard deviation, the VAO significantly outper-
forms the traditional operator, and it continues to drop as
the standard deviation rises.

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5

R
un

tim
e

(S
ec

.)

Std. Dev.

Max - Synthetic Data

vao
trad

Figure 11: MAX VAO and traditional operator with syn-

thetic data.

6.3 SUM Aggregate Results
In this section, we present results for SUM aggregate

queries that compute a sum of bond values at the current
interest rate. Unlike MAX and selection, the SUM VAO is
not directly affected by the distribution of function results
Instead, the performance of VAOs depends on how much
each result is weighted in the sum. Weighted sums are of-
ten used to find the value of a portfolio, for example, where
each security price is weighted by the number of shares held.
If some of the results are heavily weighted, the system can
run more iterations over these results, since the error in the
lightly weighted results has less effect on the overall sum. If
results are equally weighted, however, the system has less
opportunity to save cycles by adjusting the iteration strat-
egy.

To evaluate the SUM operator, we ran different SUM
queries with weights generated with what we call a hot-cold
scheme. With this scheme, we set a constant total amount
of weight, and partition the bonds into a hot and a cold set.
In the experiments shown here, the hot set includes 10%
of the total bonds chosen randomly, and the cold set con-
tains the remaining bonds. In our experiments, we vary the
amount of total weight that is allocated to the bonds in the
hot set. As more weight is allocated to the hot set, we see
a few bonds that are more heavily weighted, and should see
more performance benefit from the VAOs.

The total weight in each of our experiments is 500, the
cardinality of our bond set. Each VAO query has a preci-
sion constraint of (500)($.01) = $5. This constraint reflect
the error bounds on the traditional SUM operator when all
bonds are run with $.01 error.

Figure 12 presents the runtimes for SUM queries with dif-
ferent weight percentages allocated to the hot set. In this fig-
ure, the traditional operator actually outperforms the VAO
for low percentages. In these scenarios, the VAO can do rel-
atively little optimization, and the VAO has the extra cost
of running intermediate iterations. As the percentage gets
larger, however, the VAO optimizations eventually outweigh
the overhead, and the VAOs are up to over 4 times faster
than the traditional operator. Overall, this figure shows
the expected results; although the SUM VAO is not useful
when results are nearly equally weighted, the VAO shows
significant performance improvement when a few results are
heavily weighted.

557

 1000

 10000

 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

(s
ec

.)

% hot weight

SUM Aggregate Queries

vao
trad

Figure 12: SUM aggregate queries with different percent-

ages of weight on the hot set.

7. CONCLUSION
In this paper, we address the execution of expensive

user-defined functions (UDFs) in either static or continuous
queries. While previous work focuses on avoiding expen-
sive function calls, systems still need to optimize the actual
function executions. These optimizations are impeded by
the “black box” UDF interface used by continuous query
systems, which do not allow the systems any control over
function execution.

To speed up expensive functions, we exploit the trade-off
between accuracy and compute work inherent in many func-
tions. That is, we optimize functions that return more ac-
curate answers if more compute cycles are used. We present
Variable-Accuracy Operators (VAOs), a new class of opera-
tors which computes each function result only to an accuracy
needed to answer the query. To adjust accuracy, VAOs use a
new function interface that returns upper and lower bounds
on the result, and allows the VAO to refine the bounds by
using more compute cycles. In this paper, we describe our
VAO designs for selection and 4 aggregate operators. We
also demonstrate how a large class of numeric functions can
be implemented with the VAO interface.

To evaluate these operators, we built prototype VAOs and
ran experiments with bond trading queries using real finan-
cial data and a numeric bond model. In these experiments,
the VAOs outperformed traditional operators with “black
box” interfaces by up to over two orders of magnitude for
some queries. In addition to experiments with real market
data, we also found VAOs to be robust in performance tests
explicitly designed to stress VAOs,

8. REFERENCES
[1] J.C. Brown. Adaptive mesh refinement (tutorial).

http://www.cs.utexas.edu/users/dagh/Tutorial/
jcb mitra/tut jcb mitra.html.

[2] R. L. Burden and J. D. Faires. Numerical Analysis.
Brooks/Cole, 2001.

[3] S. Chaudhuri and K. Shim. Optimization of queries
with user-defined predicates. In VLDB, 1996.

[4] R. Cheng, D.V. Kalashnikov, and S. Prabhakar.
Evaluating probabilistic queries over imprecise data.
In SIGMOD, 2003.

[5] L Clewlow and C. Strickland. Energy Derivatives :
Pricing and Risk Management. Lacima, 2000.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.

Introduction to Algorithms. MIT Press, 1990.
[7] M. Denny and M. J. Franklin. Predicate result range

caching for continuous queries. In SIGMOD, 2005.
[8] M. M. Denny and M. J. Franklin. Adaptive execution

of variable-accuracy functions. Technical report, U.C.
Berkeley EECS Dept., 2006.

[9] A. Deshpande, C. Guestrin, J. M. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor
networks. In VLDB, 2004.

[10] D. Donjerkovic and R. Ramakrishnan. Probabilistic
optimization of top n queries. In VLDB, 1999.

[11] C. Downing, R. Stanton, and N. Wallace. An
empirical test of a two-factor mortgage valuation
model: Do housing prices matter? Working Paper,
UC Berkeley, 2002.

[12] E. Dyson and E. Dean. Rfid: Logistics meets identity.
Release 1.0, Vol. 21, No. 6, 2003.

[13] E. W. Egan. Multi-scale problems in modeling
semiconductor processing equipment. In Mathematics
in Industrial Problems: The IMA Volumes in
Mathematics and its Applications, Volume 88, Part 9.
Springer-Verlag, 1998.

[14] R. Carney et al. Monitoring streams - a new class of
data management applications. In VLDB, 2002.

[15] R. Motwani et al. Query processing, approximation,
and resource management in a data stream
management system. In CIDR, 2003.

[16] S. Chandrasekaran et. al. Telegraphcq: Continuous
dataflow processing for an uncertain world. In CIDR,
2003.

[17] Global financial data. http://www.globalfindata.com/.
[18] Gnu scientific library.

http://www.gnu.org/software/gsl/.
[19] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online

aggregation. In SIGMOD, 1997.
[20] J.M. Hellerstein and J. Naughton. Query execution

techniques for caching expensive predicates. In
SIGMOD, 1996.

[21] J.M. Hellerstein and M. Stonebraker. Predicate
migration: Optimizing queries with expensive
predicates. In SIGMOD, 1993.

[22] A. Kemper, G. Moerkotte, K. Peithner, and
M. Steinbrunn. Optimizing disjunctive queries with
expensive predicates. In SIGMOD, 1994.

[23] S. Madden, M. Shah, J. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over
streams. In SIGMOD, 2002.

[24] R. P. Mount. Scientific computing at slac.
http://researchcomp.stanford.edu/hpc/archives/SLAC-
RMount-aug15-v03.pdf.

[25] C. Olston and J. Widom. Offering a
precision-performance tradeoff for aggregation queries
over replicated data. In VLDB, 2000.

[26] C. Olston, J. Widom, and J. Jiang. Adaptive filters
for continuous queries over distributed data streams.
In SIGMOD, 2003.

[27] N. Shivakumar, H. Garcia-Molina, and C. S. Chekuri.
Filtering with approximate predicates. In VLDB, 1998.

[28] R. Stanton. Rational prepayment and the valuation of
mortgage-backed securities. In Review of Financial
Studies Vol. 8, No. 3, 1995.

[29] P. Wesseling, editor. Principles of Computational
Fluid Dynamics. Sprenger-Verlag, 2000.

[30] Yahoo! finance. http://finance.yahoo.com/.

558

