
Indexing for Function Approximation

Biswanath Panda1, Mirek Riedewald1

Stephen B. Pope2, Johannes Gehrke1, L. Paul Chew1

1Dept. of Computer Science 2Dept. of Mechanical & Aerospace Engineering
Cornell University Cornell University

{bpanda,mirek,johannes,chew}@cs.cornell.edu pope@mae.cornell.edu

ABSTRACT
Simulation is one of the most powerful tools that scientists
have at their disposal for studying and understanding real-
world physical phenomena. In order to be realistic, the
mathematical models which drive simulations are often very
complex and run for a very large number of simulation steps.
The required computational resources often make it infeasi-
ble to evaluate simulation models exactly at each step, and
thus scientists trade accuracy for reduced simulation cost.

In this paper, we explore function approximation for
a combustion simulation. In particular, we model high-
dimensional function approximation (HFA) as a storage and
retrieval problem, and we show that HFA defines a novel
class of applications for high dimensional index structures.
The interesting property of HFA is that it imposes a mixed
query/update workload on the index which leads to novel
tradeoffs between the efficiency of search versus updates. We
investigate in detail one specific approach to HFA based on
Taylor Series expansions and we analyze tradeoffs in index
structure design through a thorough experimental study.

1. INTRODUCTION
Studying physical phenomena through computer simula-

tion is an important method of scientific research. Appli-
cation areas include studies of heat and mass transfer, fluid
dynamics, combustion, evaporation and many more [1, 2].
The general methodology in these application areas is simi-
lar. Scientists first understand the physical laws that govern
the observed phenomenon. These laws then drive a mathe-
matical model that is used in simulations as an approxima-
tion of reality.

In practice scientists often face serious computational
challenges. The more realistic the model, the more complex
the corresponding mathematical equations. As an example,
consider the simulation of a combustion process [25], the
application that brought our group together. Simulation of
combustion requires tracking the composition of gases in a
combustion chamber and the change in their compositions

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

over time. The transition from one composition to the next
is defined by a complex high-dimensional transition func-

tion. Depending on the gases studied, a composition can
be described using nine dimensions for a simple Hydrogen
simulation and fifty or more dimensions for a Methane sim-
ulation. A single transition step (which is an evaluation of
this function) can require millions of floating point opera-
tions. On a modern processor with the optimized code of
the domain scientists, a simple Hydrogen simulation of low
dimensionality would run for a few hours, while a Methane
simulation with higher dimensionality would require several
weeks. Simulations need to be run for many different gases
and different configurations for each gas. This problem is
not specific to combustion simulation, but representative of
a large class of scientific simulations that require repeated
evaluations of computationally expensive functions that gov-
ern a physical process [14, 21, 22].

To trade accuracy for simulation time, the domain scien-
tists do not expend the resources to evaluate the function
for each transition step, but instead use cheaper approxima-

tions. The main approach to function approximation is to
build a model f̂ of the function. Given a query point x at
which the function f must be evaluated, function approxi-
mation techniques return f̂ (x) which approximates the true
value f(x) within a specified error tolerance. There are two
main types of function approximations. Global approxima-
tion techniques use a single model to represent f . Local
approximation techniques break the domain into regions,
representing each region with a different model. It has been
shown that local approximations work better for the class
of simulations that are the focus of this paper [14, 18].

A local function approximation scheme poses two main
challenges. First, we need to decide how to select appro-
priate regions in the domain of the function, such that f

can be approximated well within each region by a model
f̂ . Approaches based on the Taylor Series are generally ac-
cepted for approximating high-dimensional functions in this
domain [20, 22, 25]. The second challenge is to efficiently
store the regions such that given a query point x, we can
efficiently find the region responsible for x in order to calcu-
late f̂ (x). It is this storage and retrieval part that we think
the database community can make significant contributions
to. The domain scientists already took the first steps by
developing the ISAT method [22] for indexing of regions. In
collaboration with them, we are now studying the general
problem of high-dimensional function approximation (HFA)
and the design of efficient index structures for it. The work-
load imposed on indexing structures by HFA is very different

523

Methane

 Air

Air + Methane

Particle

Output

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 1: Combustion chamber

from the workloads studied so far in the literature [5, 10].
In summary, this paper makes the following contributions:

• We introduce the novel problem of high-dimensional
function approximation as an application of high-
dimensional indexing, and we describe an algorithmic
framework that abstracts the salient elements of an
HFA application (Sections 2 and 3).

• We give an analysis of the index design tradeoffs that
this problem poses, and we identify their effects on the
overall performance of HFA (Section 4).

• We perform a thorough evaluation of a set of candidate
index structures from the database community for this
application (Section 5).

Section 6 discusses related work and Section 7 concludes the
paper.

We would like to emphasize that this paper is just the
beginning of an exciting new direction of research into high-
dimensional indexing, and it is this connection between an
active application area and the database community that we
believe is one of the major contributions of this paper.

2. PROBLEM FORMULATION
We first introduce the basic problem of high-dimensional

function approximation and then show in Section 3 how it
leads to a challenging indexing problem. We start with our
case study, an example of a typical scientific application that
uses HFA to improve the running time of simulations. We
then formally define the resulting HFA problem.

2.1 Simulating Combustion
The application simulates the combustion of a hydro-

carbon in a reaction chamber. The chamber has three
inflows (air, the hydrocarbon being studied — Methane
in the diagram, and a mixture of air and hydrocarbon)
and a single outflow (see Figure 1). The gases flow into
the chamber at different rates which are input parame-
ters to the simulation. The simulation starts with a user-
specified number of particles in the chamber. Each particle
p has a user-specified chemical composition, which is de-
scribed by its thermochemical composition vector φp(t) =
〈Y p

1 (t), Y p
2 (t), . . . , Y p

s (t), h〉, where s is the number of chemi-
cal species in p, Y

p
i (t) is the mass fraction of chemical species

i in particle p at time t of the simulation, and h (which is a
constant) is the enthalpy of the particle [25].

Each simulation step consists of the following three
phases: (1) Inflow-Outflow. Some of the particles in the
reactor leave through the outflow and the same number of
new particles enter from the inflows in ratios proportional to

Approximator Evaluatorgenerates

Simulator

PSfrag replacements

f̂(xt)
f̂(xt)

xt+1

f(xt)

xt xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 2: Application model

the rates of the inflow. (2) Mixing. Particles in the reactor
mix with each other, generating new particle compositions.
(3) Reaction. The particle compositions evolve due to re-
action and the new compositions must be calculated for all
particles.

The computationally expensive part is the reaction step,
which for a particle p is described by a reaction function
f that maps one thermochemical composition to the next
composition. Moreover, typical simulations require 108 to
1010 reaction function evaluations. These factors can cause
simulations to run for years if the function value is calculated
at each step. Thus in practice, the domain scientists accept
approximations to f in order to be able to run large, complex
simulations.

2.2 Application Model
Combustion simulation is representative of the class of ap-

plications that our methods apply to in general. Figure 2
shows the general framework. There is an application simu-
lating some mathematical model, which we call the simula-
tor. The simulator generates query points at which the value
of a function f is required. These function values are used
by the simulator to generate future query points. The ap-
plication queries a function approximator for the function
values. The approximator can calculate the exact value1

using the function evaluator, which is an expensive opera-
tion, or it can use some algorithm to return approximate
values within a user specified error tolerance. Typically, the
approximator has limited knowledge about f , e.g., only pre-
viously calculated function values.

2.3 Problem Definition
Let us now define the function approximation problem

for the above application model. We start by defining an
ε-approximation of a function value.

Definition 1. Let f : R
m → R

n be a function, let x ∈ R
m

and let ε ∈ R. We say that f̂(x) ∈ R
n is an ε-approximation

of f(x) at x if ‖ f̂ (x) − f(x) ‖< ε.

We can now formalize the function approximation prob-
lem as a game between two players, the simulator (appli-
cation) and the function approximator. In the first round
of the game, the simulator produces query point x1, and
the function approximator computes f̂(x1) at computational

cost c1, where f̂ is an ε-approximation to f . In the next
round, the simulator takes f̂ (x1) and computes x2, the func-

tion approximator generates f̂ (x2) at cost c2 and so on. Note

that in general xi+1, among other things depends on f̂ (xi),
i = 1, . . . , n − 1. The game stops after n rounds. The goal
of function approximation is, for a given ε, to minimize the
total cost, min

Pn

i=1 ci.
In this paper we study approximators that attempt to

minimize the total cost by partitioning the input domain

1Up to the accuracy of the evaluator. In practice the eval-
uator is a differential equation solver that introduces some
error as well.

524

into local regions and modeling each region with some f̂ .
The motivation is that the local regions enable cheaper ap-
proximate computation. We make this notion of local region
more formal in the next definition.

Definition 2. An ε-Local Region Rf,f̂ (x, ε) ⊆ R
m for

function f based on approximation f̂ at point x is a max-

imal connected region containing x ∈ R
m such that ∀x’ ∈

Rf,f̂ (x, ε) : f̂(x’) is an ε-approximation of f(x’).

As a shortcut, we will often refer to an ε-Local Region
Rf,f̂ (x, ε) for function f based on approximation f̂ at point
x as Local Region when the parameters are clear from the
context.

There is a cost associated with finding the Local Region
around a point. At the very least a function evaluation is
required for the “center” of the region, together with addi-
tional computation for determining the extent of the region.
Assuming that this cost is approximately the same for all
regions, we can minimize total function approximation cost
by finding the smallest set of Local Regions that covers all
query points. The hardness of this problem is analyzed in
the next section.

2.4 Analysis
In this section we show that the function approximation

problem is hard. This applies to both its offline and its
online formulation. We show hardness for an easier version
of the problem, where the Local Region of x is obtained for
free when f(x) is computed. The more general case, i.e.,
where determining the extent of the Local Region around x
has some cost assigned to it as well, is therefore at least as
hard.

Offline problem: Given a set X = {x1, . . . ,xn} of query
points, find the smallest set L = {l1, . . . , lk} of Local Regions
in the data space (not limited to Local Regions around the
query points), such that for each xi ∈ X there is an lj ∈ L,
which contains xi.

If the Local Regions are constrained to be hyper-spheres,
we can show by reduction from Geometric Covering By
Discs [16], that the offline problem is NP-complete. This
implies that the more general formulation above is at least
as hard.

Using a similar reduction, we can show the same hardness
results even for a restricted version of the offline problem.
In this restricted version, we constrain L to be a subset of
{Rf,f̂ (x1, ε), . . . , Rf,f̂ (xn, ε)}, i.e., we can only choose from
the Local Regions around query points.

In practice the algorithm for function approximation does
not know the query points in advance. It has to solve an
online problem, where query points are presented one-by-
one.

Online problem: For i > 0 let X(i) = {x1, . . . ,xi}
and L(i) = {l1, . . . , lk(i)}, where k(i) is some integer with
k(i−1) ≤ k(i) for all i > 1. Find the smallest set L(n), such
that the following holds for each set X(i): Each x ∈ X(i) is
contained in some Local Region l ∈ L(i).

Intuitively the set X(i) contains the query points seen
until time i, and L(i) contains the Local Regions that have
been materialized until time i. To be able to compute the
function for query point xi, xi has to be contained in one
of the Local Regions that are available at time i. If no such
Local Region exists, it has to be inserted into L(i).

Local Regions

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε

f̂(q2) = f(q1) + sq
1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)

q1 q2 q5 q4 q3

i1 i2 i5 i4 i3q1

q2

q3

q4

Figure 3: Example for non-competitiveness

A standard performance measure for online algorithms is
the competitive ratio [6]. It measures the cost of the on-
line algorithm for an input sequence (x1, . . . ,xn) relative to
an optimal offline algorithm, which knows the whole input
in advance. The competitive ratio is defined as the worst
(i.e., highest) ratio over all possible inputs of length n. If
this ratio is independent of n, i.e., bounded by a constant c,
then the online algorithm is c-competitive. E.g., if the on-
line algorithm never materializes more than twice as many
Local Regions as the optimal offline algorithm, then it is 2-
competitive. Notice that it is often possible to analyze com-
petitiveness even without knowing the optimal algorithm [6].

We can show that there exists no deterministic online al-

gorithm that is competitive. Due to space constraints we
only sketch the proof. The adversary can always construct
a function (even if we are restricted to smooth functions),
such that the online algorithm has to materialize a new Lo-
cal Region for every query xi, while the offline algorithm can
pick a single Local Region that contains all query points.

Figure 3 illustrates the construction. The figure shows
a one-dimensional function where linear interpolations are
used as f̂ , i.e., f̂ for a Local Region is f̂ (a) = f(x) + sx ×
(x − a), where sx is the derivative of f at x. Note that the
Local Regions in this case are intervals. For q1, . . . , q4, the
Local Regions around them do not contain any other qi, but
the Local Region of q5 covers the whole domain. Since the
online algorithm is deterministic, the adversary can always
select a function such that all Local Regions computed by
the online algorithm are around points like q1, . . . , q4, while
the offline algorithm can choose an optimal point like q5.
This construction even works for the more restricted online
problem, where materialized Local Regions have to be se-
lected from the Local Regions defined by the query points.
The adversary constructs the same function and input; it
simply selects a point like q5 as the last query point.

The proof of non-competitiveness might appear contrived.
However, without knowing the nature of the function it is
impossible to rule out the case that there are “large” Local
Regions that contain many “small” Local Regions. We are
currently exploring what properties of a function could be
taken advantage of to obtain better competitiveness.

3. AN ALGORITHMIC FRAMEWORK
In this section we introduce an algorithmic framework

for the problem, which highlights the indexing problem in
function approximation. Since the results from our analy-

525

Algorithm 1 : Framework

Require: Query Point x, index structure S

1: if ∃〈Rf,f̂ (x’, ε), f̂ 〉 ∈ S such that x ∈ Rf,f̂ (x’, ε) then

2: Compute y = f̂(x)
3: else
4: Compute y = f(x)
5: Update(S, x, f(x))
6: end if
7: return y

Algorithm 2 : Update

Require: S, x, f(x)

1: Add new 〈Rf,f̂ (x, ε), f̂〉 to S

sis in 2.4 are discouraging, we start with algorithms that
we abstracted from the approach of the domain scientists:
A greedy heuristic (Section 3.1) and its refinements (Sec-
tion 3.2). We then summarize the instantiation of choice of
this framework by the domain scientists (Section 3.3).

3.1 A Greedy Heuristic
Since the problem is hard and there is no hope for a com-

petitive online algorithm, we use a simple greedy strategy
as shown in Algorithm 1. The algorithm maintains an in-
dex structure S, which contains the Local Regions around
previously evaluated query points. Given a new query point
x, it first tries to find a Local Region that contains x (Lines
1-2). If the point lies in some Local Region, an approximate
value of f(x) is calculated and returned. If the point does
not lie in any indexed region, then the algorithm has to com-
pute f(x) (Line 4). It then updates the index based on the
knowledge of f(x) as it belongs to a part of the domain that
is yet to be indexed (Line 5). In the simple version of the
algorithm, the update routine creates a new Local Region
containing x and inserts it into the index (Algorithm 2).

3.2 Practical Constraints
In practice, it is often impossible to accurately compute

the Local Region (Rf,f̂ (x, ε)) around a point. We will see

why this is the case in Section 3.3. Usually an initial (con-
servative) guess of the Local Region is first obtained and
inserted into the index. We denote these approximate Local
Regions as R̂f,f̂ (x, ε). As the simulation proceeds and larger
portions of the domain are seen, better approximations of
the existing Local Regions in S are obtained. This calls for
a modified update operation in Algorithm 1. Algorithm 3 is
an update stub which replaces Algorithm 2.

In our initial algorithm, if the function was evaluated be-
cause no existing region contained the query point, then a
new Local Region was created and inserted into the index.
The new update stub on the other hand first checks to see
if the current query point can be part of any existing Lo-
cal Region (Line 1). If such regions exist, then it finds the
regions that can include x and updates them (Lines 2-6).
Finally, only if no existing region can include x, then a new
Local Region is initialized and inserted into S in Line 8.
Updating existing Local Regions is usually more beneficial
than adding new ones because it reduces the total number
of Local Regions. We will also see later that updating an
existing region is cheaper than creating a new one.

Algorithm 3 : Update

Require: S, x, f(x)

1: if ∃〈R̂f,f̂ (x’, ε), f̂〉 ∈ S : x can be included in R̂f,f̂ (x’, ε)
then

2: for all 〈R̂f,f̂ (x’, ε), f̂ 〉 ∈ S do

3: if x can be included in R̂f,f̂ (x’, ε) then

4: Update 〈R̂f,f̂ (x’, ε), f̂〉 to include x
5: end if
6: end for
7: else
8: Add new 〈R̂f,f̂ (x, ε), f̂ 〉 to S

9: end if

3.3 An Instantiation
In practice finding a representation of the Local Regions

of a function is not easy. In this section we review a method
based on the Taylor Series [22]. This method, commonly
used by scientists finds the Local Regions in two steps. It
first creates an initial approximation, which is then refined
over time.

3.3.1 Initializing Local Regions
Under fairly general conditions a function f(x+a) can be

expanded using the Taylor Series as

f(x+a) =

k
X

j=0

[
1

j!
(a.∇x)j

f(x)] + φk(x, a), (1)

where ∇x is the gradient [∂
∂x1

∂
∂x2

. . . ∂
∂xm

] and the error φk

is O(|a|k), i.e., limh↓0
φk(x,ha)

h|a|k
= 0.

The Taylor Series provides us with a simple mechanism for
function approximation. Given the value of f at a point x,
the value at any point x+a “near” x is usually approximated
using the first few terms of the summation in Equation 1.
For example, using the first term only, we get a constant
approximation f̂0,x of f as follows:

f(x+a) ≈ f̂0,x(x+a) ≡ f(x) (2)

Similarly, the first two terms give the following linear ap-
proximation f̂1,x

f(x+a) ≈ f̂1,x(x+a) ≡ f(x) + (a.∇x)f(x) (3)

The errors of the above approximations can be obtained
from the remaining terms in the summation of Eq. 1, i.e.,
those terms not used in the approximation. For small values
of |a|, high-order terms in Eq. 1 are dominated by low-order
terms and are therefore commonly ignored. The domain
scientists only use the single lowest-order term to estimate
the approximation error. More precisely, the approximation
quality requirement is defined for the constant approxima-
tion as

‖ (a.∇x)f(x) ‖< ε, (4)

and similarly for the linear approximation

‖
1

2!
(a.∇x)2f(x) ‖< ε. (5)

Equation 5 for a high dimensional function is the equation
of a tensor and hence, except under special conditions, it
is computationally infeasible to compute the Local Region

526

Evaluate f (tf)

I ret(Ellr) = 0
I ret(Ellr) = 1

(t search)

(t growsearch + I grow(Ellg) * Cgrow)

I grow(Ellg) = 0

(t dfdx + t insert)

Return
Evaluated f

Retrieve

GrowLinear Approximation
Return

I grow(Ellg) = 1

Add

Evaluated f
Return

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 4: Block diagram

defined by it. However, it can be shown that Eq. 4 defines
a hyper-ellipsoid around x [22]. Therefore, using a con-
stant approximation, the local region around x is a hyper-
ellipsoid.

3.3.2 Growing
The linear approximation is preferred over the constant

approximation, because it tends to generate much larger Lo-
cal Regions. Unfortunately, since the region defined by Eq. 5
is difficult to compute, we have to start out with the more
conservative (and hence smaller) region defined by Eq. 4.
Since we know that the true Local Region is much larger,
we use the grow operation to extend the initial region over
time as follows. Consider a query point x and an ellipsoid e

around it. Suppose, there exists another query point x’ such
that x’ lies just outside e but f̂1,x(x’) is an ε-approximation.
Then x’ is assumed to be part of the Local Region of x;
therefore e is grown to a larger ellipsoid that contains x’.
This simple heuristic of growing has been found to work
well in practice [20]. For applications with stricter error
guarantees, growing can be further controlled by using do-
main specific information like the maximum allowable size
of ellipsoids or it may even be turned off and other function
specific methods may be used to find the true Local Regions.

3.3.3 Final Algorithm
Instantiating the framework with ellipsoids as the Local

Regions is straightforward. The algorithm performs the fol-
lowing high level operations on a query point x.

Retrieve: The algorithm first tries to find an ellipsoid
that contains x (Line 1 of Algorithm 1).

Grow: If the retrieve fails then the algorithm attempts
to grow existing ellipsoids in the index to include x (Lines
1-6 of Algorithm 3).

Add: If both the retrieve and the grow fail a new ellipsoid
derived from the constant approximation is initialized and
inserted into the index (Line 8 of Algorithm 3).

4. INDEXING PROBLEM
We now turn to the indexing problem in function approxi-

mation, which produces a challenging workload for the oper-
ations on index S in Algorithms 1, 2 and 3. The retrieve re-
quires the index to support fast lookups. The grow requires

both a fast lookup to find growable ellipsoids and then an ef-
ficient update process once an ellipsoid is grown. Finally, an
efficient insert operation is required for the add step. Also,
past decisions about growing and adding affect future per-
formance of the index, therefore the algorithm produces a
query/update workload that is not common in traditional
indexing applications.

A straightforward implementation of the algorithm intro-
duced in the previous section would search in the index for
an ellipsoid containing the query point until it finds an el-
lipsoid or has established that no such ellipsoid exists. The
grow similarly would try to find all ellipsoids that can be
grown and finally the add is performed if these operations
fail. Our initial experiments showed that this implementa-
tion can result in poor performance.

This observation brings us to the most interesting as-
pect of the indexing problem in function approximation: It
presents a very different framework in which indexes must
be evaluated. Traditionally, the performance of index struc-
tures has been measured simply in terms of the cost of a
search and in some cases update. There are two distinct cost
factors in the function approximation problem. First, there
are the costs associated with the search and update opera-
tions on the index. Second, there are costs of the function
approximation application which include function evalua-
tions and ellipsoid operations. Since, the goal of function
approximation is to minimize the total cost of the simula-
tion, all these costs must be accounted for when evaluating
the performance of an index. We will see that a principled
analysis leads to the discovery of novel tradeoffs. These
tradeoffs produce significant and different effects on differ-
ent index structures. This makes indexing for function ap-
proximation a challenging problem.

4.1 Costs
This section introduces a cost model for the function ap-

proximation algorithm. We use the cost model to qualita-
tively explore the tradeoffs in the indexing problem. The
formulation of a quantitative cost model for optimization
purposes has limited use. This is because the benefits from
an operation can be determined only in the future after the
operation has been done. As a simple example, consider
the grow operation. The benefit from the grows cannot be
estimated accurately until the actual grown ellipsoids are
known, which requires the grow operation to be performed.
Therefore, we do not explore a true quantitative cost model
further in the paper. Table 1 is a summary of the commonly
referenced variables in this section and the next.

The total cost (Ctot) of processing a query q can be ex-
pressed as

Ctot = tsearch + Iret × tla + (1 − Iret) × Cmiss (6)

Note that the the costs in Eq. 6 vary from one query to the
next. However, the dependence on q has been dropped for
ease of notation. tsearch is the cost of searching the index for
an ellipsoid containing q. This is essentially the cost of the
retrieve step. Iret is an indicator which is 1 if there exists an
ellipsoid containing q in the index and 0 otherwise. tla is the
cost of calculating the linear approximation on a successful
retrieve. Cmiss is the cost incurred if q does not result in
a retrieve operation. A miss results in either a grow or an
add. Cmiss can therefore be written as

Cmiss = tf+tgrowsearch+Igrow×Cgrow+(1−Igrow)×Cadd (7)

527

Name Description
Ctot Total cost of a query
Cmiss Total cost of a miss
Cgrow Total cost of a grow
Cadd Total cost of an add
Iret Indicator variable for successful retrieve

Igrow Indicator variable for successful grow
tsearch Index search cost during Retrieve

tf Cost of a function evaluation
tla Cost of a linear approximation

tgrowsearch Index search cost during grow
tinellipsoid Cost of checking if ellipsoid contains point

tgrow Cost to grow ellipsoid
tupdate Index update cost
tdfdx Cost of a derivative evaluation
tinsert Index insertion cost
Ellr Max. number ellipsoids examined for Retrieve
Ellg Max. number ellipsoids examined for Grow

Nfpos Number of false positives during Retrieve
Nfound Number of growable ellipsoids found

Ngrowmax Max. number of grows allowed
Ngrown Number of ellipsoids grown

Table 1: Index of variables

Ellipsoid Operation Cost
tf 2000

tdfdx 1200
tgrow 10
tla 1

tinellipsoid 1
Usual search cost 1

Table 2: Relative costs of the ellipsoid operations

The cost of a grow comprises two parts. tgrowsearch is the
cost associated with searching for growable ellipsoids. Cgrow

is the cost of actually growing the ellipsoids and updating
the index. Igrow is an indicator which is 1 if there is some
ellipsoid in the index that can be grown and 0 otherwise.
Finally, if no ellipsoids were grown, an ellipsoid is added at
a cost of Cadd.

Table 2 describes typical ratios between costs of the appli-
cation in the combustion problem, which is a typical exam-
ple of an application that our methods apply to. The table
also lists the commonly observed cost of searching for an
ellipsoid in an index. It is important to note that for most
indexes the costs of the application are more expensive than
the index operations.

4.2 Effects And Tradeoffs
In the previous section we outlined the cost of processing

a query. Here we will analyze the different components of
Ctot. Figure 4 displays the cost associated with each high-
level operation.

Retrieve: The first component of Ctot is tsearch. In most
high dimensional index structures the ellipsoid containing a
query point is usually not the first ellipsoid found. The index
ends up looking at a number of ellipsoids before finding “the
right one” (Section 5.1). The additional ellipsoids that are
examined by the index are called false positives, the number
of which is denoted by Nfpos. Taking Nfpos into account,
we can rewrite tsearch as

tsearch = (Nfpos + 1) × (tr + tinellipsoid).

For each false positive the algorithm pays to search and re-
trieve the ellipsoid from the index (tr) and to check if the
ellipsoid contains the query point (tinellipsoid). In practice
using an iterator for the search could lead to different values
of tr for each false positive. However, this is not important
for this qualitative study and hence we ignore such effects
to keep the analysis simple.

In traditional indexing problems, if an object that sat-
isfies the query condition exists in the index, then finding
this object during search is mandatory. Therefore, Nfpos
is a fixed property of the index. However, the function ap-
proximation problem provides the flexibility to tune Nfpos,
because we can evaluate the function if the index search
was not successful. The number of false positives can be
tuned by limiting the number of ellipsoids examined during
the retrieve step. We denote this parameter by Ellr. Ellr
places an upper bound on the number of false positives for
a query. Taking this parameter into account, the total cost
of processing a query can be rewritten as

Ctot = tsearch + Iret(Ellr) × tla + (1 − Iret(Ellr)) × Cmiss (8)

Iret(Ellr) is 1 if an ellipsoid containing the query point is
found by the index before Ellr ellipsoids are examined, and
0 otherwise. Notice that for a given query, Iret ≥ Iret(Ellr).
Tuning Ellr introduces the following tradeoffs:

Effect 1: Decreasing Ellr restricts the number of ellip-
soids examined during the retrieve for a given query. This
effectively reduces the number of false positives, therefore
decreasing tsearch.

Effect 2: Decreasing Ellr decreases the probability that
Iret(Ellr) = 1 for a given query q, thereby lowering the prob-
ability of a query resulting in a retrieve. This is because
there might be an ellipsoid containing q in the index but
it is not found before Ellr ellipsoids are examined. Reduc-
ing the probability of retrieve increases the probability of an
expensive miss operation.

Effect 3: The previous tradeoffs demonstrated the effects
of decreasing Ellr on the probability of a retrieve for a given
query. There is another tradeoff unique to the problem.
Misses that result from decreasing Ellr can grow and add
ellipsoids. These grows and adds index new parts of the
domain and also change the overall structure of the index.
Both of these affect the probability of retrieves for future
queries.

Grow: The next major cost component is the cost of the
grow operation: tgrowsearch+Igrow×Cgrow. In the first part of
the grow process the index is traversed to find ellipsoids that
can be grown. Every ellipsoid in the index is a candidate for
growing. Checking an ellipsoid for growing involves a cost
of retrieving it from the index (trg) and then checking to see
if the ellipsoid can be grown (tla). Therefore, most indexes
prune the search space for finding growable ellipsoids using
some domain information or heuristic. Just like the retrieve
operation, the cost incurred in searching for growable ellip-
soids can be tuned by restricting the number of ellipsoids
examined for growing (Ellg). Taking this parameter into
account, Cmiss can be rewritten as Cmiss =

tf + tgrowsearch + Igrow(Ellg) ×Cgrow + (1− Igrow(Ellg))×Cadd.

Igrow(Ellg) is 1 if at least one growable ellipsoid is found before
Ellg ellipsoids are examined, and 0 otherwise.

The cost of searching for growable ellipsoids can be writ-

528

ten as

tgrowsearch = Ellg × (trg + tla).

Tuning Ellg introduces the following tradeoffs:
Effect 4: Decreasing Ellg decreases tgrowsearch because

fewer ellipsoids are examined for growing.
Effect 5: Decreasing Ellg decreases the number of ellip-

soids examined for growing and hence the number of grow-
able ellipsoids that are found (Nfound). Therefore, restrict-
ing Ellg also limits Ngrown(the number of ellipsoids that are
finally grown). The effects associated with Ngrown are de-
scribed in Effects 6 and 7.

After finding the ellipsoids that can be grown, the next
step of the grow operation is to actually grow the ellip-
soids, which costs Cgrow. There is another tuning param-
eter, Ngrowmax, which represents the maximum number of
ellipsoids that are allowed to be grown during a grow op-
eration. Hence the number of ellipsoids that are actually
grown, Ngrown, is only min{Nfound, Ngrowmax}. For each el-
lipsoid that is grown during the grow step, the algorithm
incurs a cost to grow the ellipsoid (tgrow) and update the
index (tupdate).

Cgrow = Ngrown × (tgrow + tupdate)

Ngrown has the following effects on the cost of the algorithm:
Effect 6: Lower values of Ngrown decreases Cgrow. This

can affect the simulation time significantly because tgrow and
tupdate can be expensive.

Effect 7: Larger values of Ngrown increase the fraction
of the domain that is covered by ellipsoids. Therefore, Iret
changes from 0 to 1 for future query points that lie in the
newly covered part of the domain.

Effect 8: For Ngrown > 1 the false positive rate of the in-
dex can increase, because the grown ellipsoids overlap (they
all cover the new query point). This in turn might nega-
tively affect Iret(Ellr). The reason for this is that the higher
false positive rate can result in failed retrieves due to the
search limit imposed by Ellr.

Add: The last cost component is the cost of adding an
ellipsoid. It includes the cost of finding the derivative of the
function (tdfdx), which is costly (see Table 2), and inserting
the new ellipsoid into the index (tinsert). The derivative is
needed to estimate the initial ellipsoid and for computing
the linear approximation [22]. A new ellipsoid is added only
if the retrieve and grow both fail. Therefore there is no
direct way of controlling the number of adds.

Effect 9: Lowering the effort spent on the retrieve and
grow can cause the number of add operations to increase.
This can be undesirable because the add operation is expen-
sive and a newly added ellipsoid is a conservative approx-
imation of a Local Region. Adds also increase the index
size.

In summary, the algorithm provides us with a set of tunable
parameters, namely the number of ellipsoids examined dur-
ing retrieve (Ellr), the number of ellipsoids examined during
grow (Ellg), and the maximum number of ellipsoids allowed
to be grown (Ngrowmax). Each parameter can have different
effects on Ctot. What makes the problem interesting is that
these effects often move in opposite directions. Moreover,
tuning affects indexes differently and to varying degrees,
which makes it necessary to analyze each index individually.
In the next section we will demonstrate the effects of these

parameters on the performance of different index structures
when used in the function approximation algorithm.

5. EXPERIMENTS
In the previous section we introduced the tuning param-

eters of the function approximation problem and we iden-
tified nine qualitative effects these parameters could have
on the runtime. In this section we study the corresponding
tradeoffs for a concrete instance of the problem and different
index structures.

All experimental results are for a Methane combustion
simulation. In the simulation, the number of species was set
to s = 31, i.e., the thermochemical composition vector has
32 dimensions. There are 100 particles in the combustion
chamber; at each time step a single particle enters the re-
action step. The simulation was run for 6 × 106 timesteps,
thereby generating 6× 106 query points for function evalua-
tion. The error tolerance, unless otherwise noted, was set to
ε = 5×10−5. All reported measurements are wall-clock time
for an execution on a Windows XP machine with a 2.4Ghz
processor and 2GB of memory.

5.1 Candidate Index Structures
Our goal in this paper is not to find the best index for

function approximation. In fact because of the diversity of
function approximation applications in terms of their cost
structure, dimensionality, and locality of access, the exis-
tence of a single best index is unlikely. For this reason we
selected a very diverse set of indexes, without attempting a
comparison of all existing ones. Another criterion for selec-
tion for this initial study was to pick only well understood in-
dex structures with predictable behavior, rather than highly
optimized and complex indexes.

We chose a candidate from each of the different classes
of commonly used indexes, namely linear scan, spatial par-
titioning, balanced index for points and balanced index for
extended objects. In the simulations we studied, the indexes
were small enough to fit in main memory, therefore we lim-
ited our attention to in-memory performance. Extending
our experiments to other indexes and I/O performance is
part of our future work.

Bounding Box Rtree (Bbox Rtree): An obvious
choice for function approximation is an index that can man-
age the Local Regions, i.e., the ellipsoids in our case. The
most well-known data structure with this functionality is
the Rtree, a balanced multidimensional generalization of the
B-tree which can handle both point and hyper-rectangular
objects. There exists a large number of Rtree-variants (see
Section 6); as a representative we selected the robust R*-
tree [3]. Bbox Rtree indexes the axis-parallel minimum
bounding boxes of the ellipsoids, using the standard R*-tree
algorithms. The retrieve operation finds leaf objects (min-
imum bounding boxes of ellipsoids) that contain the query
point. Then it needs to verify that the corresponding ellip-
soid also contains the query point. Growing of ellipsoids is
implemented by a deletion, followed by an insertion. Grow-
able ellipsoids are found by performing a nearest-neighbor
(NN) search on the bounding boxes.

Point Rtree: Managing objects with extent is far more
challenging than handling points [10]. We can map our prob-
lem to a point-indexing problem by only indexing the center
points of the ellipsoids in an Rtree. The Point Rtree does
not have to deal with overlapping leaf objects (bounding

529

boxes of inner nodes can still overlap) and growing does
not require an index update, because the center of an ellip-
soid is not modified by the grow operation. Unfortunately,
without any information about the dimensions of the ellip-
soid, the index has no way of pruning search—as long as
the ellipsoid is large enough, even a center point far away
from the query could be relevant. Intuitively based on the
Taylor Series, the Euclidean distance between query point
and ellipsoid center should be correlated with the probabil-
ity that the query point is within the ellipsoid. We therefore
implemented both the retrieve and the search for growable
ellipsoids as a NN-query.

Binary Tree: This is a binary space partitioning
tree [10], which was introduced for the ISAT function ap-
proximation problem [22]. The Binary Tree indexes the
centers of the ellipsoids by recursively partitioning the space
with cutting planes. Leaf nodes of the tree correspond to el-
lipsoid centers and non-leaf nodes represent cutting planes.
During the retrieve step, the index is traversed from the
root by following the subtree corresponding to the side of
the cutting plane that the query point lies on. Like the
Point Rtree, the Binary Tree requires no update when an
ellipsoid is grown, because it only indexes the ellipsoid cen-
ter points. A more detailed discussion of the index can be
found in Section 5.2.2.

MRU List + Rtree: For high dimensional data, it has
been shown that a simple linear scan often outperforms any
sophisticated indexing technique [27]. We therefore include
a list-based data structure. This simple structure has the
advantage that if there is locality of access, we can directly
apply existing cache-replacement policies. The MRU List
stores the ellipsoids ordered by their most recent access. The
retrieve operation simply scans the list, starting with the
most recently used object. To improve the search for grow-
able ellipsoids, we index the ellipsoids with a “secondary”
point Rtree. This tree is identical to the Point Rtree de-
scribed above, but it is not used for the retrieve operation.
Notice that the leaf objects also contain a pointer to the
corresponding ellipsoid in the MRU list.

5.2 Tradeoffs: Detailed Analysis
We examined the tradeoffs for all candidate index struc-

tures. Due to space constraints, we only discuss the two
best-performing indexes in detail and report the overall per-
formance for the others. Somewhat to our surprise, the Bi-
nary Tree and the simple MRU List + Rtree have the best
performance after tuning. If we do not tune any index, i.e.,
set Ellr = Ellg = Ngrowmax = ∞, the Bbox Rtree clearly
outperforms the Binary Tree. However, the Binary Tree
benefits much more from tuning. This will be discussed in
more detail in this section.

For our experiments we do not examine the effect of
the Ngrowmax parameter. Recall that we grow Ngrown =
min{Nfound, Ngrowmax} ellipsoids, i.e., Ngrowmax limits the
number of finally grown ellipsoids if there are too many
growable candidates. However, we currently do not have any
meaningful way of preferring one grow candidate over an-
other, therefore we set Ngrowmax = ∞. Notice also that Ellg
directly limits Nfound, and therefore we can control Ngrown

through Ellg. Hence in our experiments we only study the
effect of two tuning parameters: Ellr and Ellg.

MRU Linked List

Point RTree

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 5: MRU List + Rtree

5.2.1 MRU List + Rtree
The MRU List + Rtree index (Figure 5) uses the list for

the retrieve operations. The list contains pointers to the
ellipsoids. During the retrieve step, it is scanned, starting
with the most recently used ellipsoid. This continues until
either an ellipsoid is found that contains the query point,
or Ellr ellipsoids have been examined unsuccessfully. If a
containing ellipsoid is found, it is moved to the front of the
list.

As mentioned earlier, the Rtree improves the performance
of the search for growable ellipsoids during the grow step.
It indexes the ellipsoid centers (see Figure 5 for an illustra-
tion). Instead of scanning the list for growable ellipsoids,
we perform a NN-search for the query point to find grow
candidates sorted by the Euclidean distance to the ellipsoid
centers. The search terminates once the Ellg nearest neigh-
bors have been examined. All growable ellipsoids are grown.
Since their center points do not change, we do not need to
update the Rtree. The linked list is updated by moving all
grown ellipsoids to the front.

An add operation adds the new ellipsoid to the front of
the list. Its center point, together with a pointer to the
ellipsoid object, is inserted into the Rtree.

We first examine the effect of tuning Ellr, the number
of ellipsoids in the list that are examined during the re-
trieve step. For this experiment, we held the grow search
limit constant at Ellg = 3000. Limiting the grow search to
3000 nearest neighbors was found to be enough to find all
growable ellipsoids. We report the total number of retrieves
(Figure 6) and the total cost of the simulation, also bro-
ken down into retrieve and miss (grow and add) cost (Fig-
ure 7). As we increase Ellr, tsearch increases in accordance
with Effect 1 (Figure 7). At the same time the number
of retrieves increases (Figure 6), because we are searching
further, thereby reducing Cmiss (Effect 2). As we increase
Ellr, Effect 2 initially causes the simulation time to decrease.
However, at some point further increasing Ellr will only add
very few additional retrieves, hence the total number of re-
trieves asymptotes and the increased effort in searching does
not pay off any more. At this point Effect 1 causes the over-
all simulation time to increase slightly.

Next we examine the effect of tuning Ellg, the number
of nearest neighbors examined for growing. In this experi-
ment there were no restrictions placed on Ellr. The Rtree
examines ellipsoids for growing in nearest neighbor order.
Therefore, as we start to increase Ellg, larger ellipsoids are
grown and the domain is indexed more aggressively. The
number of retrieves increases (Figure 8) and the number

530

5.5e+06

5.55e+06

5.6e+06

5.65e+06

5.7e+06

5.75e+06

5.8e+06

5.85e+06

5.9e+06

5.95e+06

2000 4000 6000 8000 10000 12000 14000

R
et

rie
ve

s

Ellr

Retrieves

Retrieves

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 6: Number of retrieves vs.
Ellr (MRU List + Rtree

5000

10000

15000

20000

25000

30000

2000 4000 6000 8000 10000 12000 14000

T
im

e
in

 s
ec

s

Ellr

Time

Total Time
Retrieve Time

Miss Time

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 7: Time vs. Ellr (MRU List
+ Rtree)

5e+06

5.1e+06

5.2e+06

5.3e+06

5.4e+06

5.5e+06

5.6e+06

5.7e+06

5.8e+06

5.9e+06

500 1000 1500 2000 2500 3000 3500 4000

R
et

rie
ve

s

Ellg

Retrieves

Retrieves

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 8: Number of retrieves vs.
Ellg (MRU List + Rtree

50000

100000

150000

200000

250000

300000

350000

400000

500 1000 1500 2000 2500 3000 3500 4000

O
pe

ra
tio

ns

Ellg

Grows and Adds

Grows
Adds

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 9: Number of grows, add vs.
Ellg (MRU List + Rtree)

5000

10000

15000

20000

25000

30000

500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s
ec

s

Ellg

Time

Total Time
Retrieve Time

Miss Time

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 10: Time vs. Ellg (MRU List
+ Rtree)

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

5.5e+06

0 2000 4000 6000 8000 10000 12000 14000

R
et

rie
ve

s

Ellr

Retrieves

Primary
Secondary

Total Retrieves

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 11: Number of retrieves vs.
Ellr (Binary Tree)

A

X

B

B

X

Y

C

Y

X

A

B

C

Z

Z

F

Y
Y

X

C B

A

Scenario 2Scenario 1

Y

X

A

C B

A
B

X

Y

C

C

A

F

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3

q1
q2

q3

q4

Figure 12: Binary Tree

of misses decreases (Figure 9). The total simulation time
(Figure 10) therefore decreases (Effect 7). Increasing Ellg
increases the chances of finding at least one growable ellip-
soid, hence reduces the number of adds (Effect 9). Reduc-
tion in the number of adds causes the list size to decrease
for larger values of Ellg. This accounts for the decrease in
tsearch as we start increasing Ellg. As we go on increasing
Ellg, the number of retrieves asymptotes (Figure 8) because
no additional ellipsoids are found for growing. There is no
increase in retrieve time. However, the total simulation time
then increases because tgrowsearch increases with Ellg caused
by Effect 4 (Figure 10).

5.2.2 Binary Tree
The Binary Tree partitions the data space recursively, us-

ing cutting planes [22]. It might be unbalanced, i.e., leaves
can be at different depths. Figure 12 shows an example tree
with three ellipsoids A, B, C and two cutting planes X and
Y . For now we focus on the tree in the top half of the fig-
ure, together with the corresponding view of the data space
showing the cutting planes and ellipsoids.

We illustrate the retrieve step with query point q2. The
retrieve starts at the root, checking on which side of hyper-
plane X the query point lies. The search continues recur-
sively with the corresponding subtree, the left one in our
example. When we reach a leaf node, we test if the ellip-
soid in the leaf contains the query point. In the example, A

contains q2, therefore we have found a containing ellipsoid.
This process, i.e., when the traversal from root to leaf is
successful, will be denoted as a Primary Retrieve [22].

Notice that ellipsoids can straddle cutting planes, e.g., A

covers volume on both sides of cutting plane X. If ellipsoids
are straddling planes, then the Primary Retrieve can result
in a false negative. For example, q3 lies to the right of X

and so the Primary Retrieve fails even though there exists
an ellipsoid A containing it. To overcome this problem the
Binary Tree performs a Secondary Retrieve if the Primary
fails. The main idea of the Secondary Retrieve is to explore
the “neighborhood” around the query point by examining
“nearby” subtrees. In the case of q3, the failed Primary
Retrieve ended in leaf B. Nearby subtrees are explored by
moving up a level in the tree and exploring the other side
of the cutting plane. Specifically, we first examine C (af-
ter moving up to Y , C is in the unexplored subtree). Then
the search would continue with A (now moving up another

531

level to X and accessing the whole left subtree). This pro-
cess continues until a containing ellipsoid is found, or Ellr
ellipsoids have been examined unsuccessfully.

The search for growable ellipsoids proceeds in exactly the
same way as a Secondary Retrieve, starting where the failed
Primary Retrieve ended. Assume that in the example in
Figure 12, ellipsoid B can be grown to include q4, but C

and A cannot. After the retrieve failed, the grow operation
first attempts to grow C. Then it continues to examine B,
then A (unless Ellg < 3). B is grown to include q4, as
shown on the bottom left (Scenario 1). Growing of B made
it straddle hyper-plane Y . Hence, for any future query point
near q4 and “below” Y , a Secondary Retrieve is necessary
to find containing ellipsoid B, which is “above” Y .

The alternative to growing B is illustrated on the bottom
right part of Figure 12 (Scenario 2). Assume Ellg = 1,
i.e., after examining C, the grow search ends unsuccessfully.
Now we add a new ellipsoid F with center q4 to the index.
This is done by replacing leaf C with an inner node , which
stores the hyper-plane that best separates C and F . The
add step requires the expensive computation of F , but it
will enable future query points near q4 to be found by a
Primary Retrieve.

As we can see from this example, tuning parameter Ellg
affects the Binary Tree in its choice of scenario 2 over 1.
Furthermore, this choice, i.e., performing an add instead
of a grow operation, reduces Nfpos for future queries, but
adds extra-cost for the current query. The experiments show
that this tradeoff has a profound influence on the overall
simulation cost. We will also see that the effect of the tuning
parameters is very different for the Binary Tree as compared
to the MRU List + Rtree.

We first study the effect of varying Ellr, which limits the
number of ellipsoids examined during the Secondary Re-
trieve phase. For this experiment we set Ellg = ∞. It
can be seen from Figure 13 that as we increase Ellr, tsearch
goes up (Effect 1). This increase in the retrieve time is ac-
companied by a reduction in miss time, which is caused by
the improved total number of retrieves (hence fewer misses)
due to the more aggressive Secondary Retrieves (Effect 2,
see Figure 11).

One of the most interesting observations from Figure 13 is
the super-linear increase in the time for successful retrieves,
which starts dominating the total simulation time. Figure 11
reveals the explanation: As we increase Ellr, Secondary Re-
trieves (and hence also Nfpos) are increasing, because we are
searching the index more extensively. Therefore we are re-
ducing the number of add operations, ultimately causing the
Primary Retrieve rate to decrease (Effect 3). At the same
time, the average cost of a Secondary Retrieve also increases,
because the search proceeds further in the tree. These two
effects together—increase in number of Secondary Retrieves
and in average cost per Secondary Retrieve—create the su-
perlinear trend of the retrieve time with increasing Ellr.

Lastly, we examine the effect of varying Ellg, the number
of ellipsoids examined for growing, while setting Ellr = ∞.
As we start increasing Ellg, because of Effect 7 the total
number of retrieves increases slightly (Figure 14). Therefore
there are fewer misses, which results in lower miss cost and
better total simulation time (see Figure 15). Note the initial
drop in retrieve time in Figure 15. The reason is that tsearch
includes the cost of all searches, including unsuccessful ones.
A better retrieve rate therefore also reduces the total retrieve

Table 3: Total simulation time in seconds
Value of ε

Index Type 0.0005 0.00005 0.00004
Binary Tree (tuned) 1073 10181 13100
MRU List + Rtree 1125 14000 19920

Bbox Rtree 1201 14700 20850
Random Projection Rtree 1378 15800 22051

Binary Tree (default) 1344 29186 31200
FIFO List + Rtree 2164 33770 42900

Point RTree 10431 > 44000 -
Ellipsoidal Rtree 14328 > 44000 -

cost.
Figure 14 shows that as we increase Ellg, Primary Re-

trieves are being replaced by Secondary Retrieves, while the
overall number of successful retrieves stays fairly constant
for larger values of Ellg. This is because increasing Ellg is
replacing adds with grow operations, which as we discussed
earlier increases Nfpos and is a manifestation of Effect 8.
The explanation of the super-linear increase in retrieve time
is similar to that described for tuning Ellr. As we increase
Ellg the miss cost also increases slightly (see Figure 15) be-
cause of Effects 4 and 6. Overall the total simulation time
first decreases because of the dominance of Effect 7, but
later starts to increase because of Effects 4 and 8.

5.3 Tradeoffs: The Big Picture
It is evident from the detailed analysis in Section 5.2 that

the tuning parameters can have a significant effect on the
performance of the indexes and the overall function approx-
imation algorithm. We performed a similar analysis for the
other index structures and selected the best parameter set-
ting for each of them accordingly. Table 3 lists the over-
all running time of the Methane combustion simulation; the
times are for the indexes after tuning, unless explicitly stated
otherwise. We report times for different values of ε, because
the index size increases with lower error tolerance and hence
smaller ellipsoids.

The tuned Binary Tree performs significantly better than
the Binary Tree with default parameter settings (Ellr =
Ellg = ∞). In fact, it outperforms all competitors. The
“natural” index for this problem, the Bbox Rtree, performs
well, but is 20-40% slower than the tuned Binary Tree. We
established that the cause for this difference was the ability
of the Binary Tree to achieve a large number of Primary Re-
trieves because it partitions the space, rather than searching
through levels of overlapping bounding boxes. Careful tun-
ing can bias the Binary Tree toward a high rate of Primary
Retrieves, with little reduction in overall retrieval rate. On
the other hand, tuning had comparatively little effect on the
Bbox Rtree. The overlap of bounding boxes at all levels of
the tree resulted in large numbers of false positives during
search. We note here that the difference in performance of
the Bbox Rtree and the Binary Tree is not due to the update
costs of the Rtree. We have found in our experiments that
Effect 6 does not significantly affect performance because
very few ellipsoids actually grow during a single grow step.

The dramatic difference between the FIFO List and MRU
List indexes is caused by locality in the combustion simula-
tion. Both index structures are identical; they only differ in
the order of the ellipsoids in the list. MRU sorts by most re-
cent access, while FIFO maintains the ellipsoids in the order
in which they were added.

532

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000 12000 14000

T
im

e
in

 s
ec

s

Ellr

Time

Total Time
Retrieve Time

Miss Time
Succesful Retrieve

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 13: Time vs. Ellr (Binary
Tree)

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

5.5e+06

500 1000 1500 2000 2500 3000 3500 4000

R
et

rie
ve

s

Ellg

Retrieves

Primary
Secondary

Total Retrieves

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 14: Number of retrieves vs.
Ellg (Binary Tree)

5000

10000

15000

20000

25000

30000

500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s
ec

s

Ellg

Time

Total Time
Retrieve Time

Miss Time

PSfrag replacements

f̂(xt)
xt+1

f(xt)

xt

ε
f̂(q2) = f(q1) + sq

1
× (q1 − q2)

f̂(q2) − f(q2) > ε

f(q2)
q1

q2

q5

q4

q3

i1
i2
i5
i4
i3
q1

q2

q3

q4

Figure 15: Time vs. Ellg (Binary
Tree)

A surprising result was the poor performance of the Point
Rtree. Since it does not know the spatial extent of the ellip-
soids, we implemented the retrieve operation with an NN-
query to find the “best” ellipsoids early on. Unfortunately
because of the limited pruning power and the high cost of
the NN-search, the Point Rtree was not more successful than
scanning the FIFO List. The MRU List + Rtree essentially
uses the same Rtree during the grow step to find grow can-
didates. Hence the performance difference between it and
the Point Rtree approach is mostly due to the poor retrieve
performance of the Point Rtree.

We also experimented with two extensions of the Bbox
Rtree to explore ways to improve its performance. Both are
motivated by the problem that in high dimensions, hyper-
rectangular bounding boxes are only poor approximations
of ellipsoids. The bounding boxes contain a large fraction
of “dead space”, i.e., volume that is outside the ellipsoid,
which creates many false positives during search.

The Random Projection Rtree addresses the problem
by projecting all ellipsoids onto a fixed set of k randomly se-
lected lines. This transforms a d-dimensional ellipsoid into
a k-dimensional hyper-rectangle in the transformed space
defined by the projection lines. We can now use a stan-
dard Rtree to index the objects. By using larger numbers
of projections, we can achieve a tighter bounding polyhe-
dron around an ellipsoid, at the cost of more expensive in-
dex operations in the higher-dimensional space. The results
for k = 60 showed the expected lower false positive rates
(compared to Bbox Rtree), but slightly worse overall per-
formance (see Table 3) because of higher dimensionality. A
detailed study of Random Projection Rtrees is part of our
future work.

We can also reduce dead space by using ellipsoids as the
bounding shape at all tree levels. The corresponding El-
lipsoid Rtree performed very poorly, because of the high
cost of basic index operations like testing if a point is within
a bounding ellipsoid or splitting nodes and computing the
new bounding ellipsoids, which is done approximately.

6. RELATED WORK
The ISAT function approximation approach was first in-

troduced by Pope [22]. It is one of the most widely used tech-
niques for function approximation in the scientific commu-
nity and is now a part of Fluent’s CFD package [2]. Machine
learning and data mining research have extensively stud-
ied the problem of automatically learning unknown func-
tions [13]. By treating the known function values as a train-

ing sample, machine learning techniques can be used for
function approximation. For the combustion simulation,
neural networks have been proposed and used [14]. How-
ever, there has been very little work on studying function
approximation as an indexing problem. Pope [22] and later
Veljkovic et al. [26] propose new index structures for com-
bustion simulation. Our work is the first principled analysis
of the indexing problem.

A large variety of index structures have been proposed
by the database and computational geometry communities,
and their suitability for the function approximation problem
needs to be studied. Work prior to 2001 is surveyed in [5]
and [10]. In the following we discuss a few selected indexes,
which are most related to the ones studied in this paper.

The Rtree [12] is a commonly used multidimensional index
in the database community. It is a balanced data structure
based on axis-parallel bounding boxes and can manage both
point and extended objects. It is thus a natural choice for
indexing Local Regions for function approximation. Several
variants of the Rtree have been proposed, e.g., R*-tree [3],
R+-tree [24], and Xtree [4]. The goal of most improvements
is to reduce the overlap of bounding boxes in tree nodes,
which is a major factor in degrading performance for high-
dimensional data. The SS-Tree [28] takes this a step further
by using spheres as bounding regions. It is therefore a good
candidate for managing spherical or ellipsoidal regions of
accuracy.

To avoid overlap of bounding regions, some index struc-
tures partition the space, e.g., the Binary Space Partitioning
(BSP) tree [10]. The Binary Tree used in our experiments
is an adaptation of this index structure.

It has been shown that in high dimensions linear scans
are sometimes faster than complex index structures, espe-
cially when data is accessed on disk. The VA-file [27] im-
proves the performance of linear scans by quantizing the
space. A simple approach based on scanning files at differ-
ent resolutions has been shown to outperform sophisticated
bulk-loaded Rtrees [23].

The Random Projection Rtree in this paper was mo-
tivated by work on using projections for containment
queries [7] and approximate nearest-neighbor queries [17].
Multidimensional problems can be mapped to lower dimen-
sions by hashing [11, 15]. Other common approaches to
combat the curse of dimensionality are dimensionality re-
duction and principal component analysis, e.g., used by the
TV-tree [19], the ∆-tree [8] and the VA+ file [9].

533

7. CONCLUSIONS AND FUTURE WORK
In this paper we introduced the function approximation

problem. We showed its hardness and how it motivates
an interesting indexing problem. A principled analysis of
the indexing problem led to the discovery of novel tradeoffs
which have a significant and varied impact on different index
structures.

This is the first in-depth study of the general indexing
problem in high-dimensional function approximation and
there are several avenues for future research. (1) Function
approximation can provide a new and non-traditional bench-
mark for comparing indexes. (2) We have so far evaluated
tradeoffs when parameter values are fixed throughout the
simulation. Performance could be improved considerably
by varying parameters adaptively. For example, growing
and adding could be turned off towards the end of the sim-
ulation. (3) The Random Projection Rtree provides a new
direction in the design of index structures for ellipsoids. (4)
It is also interesting to compare this approach of function
approximation to the algorithms used by the machine learn-
ing community.

8. ACKNOWLEDGMENTS
This work has been supported by the National Science

Foundation through grants CTS-0426787, IIS-0133481 and
IIS-0330201. The authors would also like to thank Zhuyin
Ren for his help at various stages, the Cornell Theory Center
for support to run simulations and the reviewers for their
insightful comments.

9. REFERENCES
[1] http://www.femlab.com.

[2] http://www.fluent.com.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An efficient and robust access
method for points and rectangles. In SIGMOD, pages
322–331, 1990.

[4] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The
X-tree: An index structure for high-dimensional data.
In VLDB, pages 28–39, 1996.

[5] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Computing Surveys, 33(3):322–373, 2001.

[6] A. Borodin and R. El-Yaniv. Online Computation and

Competitive Analysis. Cambridge University Press,
2005.

[7] C. J. C. Burges, J. C. Platt, and J. Goldstein.
Identifying audio clips with RARE. In
MULTIMEDIA, pages 444–445, 2003.

[8] B. Cui, B. Ooi, J. Su, and K. Tan. Contorting high
dimensional data for efficient main memory
processing. In SIGMOD, pages 479–490, 2003.

[9] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and
A. El Abbadi. Vector approximation based indexing
for non-uniform high dimensional data sets. In CIKM,
pages 202–209, 2000.

[10] V. Gaede and O. Günther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231,
1998.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In The VLDB

Journal, pages 518–529, 1999.

[12] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, pages 47–57, 1984.

[13] T. Hastie, R. Tibshirani, and J. H. Friedman. The

Elements of Statistical Learning. Springer, 2003.

[14] J. D. Hedengren and T. F. Edgar. In situ adaptive
tabulation for real-time control. Industrial and

Engineering Chemistry Research, 2005.

[15] H. V. Jagadish, B. C. Ooi, K. L. Tan, C. Yu, and
R. Zhang. idistance: An adaptive B+-tree based
indexing method for nearest neighbor search. ACM

TODS, 2005.

[16] D. S. Johnson. The NP-completeness column: An
ongoing guide. Journal of Algorithms, 3(2):182–195,
1982.

[17] J. M. Kleinberg. Two algorithms for nearest-neighbor
search in high dimensions. In STOC, pages 599–608,
1997.

[18] S. Lawrence, A. C. Tsoi, and A. D. Back. Function
approximation with neural networks and local
methods: Bias, variance and smoothness. In
Australian Conference on Neural Networks, pages
16–21. 1996.

[19] K. I. Lin, H. V. Jagadish, and C. Faloutsos. The
TV-tree: An index structure for high-dimensional
data. VLDB Journal, 3(4):517–542, 1994.

[20] B. J. D. Liu and S. B. Pope. The performance of in

situ adaptive tabulation in computations of turbulent
flames. Combustion, Theory and Modelling,
9(4):549–568, 2005.

[21] S. Mazumder. Adaptation of the in situ adaptive
tabulation (isat) procedure for efficient computation of
surface reactions. Computers and Chemical

Engineering, 30(1):115–124, 2005.

[22] S. B. Pope. Computationally efficient implementation
of combustion chemistry using in situ adaptive
tabulation. Combustion Theory Modelling, (1):41–63,
1997.

[23] M. Riedewald, D. Agrawal, A. E. Abbadi, and
F. Korn. Accessing scientific data: Simpler is better.
In SSTD, pages 214–232, 2003.

[24] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-tree: A dynamic index for multi-dimensional
objects. In The VLDB Journal, pages 507–518, 1987.

[25] S. R. Turns. An Introduction to Combustion: Concepts

and Applications. McGraw-Hill
Science/Engineering/Math, 2000.

[26] I. Veljkovic, P. Plassmann, and D. C. Haworth. A
scientific on-line database for efficient function
approximation. In ICCSA, pages 643–653, 2003.

[27] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB, pages
194–205, 1998.

[28] D. A. White and R. Jain. Similarity indexing with the
SS-tree. In ICDE, pages 516–523, 1996.

534

