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ABSTRACT
Data objects in a relational database are cross-linked with
each other via multi-typed links. Links contain rich seman-
tic information that may indicate important relationships
among objects. Most current clustering methods rely only
on the properties that belong to the objects per se. How-
ever, the similarities between objects are often indicated by
the links, and desirable clusters cannot be generated using
only the properties of objects.

In this paper we explore linkage-based clustering, in which
the similarity between two objects is measured based on
the similarities between the objects linked with them. In
comparison with a previous study (SimRank) that computes
links recursively on all pairs of objects, we take advantage
of the power law distribution of links, and develop a hi-
erarchical structure called SimTree to represent similarities
in multi-granularity manner. This method avoids the high
cost of computing and storing pairwise similarities but still
thoroughly explore relationships among objects. An efficient
algorithm is proposed to compute similarities between ob-
jects by avoiding pairwise similarity computations through
merging computations that go through the same branches
in the SimTree. Experiments show the proposed approach
achieves high efficiency, scalability, and accuracy in cluster-
ing multi-typed linked objects.

1. INTRODUCTION
As a process of partitioning data objects into groups ac-

cording to their similarities with each other, clustering has
been extensively studied for decades in different disciplines
including statistics, pattern recognition, database, and data
mining. There have been many clustering methods [1, 10,
14, 15, 17, 22], but most of them aim at grouping records in
a single table into clusters using their own properties.
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Figure 1: A publication database (PubDB)

In many real applications, linkages among objects of dif-
ferent types can be the most explicit information available
for clustering. For example, in a publication database (i.e.,
PubDB) in Figure 1 (a), one may want to cluster each type
of objects (authors, institutions, publications, proceedings,
and conferences/journals), in order to find authors working
on different topics, or groups of similar publications, etc. It
is not so useful to cluster single type of objects (e.g., au-
thors) based only on the properties of them, as those prop-
erties often provide little information relevant to the clus-
tering task. On the other hand, the linkages between dif-
ferent types of objects (e.g., those between authors, papers
and conferences) indicate the relationships between objects
and can help cluster them effectively. Such linkage-based
clustering is appealing in many applications. For example,
an online movie store may want to cluster movies, actors,
directors, reviewers, and renters, in order to improve its rec-
ommendation systems. In bioinformatics one may want to
cluster genes, proteins, and their behaviors in order to dis-
cover their functions.

Clustering based on multi-typed linked objects has been
studied in multi-relational clustering [13, 21], in which the
objects of each type are clustered based on the objects of
other types linked with them. Consider the mini example
in Figure 1 (b). Authors can be clustered based on the
conferences where they publish papers. However, such anal-
ysis is confined to direct links. For example, Tom publishes
only SIGMOD papers, and John publishes only VLDB pa-
pers. Tom and John will have zero similarity based on direct
links, although they may actually work on the same topic.
Similarly, customers who have bought “Matrix” and those
who have bought “Matrix II ” may be considered dissimilar
although they have similar interests.

The above example shows when clustering objects of one
type, one needs to consider the similarities between objects
of other types linked with them. For example, if it is known
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that SIGMOD and VLDB are similar, then SIGMOD au-
thors and VLDB authors should be similar. Unfortunately,
similarities between conferences may not be available, either.
This problem can be solved by SimRank [12], in which the
similarity between two objects is recursively defined as the
average similarity between objects linked with them. For
example, the similarity between two authors is the average
similarity between the conferences in which they publish pa-
pers. In Figure 1 (b) “sigmod” and “vldb” have high similar-
ity because they share many coauthors, and thus Tom and
John become similar because they publish papers in similar
conferences. In contrast, John and Mary do not have high
similarity even they are both linked with “vldb05”.

Although SimRank provides a good definition for simi-
larities based on linkages, it is prohibitively expensive in
computation. In [12] an iterative approach is proposed to
compute the similarity between every pair of objects, which
has quadratic complexity in both time and space, and is
impractical for large databases.

Is it necessary to compute and maintain pairwise similari-
ties between objects? Our answer is no for the following two
reasons. First, hierarchy structures naturally exist among
objects of many types, such as the taxonomy of animals and
hierarchical categories of merchandise. Consider the exam-
ple of clustering authors according to their research. There
are groups of authors working on the same research topic
(e.g., data integration or XML), who have high similarity
with each other. Multiple such groups may form a larger
group, such as the authors working on the same research
area (e.g., database vs. AI), who may have weaker similar-
ity than the former. As a similar example, the density of
linkages between clusters of articles and words is shown in
Figure 2 (adapted from Figure 5 (b) in [4]). We highlight
four dense regions with dashed boxes, and in each dense
region there are multiple smaller and denser regions. The
large dense regions correspond to high-level clusters, and
the smaller denser regions correspond to low-level clusters
within the high-level clusters.
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Figure 2: Density of linkages between articles and words

Second, recent studies show that there exist power law dis-
tributions among the linkages in many domains, such as In-
ternet topology and social networks [8]. Interestingly, based
on our observation, such relationships also exist in the simi-
larities between objects in interlinked environments. For ex-
ample, Figure 3 shows the distribution of pairwise SimRank
similarity values between 4170 authors in DBLP database
(the plot shows portion of values in each 0.005 range of sim-
ilarity value). It can be seen that majority of similarity
entries have very small values which lie within a small range
(0.005 – 0.015). While only a small portion of similarity
entries have significant values, — 1.4% of similarity entries
(about 123K of them) are greater than 0.1, and these values
will play the major role in clustering. Therefore, we want to
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Figure 3: Portions of similarity values

design a data structure that stores the significant similarity
values, and compresses those insignificant ones.

Based on the above two observations, we propose a new hi-
erarchical strategy to effectively prune the similarity space,
which greatly speedups the identification of similar objects.
Taking advantage of the power law distribution of linkages,
we substantially reduce the number of pairwise similarities
that need to be tracked, and the similarity between less sim-
ilar objects will be approximated using aggregate measures.

We propose a hierarchical data structure called SimTree

as a compact representation of similarities between objects.
Each leaf node of a SimTree corresponds to an object, and
each non-leaf node contains a group of lower-level nodes that
are closely related to each other. SimTree stores similari-
ties in a multi-granularity way by storing similarity between
each two objects corresponding to sibling leaf nodes, and
storing the overall similarity between each two sibling non-
leaf nodes. Pairwise similarity is not pre-computed or main-
tained between objects that are not siblings. Their similar-
ity, if needed, is derived based on the similarity information
stored in the tree path. For example, consider the hierar-
chical categories of merchandise in Walmart. It is meaning-
ful to compute the similarity between every two cameras,
but not so meaningful to compute that for each camera and
each TV, as an overall similarity between cameras and TVs
should be sufficient.

Based on SimTree, we propose LinkClus, an efficient and
accurate approach for linkage-based clustering. At the be-
ginning LinkClus builds a SimTree for each type of objects in
a bottom-up manner, by finding groups of objects (or groups
of lower level nodes) that are similar to each other. Because
inter-object similarity is not available yet, the similarity be-
tween two nodes are measured based on the intersection size
of their neighbor objects. Thus the initial SimTrees can-
not fully catch the relationships between objects (e.g., some
SIGMOD authors and VLDB authors have similarity 0).

LinkClus improves each SimTree with an iterative method,
following the recursive rule that two nodes are similar if they
are linked with similar objects. In each iteration it mea-
sures the similarity between two nodes in a SimTree by the
average similarity between objects linked with them. For
example, after one iteration SIGMOD and VLDB will be-
come similar because they share many authors, which will
then increase the similarities between SIGMOD authors and
VLDB authors, and further increase that between SIGMOD
and VLDB. We design an efficient algorithm for updating
SimTrees, which merges the expensive similarity computa-
tions that go through the same paths in the SimTree. For a
problem involving N objects and M linkages, LinkClus only
takes O(M(log N)2) time and O(M + N) space (SimRank
takes O(M2) time and O(N2) space).

Comprehensive experiments on both real and synthetic
datasets are performed to test the accuracy and efficiency of
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LinkClus. It is shown that the accuracy of LinkClus is either
very close or sometimes even better than that of SimRank,
but with much higher efficiency and scalability. LinkClus also
achieves much higher accuracy than other approaches on
linkage-based clustering such as ReCom [20], and approach
for approximating SimRank with high efficiency [9].

The rest of the paper is organized as follows. We discuss
related work in Section 2, and give an overview in Section
3. Section 4 introduces SimTree, the hierarchical structure
for representing similarities. The algorithms for building
SimTrees and computing similarities are described in Section
5. Our performance study is reported in Section 6, and this
study is concluded in Section 7.

2. RELATED WORK
Clustering has been extensively studied for decades in dif-

ferent disciplines including statistics, pattern recognition,
database, and data mining, with many approaches proposed
[1, 10, 14, 15, 17, 22]. Most existing clustering approaches
aim at grouping objects in a single table into clusters, using
properties of each object. Some recent approaches [13, 21]
extend previous clustering approaches to relational databases
and measures similarity between objects based on the ob-
jects joinable with them in multiple relations.

In many real applications of clustering, objects of different
types are given, together with linkages among them. As the
attributes of objects often provide very limited information,
traditional clustering approaches can hardly be applied, and
linkage-based clustering is needed, which is based on the
principle that two objects are similar if they are linked with
similar objects.

This problem is related to bi-clustering [5] (or co-clustering
[7], cross-association [4]), which aims at finding dense sub-
matrices in the relationship matrix of two types of objects.
A dense submatrix corresponds to two groups of objects of
different types that are highly related to each other, such
as a cluster of genes and a cluster of conditions that are
highly related. Unlike bi-clustering that involves no simi-
larity computation, LinkClus computes similarities between
objects based on their linked objects. Moreover, LinkClus

works on a more general problem as it can be applied to
a relational database with arbitrary schema, instead of two
types of linked objects. LinkClus also avoids the expensive
matrix operations often used in bi-clustering approaches.

A bi-clustering approach [7] is extended in [3], which per-
forms agglomerative and conglomerative clustering simulta-
neously on different types of objects. However, it is very
expensive, — quadratic complexity for two types and cubic
complexity for more types.

Jeh and Widom propose SimRank [12], a linkage-based
approach for computing the similarity between objects, which
is able to find the underlying similarities between objects
through iterative computations. Unfortunately SimRank is
very expensive as it has quadratic complexity in both time
and space. The authors also discuss a pruning technique for
approximating SimRank, which only computes the similar-
ity between a small number of preselected object pairs. In
the extended version of [12] the following heuristic is used:
Only similarities between pairs of objects that are linked
with same objects are computed. With this heuristic, in
Figure 1 (b) the similarity between SIGMOD and VLDB
will never be computed. Neither will the similarity between
Tom and John, Tom and Mike, etc. In general, it is very

challenging to identify the right pairs of objects at the be-
ginning, because many pairs of similar objects can only be
identified after computing similarities between other objects.
In fact this is the major reason that we adopt the recursive
definition of similarity and use iterative methods.

A method is proposed in [9] to perform similarity searches
by approximating SimRank similarities. It creates a large
sample of random walk paths from each object and uses
them to estimate the SimRank similarity between two ob-
jects when needed. It is suitable for answering similarity
queries. However, very large samples of paths are needed
for making accurate estimations for similarities. Thus it is
very expensive in both time and space to use this approach
for clustering a large number of objects, which requires com-
puting similarities between numerous pairs of objects.

Wang et al. propose ReCom [20], an approach for cluster-
ing inter-linked objects of different types. ReCom first gen-
erates clusters using attributes and linked objects of each
object, and then repeatedly refines the clusters using the
clusters linked with each object. Compared with SimRank
that explores pairwise similarities between objects, ReCom
only explores the neighbor clusters and does not compute
similarities between objects. Thus it is much more efficient
but much less accurate than SimRank.

LinkClus is also related to hierarchical clustering [10, 17].
However, they are fundamentally different. Hierarchical clus-
tering approaches use some similarity measures to put ob-
jects into hierarchies. While LinkClus uses hierarchical struc-
tures to represent similarities.

3. OVERVIEW
Linkage-based clustering is based on the principle that two

objects are similar if they are linked with similar objects.
For example, in a publication database (Figure 1 (b)), two
authors are similar if they publish similar papers. The fi-
nal goal of linkage-based clustering is to divide objects into
clusters using such similarities. Figure 4 shows an example
of three types of linked objects, and clusters of similar ob-
jects which are inferred from the linkages. It is important to
note that objects 12 and 18 do not share common neighbors,
but they are linked to objects 22 and 24, which are similar
because their common linkages to 35, 37 and 38.
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Figure 4: Finding groups of similar objects

In order to capture the inter-object relationships as in the
above example, we adopt the recursive definition of simi-
larity in SimRank [12], in which the similarity between two
objects x and y is defined as the average similarity between
the objects linked with x and those linked with y.

As mentioned in the introduction, a hierarchical struc-
ture can capture the hierarchical relationships among ob-
jects, and can compress the majority of similarity values
which are insignificant. Thus we use SimTree, a hierarchi-
cal structure for storing similarities in a multi-granularity
way. It stores detailed similarities between closely related
objects, and overall similarities between object groups. We
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generalize the similarity measure in [12] to hierarchical en-
vironments, and propose an efficient and scalable algorithm
for computing similarities based on the hierarchical struc-
ture. Each node in a SimTree has at most c children, where
c is a constant and is usually between 10 and 20. Given a
database containing two types of objects, N objects of each
type, and M linkages between them, our algorithm takes
O(Nc + M) space and O(M · (logc N)2 · c2) time. This is
affordable for very large databases.

4. SIMTREE: HIERARCHICAL REPRESEN-
TATION OF SIMILARITIES

In this section we describe SimTree, a new hierarchical
structure for representing similarities between objects. Each
leaf node of a SimTree represents an object (by storing its
ID), and each non-leaf node has a set of child nodes, which
are a group of closely related nodes of one level lower. An
example SimTree is shown in Figure 5 (a). The small gray
circles represent leaf nodes, which must appear at the same
level (which is level-0, the bottom level). The dashed circles
represent non-leaf nodes. Each non-leaf node has at most
c child nodes, where c is a small constant. Between each
pair of sibling nodes ni and nj there is an undirected edge
(ni, nj). (ni, nj) is associated with a real value s(ni, nj),
which is the average similarity between all objects linked
with ni (or with its descendant objects if ni is a non-leaf
node) and those with nj . s(ni, nj) represents the overall
similarity between the two groups of objects contained in ni

and nj .

a) Structure of a SimTree
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n4 n5
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0.9 1.0
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b) Another view of the SimTree

Figure 5: An example SimTree

Another view of the same SimTree is shown in Figure 5
(b), which better visualizes the hierarchical structure. The
similarity between each pair of sibling leaf nodes is stored in
the SimTree. While the similarity between two non-sibling
leaf nodes is estimated using the similarity between their
ancestor nodes. For example, suppose the similarity between
n7 and n8 is needed, which is the average similarity between
objects linked with n7 and those with n8. One can see that
n4 (or n5) contains a small group of leaf nodes including n7

(or n8), and we have computed s(n4, n5) which is the average
similarity between objects linked with these two groups of
leaf nodes. Thus LinkClus uses s(n4, n5) as the estimated
similarity between n7 and n8. In a real application such
as clustering products in Walmart, n7 may correspond to
a camera and n8 to a TV. We can estimate their similarity
using the overall similarity between cameras and TVs, which
may correspond to n4 and n5, respectively. Similarly when
the similarity between n7 and n9 is needed, LinkClus uses
s(n1, n2) as an estimation.

Such estimation is not always accurate, because a node
may have different similarities to other nodes compared with

its parent. LinkClus makes some adjustments to compen-
sate for such differences, by associating a value to the edge
between each node and its parent. For example, the edge
(n7, n4) is associated with a real value s(n7, n4), which is
the ratio between (1) the average similarity between n7 and
all leaf nodes except n4’s descendants, and (2) the aver-
age similarity between n4 and those nodes. Similarly we
can define s(n4, n1), s(n6, n2), etc. When estimating the
similarity between n7 and n9, we use s(n1, n2) as a ba-
sic estimation, use s(n4, n1) to compensate for the differ-
ence between similarities involving n4 and those involving
n1, and use s(n7, n4) to compensate for n7. The final esti-
mation is s(n7, n4) · s(n4, n1) · s(n1, n2) · s(n6, n2) · s(n9, n6)=
0.9 · 0.8 · 0.2 · 0.9 · 1.0 = 0.1296.

In general, the similarity between two leaf nodes w.r.t. a
SimTree is the product of the values of all edges on the path
between them. Because this similarity is defined based on
the path between two nodes, we call it path-based similarity.

Definition 1. (Path-based Node Similarity) Suppose
two leaf nodes n1 and nk in a SimTree are connected by path
n1 → . . . → ni → ni+1 → . . . → nk, in which ni and ni+1

are siblings and all other edges are between nodes and their
parents. The path-based similarity between n1 and nk is

simp(n1, nk) =

k−1∏

j=1

s(nj , nj+1) (1)

Each node has similarity 1 with itself (simp(n, n) = 1).

Please note that within a path in Definition 1, there is
only one edge that is between two sibling nodes, whose sim-
ilarity is used as the basic estimation. The other edges are
between parent and child nodes whose similarities are used
for adjustments.

5. BUILDING SIMTREES
The input to LinkClus are objects of different types, with

linkages between them. LinkClus maintains a SimTree for
each type of objects to represent similarities between them.
Each object is used as a leaf node in a SimTree. Figure 6
shows the leaf nodes created from objects of two types, and
the linkages between them.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

l m n o p q r s t u v w x y

ST2

ST1

Figure 6: Leaf nodes in two SimTrees

Initially each object has similarity 1 to itself and 0 to oth-
ers. LinkClus first builds SimTrees using the initial similar-
ities. These SimTrees may not fully catch the real similar-
ities between objects, because inter-object similarities are
not considered. LinkClus uses an iterative method to im-
prove the SimTrees, following the principle that two objects
are similar if and only if they are linked with similar objects.
It repeatedly updates each SimTree using the following rule:
The similarity between two nodes ni and nj is the average
similarity between objects linked with ni and those linked
with nj . The structure of each SimTree is also adjusted dur-
ing each iteration by moving similar nodes together. In this
way the similarities are refined in each iteration, and the
relationships between objects can be discovered gradually.
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5.1 Initializing SimTrees Using Frequent Pat-
tern Mining

The first step of LinkClus is to initialize SimTrees using the
linkages as shown in Figure 6. Although no inter-object sim-
ilarities are available at this time, the initial SimTrees should
still be able to group related objects or nodes together, in
order to provide a good base for further improvements.

Because only leaf nodes are available at the beginning, we
initialize SimTrees from bottom level to top level. At each
level, we need to efficiently find groups of tightly related
nodes, and use each group as a node of the upper level. Con-
sider a group of nodes g = {n1, . . . , nk}. Let neighbor(ni)
denote the set of objects linked with node ni. Initially there
are no inter-object similarities, and whether two nodes are
similar depends on whether they are co-linked with many
objects. Therefore, we define the tightness of group g as the
number of objects that are linked with all group members,
i.e., the size of intersection of neighbor(n1), . . . , neighbor(nk).

The problem of finding groups of nodes with high tightness
can be reduced to the problem of finding frequent patterns
[2]. A tight group is a set of nodes that are co-linked with
many objects of other types, just like a frequent pattern is
a set of items that co-appear in many transactions. Figure
7 shows an example which contains four nodes n1, n2, n3, n4

and objects linked with them. The nodes linked with each
object are converted into a transaction, which is shown on
the right side. It can be easily proved that, the number
of objects that are linked with all members of a group g is
equal to the support of the pattern corresponding to g in the
transactions. For example, nodes n1 and n2 are co-linked
with two objects (#2 and #4), and pattern {n1, n2} has
support 2 (i.e., appear twice) in the transactions.

Let support(g) represent the number of objects linked
with all nodes in g. When building a SimTree, we want to
find groups with high support and at least min size nodes.
For two groups g and g′ such that g ⊂ g′ and support(g) =
support(g′), we prefer g′. Frequent pattern mining has been
studied for a decade with many efficient algorithms. We
can either find groups of nodes with support greater than a
threshold using a frequent closed pattern mining approach
[19], or find groups with highest support using a top-k fre-
quent closed pattern mining approach [11]. LinkClus uses the
approach in [19] which is very efficient on large datasets.

Now we describe the procedure of initializing a SimTree.
Suppose we have built Nl nodes at level-l of the SimTree,
and want to build the nodes of level-(l + 1). Because each
node can have at most c child nodes, and because we want to
leave some space for further adjustment of the tree structure,
we control the number of level-(l + 1) nodes to be between
Nl

c
and αNl

c
(1 < α ≤ 2). We first find groups of level-l

nodes with sufficiently high support. Since there are usually
many such groups, we select αNl

c
non-overlapping groups

with high support in a greedy way, by repeatedly selecting

the group with highest support that is not overlapped with
previously selected groups. After selecting αNl

c
groups, we

create a level-(l + 1) node based on each group. However,
these groups usually cover only part of all level-l nodes. For
each level-l node ni that does not belong to any group, we
want to put ni into the group that is most connected with
ni. For each group g, we compute the number of objects
that are linked with both ni and some members of g, which
is used to measure the connection between ni and g. We
assign ni to the group with highest connection to ni.
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Figure 8: Some linkages between two SimTrees

Figure 8 shows the two SimTrees built upon the leaf nodes
in Figure 6. The dashed lines indicate the leaf nodes in ST2

that are linked with descendants of two non-leaf nodes na

and nb in ST1. After building the initial SimTrees, LinkClus

computes the similarity value associated with each edge in
the SimTrees. As defined in Section 4, the similarity value of
edge (na, nb), s(na, nb), is the average similarity between ob-
jects linked with descendants of na and those of nb. Because
initially the similarity between any two different objects is
0, s(na, nb) can be easily computed based on the number of
objects that are linked with both the descendants of na and
those of nb, without considering pairwise similarities. Sim-
ilarly, the values associated with edges between child and
parent nodes can also be computed easily.

5.2 Refining Similarity between Nodes
The initial SimTrees cannot fully catch the real similari-

ties, because similarities between objects are not considered
when building them. Therefore, LinkClus repeatedly updates
the SimTrees, following the principle that the similarity be-
tween two nodes in a SimTree is the average similarity be-
tween the objects linked with them, which is indicated by
other SimTrees. This is formally defined in this subsection.

We use [n ∼ n′] to denote the linkage between two nodes
n and n′ in different SimTrees. We say there is a linkage
between a non-leaf node n in ST1 and a node n′ in ST2,
if there are linkages between the descendant leaf nodes of
n and the node n′. Figure 8 shows the linkages between
na, nb and leaf nodes in ST2. In order to track the number
of original linkages involved in similarity computation, we
assign a weight to each linkage. By default the weight of
each original linkage between two leaf nodes is 1. The weight
of linkage [n ∼ n′] is the total number of linkages between
the descendant leaf nodes of n and n′.

In each iteration LinkClus updates the similarity between
each pair of sibling nodes (e.g., na and nb) in each SimTree,
using the similarities between the objects linked with them
in other SimTrees. The similarity between na and nb is the
average path-based similarity between the leaf nodes linked
with na ({n10,n11,n12,n16}) and those with nb ({n10,n13,n14,
n17}). Because this similarity is based on linked objects, we
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call it linkage-based similarity. na (or nb) may have multiple
linkages to a leaf node ni in ST2, if more than one descen-
dants of na are linked with ni. Thus the leaf nodes in ST2

linked with na are actually a multi-set, and the frequency of
each leaf node ni is weight([na ∼ ni]), which is the number
of original linkages between na and ni. The linkage-based
similarity between na and nb is defined as the average path-
based similarity between these two multi-sets of leaf nodes,
and in this way each original linkage plays an equal role.

Definition 2. (Linkage-based Node Similarity) Sup-
pose a SimTree ST is linked with SimTrees ST1, . . . , STK .
For a node n in ST , let NBSTk

(n) denote the multi-set
of leaf nodes in STk linked with n. Let wn′n′′ represent
weight([n′ ∼ n′′]). For two nodes na and nb in ST , their
linkage-based similarity siml(na, nb) is the average similar-
ity between the multi-set of leaf nodes linked with na and
that of nb. We decompose the definition into several parts
for clarity.

(The total weights between NBSTk
(na) and NBSTk

(nb))

weightSTk
(na, nb) =

∑

n∈NBSTk
(na)

∑

n′∈NBSTk
(nb)

wnan · wnbn′

(The sum of weighted similarity between them)

sumSTk
(na, nb) =

∑

n∈NBSTk
(na)

∑

n′∈NBSTk
(nb)

wnan·wnbn′ ·simp(n, n′)

(The linkage-based similarity between na and nb w.r.t. STk)

simSTk
(na, nb) =

sumSTk
(na, nb)

weightSTk
(na, nb)

(The final definition of siml(na, nb))

siml(na, nb) =
1

K

K∑

k=1

simSTk
(na, nb). (2)

Equation (2) shows that if a SimTree ST is linked with
multiple SimTrees, each linked SimTree plays an equal role
in determining the similarity between nodes in ST . The user
can also use different weights for different SimTrees accord-
ing to the semantics.

5.3 Aggregation-based Similarity Computation
The core part of LinkClus is how to iteratively update each

SimTree, by computing linkage-based similarities between
different nodes. This is also the most computation-intensive
part in linkage-based clustering. Definition 2 provides a
brute-force method to compute linkage-based similarities.
However, it is very expensive. Suppose each of two nodes
na and nb is linked with m leaf nodes. It takes O(m2 logc N)
to compute siml(na, nb) (logc N is the height of SimTree).
Because some high-level nodes are linked with Θ(N) objects,
this brute-force method requires O(N2 logc N) time, which
is unaffordable for large databases.

Fortunately, we find that the computation of different
path-based similarities can be merged if these paths are over-
lapped with each other.
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Figure 9: Computing similarity between nodes

Example 1. A simplified version of Figure 8 is shown
in Figure 9, where siml(na, nb) is the average path-based
similarity between each node in {n10,n11,n12} and each in
{n13,n14}. For each node nk ∈ {n10,n11,n12} and nl ∈
{n13,n14}, their path-based similarity simp(nk, nl) = s(nk, n4)·
s(n4, n5) · s(n5, nl). All these six path-based similarities in-
volve s(n4, n5). Thus siml(na, nb), which is the average of
them, can be written as

siml(na, nb) =

∑12
k=10 s(nk, n4)

3
· s(n4, n5) ·

∑14
l=13 s(nl, n5)

2
.

(3)

Equation (3) contains three parts: the average similarity be-
tween na and descendants of n4, s(n4, n5), and the average
similarity between nb and descendants of n5. Therefore, we
pre-compute the average similarity and total weights between
na,nb and n4,n5, as shown in Figure 9. (The original link-
ages between leaf nodes do not affect similarities and thus
have similarity 1.) We can compute siml(na, nb) using such
aggregates, i.e., siml(na, nb) = 0.9+1.0+0.8

3
× 0.2 × 0.9+1.0

2
=

0.9 × 0.2 × 0.95 = 0.171, and this is the average similarity
between 3 × 2 = 6 pairs of leaf nodes. This is exactly the
same as applying Definition 2 directly. But now we have
avoided the pairwise similarity computation, since only the
edges between siblings and parent-child are involved.

This mini example shows the basic idea of computing
linkage-based similarities. In a real problem na and nb are
often linked with many leaf nodes lying in many different
branches of the SimTrees, which makes the computation
much more complicated. The basic idea is still to merge
computations that share common paths in SimTrees.

To facilitate our discussion, we introduce a simple data
type called simweight, which is used to represent the simi-
larity and weight associated with a linkage. A simweight is
a pair of real numbers 〈s, w〉, in which s is the similarity of
a linkage and w is its weight. We define two operations of
simweight that are very useful in LinkClus.

Definition 3. (Operations of simweight)
The operation of addition is used to combine two simweights

corresponding to two linkages. The new similarity is the
weighted average of their similarities, and the new weight is
the sum of their weights:

〈s1, w1〉 + 〈s2, w2〉 = 〈s1 · w1 + s2 · w2

w1 + w2
, w1 + w2〉. (4)

The operation of multiplication is used to compute the
weighted average similarity between two sets of leaf nodes.
The new weight w1 · w2 represents the number of pairs of
leaf nodes between the two sets.

〈s1, w1〉 × 〈s2, w2〉 = 〈s1 · s2, w1 · w2〉. (5)

Lemma 1. The laws of commutation, association, and dis-
tribution hold for the operations of simweight.

LinkClus uses a simweight to represent the relationship be-
tween two nodes in different SimTrees. We use NBST (n) to
denote the multi-set of leaf nodes in ST linked with node
n. For example, in Figure 8 NBST2

(na) ={n10,n11,n12,n16}
and NBST2

(nb) = {n10,n13,n14,n17}.
We first define the weight and similarity of a linkage be-

tween two non-leaf nodes in two SimTrees. A non-leaf node
represents the set of its child nodes. Therefore, for a node
na in ST1 and a non-leaf node ni in ST2, the weight and
similarity of linkage [na ∼ ni] is the sum of weights and
weighted average similarity between their child nodes. Fur-
thermore, according to Definition 1, the similarity between
two non-sibling nodes ni and nj on the same level of ST2

can be calculated as
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simp(ni, nj) =

s(ni, parent(ni)) · simp(parent(ni), parent(nj)) · s(nj , parent(nj)).

Thus we also incorporate s(ni, parent(ni)) (i.e., the ratio
between average similarity involving ni and that involving
parent(ni)) into the definition of linkage [na ∼ ni]. We use
swnani to denote the simweight of [na ∼ ni].

Definition 4. Let na be a node in SimTree ST1 and ni be
a non-leaf node in ST2. Let children(ni) be all child nodes
of ni. The simweight of linkage [na ∼ ni] is defined as

swnani =
∑

n̂∈children(ni)

〈s(n̂, ni), 1〉 × swnan̂. (6)

(In Equation (6) we use 〈x, 1〉× 〈s, w〉 as a convenient nota-
tion for 〈x · s, w〉. Figure 9 and Figure 10 show swnani and
swnbni for each node ni in ST2.)

Using Definition 4, we formalize the idea in Example 1 as
follows.

Lemma 2. For two nodes na and nb in SimTree ST1, and
two sibling non-leaf nodes ni and nj in ST2, the average
similarity and total weight between the descendant objects of
ni linked with na and those of nj linked with nb is

swnani × 〈s(ni, nj), 1〉 × swnbnj .

(This corresponds to Equation (3) if i = 4 and j = 5.)

We outline the procedure for computing the linkage-based
similarity between na and nb (see Figure 10). siml(na, nb) is
the average similarity between NBST2

(na) and NBST2
(nb).

We first compute the aggregated simweights swnan and swnbn

for each node n in ST2, if n is an ancestor of any node in
NBST2

(na) or NBST2
(nb), as shown in Figure 10. Consider

each pair of sibling nodes ni and nj in ST2 (e.g., n4 and n5),
so that ni is linked with na and nj with nb. According to
Lemma 1, the average similarity and total weight between
the descendant objects of ni linked with na and those of nj

linked with nb is swnani ×〈s(ni, nj), 1〉×swnbnj . For exam-
ple, swnan4

= 〈0.9, 3〉 (where the weight is 3 as na can reach
n4 via n10, n11 or n12), swnbn5

= 〈0.95, 2〉, and s(n4, n5) =
0.2. Thus swnan4

× 〈s(n4, n5), 1〉 × swnbn5
= 〈0.171, 6〉 (as

in Example 1), which represents the average similarity and
total weights between {n10,n11,n12} and {n13,n14}. We note
that the weight is 6 as there are 6 paths between leaf nodes
under n4 linked with na and those under n5 linked with nb.

From the above example it can be seen that the effect
of similarity between every pair leaf nodes in ST2 will be
captured when evaluating their ancestors that are siblings.
For any two leaf nodes n̂i and n̂j in ST2, there is only one
ancestor of n̂i and one of n̂j that are siblings. Thus every
pair of n̂i, n̂j (n̂i ∈ NBST2

(na), n̂j ∈ NBST2
(nb)) is counted

exactly once, and no redundant computation is performed.
In general, siml(na, nb) can be computed using Theorem 1.

Theorem 1. (Sibling-pair based Similarity Compu-
tation) Suppose na and nb are two nodes in SimTree ST1.
Let NBST2

(na) and NBST2
(nb) be the multi-sets of leaf

nodes in SimTree ST2 linked with na and nb, respectively.

〈siml(na, nb), weight is ignored〉 =
∑

n∈ST2

∑

ni,nj∈children(n),ni 6=nj

swnani × 〈s(ni, nj), 1〉 × swnbnj

+
∑

ni∈NBST2
(na)

⋂
NBST2

(nb)

swnani × swnbni . (7)

The first term of equation (7) corresponds to similarities
between different leaf nodes. For all leaf nodes under ni

linked with na and those under nj linked with nb, the effect
of pairwise similarities between them is aggregated together
as computed in the first term. The second term of equation
(7) corresponds to the leaf nodes linked with both na and nb.
Only similarities between sibling nodes are used in equation
(7), and thus we avoid the tedious pairwise similarity com-
putation in Definition 2. In order to compute the linkage-
based similarities between nodes in ST1, it is sufficient to
compute aggregated similarities and weights between nodes
in ST1 and nodes in other SimTrees. This is highly efficient
in time and space as shown in Section 5.5.

Now we describe the procedure of computing siml(na, nb)
based on Theorem 1.
Step 1: Attach the simweight of each original linkage in-
volving descendants of na or nb to the leaf nodes in ST2.
Step 2: Visit all leaf nodes in ST2 that are linked with both
na and nb to compute the second term in Equation (7).
Step 3: Aggregate the simweights on the leaf nodes to those
nodes on level-1. Then further aggregate simweights to nodes
on level-2, and so on.
Step 4: For each node ni in ST2 linked with na, and each
sibling of ni that is linked with nb (we call it nj), add
swnani × 〈s(ni, nj), 1〉 × swnbnj to the first term of equa-
tion (7).

Suppose na is linked with m leaf nodes in ST2, and nb is
linked with O(m · c) ones. It is easy to verify that the above
procedure takes O(mc logc N) time.

5.4 Iterative Adjustment of SimTrees
After building the initial SimTrees as described in Section

5.1, LinkClus needs to iteratively adjust both the similari-
ties and structure of each SimTree. In Section 5.3 we have
described how to compute the similarity between two nodes
using similarities between their neighbor leaf nodes in other
SimTrees. In this section we will introduce how to restruc-
ture a SimTree so that similar nodes are put together.

The structure of a SimTree is represented by the parent-
child relationships, and such relationships may need to be
modified in each iteration because of the modified similari-
ties. In each iteration, for each node n, LinkClus computes
n’s linkage-based similarity with parent(n) and the siblings
of parent(n). If n has higher similarity with a sibling node
ň of parent(n), then n will become a child of ň, if ň has less
than c children. The moves of low-level nodes can be con-
sidered as local adjustments on the relationships between
objects, and the moves of high-levels nodes as global adjust-
ments on the relationships between large groups of objects.
Although each node can only be moved within a small range
(i.e., its parent’s siblings), with the effect of both local and
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Algorithm 1. Restructure SimTree

Input: a SimTree ST to be restructured, which is linked with
SimTrees ST1, . . . , STk.

Output: The restructured ST .

Sc ← all nodes in ST except root //Sc contains all child nodes
Sp ← all non-leaf nodes in ST //Sp contains all parent nodes
for each node n in Sc //find most similar parent node for n

for each sibling node n′ of parent(n) (including parent(n))
compute siml(n, n′) using ST1, . . . , STk

sort the set of siml(n, n′) for n
p∗(n) ← n′ with maximum siml(n, n′)

while(Sc 6= ∅)
for each node ň ∈ Sp //assign children to ň

q∗(ň) ← {n|p∗(n) = ň}
if |q∗(ň)| < c
then children(ň) ← q∗(ň)
else

children(ň) ← c nodes in q∗(ň) most similar to ň
Sp ← Sp − {ň}

Sc ← Sc − children(ň)
for each node n ∈ Sc

p∗(n) ← n′ with maximum siml(n, n′) and n′ ∈ Sp

return ST

Figure 11: Algorithm Restructure SimTree

global adjustments, the tree restructure is often changed sig-
nificantly in an iteration.

The procedure for restructuring a SimTree is shown in
Algorithm 1. LinkClus tries to move each node n to be the
child of a parent node that is most similar to n. Because
each non-leaf node ň can have at most c children, if there
are more than c nodes that are most similar to ň, only the
top c of them can become children of ň, and the remaining
ones are reassigned to be children of other nodes similar to
them.

After restructuring a SimTree ST , LinkClus needs to com-
pute the value associated with every edge in ST . For each
edge between two sibling nodes, their similarity is directly
computed as in Section 5.3. For each edge between a node n

and its parent, LinkClus needs to compute the average sim-
ilarity between n and all leaf nodes except descendants of
parent(n), and that for parent(n). It can be proved that
the average linkage-based similarity between n and all leaf
nodes in ST except descendants of a non-leaf node n′ is

sumSTk
(n, root(ST )) − sumSTk

(n, n′))

weightSTk
(n, root(ST )) − weightSTk

(n, n′))
(8)

Please note that equation (8) uses notations in Definition
2. With equation (8) we can compute the similarity ratio
associated with each edge between a node and its parent.
This finishes the computation of the restructured SimTree.

5.5 Complexity Analysis
In this section we analyze the time and space complexity

of LinkClus. For simplicity, we assume there are two object
types, each having N objects, and there are M linkages be-
tween them. Two SimTrees ST1 and ST2 are built for them.
If there are more object types, the similarity computation
between each pair of linked types can be done separately.

When a SimTree is built, LinkClus limits the number of
nodes at each level. Suppose there are Nl nodes on level-
l. The number of nodes on level-(l + 1) must be between
Nl

c
and αNl

c
(α ∈ [1, 2] and usually c ∈ [10, 20]). Thus the

height of a SimTree is O(logc N).
In each iteration, LinkClus restructures each SimTree us-

ing similarities between nodes in the other SimTree, and then

updates the values associated with edges in each SimTree.
When restructuring ST1, for each node n in ST1, LinkClus

needs to compute its similarity to its parent and parent’s
siblings, which are at most c nodes. Suppose n is linked
with m leaf nodes in ST2. As shown in Section 5.3, it
takes O(mc logc N) time to compute the n’s similarity with
its parent or each of its parent’s siblings. Thus it takes
O(mc2 logc N) time to compute the similarities between n

and these nodes.
There are N leaf nodes in ST1, which have a total of M

linkages to all leaf nodes in ST2. In fact all nodes on each
level in ST1 have M linkages to all leaf nodes in ST2, and
there are O(logc N) levels. Thus it takes O(Mc2(logc N)2)
time in total to compute the similarities between every node
in ST1 and its parent and parent’s siblings.

In the above procedure, LinkClus processes nodes in ST1

level by level. When processing the leaf nodes, only the
simweights of linkages involving leaf nodes and nodes on
level-1 of ST1 are attached to nodes in ST2. There are
O(M) such linkages, and the simweights on the leaf nodes
in ST2 require O(M) space. In ST2 LinkClus only compares
the simweights of sibling nodes, thus it can also process the
nodes level by level. Therefore, the above procedure can be
done in O(M) space. Each SimTree has O(N) nodes, and it
takes O(c) space to store the similarity between each node
and its siblings (and its parent’s siblings). Thus the space
requirement is O(M + Nc).

It can be easily shown that the procedure for restructuring
a SimTree (Algorithm 1) takes O(Nc) space and O(Nc log c)
time, which is much faster than computing similarities.

After restructuring SimTrees, LinkClus computes the simi-
larities between each node and its siblings. This can be done
using the same procedure as computing similarities between
each node and its parent’s siblings. Therefore, each itera-
tion of LinkClus takes O(Mc2(logc N)2) time and O(M+Nc)
space. This is affordable for very large databases.

6. EMPIRICAL STUDY
In this section we report experiments to examine the ef-

ficiency and effectiveness of LinkClus. LinkClus is compared
with the following approaches: (1) SimRank [12], an ap-
proach that iteratively computes pairwise similarities be-
tween objects; (2) ReCom [20], an approach that iteratively
clusters objects using the cluster labels of linked objects; (3)
SimRank with fingerprints [9] (we call it F-SimRank), an ap-
proach that pre-computes a large sample of random paths
from each object and uses the samples of two objects to es-
timate their SimRank similarity; (4) SimRank with pruning
(we call it P-SimRank) [12], an approach that approximates
SimRank by only computing similarities between pairs of
objects reachable within a few links.

SimRank and F-SimRank are implemented strictly follow-
ing their papers. (We use decay factor 0.8 for F-SimRank,
which leads to highest accuracy in DBLP database.) ReCom
is originally designed for handling web queries, and contains
a reinforcement clustering approach and a method for deter-
mining authoritativeness of objects. We only implement the
reinforcement clustering method, because it may not be ap-
propriate to consider authoritativeness in clustering. Since
SimRank, F-SimRank and P-SimRank only provide similar-
ities between objects, we use CLARANS [15], a k-medoids
clustering approach, for clustering using such similarities.
CLARANS is also used in ReCom since no specific cluster-
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ing method is discussed in [20]. We compare LinkClus using
both hierarchical clustering and CLARANS.

All experiments are performed on an Intel PC with a
3.0GHz P4 processor, 1GB memory, running Windows XP
Professional. All approaches are implemented using Visual
Studio.Net (C#). In LinkClus, α is set to

√
2. We will dis-

cuss the influences of c (max number of children of each
node) on accuracy and efficiency in the experiments.

6.1 Evaluation Measures
Validating clustering results is crucial for evaluating ap-

proaches. In our test databases there are predefined class
labels for certain types of objects, which are consistent with
our clustering goals. Jaccard coefficient [18] is a popular
measure for evaluating clustering results, which is the num-
ber of pairs of objects in same cluster and with same class
label, over that of pairs of objects either in same cluster or
with same class label. Because an object in our databases
may have multiple class labels but can only appear in one
cluster, there may be many more pairs of objects with same
class label than those in same cluster. Therefore we use a
variant of Jaccard coefficient. We say two objects are cor-
rectly clustered if they share at least one common class label.
The accuracy of clustering is defined as the number of object
pairs that are correctly clustered over that of object pairs
in same cluster. Higher accuracy tends to be achieved when
number of clusters is larger. Thus we let each approach
generate the same number of clusters.

6.2 DBLP Database
We first test on the DBLP database, whose schema is

shown in Figure 12. It is extracted from the XML data of
DBLP [6]. We want to focus our analysis on the productive
authors and well-known conferences1, and group them into
clusters so that each cluster of authors (or conferences) are in
a certain research area. We first select conferences that have
been held for at least 8 times. Then we remove conferences
that are not about computer science or are not well known,
and there are 154 conferences left. We select 4170 most pro-
ductive authors in those conferences, each having at least 12
publications. The Publications relation contains all publica-
tions of the selected authors in the selected conferences. We
select about 2500 most frequent words (stemmed) in titles of
the publications, except 50 most frequent words which are
removed as stop words. There are four types of objects to be
clustered: 4170 authors, 2517 proceedings, 154 conferences,
and 2518 keywords. Publications are not clustered because
too limited information is known for them (about 65% of
publications are associated with only one selected author).
There are about 100K linkages between authors and pro-
ceedings, 363K linkages between keywords and authors, and
363K between keywords and proceedings. Because we focus
on clustering with linkages instead of keywords, we perform
experiments both with and without the keywords.

We manually label the areas of the most productive au-
thors and conferences to measure clustering accuracy. The
following 14 areas are considered: Theory, AI, operating sys-
tem, database, architecture, programming languages, graph-

1Here conferences refer to conferences, journals and work-
shops. We are only interested in productive authors and
well-known conferences because it is easier to determine the
research fields related to each of them, from which the ac-
curacy of clustering will be judged.
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Figure 12: The schema of the DBLP database

ics, networking, security, HCI, software engineering, infor-
mation retrieval, bioinformatics, and CAD. For each con-
ference, we study its historical call for papers to decide its
area. 90% of conferences are associated with a single area.
The other 10% are associated with multiple areas, such as
KDD (database and AI). We analyze the research areas of
400 most productive authors. For each of them, we find her
home page and infer her research areas from her research
interests. If no research interests are specified, we infer her
research areas from her publications. On average each au-
thor is interested in 2.15 areas. In the experiments each type
of objects are grouped into 20 clusters, and the accuracy is
tested based on the class labels.

We first perform experiments without keywords. 20 it-
erations are used for SimRank, P-SimRank, ReCom, and
LinkClus2 (not including the initialization process of each
approach). In F-SimRank we draw a sample of 100 paths
(as in [9]) of length 20 for each object, so that F-SimRank
can use comparable information as SimRank with 20 itera-
tions. The accuracies of clustering authors and conferences
of each approach are shown in Figure 13 (a) and (b), in
which the x-axis is the index of iterations.
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Figure 13: Accuracy on DBLP w/o keywords

From Figure 13 one can see that SimRank is most ac-
curate, and LinkClus achieves similar accuracy as SimRank.
The accuracies of ReCom and F-SimRank are significantly
lower. The error rates (i.e., 1 – accuracy) of ReCom and
F-SimRank are about twice those of SimRank and LinkClus

on authors, and 1.5 times those of them on conferences. One
interesting observation is that more iterations do not nec-
essarily lead to higher accuracy. This is probably because
cluster labels are not 100% coherent with data. In fact this
is common for iterative clustering algorithms.

In the above experiment, LinkClus generates 20 clusters
directly from the SimTrees: Given a SimTree, it first finds
the level in which the number of nodes is most close to 20.
Then it either keeps merging the most similar nodes if the
number of nodes is more than 20, or keeps splitting the node

2Since no frequent patterns of conferences can be found us-
ing the proceedings linked to them, LinkClus uses authors
linked with conferences to find frequent patterns of confer-
ences, in order to build the initial SimTree for conferences.
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Max accuracy Time/iteration
Authors Conferences

LinkClus 0.9574 0.7229 76.74 sec
LinkClus-Clarans 0.9529 0.7523 107.7 sec
SimRank 0.9583 0.7603 1020 sec
ReCom 0.9073 0.4567 43.1 sec
F-SimRank 0.9076 0.5829 83.6 sec

Table 1: Performances on DBLP without keywords

with most descendant objects if otherwise, until 20 nodes
are created. We also test LinkClus using CLARANS with
the similarities indicated by SimTrees. The max accuracies
and running time of different approaches are shown in Table
1. (The running time per iteration of F-SimRank is its total
running time divided by 20.) One can see that the accuracy
of LinkClus with CLARANS is slightly higher than that of
LinkClus, and is close to that of SimRank. While SimRank
is much more time consuming than other approaches.

0.4

0.5

0.6

0.7

0.8

0.9

1

8 11 16 22 32 45 128
C

A
cc

ur
a

cy

LinkClus-Author
LinkClus-Conf
SimRank-Author
SimRank-Conf

a) Max accuracy

1

10

100

1000

8 11 16 22 32 45 128
C

S
ec

o
n

d
s

Time/iteration

Initialization time/20

b) Running time

Figure 14: LinkClus with different c’s
In the above experiments we use c = 16 for LinkClus. c is

an important parameter for LinkClus, and thus we analyze
its influences on accuracy and running time. As shown in
Figure 14, we test c from 8 to 45, each differing by

√
2.

The running time grows almost linearly, and the accuracy
is highest when c equals 16 and 22. Theoretically, more
similarities are computed and stored as c increases, and the
accuracy should also increase (LinkClus becomes SimRank
when c is larger than the number of objects). However,
when c increases from 16 to 45, the SimTrees of authors and
proceedings always have four levels, and that of conferences
has three levels. Although more similarities are stored at
lower levels of the SimTrees, there are a comparatively small
number of nodes at the second highest level. Thus not much
more information is stored when c increases from 16 to 45.
On the other hand, it may be difficult to generate 20 clusters
if the second highest level has too few nodes. In comparison,
when c = 128 the SimTrees have less levels, and accuracies
become higher. Figure 14 also shows that the initialization
time of LinkClus is very insignificant.
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Figure 15: Accuracy vs. Time on DBLP w/o keywords

In many methods of linkage-based clustering there is a

trade-off between accuracy and efficiency. This trade-off is
shown in Figure 15, which contains the “accuracy vs. time”
plots of SimRank, ReCom, LinkClus with different c’s (8 to
22, including c = 16 with CLARANS), and F-SimRank with
sample size of 50, 100, 200 and 400. It also includes Sim-
Rank with pruning (P-SimRank), which uses the following
pruning method: For each object x, we only compute its
similarity with the top-k objects that share most common
neighbors with x within two links (k varies from 100 to 500).
In these two plots, the approaches in the top-left region are
good ones as they have high accuracy and low running time.
It can be clearly seen that LinkClus greatly outperforms the
other approaches, often in both accuracy and efficiency. In
comparison, pruning technique of SimRank does not im-
prove much on efficiency, because it requires using hashta-
bles to store similarities, and an access to a hashtable is 5
to 10 times slower than that to a simple array.
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Figure 16: Accuracy on DBLP with keywords
Then we test on the DBLP database with keyword in-

formation. The accuracies of the approaches on authors
and conferences are shown in Figure 16 (a) and (b). We
only finish 7 iterations for SimRank because it is too time
consuming. When using keywords, the accuracies of most
approaches either increase or remain the same. The only
exception is F-SimRank, whose accuracy drops more than
20%. This is because there are many more linkages when
keywords are used, but F-SimRank still uses the same sam-
ple size, which makes the samples much sparser.

Max accuracy Time/iteration
Authors Conferences

LinkClus 0.9412 0.7743 614.0 sec
LinkClus-Clarans 0.9342 0.7287 654.9 sec
SimRank 0.9663 0.7953 25348 sec
ReCom 0.9363 0.5447 101.2 sec
F-SimRank 0.6742 0.3032 136.3 sec

Table 2: Performances on DBLP with keywords

Table 2 shows the max accuracy and running time of each
approach. The total number of linkages grows about 8 times
when keywords are used. The running time of LinkClus

grows linearly, and that of SimRank grows quadratically.
Because ReCom considers linked clusters of each object, in-
stead of linked objects, its running time does not increase
too much. The running time of F-SimRank does not increase
much as it uses the same number of random paths.

We also test LinkClus with different c’s, as shown in Figure
17. The accuracy is highest when c = 16 or 22.

Figure 18 shows the curves of accuracies vs. running time
(in log scale) of LinkClus, SimRank, ReCom, F-SimRank,
and P-SimRank (100 to 400 similarity entries for each ob-
ject). One can see that LinkClus is the most competitive
method, as it achieves high accuracies and is 40 times more
efficient than SimRank.
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Figure 17: LinkClus with different c’s
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Figure 18: Accuracy vs. Time on DBLP with keywords

6.3 Email Dataset
We test the approaches on the Email dataset [16], which

contains 370 emails on conferences, 272 on jobs, and 789
spam emails. To make the sizes of three classes more bal-
anced, we keep all emails on conferences and jobs, and keep
321 spam emails. We select about 2500 most frequent words
(stemmed). The database contains two types of objects, –
emails and words, and about 141K linkages between them.

We use LinkClus (c = 22), SimRank, ReCom, F-SimRank
(400 paths from each object), and the simple CLARANS
algorithm to generate three clusters on emails and words.
20 iterations are used for LinkClus, SimRank, and ReCom.
We do not test SimRank with pruning because this dataset is
pretty small. Table 3 reports the max accuracy and running
time of each approach. LinkClus achieves highest accuracy
(slightly higher than that of SimRank), possibly because it
captures the inherent hierarchy of objects.

Max accuracy Time
LinkClus 0.8026 78.98 sec/iteration
SimRank 0.7965 1958 sec/iteration
ReCom 0.5711 3.73 sec/iteration
F-SimRank 0.3688 479.7 sec
CLARANS 0.4768 8.55 sec

Table 3: Performances on Email dataset

6.4 Synthetic Databases
In this section we test the scalability and accuracy of each

approach on synthetic databases. Figure 19 shows an exam-
ple schema of a synthetic database, in which R1, R2, R3R4

contain objects, and R5, R6, R7, R8 contain linkages. We
use RxTyCzSw to represent a database with x relations of
objects, each having y objects which are divided into z clus-
ters, and each object has w linkages to objects of another
type (i.e., selectivity is w). In each relation of objects Ri,
the x objects are randomly divided into z clusters. Each
cluster is associated with two clusters in each relation of
objects linked with Ri. When generating linkages between
two linked relations Ri and Ri%4+1, we repeat the following

procedure for x · w times: Randomly select an object o in
Ri, and find the two clusters in Ri%4+1 associated with the
cluster of o. Then generate a linkage between o and a ran-
domly selected object in these two clusters with probability
(1 − noise ratio), and generate a linkage between o and a
randomly selected object with probability noise ratio. The
default value of noise ratio is 20%. It is shown in previous
experiments that in most cases each approach can achieve
almost the highest accuracy in 10 iterations, we use 10 it-
erations in this subsection. We let each approach generate
z clusters for a database RxTyCzSw. For LinkClus we use
c = 16 and do not use CLARANS.

R1 R2

R4 R3

R5

R8 R6

R7

Figure 19: The schema of a synthetic database

We first test scalability w.r.t. the number of objects. We
generate databases with 5 relations of objects, 40 clusters in
each of them, and selectivity 10. The number of objects in
each relation varies from 1000 to 5000. The running time
and accuracy of each approach are shown in Figure 20. The
time/iteration of F-SimRank is the total time divided by 10.
With other factors fixed, theoretically the running time of
LinkClus is O(N(log N)2), that of SimRank is O(N2), and
those of ReCom and F-SimRank are O(N). We also show
the trends of these bounds and one can see that the run-
ning time of the approaches are consistent with theoretical
derivations. LinkClus achieves highest accuracy, followed by
ReCom and then SimRank, and F-SimRank is least accu-
rate. The possible reason for LinkClus and ReCom achieving
high accuracy is that they group similar objects into clusters
(or tree nodes) in the clustering process. Because clusters
are clearly generated in data, using object groups in iterative
clustering is likely to be beneficial.
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Figure 20: Performances on R5T*C40S10

In the last experiment the accuracy of each approach keeps
decreasing as the number of objects increases. This is be-
cause the density of linkages decreases as cluster size in-
creases. In R5T1000C40S10, each cluster has only 25 ob-
jects, each having 10 linkages to the two related clusters
(50 objects) in other relations. In R5T5000C40S10, each
cluster has 125 objects and the two related clusters have
250 objects, which makes the linkages much sparser. In the
second experiment we increase the number of objects and
clusters together to keep density of linkages fixed. Each
cluster has 100 objects, and the number of objects per rela-
tion varies from 500 to 20000. In the largest database there
are 100K objects and 1M linkages. The running time and
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accuracy of each approach are shown in Figure 213. Re-
Com and F-SimRank are unscalable as their running time
is proportional to the number of objects times the number
of clusters, because they compute similarities between each
object and each cluster medoid. The accuracies of LinkClus

and SimRank do not change significantly, even the numbers
of objects and clusters grow 40 times.
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Figure 21: Performances on R5T*C*S10

Then we test each approach on databases with different
selectivities, as shown in Figure 22. We generate databases
with 5 relations of objects, each having 4000 objects and
40 clusters. The selectivity varies from 5 to 25. The run-
ning time of LinkClus grows linearly and that of SimRank
quadratically with the selectivity, and those of ReCom and
F-SimRank are only slightly affected. These are consistent
with theoretical derivations. The accuracies of LinkClus,
SimRank and ReCom increase quickly when selectivity in-
creases, showing that density of linkages is crucial for accu-
racy. The accuracy of F-SimRank remains stable because it
does not use more information when there are more linkages.
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Figure 22: Performances on R5T4000C40S*

Finally we test the accuracy of each approach on databases
with different noise ratios, as shown in Figure 23. We change
noise ratio from 0 to 0.4. The accuracies of LinkClus, Sim-
Rank and F-SimRank decrease with a stable rate when noise
ratio increases. ReCom is most accurate when noise ratio
is less than 0.2, but is least accurate when noise ratio is
greater than 0.2. It shows that LinkClus and SimRank are
more robust than ReCom in noisy environments.

7. CONCLUSIONS
In this paper we propose a highly effective and efficient

approach of linkage-based clustering, LinkClus, which ex-
plores the similarities between objects based on the sim-
ilarities between objects linked with them. We propose
similarity-based hierarchical structure called SimTree as a

3We do not test SimRank and F-SimRank on large
databases because they consume too much memory.
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Figure 23: Accuracy vs. noise ratio on R5T4000C40S10

compact representation for similarities, and propose an ef-
ficient algorithm for computing similarities, which avoiding
pairwise computations by merging similarity computations
that go through common paths. Experiments show LinkClus

achieves high efficiency, scalability, and accuracy in cluster-
ing multi-typed linked objects.
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