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ABSTRACT
PageRank-style (PR) link analyses are a cornerstone of Web
search engines and Web mining, but they are computation-
ally expensive. Recently, various techniques have been pro-
posed for speeding up these analyses by distributing the link
graph among multiple sites. However, none of these ad-
vanced methods is suitable for a fully decentralized PR com-
putation in a peer-to-peer (P2P) network with autonomous
peers, where each peer can independently crawl Web frag-
ments according to the user’s thematic interests. In such
a setting the graph fragments that different peers have lo-
cally available or know about may arbitrarily overlap among
peers, creating additional complexity for the PR computa-
tion.

This paper presents the JXP algorithm for dynamically
and collaboratively computing PR scores of Web pages that
are arbitrarily distributed in a P2P network. The algorithm
runs at every peer, and it works by combining locally com-
puted PR scores with random meetings among the peers in
the network. It is scalable as the number of peers on the
network grows, and experiments as well as theoretical argu-
ments show that JXP scores converge to the true PR scores
that one would obtain by a centralized computation.

1. INTRODUCTION
One of the cornerstones of Web search engines and Web

mining is link analysis for authority scoring, most notably,
the two seminal methods PageRank (PR) by Brin and Page
[8] and HITS by Kleinberg [23]. Both methods are Eigen-
vector-based algorithms that determine the importance of
a page based on the importance of the pages that point to
it. Their computation is quite expensive as it involves it-
eratively computing the principal Eigenvector of a matrix
derived from the Web link graph. An alternative but equiv-
alent view of PR is that it computes stationary probabilities
of a Markov chain that corresponds to a random walk on the
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Web. Recent work has made progress on efficiently comput-
ing PR-style authority scores [20, 11, 14, 27], but the high
storage demand of the – sparse but nonetheless huge – un-
derlying matrix seems to limit this kind of link analysis to
a central server with very large memory.

Recently, various techniques have been proposed for speed-
ing up these analyses by distributing the link graph among
multiple sites [21, 40, 2]. In fact, given that Web data is
originally distributed across many owner sites, it seems a
much more natural (but obviously also more challenging)
computational model to perform parts of the PR computa-
tion right where the data originates from followed by smaller
distributed computation for combining the local results in
an appropriate way. Exploiting a block structure in the
link matrix is an example [21]. However, these advanced
methods work only when the overall Web graph is nicely
partitioned into disjoint fragments, which is the case when
partitions are formed by the sites that own the pages.

A different distributed architecture that has gained sig-
nificant momentum is peer-to-peer (P2P) systems. P2P
technology is a compelling paradigm for large-scale file shar-
ing, publish-subscribe, and collaborative work, as it provides
great scalability and robustness to failures and very high dy-
namics (so-called churn) [1, 38, 32, 33]. Another intriguing
P2P application could be Web search: spreading the func-
tionality and data of a search engine across thousands or
millions of peers. Such an architecture is being pursued in
a number of research projects [39, 31, 4] and could offer
various key advantages: lighter load and smaller data vol-
ume per peer, and thus more computational resources per
query and data unit, could enable more powerful linguistic
or statistical learning methods; with each peer being close
to the human user and the user trusting its local software
and controlling the degree of sharing personal information
and collaboration with other peers, there is a great opportu-
nity for leveraging user behavior such as explicit or implicit
feedback in the form of query logs, click streams, or book-
marks; and finally, a decentralized approach could provide
better immunity to search result distortion by the bias of
big providers, commercial interests, or even censorship.

In this paper we consider the architecture of a P2P search
engine where each peer is autonomous, crawls Web frag-
ments and indexes them locally according to the user’s in-
terest profile, and collaborates with other peers for query
routing and execution. Queries would often be executed lo-
cally on the user’s personalized “power search engine”, and
occasionally forwarded to other peers for better results. In
such a setting, PR-style scores are still crucial for the rank-
ing of search results, but the local Web fragment of a peer
may be too small or incomplete for a meaningful link anal-
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ysis. Distributed PR computations of the kind mentioned
above seem natural, but they work only for disjointly parti-
tioned graphs; in our setting we face the additional complex-
ity posed by the fact that the graph fragments of different
peers may arbitrarily overlap.

JXP (Juxtaposed Approximate PageRank) is an algorithm
for coping with this situation: dynamically computing, in a
decentralized P2P manner, global authority scores when the
Web graph is spread across many autonomous peers with
arbitrary overlapping and the peers are a priori unaware of
other peers’ fragments. The ideas for JXP have appeared in
a preliminary short paper at a workshop [30]. The current
paper elaborates these ideas, provides mathematical under-
pinnings, including a convergence proof (which were missing
in the workshop paper), and develops novel extensions and
run-time enhancements, along with more comprehensive ex-
perimental studies.

In the JXP algorithm, each peer computes the author-
ity scores of the pages that it has in its local index, by lo-
cally running the standard PR algorithm. A peer gradually
increases its knowledge about the rest of the network by
meeting with other, randomly chosen, peers and exchanging
information, and then recomputing the PR scores of local
interest. This process, in principle, runs forever, and exper-
iments have indicated that the resulting JXP scores quickly
converge to the true, global PR scores.

For further improving the network performance, we pro-
pose a heuristic strategy for guiding the choice of peers for
a meeting. The improvements can be observed in our ex-
perimental results with real-world data collections. We pro-
vide an mathematical framework for the analysis of JXP,
where some important properties are highlighted and the
proof that the JXP scores converge to the true global PR
scores is given. An application of the algorithm is also given,
where we have integrated the JXP scores into a P2P search
engine in order to improve the ranking of the results.

The rest of the document is organized as follows. Section
2 discusses related work. A more detailed explanation of
the JXP algorithm is given in Section 3. The extensions
and run-time improvement of JXP are discussed at Section
4, and the mathematical analysis is given at Section 5. Ex-
perimental results are described in Section 6, and Section 7
presents ideas for future work.

2. RELATED WORK
Link-based authority ranking has received great attention

in the literature. It has started with the seminal works of
Brin and Page [8] and Kleinberg [23], and after these, many
other models and techniques have followed. Good surveys
of the many improvements and variations are given in [12,
26, 7, 5].

2.1 PageRank
The basic idea of PR is that if page p has a link to page

q then the author of p is implicitly endorsing q, i.e., giving
some importance to page q. How much p contributes to the
importance of q is proportional to the importance of p itself.

This recursive definition of importance is captured by the
stationary distribution of a Markov chain that describes a
random walk over the graph, where we start at an arbitrary
page and in each step choose a random outgoing edge from
the current page. To ensure the ergodicity of this Markov
chain (i.e., the existence of stationary page-visit probabili-
ties), additional random jumps to uniformly chosen target
pages are allowed with small probability (1 − ε). Formally,
the PR of a page q is defined as:

PR(q) = ε×
∑

p|p→q

PR(p)/out(p) + (1− ε)× 1/N

where N is the total number of pages in the link graph,
PR(p) is the PR score of the page p, out(p) is the outdegree
of p, the sum ranges over all link predecessors of q, and (1−ε)
is the random jump probability, with 0 < ε < 1 and usually
set to a value like 0.85.

PR values are usually computed by initializing a PR vec-
tor with uniform values 1/N , and then applying a power
iteration method, with the previous iteration’s values sub-
stituted in the right-hand side of the above equation for
evaluating the left-hand side. This iteration step is repeated
until sufficient convergence, i.e., until the PR scores of the
high-authority pages of interest exhibit only minor changes.

2.2 Distributed PageRank
With the advent of P2P networks [1, 38, 32, 33] attention

to distributed link analysis techniques has been growing.
In [40] Wang and DeWitt presented a distributed search

engine framework, in which the authority score of each page
is computed by performing the PR algorithm at the Web
server that is the responsible host for the page, based only
on the intra-server links. They also assign authority scores
to each server in the network, based on the inter-server links,
and then approximate global PR values by combining local
page authority scores and server authority values. Wu and
Aberer [41] pursue a similar approach based on a layered
Markov model. Both of these approaches are in turn closely
related to the work by Haveliwala et al. [21] that postulates
a block structure of the link matrix and exploits this struc-
ture for faster convergence of the global PR computation. A
drawback from these approaches is the need of a particular
distribution of pages among the sites, where the graph frag-
ments have to be disjoint — a strong constraint, given that
in most P2P networks peers are completely autonomous and
crawl and index Web data at their discretion, resulting in
arbitrarily overlapping graph fragments.

Chen et al. [13] proposed a way of approximating the
PR value of a page locally, by expanding a small subgraph
around the page of interest, placing an estimated PR at the
boundary nodes of the subgraph, and running the standard
algorithm. This approach assumes that the full link struc-
ture is accessible at a dedicated graph server. In a P2P
scenario, however, this algorithm would require the peers to
query other peers about pages that have links to their lo-
cal nodes, and pages that point to pages that point to local
pages, and so on. This would be a significant burden for a
highly dynamic P2P network. The JXP algorithm, on the
other hand, requires much less interaction among peers, and
with the new peer selection strategy, the number of interac-
tions is even smaller.

Other techniques [25, 14] for approximating PR-style au-
thority scores with partial knowledge of the global graph use
state-aggregation technique from the stationary analysis of
large Markov chains. These techniques have been devel-
oped for the purpose of incremental updates to authority
scores when only small parts of the graph have changed.
Dynamic computation in a P2P network is not an issue in
this prior work. Another work related to this topic is the
one by Broder and Lempel [11], where they have presented
a graph aggregation method in which pages are partitioned
into hosts and the stationary distribution is computed in
a two-step approach, combining the stationary distribution
inside the host and the stationary distribution inter-hosts.
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A storage-efficient approach to computing authority scores
is the OPIC algorithm developed by Abiteboul et al. [3].
This method avoids having the entire link graph in one site,
which, albeit sparse, is very large and usually exceeds the
available main memory size. It does so by randomly (or
otherwise fairly) visiting Web pages in a long-running crawl
process and performing a small step of the PR power it-
eration (the numeric technique for computing the principal
Eigenvector) for the page and its successors upon each such
visit. The bookkeeping for tracking the gradually approxi-
mated authority of all pages is carried out at a central site,
the Web-warehouse server. This is not a P2P algorithm
either.

In [34], Sankaralingam et al. presented a P2P algorithm
in which the PR computation is performed at the network
level, with peers constantly updating the scores of their lo-
cal pages and sending these updated values through the
network. Shi et al. [35] also compute PR at the network
level, but they reduce the communication among peers by
distributing the pages among the peers according to some
load-sharing function. In contrast to these P2P-style ap-
proaches, JXP algorithm performs the actual computations
locally at each peer, and thus needs a much smaller number
of messages.

3. THE JXP ALGORITHM
The goal of the JXP algorithm is to approximate global

authority scores by performing local computations only, with
low storage costs, and a moderate number of interactions
among peers. It runs on every peer in the network, where
each peer stores only its own local fragment of the global
graph. The algorithm does not assume any particular as-
signment of pages to peers, and overlaps among the graph
fragments of the peers are allowed.

The idea of the algorithm is simple, yet it is quite power-
ful. Starting with the local graph G of a peer, the peer first
extends G by adding a special node W , called world node
since its role is to represent all pages in the network that do
not belong to G. An initial JXP score for local pages and
the world node is obtained by running the PR algorithm in
the extended local graph G′ = G+W . The results are stored
in a score list L. This initialization procedure is described
in Algorithm 1.

Algorithm 1 JXP Initialization Procedure

1: input: local graph G and est. size of global graph N
2: n ← size(G)
3: Create world node W
4: score(p|p ∈ G)← 1/N
5: score(W )← (N − n)/N
6: G′ ← (G + W )
7: PR← PageRank(G′)
8: L← PR

JXP assumes that the total number of nodes in the global
graph is known or can be estimated with decent accuracy.
This is not a critical assumption; there are efficient tech-
niques for distributed counting with duplicate elimination,
and JXP could even be modified to work without this es-
timate, but our presentation here will make use of the as-
sumption.

The world node has special features, regarding its own
score and how it is connected to the local graph. As it
represents all the pages not indexed by the peer, we take all
the links from local pages to external pages and make them
point to the world node. In the same way, as the peer learns
about external links that point to one of the local pages, we
assign these links to the world node. (This is when the peer

meets with another peer). For a better approximation of
the total authority score mass that is received from external
pages, we weigh every link from the world node based on
how much of the authority score is received from the original
page that owns the link. Another special feature of the world
node is that it contains a self-loop link, that represents links
from external pages pointing to other external pages. The
score of the world node is equivalent to the sum of the scores
of the external pages. During the local PR computation the
probability of a random jump to the world node is also set
proportional to the number of external pages.

Since local information is not sufficient to estimate global
scores, peers improve their knowledge by meeting other peers
in the network and exchanging the information they cur-
rently have, namely the extended local graph and the score
list. The information is then combined by both of the two
meeting peers, asynchronously and independently of each
other. This works as follows. A new graph is formed from
the union of both local graphs. World nodes are also uni-
fied to create a new world node that is connected to the
new graph. The union of two world nodes consists of tak-
ing the union of the links that are represented in them and
removing those links that already appear at the graph to
which the new world node will be attached to, so multiple
representations of the same link are avoided.

More formally, let GA(VA, EA) be the local graph at peer
A, where VA and EA are the sets of pages and links, respec-
tively. Let WA(TA) be the world node attached to peer’s A
local graph, where TA is the set of links represented at the
world node. When peer A exchange information with peer
B, they both create locally a merged graph GM (VM , EM ),
where VM = VA∪VB and EM = EA∪EB , and a new merged
world node WM (TM ) that it is connected to GM , where
TM = (TA ∪ TB) − EM , i.e., the set of links outgoing from
pages that are not in VM with target nodes inside VM .

A new merged list of scores, LM , is created by merging
the two original lists, taking the average of the scores for the
pages that belong to both of them.

After this merging step, the peer performs the PR algo-
rithm on the extended graph GM + WM , using the scores
from LM as initial scores. The score of the world node is
initially set to

LM (W ) = 1−
∑

i∈VM

LM (i) (1)

and the PR scores obtained, PR, are used to update the
current JXP score list LM in the following manner:

L′M (i) =

{
PR(i) if i ∈ VM
LM (i)×PR(W )

LM (W )
otherwise

(2)

The next step is to update local score list LA and local
world node WA. L′A is derived from L′M by keeping the
scores of all pages that either belong to VA or point to one
of the pages in VA. W ′

A is obtained by taking all the links
from WM that point to a page in VA and adding the links
from EB that also point to a page in VA. This is done
analogously at peer B.

The merged graph GM , merged node WM and merged
score list LM are then discarded, as well as GB , WB and LB ,
so that the storage requirements are kept low. Algorithm
2 shows the pseudo code of the JXP algorithm. Figure 1
illustrates the procedures to combine and disconnect local
graphs and world nodes.

4. EXTENSIONS AND OPTIMIZATIONS
The JXP algorithm, as presented before, already has nice
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Algorithm 2 The JXP Algorithm

1: input: local graph GA, world node WA, score list LA
2: repeat
3: Contact a random peer B in the network and exchange infor-

mation
4: GM ← mergeGraphs(GA, GB)
5: WM ← mergeWorldNodes(WA, WB)
6: G′

M ← (GM + WM )
7: LM ← combineLists(LA, LB)
8: PR← PageRank(G′

M )
9: L′M ← updateScoresList(LM , PR)
10: update(LA)
11: update(WA)
12: Discard(GM , WM , LM , GB , WB , LB)

scalability, since the computations are strictly local and in-
dependent of the number of peers in the network, and stor-
age requirements are linear with the number of pages in the
network. Moreover, experimental results show that the au-
thority scores given by the algorithm converge to the true
global PR scores, as the meetings between peers are per-
formed in the network. Nonetheless, the performance of
JXP can be further enhanced, as this Section will show. The
extensions concern the meeting step, before the PR com-
putation, where the authority scores from both peers are
combined and their local graphs are merged, and the peer
selection strategy for choosing a peer for the next meeting.

4.1 Light-weight Merging of Local Graphs
At a peer meeting, instead of merging the graphs and

world nodes, we could simply add relevant information re-
ceived from the other peer into the local world node, and
perform the PR computation on the extended local graph
and still the JXP scores converge to the global PR scores.
The meeting step is then simplified and much more light-
weight, as shown by an example in Figure 2.

This has a big impact on the performance, as the graph
merging requires considerable computational time; more-
over, without the full merging steps, PR is computed for
smaller local transition matrices (roughly half the size of
the matrices in the full merging). One could argue that the
light-weight merging has the drawback of slowing down the
convergence speed of the algorithm, since a reduced transi-
tion matrix implies a larger number of states that are ag-
gregated on the world node, which could lead to a higher
approximation error. This is in fact a valid point, but our
experiments never showed any real slow-down of the con-
vergence or bigger errors in comparing JXP scores against
true PR scores for the high-ranked pages. Another poten-
tial caveat about the light-weight merging could be that the
number of iterations for a local PR computation might in-
crease, but again, this never became a real issue in all our
experiments.

4.2 Combining Authority Scores
With the new light-weight meeting step proposed, PR

is performed at the extended local graph, where the only
changes are due to insertion of links from the world node
to local pages, whereas links from local pages to the world
node are invariant during all iterations of the JXP algorithm.
Considering the authority mass transfer, it is intuitive that,
from iteration to iteration, more and more authority mass is
given to local pages as the peer learns about more incoming
links; so the score of the world node should always reduce
until the point it is equal to the sum of the true PR scores
of the external pages (we will address this property on Sec-

W node:

G → C

J → E

A

B

D

E

W
C

W node:

K → E

L → G

F

G

W
E

A → F

E → G
G → C

F → A

W node:

J → E

K → E

L → G

A

B

D

E

W
C

F G

E → B

W node:

G → C

J → E

F → A

F → E

K → E

A

B

D

E

W
C

W node:

K → E

L → G

A → F

C → E

J → E

F

G

WE

A → F

E → G
G → C

E → B

Peer X Peer Y

Peer X Peer Y

Merged Graph 

& 

Merged World 
Node

F → A

Figure 1: Illustration of the combining and discon-
necting procedures.

tion 5, where we proof that this is indeed the case). This is
another argument for the convergence of the JXP algorithm.

Based on this consideration, we propose a new way of
combining score lists of two peers. Instead of taking the av-
erage of the scores of those pages that belong to both lists,
we always take the bigger one of the two scores. This is
justified by the fact that the world node’s score is monoton-
ically non-increasing in the sequence of peer meetings. So
we can use a tighter upper bound for the world node’s fi-
nal score to speed up convergence, since a bigger score is an
indicator that the peer knows about more incoming links.
In addition, when updating the score lists LA, the scores of
pages that do not belong to the local graph GA should not
be re-weighted, as this would result in smaller values, given
that the ratio PR(W )/LA(W ) is expected to be always less
than one. Thus, the updating procedure is replaced by

L′A(i) =

{
PR(i) if i ∈ VA

LA(i) otherwise
(3)

4.3 Peer Selection Strategy
Peers differ in the sets of pages they have indexed, and

consequently different peers contribute to a given peer’s
global view and convergence of scores to different extents.
The basic peer selection strategy, where peers are chosen at
random, is clearly not the best approach for meeting other
peers. Performance could be enhanced if each peer could
identify the most promising peers to meet, namely, the ones
that would lead to faster convergence of the scores of its
locally indexed pages.

A good indicator of the “quality” of a peer, i.e., how much
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it would contribute to improve another peer’s scores, is the
amount of outgoing links that are also incoming links for
pages in this other peer; the higher the number of links
added to the world node, the higher is the amount of au-
thority mass transferred to local pages. The problem now
is how to identify these “good” peers, without prohibitively
increasing network bandwidth consumption. Our solution
is a combination of caching and statistical synopses of the
peers’ local information.

Peer Synopses
Statistical synopses of peers are a light-weight approxima-
tion technique for comparing data of different peers without
explicitly transferring their contents. Synopses provide very
compact representations for sets, containing some local in-
formation that can be used to estimate the correlation be-
tween two sets. In comparing sets, we are interested in the
measures of “overlap” and “containment”. Given two sets,
SA and SB , the overlap between these two sets is defined
as |SA ∩ SB |, i.e., the cardinality of the intersection. The
notion of containment was proposed in [9] and is defined as
Containment(SA, SB) = |SA ∩ SB |/|SB |. So containment
represents the fraction of elements in SB that are also in
SA.

Fundamentals for statistical synopses of sets have a rich
literature, including work on Bloom filters [6, 18], hash sketch-
es [19], and min-wise independent permutations [10]. In this
paper we focus on the min-wise independent permutations
(MIPs).

The MIPs technique assumes that the set elements can
be ordered (which is trivial for integer keys, e.g., hash keys
of URLs) and computes N random permutations of the ele-
ments. Each permutation uses a linear hash function of the
form hi(x) := ai ∗x+bi mod U where U is a big prime num-
ber and ai, bi are fixed random numbers. For each of the
N permutations, the MIPs technique determines the mini-
mum hash value, and stores it in an N -dimensional vector,
thus capturing the minimum set element under each of these
random permutations. By using sufficiently many different
permutations, we can approximate the set cardinality and
can estimate the containment of two sets.

Pre-meetings Strategy
For the new meeting strategy, we propose that peers per-
form “pre-meetings”, for finding the most promising peers
for the next meeting. To this end, we first require all peers
to compute two min-wise permutations vectors: one repre-
senting its set of local pages, and the other representing the
set containing all the successors from all local pages. We
call these two MIPs vectors local(A) and successors(A), for
a given Peer A.

Assuming that Peer A has chosen Peer B for the next
meeting, the pre-meetings strategy works in the following
way. During the meeting step, Peer A computes
Containment(successors(B), local(A)), i.e., that the frac-
tion of local pages in Peer A that has inlinks from local
pages in Peer B. If the value is above some pre-defined
threshold, Peer A caches Peer B’s ID. This way, each peer
remembers peers that were previously met and have a rel-
atively high number of inlinks to their local pages. Note
that this does not really affect storage requirements, since
the threshold limits the number of peers and only the ID of
peers are stored.

Still during the meeting step, we also measure the overlap
between the local page sets of A and B with the purpose
of finding promising peers for a meeting. The idea here is
that, given three peers, Peer A, B and C, if Peer C has
many links to Peer A, and the overlap between A and B is
relatively high, it is very likely that C will have many links
pointing to B as well.

Whenever there is a relatively high overlap between two
peers, they both exchange their list of cached peers’ IDs.
The IDs are temporarily stored as potential candidates for a
next meeting. For getting the correct correlation with these
candidates, pre-meetings are performed with each peer in
the temporary list, where instead of exchanging their con-
tent, peers return only their MIPs vector representation of
their successors sets, successors(C).

The pre-meetings phase does not increase the network
load, since only MIPs vectors are sent, and since these vec-
tors are small we can piggyback them on communication
messages that are exchanged in the P2P network anyway.

The value Containment(successors(C), local(A)) is used
to sort peers in the temporary list. Then we select the peer
with the highest score on the temporary list for the next,
real, meeting (i.e., no longer a pre-meeting), and this step
chooses a good candidate with high probability based on our
heuristics. After a peer is chosen and the meeting took place,
the peer is dropped from this temporary list. It is important
that peers have an updated view of the network, as peers
can change their contents or eventually leave the network.
Therefore, peers have to visit again the already cached peers,
with a smaller probability. In addition, the probability of
picking a peer at random should never go down to zero, as
some peers may not be reachable by merely following the
chain of cached peers.

Pseudo code for the optimized version of the JXP algo-
rithm is shown in Algorithm 3. The initialization procedure
is the same as the one described previously in Algorithm 1.

5. ANALYSIS OF JXP
In this Section we provide important properties of the

JXP scores, as well as a proof for the correctness of the
JXP method. We show that JXP scores converge to the
correct values, the global PR scores of the individual pages,
or equivalently, the stationary visiting probabilities of the
underlying global Markov chain. We consider only the opti-
mized JXP version with the light-weight merging from Sec-
tion 4.1.
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Algorithm 3 Optimized JXP Algorithm

1: input: local graph GA, world node WA, score list LA
2: repeat
3: B ← selectPeer()
4: WA ← addLinks(GB , WB)
5: G′

A ← (GA + WA)
6: LA ← combineLists(LA, LB)
7: PR← PageRank(G′

A)
8: update(LA)
9: Discard(GB , WB , LB)

Our analysis builds on the theory of state aggregation
in Markov chains [16, 37, 29, 22]. However, applying this
theory to our setting is not straightforward at all, and we use
it only for particular aspects. State-aggregation techniques
assume complete knowledge of the Markov chain and are
typically used to speed up the convergence of computations
(see, e.g., [25, 14]). In contrast, our P2P setting poses the
difficulty that each peer has only limited knowledge of the
Web graph and the resulting Markov Model. Moreover, this
restricted view differs from peer to peer.

For the proof we assume that there are no changes in the
network, so there exists a global web graph with N pages, a
global transition matrix CN×N and a global stationary dis-
tribution vector π. The element cij of C is equal to 1/out(i)
if there is a link from page i to page j, and 0 otherwise. After
adding the random jumps probabilities we have a transition
matrix C′

C′ = ε C + (1− ε)
1

N
1N×N (4)

Every peer has a local graph G, subgraph of the global web
graph, that corresponds to the set of pages it has crawled.
Pages that are not in G are considered to be on the set G.
The local graph is extended by adding the world node. In
our notation a link from page i to page j is represented by
i → j, and W is the set of external pages that are rep-
resented in the world node w. For every page r in W we
store the information about its outdegree, out(r) and cur-
rent JXP score α(r), both learned from a previous meeting.
The number of local pages is given by n. Associated with
each extended local graph we have a local transition matrix
P that has the following format

P(n+1)×(n+1) =


p11 . . . p1n p1w

... . . .
...

...
pn1 . . . pnn pnw

pw1 . . . pwn pww

 (5)

where

pij =

{
1

out(i)
if ∃ i → j

0 otherwise
(6)

piw =
∑
i→r
r/∈G

1

out(i)
(7)

for every i, j, 1 ≤ i, j ≤ n.
The transition probabilities from the world node, pwi and

pww, change during the computation, so they are defining
according to the current meeting t

pt
wi =

∑
r→i

r∈W t

α(r)t

out(r)
· 1

αt−1
w

(8)

pt
ww = 1−

n∑
i=1

pt
wi (9)

For the JXP computation, random jumps are also added,
with the particularity that the random jumps to the world
node are made proportional to the number of pages it rep-
resents. This gives us the following transition matrix

P′ = ε P+(1− ε)
1

N
1(n+1)×1 ( 1 . . . 1 (N − n) ) (10)

which has a stationary distribution vector α

α = ( α1 . . . αn αw )
T

(11)

that corresponds to the JXP scores, informally introduced
in Section 3 as score lists.

5.1 Initialization Procedure
We start with a local transition matrix, P0, with all pwi

elements equal to zero since the peers start with no knowl-
edge about external pages. The element pww is consequently
set to 1.

P0
w∗ = ( 0 . . . 0 1 ) (12)

The local JXP scores vector is initially set to:

αinit =
(

1
N

. . . 1
N

N−n
N

)T
(13)

The PR computation is then performed using the transi-

tion matrix P′0 and an updated value for the local authority
scores vector α0 (t = 0) is obtained.

5.2 The Meeting Step
As described earlier, the meeting process consists of adding

new links, or updating existing links from the world node to
the local pages, and performing the PR algorithm using the
updated transition matrix.

Consider the follow local transition matrix and its local
JXP scores vector at meeting (t− 1) (t ≥ 1)

Pt−1
(n+1)×(n+1) =


p11 . . . p1n p1w

... . . .
...

...
pn1 . . . pnn pnw

pt−1
w1 . . . pt−1

wn pt−1
ww

 (14)

αt−1 =
(

αt−1
1 . . . αt−1

n αt−1
w

)T
(15)

For the sake of simplicity, we split the merging step, by
considering only one link addition/update at a time. Assum-
ing that during meeting t a link to page i has been added
or updated, we can express pwi at time t as

pt
wi = pt−1

wi + δ (16)

Since the authority scores of external pages on the meeting
step can only increase or remain unchanged we can assure
that the value of δ is always non-negative.

As the transition probability from the world node to itself
is always adjusted to compensate for changes of the other
transition probabilities we can also write

pt
ww = pt−1

ww − δ (17)

The transition matrix at meeting t can then be written as

Pt = Pt−1 + E (18)

where

E =


0 . . . 0 0
... . . .

...
...

0 . . . 0 0
0 . . . 0 δ 0 . . . 0 −δ

 (19)
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which leads to an updated JXP scores vector

αt =
(

αt
1 . . . αt

n αt
w

)T
(20)

The following two theorems describes important proper-
ties about the JXP scores.

Theorem 5.1. The JXP score of the world node, at every
peer in the network, is monotonically non-increasing.

Proof. The proof is based on the study of the sensitivity
of Markov Chains made by Cho and Meyer [15]. From there
we can state that by increasing pwi by δ and decreasing pww

by the same amount, the following holds

αt−1
w − αt

w

αt−1
w

= αt
w δ miw (21)

where miw is the mean first passage time from page i
to the world node (i.e., the expected number of steps for
reaching w when starting in i, in the underlying Markov
chain). Rearranging the terms on the equation we have

αt
w − αt−1

w = −αt−1
w αt

w δ miw (22)

Since all the values on the right side of the equation are
non-negative we can assure that

αt
w − αt−1

w ≤ 0 (23)

Theorem 5.2. The sum of scores over all pages in a local
graph, at every peer in the network, is monotonically non-
decreasing.

Proof. The proof follows from Theorem 5.1 and the fact
that the following equality holds∑

i∈G

αi + αw = 1 (24)

We now proceed by showing how the JXP scores and the
global PR scores are related. The next Theorem shows that
the global PR values are an upper bound for the JXP scores.

Theorem 5.3. Consider the true stationary probabilities
(PR scores) of pages i ∈ G and the world node w, πi and
πw, and their JXP scores after t meetings αt

i and αt
w. The

following holds throughout all JXP meetings:
0 < αt

i ≤ πi for i ∈ G and πw ≤ αt
w < 1.

Proof. We know that for every page i ∈ G:

πi =
1− ε

N
+ ε

∑
j→i
j∈G

πj

out(j)
+ ε

∑
j→i

j∈G

πj

out(j)
(25)

and

αt
i =

1− ε

N
+ ε

∑
j→i
j∈G

αt
j

out(j)
+ ε

∑
j→i

j∈W t

αt
j

out(j)

αt
w

αt−1
w

(26)

We prove the claim about the αt
i values by induction on

t; the proof for the claim on the world node follows directly
from the fact that the score vector is normalized. The claims
that αi > 0 and αt

w < 1 are trivial to show.
For t = 0 we consider the situation that a given peer with

graph G knows only its local graph and has no information

about the world node other than the total number of nodes,
N (as explained in Section 5.1). Thus the peer assumes that
the only transfer of score mass from w to any node in G is
by random jumps, which is the minimum transfer that is
possible. Since G includes outgoing links to w, a local PR
computation based on this setting cannot overestimate and
will typically underestimate the scores of nodes in G.

Now assume that the claim holds for all meetings up to
and including t, and consider the t + 1st meeting.

First we observe that because of αt
w ≤ αt−1

w (by Theorem

5.1), W t ⊆ G, and the induction assumption αt
j ≤ πj , the

following upper bound holds for the third summand (abbre-
viated as βi):

ε
∑
j→i

j∈W t

αt
j

out(j)

αt
w

αt−1
w

≤ ε
∑
j→i

j∈G

πj

out(j)
:= βi (27)

Now consider the following upper bound for αt+1
i :

αt+1
i ≤ 1− ε

N
+ ε

∑
j→i
j∈G

αt+1
j

out(j)
+ βi (28)

In the t + 1st meeting node i could increase its αi value
in three ways: a) by learning about an additional node x ∈
W t+1 with x /∈ W t that points to i, b) by learning that
a previously known node x ∈ W t that points to i has a
higher value αt+1(x) than the last time that a peer with x
in its local graph was met (i.e., at some previous iteration
t′ < t+1), or c) the value αt+1

j of some incoming neighbor j

from the peer’s own local graph G (j ∈ G) has a higher value
than in previous iterations. No other cases are possible.

The last case is impossible unless one of the cases a) or b)
occurs, simply because all outdegrees are fixed and, without
any external changes, the local PR computation on G will
reproduce the scores computed in earlier iterations. But by
the induction assumption we have αt

i ≤ πi for all previous
t. In the first and second case we can conservatively assume
the upper bound βi for whatever increased score the nodes
in W t+1 may transfer to i or any other nodes in G. Thus
we have

αt+1
i ≤ 1− ε

N
+ ε

∑
j→i
j∈G

αt+1
j

out(j)
+ βi

≤ 1− ε

N
+ ε

∑
j→i
j∈G

πj

out(j)
+ βi = πi

(29)

Theorem 5.3 does not explicitly reflect the fact that nodes
from two local graphs can overlap. We assumed that in
these cases the nodes are treated as local nodes, and we take
their αj values from the peer’s local bookkeeping. However,
because all peers, by Theorem 5.3, invariantly underestimate
the true stationary probability of these nodes, we can safely
use the maximum of the αj values from the two peers in
a meeting: the maximum is still guaranteed to be upper-
bounded by the true PR score πj .

Theorem 5.3 is a safety property in that it shows that
we never overestimate the correct global PR scores. What
remains to be done is to show liveness in the sense that
JXP makes effective progress towards the true PR scores.
The argument for this part is based on the notion of fair-
ness from concurrent programming theory (see, e.g., [24]):
a sequence of events is fair with respect to event e if every
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infinite sequence has an infinite number of e occurrences. In
our setting, this requires that in an infinite number of P2P
meetings, every pair of peers meet infinitely often. Truly
randomized meetings with uniform distribution have this
property, but there are other ways as well. A similar argu-
ment has been used in [3] for online page importance.

Theorem 5.4. In a fair series of JXP meetings, the JXP
scores of all nodes converge to the true global PR scores.

Proof. The fairness property ensures that at some point,
say after the tth meeting, every peer knows all its incoming
neighbors, the complete sets {j|j → i, j ∈ G} for all i ∈ G.
At this point, the only reason why a peer’s local JXP score
αt

i for some page i may still underestimate the global PR
score πi is that the JXP scores of the incoming neighbors
from outside of G may also be underestimated, i.e., αt

j < πj

for some j ∈ W . We show that this situation cannot hold
indefinitely, once all the incoming links from external pages
are completely known.

There are two cases to consider. The first case is when
the world node’s JXP score αt̂

w has converged at some point

t̂ ≥ t so that αt̂
w = πw holds (strictly speaking, the dif-

ference between the α and the π value is below some ε
that can be made arbitrarily small; we simplify the argu-
ment for simpler notation). At this point, we can infer that∑

i∈G αt̂
i =

∑
i∈G πi. So if some αt̂

i is still strictly below its

PR score πi, some other page j ∈ G must have an αt̂
j value

strictly higher than its PR score πj . But this is impossible
because of Theorem 5.3.

The second case is that αt̂
w < πw holds and stays invariant

in all subsequent meetings. But then we have αt̂+1
w = αt̂

w

which implies:

αt̂+1
i =

1− ε

N
+ ε

∑
j→i
j∈G

αt̂+1
j

out(j)
+ ε

∑
j→i

j∈G

αt̂+1
j

out(j)

=
1− ε

N
+ ε

∑
j|j→i

αt̂+1
j

out(j)

(30)

This is the very same fixpoint equation that we have for
the true PR scores, the πi values. We know that this fixpoint
equation has a unique solution [8, 22, 37]; thus the above
equation must have the same solution as the equation for the
πi values, and so the JXP scores eventually equal the PR
score. (Again, strictly speaking, the difference drops below
some ε that can be chosen arbitrarily small.)

5.3 Additional Considerations
Our convergence proof applies to the optimized, light-

weight merging of peer graphs with the local graph extended
only by the single world node, and with truly random peer
meetings. Also, we assumed that when two peers meet with
overlapping graphs, each peer uses its locally stored approx-
imate PR as the estimate for the αi values. If instead we
use the maximum of the two values for pages known at both
peers (as advocated in Section 4.2), the convergence proof
still holds by the argument given in Theorem 5.3.

As for light-weight merging vs. forming the full union of
the graph fragments of two meeting peers, the proof does
not carry over to the full-union method. But we not see any
compelling reason for not using the light-weight approach.

We will show in Section 6.2 on experiments that the accuracy
and convergence speed of the light-weight merging are more
or less as good as for the full-union method. Thus, we have
a convergence proof for the interesting and really relevant
method, the light-weight merging.

Peer meeting strategies other than truly random (with
uniform choices) could also potentially invalidate the as-
sumptions of the correctness proof. However, all we need
to ensure for the proof to hold is that the meeting strat-
egy is fair (in the sense described in Theorem 5.4). This is
easy to achieve even with the biased peer selection strategies
presented in Section 4.3, simply by making every kth peer
selection step truly random. Fairness holds for any constant
k, so we can choose a high value for k and primarily pursue
the biased meeting strategy.

Finally, we disregarded the dynamics of the P2P network
in the sense that we assumed the global graph to be time-
invariant. This is unrealistic for various reasons: 1) new
Web pages are created, old pages disappear, and links are
created or deleted all the time, 2) therefore, peers want to
periodically re-crawl parts of the Web according to their in-
terest profiles and refreshing policies, and 3) peers join and
leave the P2P network at high rate (the so-called “churn”
phenomenon that is typical for P2P networks). Under these
conditions, there is no proof of JXP score convergence, and
with the current state of the art in P2P computing, there are
hardly any guarantees that can be proven under extremely
high churn. But this applies also to other, conceptually
simpler, properties of P2P systems in general, such as DHT
performance guarantees or full correctness under particu-
larly “nasty” failure scenarios [28]. On the positive side,
JXP has been designed to handle high dynamics, and the
algorithms themselves can easily cope with changes in the
Web graph, repeated crawls, or peer churn. Extending the
mathematical analysis to include these additional difficulties
is a challenge for future work.

6. EXPERIMENTAL EVALUATION

6.1 Setup
We evaluated the performance of the JXP algorithm on a

collection of pages from the Amazon.com website and on a
partial crawl of the Web graph. The Amazon data contains
information about products (mostly books) offered by Ama-
zon.com. The data was obtained in February 2005, and the
graphs were created by considering the products as nodes
in the graph. For each product, pointers to similar rec-
ommended products are available in the collection. These
pointers define the edges in our graphs. Products are also
classified into one or more categories. We have themati-
cally grouped together some of the original categories, so in
the end we had a total of 10 categories (e.g., “computers”,
“science”, etc ).

The Web collection was obtained in January 2005, using
the Bingo! focused crawler [36]. We first trained the crawler
with a manually selected set of pages and after that, new
pages were fetched and automatically classified into one of
10 pre-defined categories such as “sports”, “music”, etc.

We checked the degree of connectivity to assure that the
PR computation was meaningful in these datasets. Figure
3 shows the indegree distribution, on a log-log scale for the
two collections. We can see that the two distributions are
close to a power-law distribution, which is also the standard
assumption for the complete Web graph. We thus expect
that our experiments, albeit rather small-scale, are fairly
indicative for the behavior at Internet scale.
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Figure 3: Indegree Distributions.

Pages were assigned to peers by simulating a crawler in
each peer, starting with a set of random seeds pages from
one of the thematic categories and following the links and
fetching nodes in a breadth-first approach, up to a certain
predefined depth. The category of a peer is defined as the
category to which the initial seeds belong. During the crawl-
ing process, when the peer encounters a page that does not
belong to its category, it randomly decides to follow links
from this page or not with equal probabilities. In both of the
two setups we have 100 peers, with 10 peers per category.
In the Amazon setup there is a total of 55,196 pages and
237,160 links, and in the Web crawl setup we have 103,591
pages and 1,633,276 links. We realize that these are fairly
small-scale experiments, but they are nevertheless reason-
ably indicative. The reason for the limited data volume is
that we had to run all 100 peers on a single PC.

6.2 JXP Accuracy And Convergence
For evaluating the performance we compare the author-

ity scores given by the JXP algorithm against the true PR
scores of pages in the complete collection. Since, in the JXP
approach, the pages are distributed among the peers and for
the true PR computation the complete graph is needed, in
order to compare the two approaches we construct a total
ranking from the distributed scores by essentially merging
the score lists from all peers. (Note that this is done for the
experimental evaluation, it would neither be needed nor de-
sired in the real P2P network). We do this periodically after
a fixed number of meetings in the network. Since overlaps
are allowed and no synchronization is required, it can be
the case that a page has different scores at different peers.
In this case, the score of the page on the total ranking is
considered to be the average over its different scores.

The total top-k ranking given by the JXP algorithm and
the top-k ranking given by traditional, centralized PR are
compared using Spearman’s footrule distance [17], defined

as F (σ1, σ2) =
∑k

i=1 |σ1(i) − σ2(i)| where σ1(i) and σ2(i)
are the positions of the page i in the first and second rank-
ing. In case a page is present in one of the top-k rankings
and does not appear in the other, its position in the latter
is considered to be k + 1. Spearman’s footrule distance is
normalized to obtain values between 0 and 1, with 0 mean-
ing that the rankings are identical, and 1 meaning that the
rankings have no pages in common. We also use a linear
score error measure, which is defined as the average of the
absolute difference between the JXP score and the global PR
score over the top-k pages in the centralized PR ranking.

First of all, we studied the general behavior of the JXP
method, to test whether it serves its purpose as a P2P ap-
proximation of global PR. Figures 4 and 5 show Spearman’s
footrule distance and the linear score error for the Amazon
collection and the Web crawl, respectively. Here the scores
of the top-1000 highest ranked pages were used, and the

charts show the error as a function of the number of peer
meetings. We see that the error drops quickly as the peers
meet other peers. Already at 1000 meetings the footrule
distance drops below 0.3 for the Amazon data and below
0.2 for the Web crawl. At this point, each of the 100 peers,
on average, has met and exchanged its graph with 10 other
peers. Beyond this point, the JXP scores converge to the
global PR values. These observations demonstrate the gen-
eral viability of the JXP method.
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Figure 4: Spearman’s footrule distance 4(a) and lin-
ear score error 4(b) for the Amazon data.
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Figure 5: Spearman’s footrule distance 5(a) and lin-
ear score error 5(b) for the Web crawl.

We then evaluated the performance of the proposed light-
weight merging procedure against the full merging of the
baseline JXP method. The results are also shown in Figures
6 and 7.
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Figure 6: Comparison of merging procedures for the
Amazon data.

The charts show that the results are almost unaffected
if the graphs are not merged. The small error inserted in
the scores did not affect the ranking order of the pages. The
performance, however, is highly enhanced, as Table 1 shows.
We measured, for each peer, the CPU time (in milliseconds)
needed to perform a merging procedure (for one meeting
with one other peer). Table 1 presents the average over
all meetings a peer has made. Due to space constraints
the results are shown only for the three biggest and the
three smallest peers (peers were sorted in decreasing order
according the their numbers of locally held pages). Similar
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Figure 7: Comparison of merging procedures for the
Web crawl.

improvements were obtained for all the other peers as well.
As expected, the time needed for the merging procedure
drops significantly when we use the light-weight merging.

Amazon.com Subset of Web
Original Light-weight Original Light-weight
Merging Merging Merging Merging

Peer 1 5,505 4,408 31,444 24,943
Peer 2 4,995 4,536 26,024 19,364
Peer 3 3,559 2,233 17,718 13,687
Peer 98 424 166 1,864 229
Peer 99 341 153 1,776 162
Peer 100 269 17 1,403 98

Table 1: CPU time comparison (in milliseconds) be-
tween the full merging and the light-weight merging
procedures.

Using the light-weight merging procedure, we then com-
pared the performance of the two approaches for combining
the score lists. Figure 8 shows the linear score error, where
the solid line corresponds to the approach where we first
average the scores and then, after the PR computation, re-
weight the ones corresponding to pages that do not belong
to the local graph, and the dashed line is the result for when
we always take the bigger score, when combining the lists,
and leave the scores of external pages unchanged after the
PR computation was performed. Here again, we used the
scores of the top-1000 pages.
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Figure 8: Comparison of the methods for combining
the score lists.

The results show that authority scores converge faster to
the global PR values when we replace the method for com-
bining the score lists by the one proposed in Section 4.2.
They also suggest that the amount of improvement that can
be obtained is related to the collection itself. The most
interesting and most important improvement, however, is
obtained by the peer selection strategy, discussed next.

Figures 9 and 10 present the performance comparison be-
tween the two peer selection strategies, with the pre-meetings
phase and without the pre-meetings phase, where peers are
chosen at random, for the Amazon data and the Web crawl,
respectively. For the Web crawl we considered the top-1000

pages, and for the Amazon data we compared the top-10000
pages.
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Figure 9: Comparison of peer selection strategies
for the Amazon data.
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Figure 10: Comparison of peer selection strategies
for the Web crawl.

We can see that during the first meetings both approaches
perform similarly, but as peers discover, through the pre-
meetings, the most promising peers, the number of meetings
needed for a good approximation to the global PR scores is
reduced. For instance, in the Amazon data, to make the
footrule distance drop below 0.2 we needed a total of 1,770
meetings without the pre-meetings phase. With the pre-
meetings phase this number was reduced to 1,250. In the
Web crawl setup, for a footrule distance of 0.1, the number
of meetings was reduced from 2,480 to 1,650. It is clear
that the peer selection strategy plays a big role not only on
the convergence speed of the JXP algorithm but also on the
network load. By finding the most promising peers, many
meetings with peers that would contribute only little useful
information are avoided.

Even though these optimizations significantly reduce the
network load, the JXP algorithm still requires a considerable
number of meetings. However, the size of the transmitted
messages is small, since, for the JXP computation, no page
content is required. We measured, for the same setups pre-
sented before, the message size of a peer at each meeting.
Figures 11 and 12 show the median, the first quartile and
the third quartile (in KBytes) for the values at all peers,
after each meeting they have performed. We also compare
the two peer selection strategies, with and without the pre-
meetings phase.

The results show that JXP consumes rather little net-
work bandwidth, as the messages sizes are small. We can
also see that the pre-meetings phase causes only a small in-
crease of the number of transmitted bytes, since it requires
the exchange of the min-wise independent permutation vec-
tors only. Although the messages transmitted with the pre-
meetings phase are slightly bigger, the overall network band-
width consumption drops significantly, since fewer meetings
are performed. For the Amazon data, the total message cost
to make the footrule distance drop below 0.2 was around
461MBytes with the pre-meetings phase, compared to the
569MBytes transmitted when meetings were performed at
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(a) Without pre-meetings
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(b) With pre-meetings

Figure 11: Message size (in KBytes) for the Amazon
data setup.
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(a) Without pre-meetings
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(b) With pre-meetings

Figure 12: Message size (in KBytes) for the Web
crawl setup.

random – a reduction of almost 20%. In the Web crawl, the
decrease in the amount of bytes transmitted, for a footrule
distance of 0.1, was about 30%, from 4.59 to 3.22 GBytes.
We emphasize that these values are the total number of
bytes over all meetings performed. Recall that the cost per
meeting is small and the time interval between two sucessive
meetings can be adapted to the available bandwidth.

6.3 JXP in P2P Search
The JXP algorithm has been integrated into the Minerva

system, a prototype platform for P2P Web search under
development in our institute [4]. Each Minerva peer is a
full-fledged search engine with its own crawler, indexer, and
query processor. Peers are autonomous in compiling their
own content using a focused Web crawler. A Web query
issued by a peer is first executed locally on the peer’s own
content, and then possibly routed to a small number of re-
mote peers for additional results.

To demonstrate the viability and utility of JXP within
the Minerva testbed, we performed a simple and preliminary
experiment. Here we have used again our Web collection,
but in a different setup. We have created 40 peers out of
the 10 categories sets by splitting each set into 4 fragments.
Each of the 40 peers hosts 3 out of 4 fragments from the same
topic, thus forming high overlap among same-topic peers. In
total there were 250,760 documents and 3,123,993 links.

Then we ran 15 queries that are typical for popular Web
search requests [7], using the query routing mechanism of
Minerva. The merged results were ranked in two ways: 1)
by a standard IR model based on term frequency (tf) and
inverse document frequency (idf), and 2) by a weighted sum
of the tf*idf score and the JXP score (with weight 0.6 of the
first component and weight 0.4 of the second component).
The queries were taken from [7] and have been intensively
used in prior literature on link analysis. We manually (and
admittedly somewhat subjectively) assessed the relevance of
the top-10 results under the two different rankings. Given

the small size of the collection, we considered pages with
links to relevant pages not reached by the crawler also as
relevant pages. The results for precision at top-10 are given
in Table 2. The best results are shown in boldface. On
average, the standard tf*idf ranking achieved a precision of
40%, whereas the combined tf*idf/JXP ranking was able to
increase precision to 57% percent.

Query tf*idf (0.6 tf*idf + 0.4 JXP)

affirmative action 40% 40%
amusement parks 60% 60%

armstrong 20% 80%
basketball 20% 60%

blues 20% 20%
censorship 30% 20%

cheese 40% 60%
iraq war 50% 30%
jordan 40% 40%

moon landing 90% 70%
movies 30% 100%
roswell 30% 70%

search engines 20% 60%
shakespeare 60% 80%
table tennis 50% 70%

Average 40% 57%

Table 2: Precision at top-10 for the Web Collection

7. CONCLUSIONS
We presented the JXP algorithm for dynamically com-

puting authority scores of pages distributed in a P2P net-
work. It runs at every peer, and works by combining locally
computed PR scores with meetings among the peers in the
network. Through experiments as well as theoretical argu-
ments we showed that the JXP scores converge to the true
PR scores that one would obtain by a centralized compu-
tation. We also presented a discussion, complemented by
experiments results, of optimizations for the algorithm re-
garding the graph merging procedure and the strategy for
selecting a peer for the next meeting. The network band-
width consumption was also addressed in this work, where
we showed that the size of the messages exchanged by the
peers is small. In addition, we showed the viability and
utility of the algorithm in a P2P search engine, where the
result ranking given by the Minerva system was improved
by integrating the JXP scores into the score function.

For the future, we plan to address the behavior of the
JXP algorithm during changes in the network. We want
to analyse how the JXP scores react to addition/removal
of peers. Inside the search engine framework, we plan to
integrate the JXP scores into the query routing mechanism
in order to guide the search for relevant peers for a given
query. Finally, a challenging open issue is how to make JXP,
P2P search and ranking in general robust in the presence of
egoistic, cheating, and malicious peers.
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