
Efficient Allocation Algorithms for OLAP o ver Imprecise
Data

Doug Burdick1∗ Prasad M. Deshpande3 T.S. Jayram2

Raghu Ramakrishnan4 Shivakumar Vaithyanathan2

1University of Wisconsin, Madison 2IBM Almaden Research Center
3IBM India Research Lab, SIRC 4Yahoo! Research

ABSTRACT
Recent work proposed extending the OLAP data model to support
data ambiguity, specifically imprecision and uncertainty. A process
called allocation was proposed to transform a given imprecise fact
table into a form, called the Extended Database, that can be readily
used to answer OLAP aggregation queries.

In this work, we present scalable, efficient algorithms for creat-
ing the Extended Database (i.e., performing allocation) for a given
imprecise fact table. Many allocation policies require multiple iter-
ations over the imprecise fact table, and the straightforward evalu-
ation approaches introduced earlier can be highly inefficient. Opti-
mizing iterative allocation policies for large datasets presents novel
challenges, and has not been considered previously to the best of
our knowledge. In addition to developing scalable allocation algo-
rithms, we present a performance evaluation that demonstrates their
efficiency and compares their performance with respect to straight-
foward approaches.

1. INTRODUCTION
OLAP is based on the multidimensional model of data, in which

attributes of facts are of two types,dimensionsandmeasures, and
facts can be seen as points in a corresponding multidimensional
space. If we relax the assumption that all facts are points, and al-
low some facts to be regions (consistent with the domain hierar-
chies associated with dimension attributes), we must deal with the
resulting imprecision when answering queries. For example, we
can denote that a particular repair took place in the state Wisconsin,
without specifying a city. Dealing with such uncertain information
is widely recognized to be an important problem and has received
increasing attention recently.

In [5], we proposed a possible-worlds interpretation of impre-
cision that leads to a novel allocation-based approach to defining
semantics for aggregation queries. Operationally,allocation is per-
formed by replacing each imprecise “region” factr in databaseD

∗Work performed while author visiting IBM Almaden Research
Center

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

with a set of precise “point” facts representing the possible com-
pletions of r. Each possible completion is assigned anallocation
weight, and any procedure for assigning these weights is referred to
as anallocation policy. The result of applying an allocation policy
to an imprecise databaseD is referred to as anextended database.

Allocation is motivated and justified in [5] as a mathematically
principled method for handling imprecision, with a general frame-
work for characterizing the space of allocation policies detailed in
[6]. However, neither work explored scalability and performance
of allocation algorithms. Designing scalable allocation algorithms
is a challenge because of the complex relationships between the
precise and imprecise facts that need to be considered while per-
forming allocation. Additionally, several of the allocation policies
are iterative in nature, making the costs of allocation prohibitive
unless specialized algorithms are developed.

In this paper, we consider the computational aspects of allocation
policies and present scalable allocation algorithms. Our contribu-
tions can be summarized as follows:

1. Abstraction of various allocation policies into a policy tem-
plate. Scalable algorithms developed for the template are
thus applicable to the entire set of allocation policies.

2. Capturing the relationships between the precise and impre-
cise facts in terms of an allocation graph formalism, which
provides a basis for developing allocation algorithms.

3. Present a set of scalable algorithms that optimize the I/Os
and sorts required to perform allocation, including an algo-
rithm that exploits the connected components of the alloca-
tion graph to optimize across iterations. For iterative alloca-
tion policies, this turns out to be very important.

4. We present an efficient algorithm for maintaining the Ex-
tended Database to reflect updates to the given fact table.

5. An experimental evaluation of the performance and scalabil-
ity of the proposed algorithms.

The rest of this paper is organized as follows. In Section 2, we re-
view some of the definitions and notations used in [5, 6]. In Section
3, we present a framework that abstracts the common elements of
various allocation policies. In Sections 4 - 6, we consider locality
issues and present the Independent and Block algorithms. In Sec-
tions 7 and 8, we consider issues related to iteration and present
the Transitive algorithm. In Section 9, we present an efficient algo-
rithm for maintaining the Extended Database when the imprecise
fact table is updated. We discuss some related work in Section 10
and present our experimental evaluation in Section 11.

391

2. NOTATION AND BACKGROUND
In this section, our notation is introduced and the problem is mo-

tivated using a simple example.

2.1 Data Representation
Attributes in the standard OLAP model are of two kinds—di-

mensionsand measures. Each dimension in OLAP has an asso-
ciated hierarchy, e.g., the location dimension may be represented
usingCity andState, with State denoting the generalization ofCity.
In [5], the OLAP model was extended to support imprecision in
dimension values that can be defined in terms of these hierarchies.
This was formalized as follows.

Definition 1 (Hierarchical Domains). A hierarchical domainH
over base domainB is a power set ofB such that (1)∅ /∈ H , (2)
H contains every singleton set (i.e., corresponds to some element
of B), and (3) for any pair of elementsh1, h2 ∈ H , h1 ⊇ h2 or
h1 ∩ h2 = ∅. Non-singleton elements ofH are calledimprecise
values. For simplicity, we assume there is a special imprecise value
ALL such thath ⊆ ALL for all h ∈ H .

Each elementh ∈ H has alevel, denoted byLEVEL(h), given
by the number of elements ofH (includingh) on the longest chain
(w.r.t. ⊆) from h to a singleton set. 2

Intuitively, an imprecise value is a non-empty set of possible val-
ues. Hierarchical domains impose a natural restriction on specify-
ing this imprecision. For example, we can use the imprecise value
Wisconsin for the location attribute in a data record if we know
that the sale occurred in the state of Wisconsin but are unsure about
the city. Each singleton set in a hierarchical domain is a leaf node
in the domain hierarchy and each non-singleton set is a non-leaf
node. For example,Madison andMilwaukee are leaf nodes
whose parentWisconsin is a non-leaf node. The nodes ofH
can be partitioned into level sets based on their level values, e.g.
Madison belongs to the 1st level whereasWisconsin belongs
to the 2nd level. The nodes in level 1 correspond to the leaf nodes,
and the elementALL is the unique element in the highest level.

Definition 2 (Fact Table Schemas and Instances). A fact table
schemais 〈A1, A2, . . . , Ak; L1, L2, . . . , Lk; M1, M2, . . . , Mn〉 such
that (i) each dimension attributeAi, i ∈ 1 . . . k, has an associated
hierarchical domain, denoted by dom(Ai), (ii) each level attribute
Li, i ∈ 1 . . . k is associated with the level values of dom(Ai), and
(iii) each measure attributeMj , j ∈ 1 . . . n, has an associated do-
main dom(Mj) that is eithernumericor uncertain.

A database instanceof this fact table schema is a collection of
factsof the form〈a1, a2, . . . , ak; `1, `2, . . . `k; m1, m2, . . . , mn〉
whereai ∈ dom(Ai) and LEVEL(ai) = `i, for i ∈ 1 . . . k, and
mj ∈ dom(Mj), j ∈ 1 . . . n. 2

Definition 3 (Cells and Regions). Consider a fact table schema
with dimension attributesA1, . . . , Ak. A vector〈c1, c2, . . . , ck〉 is
called acell if every ci is an element of the base domain ofAi, i ∈
1 . . . k. Theregionof a dimension vector〈a1, a2, . . . , ak〉, where
ai ∈ dom(Ai), is defined to be the set of cells{〈c1, c2, . . . , ck〉 |
ci ∈ ai, i ∈ 1 . . . k}. Let reg(r) denote the mapping of a factr to
its associated region. 2

Since every dimension attribute has a hierarchical domain,we
thus have an intuitive interpretation of each fact in the database
being mapped to a region in ak-dimensional space. If allai are
leaf nodes, the fact isprecise, and describes a region consisting of
a single cell. Abusing notation slightly, we say that the precise fact
is mapped to a cell. If one or moreAi are assigned non-leaf nodes,
the fact isimpreciseand describes a largerk-dimensional region.

FactID Loc Auto LocL AutoL Sales
p1 MA Civic 1 1 100
p2 MA Sierra 1 1 150
p3 NY F150 1 1 100
p4 CA Civic 1 1 175
p5 CA Sierra 1 1 50
p6 MA Sedan 1 2 100
p7 MA Truck 1 2 120
p8 CA ALL 1 3 160
p9 East Truck 2 2 190
p10 West Sedan 2 2 200
p11 ALL Civic 3 1 80
p12 ALL F150 3 1 120
p13 West Civic 2 1 70
p14 West Sierra 2 1 90

Table 1: Sample data

Each cell inside this region represents a possible completion of an
imprecise fact, formed by replacing non-leaf nodeai with a leaf
node from the subtree rooted atai.

Example 1. Consider the fact table shown in Table 1. The first
two columns are dimension attributesLocation (Loc) and Auto-
mobile (Auto), and take values from their associated hierarchical
domains. The structure of these domains and the regions of the
facts are shown in Figure 1. The setsState andRegion denote the
nodes at levels 1 and 2, respectively, forLocation; similarly, Model
andCategory denote the level sets forAutomobile. The next two
columns contain the level-value attributesLocation-Level(LocL)
and Automobile-Level (AutoL), corresponding toLocation and
Automobile respectively. For example, consider fact p6 for which
Location is assignedMA, which is in the 1st level, andAutomobile
is assignedSedan, which is in the 2nd level. These level values
are the assignments toLocation-LevelandAutomobile-Level, re-
spectively.

Precise facts, p1–p5 in Table 1, have leaf nodes assigned to both
dimension attributes and are mapped to the appropriate cells in Fig-
ure 1. Facts p6–p14, on the other hand, are imprecise and are
mapped to the appropriate multidimensional region. For exam-
ple, fact p6 is imprecise because theAutomobile dimension is as-
signed to the non-leaf nodeSedan and its region contains the cells
(MA,Camry) and(MA,Civic), which represent possible com-
pletions ofp6. 2

3. FRAMEWORK FOR ALLOCATION
In this section, we quickly review the basic framework for allo-

cation policies. First, we restate the general template forallocation
policies presented previously in [6]. Then, we present a graph-
based framework to conceptualize the flow of data required toper-
form allocation.

3.1 Allocation Policies
For completeness we restate the following definition from [5, 6].

Definition 4 (Allocation Policy and Extended Data Model). Let r
be a fact in the fact table, andreg(r) the region ofr. For each cell
c ∈ reg(r), theallocationof fact r to cell c, denoted bypc,r, is a
non-negative quantity denoting the weight of completingr to cell
c. We require that

P

c∈reg(r) pc,r = 1. An allocation policyA is a
procedure that takes as its input a fact table consisting of imprecise

392

M
A

N
Y

T
X

C
A

W
e
s
t

E
a
s
t

A
L

L

L
o
c
a
ti
o
n

Civic Camry

TruckSedan

SierraF150

ALL

Automobile

Model

Category

R
e
g
io

n

S
ta

te

6

11

10

8

7

9

1413

ALL

A
L
L

1

3
2

2 1 3

1 2

3

4
5

12

Figure 1: Multidimensional View of the Data

facts and produces as output the allocations of all the imprecise
facts in the table. The result of applying such a policy to a database
D is an extended databaseD∗. The schema ofD∗, referred to
as theExtended Data Model(EDM), contains all the columns ofD
plus additional columns to keep track of the cells that have strictly
positive allocations. Suppose that factr ∈ D has a unique identifier
denoted by ID(r). Corresponding to each factr ∈ D, we create
a set of fact(s)〈ID(r), r, c, pc,r〉 in D∗ for everyc ∈ reg(r) such
that pc,r > 0 and

P

pc,r = 1. Observe, each precise fact has a
single allocation of 1 for the cell to which it maps. 2

3.2 Allocation Policy Template
In [6], we demonstrated how the space of allocation policiescon-

sidered in [5] can be mapped to the followingallocation policy tem-
plate, which is presented below. Each allocation policy instantiates
this template by selecting a particularallocation quantitythat will
be used to assign the allocation weights. For example, EM-Count
allocation (from [6]) uses fact count as the allocation quantity. The
template is instantiated with∆t(c) equal to the “count” of facts
which map to cellc (i.e., the sum ofpc,r values for all factsr with
non-zero allocation to cellc).

The selection of an allocation quantity corresponds to making an
assumption about the correlation structure present in the data that
should be reflected in the assignment of allocations, and details are
provided in [6].

Definition 5 (Allocation Policy Template). Assume allocation pol-
icy A has been selected, which determines the associated allocation
quantity. For each cellc, let δ(c) be the value of the allocation
quantity assigned toc. Let ∆t(c) be the updated quantity assigned
to c during iterationt to account for all imprecise factsr over-
lappingc. Let Γ(t)(r) denote the quantity associated with factr.
Then, for an imprecise fact tableD, the set ofupdate equationsare
generated from the following template:

Γ(t)(r) =
X

c′: c′∈reg(r)

∆(t−1)(c′) (1)

∆(t)(c) = δ(c) +
X

r: c∈reg(r)

∆(t−1)(c)

Γ(t)(r)
(2)

For each cellc that is a possible completion of factr, the alloca-
tion of r to c is given bypc,r = ∆(t)(c)/Γ(t)(r) 2

For a given imprecise fact tableD, the collection of update equa-
tions is specified by instantiating this template with the appropriate

quantities for each factr and cellc. Every imprecise factr ∈ D
has an equation forΓ(t)(r), and likewise every cellc ∈ C has an
equation∆(t)(c).

Observe the equations generated by this framework are iterative,
as denoted by the superscripts. The equations in the above tem-
plate can be viewed as defining anExpectation Maximization (EM)
framework (see [5, 6] for the details). Expression 1 of the template
encodes the E-step (Expectation) and Expression 2 is the M-step
(Maximization). In numerical EM, each∆(c) is evaluated itera-
tively until the values between successive iterations stopchanging

(i.e., the value converges). Formally, letε = |∆(t)(c)−∆(t+1)(c)|

∆(t)(c)
. If

ε < k, wherek is a pre-determined constant, then we say the value
for ∆(c) hasconverged. When∆(c) for all cellsc have converged,
the iteration stops. At this point, the final allocation weights pc,r

are available.
Further details regarding the mathematical justification for this

space of iterative allocation policies is covered in [5, 6],and will
not be revisited in this work. However, we will describe the intu-
ition behind such iterative allocation policies. Allocation policies
should take into account interactions between overlappingimpre-
cise facts. Consider imprecise factsp11 andp6 from the example
in Figure 1. Intuitively, the allocation ofp11 should affect the allo-
cation ofp6, and symmetrically, the allocation ofp6 should affect
the allocation ofp11 since these facts overlap. However, it should
be clear that different allocation weights are obtained forthe com-
pletions of factsp6 andp11 in theEDB depending on the relative
order in which the facts are allocated. Iterative allocation policies
avoid this issue because they will converge to the same allocation
weights regardless of the order in which the facts are allocated.
Thus, allocation can be considered a set-based operation ifiterative
allocation policies are used.

3.3 Allocation Graph and Basic Algorithm
The template given above only enumerates the set of allocation

equations, and provides no insight into the operational aspects re-
garding their evaluation. For example, the required accesspatterns
of cell dataC and imprecise factsI in D are not clear, and such in-
formation is necessary for designing efficient, scalable algorithms.
To address this, we present an operational framework using abi-
partite graph-based formalism, calledallocation graph.

Definition 6 (Allocation Graph). Assume allocation policyA has
been selected to handle imprecision in fact tableD. Let I denote
the set of imprecise facts inD andC denote the set of cells repre-
senting possible completions of facts inI , as determined byA.

Theallocation graphof D (w.r.t. A) is defined as follows: Each
cell c ∈ C corresponds to a node shown on the left side of Figure
2, while each imprecise fact inr ∈ I corresponds to a node shown
on the right side. There is an edge(c, r) in G if and only if c is a
possible completion ofr. (i.e.,c ∈ reg(r)). 2

In the above definition, the set of cellsC depends on the selected
allocation policyA, and isnot equivalentto the set of precise facts
in D. The values ofδ(c) for each entryc may be determined from
the precise facts, but this is not required. For example, each allo-
cation policy in [5, 6] used one of the following choices: theset
of cells mapped to by at least one precise fact fromD, the union
of the regions of the imprecise facts, or the cross product ofbase
domains for all dimensions (i.e., every possible cell). Regardless
of the choice forC made byA, the allocation graph formalism can
still be used. The allocation graph for the sample data in Table 1
(w.r.t. EM-Count allocation policy) is given in Figure 2.

Notice that the allocation graph is bipartite. We now present an
allocation algorithm templatecalled the Basic Algorithm that de-

393

<MA,Sedan>p6

<MA,Truck>p7

<CA,ALL>p8

<East,Truck>p9

<West,Sedan>p10

<ALL,Civic>p11

<All,F150>p12

<West,Civic>p13

<West,Sierra>p14

<MA,Civic>

<MA,Sierra>

<NY,F150>

<CA,Civic>

<CA,Sierra>

c1

c2

c3

c4

c5

S1:<State,Category>

S2 :<State, ALL>

S3 :<Region,Category>

S4 :<ALL,Model>

S5 :<Region,Model>

C:<State,Model>

Figure 2: Allocation graph for data in Table 1

scribes how to evaluate the collection of allocation equations gener-
ated byA in terms of processing these edges inG (i.e., processing
terms in the allocation equations). The pseudocode is listed in Al-
gorithm 1.

Theorem 1. For a given imprecise fact tableD and selected al-
location policyA, let G be the resulting allocation graph forD
(w.r.t. A). The processing of edges inG performed by the Basic
Algorithm is equivalent to evaluating the collection of allocation
equations generated byA. 2

Proof. By construction,G contains an edge(c, r) between cellc
and imprecise factr if and only if c is a possible completion ofr.
In terms of the set of allocation equations, each edge(c, r) ∈ G

corresponds to exactly one term in both theΓ(t)(r) equation for
factr and the∆(t)(c) equation for cellc. Consider lines 6 – 9 of the
Basic Algorithm. It should be clear these loops visit each edge in
G exactly once. This is equivalent to evaluating the corresponding
term in aΓ(t)(r) equation for each imprecise factr exactly once,
which is correct.

Similarly, lines 11 – 14 correspond to evaluating∆(t)(c) equa-
tions for all cellsc, with the processing of edges and update in lines
13 – 14 corresponding to evaluating the equation for cellc (gener-
ated from allocation template Equation 2).

Thus, processing edges inG is equivalent to evaluating these
equations. Notice each iterationt requires two passes over the
edges ofG, and during each pass, each edge ofG is processed
exactly once. Moreover, these passes cannot be replaced by asin-
gle pass because the second pass uses values computed forΓ(t) in
the first pass of thecurrent iterationt to update the values for∆(t)

in the second pass.

3.4 Scalability of The Basic Algorithm
As presented, the Basic Algorithm has several issues scaling to

large fact tables (i.e., fact tables such thatC andI are larger than
main memory). From the pseudocode in Algorithm 1, the nested
loops in lines 6 – 9 require for each imprecise factr access to all
cellsr overlaps. Similarly, the nested loops in lines 11 – 14 require
access to all imprecise factsr ∈ I overlapping cellc for each cell
c. In general, there exists no ordering of eitherC or I providing
the necessary locality Basic requires for either set. We refer to this
problem as thelocality issue.

Algorithm 1 Basic Algorithm
1: Input: Allocation graphG with cellsC and imprecise factsI
2: for (each cellc) do
3: ∆(0)(c)← δ(c)

4: for (each iterationt until all ∆(t)(c) converge)do
5: // Computet-th step estimate forΓ’s
6: for (each imprecise factr) do
7: Γ(t)(r)← 0
8: for (each cellc s.t. edge(c, r) ∈ G) do
9: Γ(t)(r)← Γ(t)(r) + ∆(t−1)(c)

10: // Computet-th step estimate for∆’s
11: for (each cellc) do
12: ∆(t)(c)← δ(c)
13: for (each imprecise factr s.t. edge(c, r) ∈ G) do
14: ∆(t)(c)← ∆(t)(c) + ∆(t−1)(c)/Γ(t)(r)

A second orthogonal issue arises from the iterative nature of the
allocation algorithm. Assume a “good” ordering of the cell dataC
and imprecise factsI addressing the locality issue were available.
Even then, bothC andI need to be scanned completelyfor each
iteration to execute the Basic Algorithm. This issue, which we refer
to as theiterative issue, is significant in practice, since a non-trivial
number of iterations are required before the allocation algorithm
completes (i.e., the allocation weights converge)

The approaches presented to address the locality issue in Sec-
tion 4 are incorporated into the Independent (Section 5) andBlock
algorithms (Section 6). Section 7 details our solution to the iter-
ative issue, which serves as the basis for the Transitive Algorithm
presented in Section 8.

4. ADDRESSING THE LOCALITY ISSUE
In this section, we present strategies addressing the locality issue

which serve as the basis for creating I/O aware variants of the Basic
Algorithm. In the pseudocode, listed in Algorithm 1, noticeeach
iteration involves two passes over all edges in allocation graphG
(i.e., one pass for the nested loops in lines 6 – 9 and a second for
the nested loops in lines 11 – 14.) Addressing the locality issue in-
volves carefully ordering the computations for each pass. In terms
of G, this could be considered determining the best order for pro-
cessing edges inG. We first consider whether we can partition the
imprecise facts in some clever manner so that each group of im-
precise facts can be processed separately within each pass.Before
we study what partitions lead to efficient I/O computations,we first
address the correctness of the proposed approach.

Theorem 2(Ordering Of Edges). Suppose the update equation for
∆(t)(c) is computed using a operator that is commutative and as-
sociative (e.g., sum). LetP be a partitioning of the edges ofG into
s subgraphsG1, G2, . . . , Gs.

Then, the final values for∆(t)(c) andΓ(t)(r) are unaffected by:
1) the choice of partitioningP , 2) the order in which subgraphs
are processed or 3) the order in which edges within a subgraphare
processed. 2

The above theorem shows that we are free to choose any par-
titioning of the imprecise facts into groups, and can arriveat the
same result. Pseudocode for a variant of the Basic Algorithmuti-
lizing this partitioning concept, calledPartitioned Basic, is given in
Algorithm 2. Observe the nested loops in lines 11 – 12 iterateover
cells then records. From the result in Theorem 2, this ordering is
permissable as long as each edge in G is visited exactly once.For
ease of presentation, details regarding initialization and the update
equation have been omitted.

394

Corollary 1. From Theorem 1 and Theorem 2, the Partitioned Ba-
sic Algorithm computes the same results as the Basic Algorithm.
2

Algorithm 2 Partitioned Basic Algorithm
1: Input: Allocation graphG with cellsC and imprecise factsI
2: Input: PartitioningP1, P2, . . . Ps of the imprecise factsI
3: for (each iterationt until all ∆(t)(c) converge)do
4: // Computet-th step estimate forΓ
5: for (each partitionPi) do
6: for (each cellc) do
7: for (each recordr in Pi s.t. (c, r) ∈ Gi) do
8: // UpdateΓ(t)(r)
9: // Computet-th step estimate for∆

10: for (each partitionPi) do
11: for (each cellc) do
12: for (each recordr in Pi s.t. (c, r) ∈ Gi) do
13: // Update∆(t)(c)

4.1 Summary Tables
In order to study appropriate partitions of the imprecise facts for

the Partitioned Basic Algorithm, it will be helpful to grouptogether
imprecise facts according to the levels at which the imprecision
occurs. We formalize this notion below.

Definition 7 (Summary Tables). Fix an allocation graphG, and let
I be the set of imprecise facts andC be the set of cells. Partition
the facts inI by grouping together facts inI that have an identical
assignment for the vector of level attributes. We refer to each such
grouping of the imprecise facts as asummary table. Note that each
summary table is associated with a distinct assignment to the level
attributes. Since all cells inC correspond to the lowest level of the
dimensional hierarchies, for convenience we refer toC as thecell
summary table. 2

Intuitively, the summary tables are “logical” groupings which are
similar to the result of performing a Group-By query on the level
attributes. The main difference is that summary tables onlycontain
entries corresponding to either imprecise facts inD or cells inC.
As a consequence, there is a partial ordering between summary ta-
bles similar to the one between Group-By views, described in[14].

Definition 8 (Partial Ordering of Summary Tables (�)). Let S be
the collection of summary tables forD. The vector of level val-
ues for summary tableSi, referred to aslevel-vector, is denoted as
level(Si) (i.e., all facts inSi have level-vectorlevel(Si)). Then,
for eachSi, Sj ∈ S , Si � Sj iff for each positionp in level(Si),
level(Si)p < level(Sj)p and there does not exist anySk ∈ S such
thatSi � Sk � Sj . 2

We note that that� is transitive, but not closed sinceS does not
include every possible summary table.

Since each summary table is associated with a unique level vec-
tor, it is possible to materialize the separate summary tables using
a single sort. The sorting key is formed by concatenating thelevel
and dimension attributes. This “special sort”, which we refer to as
sorting D into summary table order, can be thought of as simulta-
neously accomplishing the following: 1) partition the precise and
imprecise facts, 2) process the precise facts to materialize C (i.e.,
determineδ(c) for eachc ∈ C, and 3) further partition the im-
precise facts into the separate summary tables. In the descriptions
of the algorithms that follow, we assume this pre-processing step
has been performed. In terms of I/O operations, it is equivalent to
sortingD.

Example 2. Consider the sample data in Table 1, with the EM-
Count allocation policy. For this data set, there are 6 summary
tables—the cell summary tableC and 5 imprecise onesS1, . . . , S5—
as indicated by labels for each of the tables in Figure 3. The multi-
dimensional representation for each summary table is shown. Each
summary table is labeled by the level-vector associated with that
table. For example, the summary table (State,Category) consists of
all facts whose level-vector equals< 1, 2 >. Notice the entries in
C arenot precise facts, but correspond tocells. 2

c1

c4 c5

S4: <3,1>
<ALL, Model>

S2: <1,3 >
<State, ALL>

S1: <1,2>

<State, Category>

11

6 7

8

S5: <2,1>

<Region, Model>

S3: <2,2>
<Region, Category>

9

10

1413

M
A

N
Y

T
X

C
A

12

CamryCivic SierraF150

C: <1,1>

<State, Model>

c3

c2

Figure 3: Summary Tables for Example Data (with partial or-
der indicated)

Why are summary tables important in the context of the Parti-
tioned Basic Algorithm? The answer is that computing a single
pass for each summary tableSi can be achieved usingone scanof
Si andC, as shown below.

Theorem 3. For every imprecise summary tableSi, there exists a
sort of Si and the cell summary tableC such that a single pass
through the edges of the subgraph betweenC andSi can be exe-
cuted using a single scan ofC andSi. 2

The proof of the above theorem relies on the fact that the above
subgraph has a simple structure: every cellc is overlapped by at
most one imprecise fact inSi. Since the degree of each cellc is at
most 1 in the subgraph betweenC andSi, it is possible to order
corresponding entries inC andSi so that for every imprecise fact
r ∈ I , cells overlapped byr (i.e., nodes adjacent tor in G) form
contiguous blocks, and these blocks are pairwise disjoint across the
imprecise facts. The sort order can be achieved by sorting ona key
formed by concatenating together the level and dimension attribute
vectors. The Independent algorithm described in the next section
builds on this idea by considering sort orders that are consistent
with multiple summary tables so that bigger groupings of imprecise
facts are possible.

4.2 Partitions
What happens when the sort order ofC is not consistent with the

imprecise summary table? In this case, we no longer have pairwise
disjoint contiguous blocks. This is easily seen in the allocation
graph in Figure 2. Let the order on the cells be from top to bot-
tom as shown in the figure, and consider summary tableS4 with

395

imprecise factsp11 andp12. The cells adjacent top11 arec1 and
c4. However, any contiguous block including these two cells also
contains cellc3, which is adjacent top12, and Thus, it appears we
have to re-sortC to processS4. However, if enough space in mem-
ory were available to simultaneously hold all imprecise facts inS4

whose processing has not been finished, it is still possible to use the
current sort order. We now formalize this intuition.

Definition 9 (Partition Size). Let C be a cell summary table sorted
with respect to some sort orderL and letSi be a summary table.
We say that the division of cells inC into contiguous blocks (i.e.,
respecting the sort order) islegal if for every imprecise fact, all of
its neighbors inG are within exactly one of the contiguous blocks.
Thepartition sizeof Si with respect to the sort orderL onC is the
largest number of facts that map to the same contiguous blockof
cells given the best legal division of cells into contiguousblocks,
i.e., this number must be as small as possible. 2

Theorem 4. Let C be a cell summary table sorted with respect
some sort orderL (i.e., ordering of the values in the level and di-
mension attribute vectors) and letSi be a summary table. Then a
single pass on the subgraph betweenC andSi can be executed us-
ing a single scan ofC andSi provided that the memory available
is as large as the partition size ofSi with respect to sort orderL on
C. 2

Thus, the partition size of summary tableSi is the largest amount
of memory that needs to be reserved for processingSi in a single
pass, and depends on the chosen sort order of the dimensionsL.
We make the observation that the partition size for eachSi can be
computed during the step whereD is sorted into summary table
order as follows.

Consider summary tableSi. During the final “merging step” of
the sort into summary table order, each consecutive pair of entries
r1, r2 in the final sortedSi are compared to determine their order-
ing in Si. Before this comparison takes place, for eachr ∈ Si,
we determine the smallest and largest indexes of entries inC such
that edge(c, r) ∈ G. These are denotedr.first and r.last re-
spectively. Observe that a partition boundary forSi can only occur
between consecutive entriesr1, r2 in the final sorted order ofSi if
r2.first > r1.last.

The inequality condition holding signifies that all edges have
been visited forr1 before the first edge ofr2 will be visited, and
corresponds to the equationΓ(t)(r1) being completely evaluated
(i.e., all terms in the equations seen) before evaluation ofΓ(t)(r2)
starts (i.e., first term in the equation is seen).

Example 3. Consider a “pathological” fact table similar to the run-
ning example, but which has every possible fact in each imprecise
summary table and generates cell summary tableC containing a
δ(c) entry for all possible cells. Figure 4 shows the multidimen-
sional representation of this new example fact table after it has
been sorted into summary table order. Assume the sort orderL is
{Location, Automobile}, and that summary table entries are sorted
in the order indicated by the labels on each entry. The sort order of
the cells isc1, . . . , c16.

From Theorem 4,anyof theSi can be processed in a single scan
of bothSi andC if enough memory is available to hold the block of
entries with the “thick” edges for eachSi. For example,S1 andS2

require 1 entry,S2 andS4 require 4 entries, andS3 requires 2 en-
tries. This number of required entries is the correspondingpartition
size for eachSi respectively. 2

The Block algorithm, described in Section 6, exploits this idea by
finding a single sort that can be used to process all summary tables

S4: <3,1>
<ALL, Model>

S2: <1,3 >
<State, ALL>

S1: <1,2>

<State, Category>

S5: <2,1>

<Region, Model>

S3: <2,2>
<Region, Category>

N
Y

T
X

C
A

M
A

CamryCivic SierraF150

C: <1,1>

<State, Model>
c2c1 c4c3

c6c5 c8c7

c10c9 c12c11

c14c13 c16c15

21 43

65 87

21

43

65

87

21 43

1 2

3 4

1

2

3

4

Figure 4: Illustrative Example of Determining Partition Si zes

in multiple scans, where each scan involves processing as many
summary tables as possible whose total partition size fits within
available memory.

5. INDEPENDENT ALGORITHM
In this section we introduce theIndependentalgorithm which

improves upon the Partitioned Basic Algorithm by exploiting struc-
ture of the summary table partial order.

5.1 Summary Table Structure
We now re-consider the partial order between summary tables

noted in Section 4.1. First, we generalize Theorem 3 to groups of
summary tables.

Theorem 5. Consider a path through the summary table partial
order, containing in order summary tablesC � S1 � S2 � · · · �
Sk. There exists a sort orderL over all Si in the path and the cell
summary tableC such that all edges in the subgraph ofG between
theSi andC can be processed by executing a single simultaneous
scan of theSi andC. 2

After performing the step whereD is sorted into summary table
order, we have information about which imprecise summary tables
have entries corresponding to facts fromD, and can construct the
summary table partial order. For a given summary table partial or-
der, the result from [15] can be trivially adapted to providea lower
bound on the number of chains in the partial order, and to identify
the tables in each chain as well. The lower bound is the lengthof
the longest anti-chain in the summary table partial order (i.e., the
“width” W), which is is the minimum number of sorts required of
C. Given the summary tables in a chain, the results from [15] can
be used to obtain the required sort order to process the chain.

5.2 Independent Details
The pseudocode for the Independent algorithm is given in Algo-

rithm 3. For ease of presentation, the initialization stepsare omit-
ted, since they are identical to those described in the BasicAlgo-
rithm. We assume thatD has been sorted into summary table order
and summary table partial order information is available.

396

For each summary table in the chain (including the precise sum-
mary tableC) we only need enough memory to hold a single record.
Since we consider records in page-sized blocks, we actuallyper-
form I/Os for an entire page of records. However, we refer to the
single current record for each summary table as thesummary table
cursor forSi, which can be thought of as a pointer to a specific en-
try in the buffer forSi. The pseudocode contains the step “update
cursor onSi to recordr that could coverc.” Details are imple-
mentation specific and involve examining the dimension attribute
values ofc andr to find single fact inSi that coversc.

Corollary 2 (Correctness of Independent Algorithm). From Theo-
rems 2 and 4, the Independent Algorithm computes the same results
as the Partitioned Basic Algorithm. 2

Algorithm 3 Independent Algorithm
1: Input: Cell-level summary tableC, Imprecise Summary Table Group-

ingsS, Sort-Order ListingsL
2: for (each iteration t until all∆(t)(c) converge)do
3: for (each summary-table groupSg ∈ S) do
4: SortC and summary-tables inSg into sort-orderLg

5: // Compute t-th step estimate forΓ
6: for (each cellc) do
7: for (each summary tableSi ∈ Sg) do
8: Update cursor onSi to recordr that could coverc
9: if (r 6= NULL) then

10: Γ(t)(r)← Γ(t)(r) + ∆(t−1)(c)
11: // Compute t-th step estimate for∆
12: for (each summary table groupSg ∈ S) do
13: for (each cellc) do
14: for (each summary tableSi ∈ Sg) do
15: Update cursor onSi to recordr that could coverc
16: if (r 6= NULL) then
17: ∆(t)(c)← ∆(t)(c) + ∆(t−1)(c)/Γ(t)(r))

Following our convention, we omit the costs of sortingD into
summary table order and the final cost of writing out the Extended
DatabaseD∗, since these are common to all algorithms.

Theorem 6. Let |C| be the size ofC in pages andI the combined
total size in pages of all imprecise summary tables. LetW be the
length of the longest anti-chain in the summary table partial order,
andT the number of iterations. The Independent Algorithm in the
worst case requires7T (W |C| + |I |) I/Os. 2

Proof. We make the standard assumption that external sort requires
two passes over a relation, with each page being read and written
during a pass. Each summary table inSg andC are sorted into
the corresponding sort-order ofLg. Then, two passes are required
over each summary table inSg andC. During the first pass, each
page ofC is read only, and during the second pass, each page ofC
is read and written. Thus, the two allocation passes require3 I/Os
per page inC. Similarly, each page in an imprecise summary table
requires 3 I/Os: a read and write for the first pass, and only a read
for the second pass.

The total number of required I/Os per iteration is given by the
following expression.

PW

i=1[sort C + sort of each imprecise sum-
mary table in summary table group i + 2 scans of C] + [2 scans of
each summary table in group i]

= 4W |C| I/Os + 4|I | I/Os + 3W |C| I/Os + 3|I | I/Os. It is a
straightforward exercise to simplify this expression to the one given
in the theorem.

6. BLOCK ALGORITHM

In practice, the cost of repeatedly sorting the cell summarytable
C is likely to be prohibitive. In general, the number of cells in
C will be much larger than the number of records in the imprecise
summary tables combined. For the common case whereC does not
fit into memory, each sort ofC is equivalent to reading and writing
every page ofC twice, or 4|C| I/Os.

What was the motivation for the repeated sorts used in Indepen-
dent? During any given point of execution, we only need to keep in
memory records ofSi for which we have seen at least one cell in
C and may see at least one more. Re-sortingC for each summary
table group (i.e., the set of summary tables on a path throughthe
summary table partial order) reduced this to 1 record for each Si

andC.
Building on the intuition presented in Section 4.2, we observe

that any summary table can be processed using the same sort or-
der if we can hold partition size ofSi records in memory for each
Si. Conceptually, this is equivalent to increasing the size ofthe
summary table cursor from a single record to a contiguous block of
records, which we called thepartition ofSi. Only a single partition
of summary tableSi needs to be held in memory as we scanC. We
note the partition size forC is always 1.

Algorithm 4 Block Algorithm
1: Method: Block Algorithm
2: Input:Cell-level summary tableC, Imprecise Summary Table Group-

ingsS, Allocation PolicyA
3: for (each iterationt until all ∆(t)(c) converge)do
4: for (each summary-table groupSg ∈ S) do
5: for (each cellc in C) do
6: for (each summary tableSi ∈ Sg) do
7: Update cursor onSi to partitionp that could coverc
8: Find recordr in p that could coverc
9: //If p contains such anr, perform allocation

10: if (r 6= NULL) then
11: Γ(t)(r)← Γ(t)(r) + ∆(t−1)(c)
12: for (each summary table groupSg ∈ S) do
13: for (each cellc in C) do
14: for (each summary tableSi ∈ Sg) do
15: Update cursor onSi to partitionp that could coverc
16: Find recordr in p that could coverc
17: // If p contains such anr, perform allocation
18: if (r 6= NULL) then
19: ∆(t)(c)← ∆(t)(c) + ∆(t−1)(c)/Γ(t)(r)

6.1 Implementation Details for Block
The complete pseudocode for Block is given in Algorithm 4. The

partition size for summary tableSi can be exactly determined dur-
ing the step whereD is sorted into summary table order, as de-
scribed in Section 4.2.

We assume the imprecise summary tablesSi have been parti-
tioned into a collection of summary table groupsS such that for
each groupSg ∈ S , the sum of the partition sizes forSi ∈ Sg is
less than|B|, the size in pages of memory bufferB. Finding the
partitioning of summary tables resulting in the smallest number of
summary table groups is an NP-complete problem. This problem
can trivially be reduced to the 0-1 Bin Packing problem for which
several well-known 2-approximation algorithms exist [8].

The step “update cursor onSi to partitionp that could coverc”
(lines 7 and 15) is implemented in a similar fashion to the analo-
gous step in Independent. Following our convention, we omitthe
costs of sortingD into summary table order and the final cost of
writing out the Extended DatabaseD∗, since these are common to
all algorithms.

Theorem 7. Let |B| be the size of the buffer, and|P | is the sum

397

of the partition sizes for all imprecise summary tables. LetT be
the number of iterations being performed, and|S| the number of
summary table groups. The total number of I/Os performed by the
Block algorithm is3T (|S||C| + |I |) I/Os, whered |P |

|B|
e ≤ S ≤

2d |P |
|B|

e. 2

Proof. The smallest possible number of summary table groups|S|

isd |P |
|B|

e, and the actual value for|S| returned by the 2-approximation
algorithm is at most twice this quantity. For each iteration, the total
number of required I/Os per summary table group is given by the
following expression

P|S|
i=1[2 scans of C] + [2 scans of each sum-

mary table in group i]. Each summary table appears in exactlyone
summary table group. As explained in the proof for Theorem 6,the
two scans of each summary table require 3 I/Os per page.

7. ADDRESSING THE ITERATIVE ISSUE
Both the Independent and Block Algorithms address the local-

ity problem, and reduce the number of I/O operations required in
each iteration. However, for these algorithms, the work performed
for an iteration is independent of work for subsequent iterations.
Specifically, once a cell or imprecise record is read into memory
for an iteration, only work specific to that iteration is performed.
Additionally, for both Block and Independent, each subsequent it-
eration involves the same amount of work as the first iteration of
the algorithm.

In this section, we consider improving the Block algorithm to
exploit iterative locality, allowing the re-use of an I/O operation
across several iterations. Once an imprecise recordr has been
read into memory, we would like to determine the final alloca-
tion weightspc,r beforer is written back to disk. More gener-
ally, we consider the following problem:Is it possible to partition
the allocation graph into subgraphs so that each subgraph can be
processed independently for all iterations?If so, we obtain a sig-
nificant improvement because the smaller subgraphs which fitin
memory can be processed fully without incurring any additional
I/O costs for all iterations. The remaining large subgraphscan be
handled by reverting to the external Block algorithm described ear-
lier.

To address this problem, we re-examine the Basic Algorithm,
listed in Algorithm 1. For the initial iteration of the algorithm,
consider a fixed imprecise factr. Which quantities aredirectly
involved in computing the updated∆(1)(c) values for cellsc in
reg(r) (i.e., cells representing possible completions ofr could com-
plete to)? In terms ofG, using a quantity associated with a node
is equivalent totouchingthat node. From line 9, we seeΓ(0)(r) is
computed using∆(0)(c) values (i.e., the corresponding nodes inG
are touched) for all cellsc adjacent tor in G. Similarly, in line 14,
the nodes touched to compute∆(1)(c) are the cellc and imprecise
factsr adjacent toc in G. More generally, we have the following:

Theorem 8. Fix a set of imprecise factsI ′ ⊆ I . Let C′ = {c |
(c, r) for somer ∈ I ′} denote the cells that are the neighbors of
the facts inI ′. Then, the nodes that are touched in an iterationt′ in
order to compute the valuesΓ(t′)(r) for all r ∈ I ′ in the first pass
belong toI ′ ∪ C′. Similarly, for a set of cellsC′, the nodes that
are touched in order to compute the values∆(t′)(c) for all c ∈ C′

in the second pass belong toC′ and the neighbors ofC′ in G, I ′′.
Thus, the set of nodes touched per iteration isI ′ ∪ C′ ∪ I ′′. 2

Example 4. In the allocation graph for the sample data in Figure
2, assume we initializeI ′ = p9. Then,C′ = c2, c3, andI ′′ =
p7, p12. 2

Intuitively, the set of nodes touched for a particularI ′ increases
in each subsequent iteration, until all nodes reachable from I ′ are
visited. WhenI ′ is initialized to a single noder in the graph, this
set of nodes is the strongly connected component of the allocation
graphG containingr. Since edges inG are undirected, all con-
nected components are strongly connected as well.

Example 5. In the allocation graph for the sample data in Figure 2,
there are two connected components:CC1 = {p1, p4, p5, p6, p8,
p10, p11, p13, p14} andCC2 = {p2,p3,p7,p9,p12}, with “thick”
edges in the figure corresponding to edges inCC2. 2

Theorem 9. Let P be a partitioning of the edges ofG into sub-
graphsG1, G2, . . . , GS such that each subgraph corresponds to
a connected component ofG. Then, running the Basic Algorithm
with G as the input is equivalent to running the Basic Algorithm on
each componentG1, G2, . . . , GS separately across all iterations.
2

Notice the above theorem differs from Theorem 2, which only
describes ordering issueswithin a single iteration. This suggests
that we should consider partitioningG into the connected compo-
nents, and the next section presents the Transitive Algorithm based
on this idea.

8. TRANSITIVE ALGORITHM
The complete pseudocode for the Transitive algorithm is listed in

Algorithm 5. At the highest level, the Transitive Algorithmhas two
parts. The first identifies connected components in the allocation
graph (steps 1 and 2), while the second processes the connected
components by performing allocation and creating the EDB entries
for facts in the connected component (step 3).

For ease of explanation, we refer to both cellsc and imprecise
factsr as tuples, unless they are treated asymmetrically. We in-
troduce for each tuplet a connected component idccid indicating
which connected componentt is assigned to. Notice Transitive as-
signst a ccid only once, based on information available whent
is first considered. However, thisccid may require modification.
What is actually a single connected component may be initially
identified as several separate components, with tuples in each (in-
correctly) assigned differentccids. These multiple connected com-
ponents need to be “merged” by “implicitly” updating theccid of
all tuples to a single value.

This “implicit” merging is accomplished by introducing an aux-
iliary memory-resident integer arrayccidMap , whereccidMap[i]
corresponds to the “true”ccid of the component assignedccid
i. Our convention is to assign the new “merged” component the
smallestt.ccid of anyt. The maximum number of entries inccidMap
is the smaller of the following: number of cells inC or number im-
precise facts inr, which is comparable to memory-resident data
structures used by existing Transitive Closure algorithms[10, 2].

The first step (lines 8 – 19) identifies connected components by
assigning accid to every tuplet and updatingccidMap appropri-
ately. The processing of cells and imprecise facts for this step is
identical to a single pass during one iteration of the Block algo-
rithm. In the second step (lines 21 – 24), all tuples are sorted into
component orderby using the sort keyccidMap[t.ccid]. Finally,
in step 3 (lines 26 – 34), each connected component is processed,
and the EDB entries for tuples in the component are generated.
Connected componentsCC smaller than the bufferB are read into
memory, with allocation performed using an in-memory variant of
the Block Algorithm, and the EDB entries for tuples inCC are
written out. IfCC is larger thanB, then the external Block algo-
rithm (described in Section 6) is executed, and afterwards,the final

398

Algorithm 5 Transitive Algorithm
1: Method: Transitive Algorithm
2: Input: Allocation PolicyA, Cell summary tableC, Imprecise Sum-

mary Table GroupingsS
3: Let |c| be number of cells,|r| number imprecise facts
4: ccidMap← integer array of size min{|c|, |r|}
5: for (i = 1 to ccidMap.length) do
6: ccidMap[i] = i
7: // Step 1: Assign ccids to all entries
8: for (each summary table groupS ∈ S) do
9: for (each cellc ∈ C) do

10: currSet← {set ofr from Si ∈ S s.t. (c, r) ∈ G} ∪{c}
11: currCcid← {set oft.ccid values fort ∈ currSet}
12: if (currCcid is empty)then
13: set t.ccid to next available ccid for allt ∈ currSet
14: else
15: minCcid ← smallest value for ccidMap[t.ccid] wheret ∈

currSet and t.ccid is assigned
16: for (all t ∈ currSet with unassignedt.ccid) do
17: t.ccid← minCcid
18: for (eachcid ∈ currCcid) do
19: ccidMap[cid]←minCcid
20: // Step 2: Sort Tuples into Component Order
21: for (i= 1 to ccidMap.length)do
22: Assign ccidMap[i] = k where k is smallest reachable ccid from

ccidMap[i]
23: Let R = C ∪ I
24: Sort tuplest ∈ R by key ccidMap[t.ccid]
25: // Step 3: Process connected components
26: for (each connected component CC)do
27: if (|CC| < B) then
28: readCC into memory
29: evaluateA for tuples inCC
30: write out EDB entries forCC
31: else
32: for (each iteration t)do
33: perform Block Algorithm on tuples inCC
34: write out EDB entries forCC

EDB entries are generated. Following our convention, we omit the
costs of sortingD into summary table order and the final cost of
writing out the EDBD∗, since these are common to all algorithms.
Additionally, we assumeccidMap remains in memory at all times
outside bufferB.

Theorem 10. Let |P | be the sum of the partition sizes for all sum-
mary tables and|B| be the size of the memory buffer (both given
in pages). LetT be the number of iterations being performed, and
L be the total number of pages containing large components (i.e.,
components whose size is greater than|B|).

The total number of I/O operations performed by the Transitive
Algorithm for all iterations is2(|S||C| + |I |) + 5(|C| + |I |) +

3|L|(T + 1), whered |P |
|B|

e ≤ S ≤ 2d |P |
|B|

e. 2

Proof. As with Block, the smallest possible number of summary
table groups|S| is d |P |

|B|
e, and the actual value for|S| returned by

the 2-approximation algorithm is at most twice this quantity.
For the first step, we are required to scanC for each of the|S|

summary table groups and each imprecise summary tableSi once
to assignccids to all tuples, for a total cost of2(|S||C| + |I |).
The second step requires an external sort ofC and allSi based on
ccid value, for a total of4(|C| + |I |) I/Os. The final step involves
processing the connected components. Components smaller than
|B| are read into memory, all iterations of allocation are evaluated.
Only the generated EDB entries are written out, with total cost of
(|C| + |I | − |L|) I/Os. In contrast, each large component must
be re-sorted again into summary table order (total cost4|L| I/Os

for all large components), then external Block algorithm isused on
each large component (total cost3T |L| I/Os for all components).
Combining these terms together yields the expression in thetheo-
rem.

Observe the only term in the cost formula dependent on the num-
ber of iterationsT also depends on the total size of the large compo-
nents|L| as well. Thus, if there are no large connected components
in G (i.e., no components with size larger than|B|), the number
of I/O operations would becompletely independent of the number
of iterations. Since we have established that using the connected
components for evaluating the allocation equations is correct, all
that remains to be shown is that Transitive correctly identifies these
components.

Theorem 11. The Transitive Algorithm correctly identifies the con-
nected components in the allocation graphG. 2

9. MAINTAINING THE EXTENDED DATABASE
The algorithms presented for creating the Extended Database can

be viewed as “end-to-end” algorithms. For a given imprecisefact
tableD, the entire Extended DatabaseD∗ is created by applying
the selected allocation policyA to D. Thus, we can viewD∗ as a
materialized viewover D resulting from this “special” query. An
interesting issue becomes efficiently maintaining the EDB view D∗

to reflect updates toD. At the highest level, an efficientview main-
tenance algorithm for the EDBD∗ performs two steps: 1) Identify
the entries in EDBD∗ whose allocation weight may change due to
the update and 2) calculate the updated allocation weight for each
of these entries. First, we present the following theorem.

Theorem 12(Updating the Extended Database). LetD be a given
fact table andD∗ be the EDB created by applying allocation policy
A to D. AssumeD is updated by inserting / deleting / updating a
fact r with reg(r) (i.e., region covered by factr is reg(r)).

Then, the only entries inf∗ ∈ D∗ whose allocation weights
possibly change correspond to factsf in connected components
which overlapreg(r)). 2

This theorem indicates identifying the entries inD∗ that may
change as a result of the update toD is a non-trivial task, and why
a straightforward application of prior work for materialized view
maintenance is not possible. However, this theorem does suggest
Step 1 of an EDB view maintenance algorithm can be supported
using a spacial index (e.g., R-tree [12]) over the bounding boxes
for the connected components in the allocation graph forD (i.e.,
for each connected component in the allocation graph, compute the
bounding box for all its tuples). Step 2 requires efficient access to
all facts inD in each connected component (and the corresponding
EDB entries). In other words,D needs to be sorted by connected
component id (ccid).

These items can be easily obtained from the result of the compo-
nent identification step of the Transitive Algorithm.After this step
completes,D has been sorted into connected component order (i.e.,
all facts inD in the same connected component are adjacent.) The
corresponding EDB entries will be generated in the same “ccid”
order, and can be stored in a separate relation. For each connected
component CC, we create the bounding box for the connected com-
ponent, and insert the bounding box for CC into the R-tree, with
the bounding box “pointing” to the corresponding facts inD and
existing entries inD∗. This step can be “piggybacked” onto the
component processing step of the Transitive algorithm.

Given this index, maintaining the EDBD∗ is accomplished as
follows: Let q correspond to the region for the updated fact inD.

399

1) Query the R-tree with regionq, and find all components whose
bounding boxes overlapq. 2) Fetch all facts fromD in these over-
lapped connected components. If many facts inD are in overlapped
connected components, then it may be more efficient to scanD en-
tirely. 3) Run Block algorithm over these facts to generate the up-
dated EDB entries, and replace the existing EDB entries withthe
new entries. 4) Update the R-tree appropriately. If the update to
D was an insertion or deletion, then the connected componentsin
the allocation graph may change, and the bounding boxes for over-
lapped bounding boxes in the R-tree may require updating to reflect
this change. This operation is equivalent to several updates to the
R-tree. For simplicity the algorithm is described in terms of updat-
ing a single fact. The generalization to handlingbatchupdates is
straightforward.

10. RELATED WORK
[5] provides an extensive list of related work for aggregating im-

precise and uncertain data. Although a great deal of recent work
has considered uncertain data [16, 9, 7], this work has not consid-
ered OLAP-style aggregation queries. A great deal of inspiration
for Independent and Block came from the PipeSort and Overlaps
algorithms introduced in [1]. Although the proposed algorithms
are similar to the respective existing work, there are significant
differences: 1) Both existing algorithms only handle precise fact
tables, and are used to materialize Group-By views in the OLAP
cube. 2) These algorithms only require processing in a single di-
rection, while Independent and Block require iteration in both di-
rections (i.e., from cells to imprecise facts, and imprecise facts to
cells). The Transitive Algorithm was inspired by algorithms for
computing the Direct Transitive Closure, notably [2, 10]. The main
difference between Transitive and existing work is that Transitive
exploits optimizations only possible for the class of undirected bi-
partite graphs, which the allocation graphG always is. Although
not explicitly stated in the description, the Transitive Algorithm can
easily be modified to handle non-hierarchical data (i.e., dimension
values have a general lattice structure instead of a “tree”).

Scaling Expectation Maximization [11] to disk resident datasets
was introduced in [4]. That work is based on the observation that
sufficient statistics for maintaining clusters can easily be held in
memory, and the E and M updating steps need only be applied to
these statistics as more data records are scanned. Such an approach
does not work for EM-based allocation policies, since the size of
the required summary statistics that must be held in memory is pro-
portional to the size of the largest connected component in the allo-
cation graph. As our experiments show, we cannot assume thisal-
ways fits into the memory buffer. The conditions for emergence of
a large connected component in general random graphs was stud-
ied in [3], but are not directly applicable in our setting since the
allocation graphs for an imprecise fact table are not random. The
presence or absence of any two edges are not independent events
(i.e., all edges in the graph for a particular imprecise factare either
present or absent).

11. EXPERIMENTS
To empirically evaluate the performance of the proposed algo-

rithms, we conducted several experiments using both real and syn-
thetic data. The experiments were carried out on a machine running
Windows XP with a single Pentium 2.66 GHz processor, 1GB of
RAM, and a single IDE disk. All algorithms were implemented as
standalone Java applications.

Since existing data warehouses cannot directly support multidi-
mensional imprecise data, obtaining ”real-world” datasets is diffi-

SR-AREA BRAND TIME LOCATION

ALL(1)(0%) ALL (1)(0%) ALL (1)(0%) ALL (1)(0%)

Area(30)(8%) Make(14)(16%) Quarter(5)(3%) Region (10)(4%)

Sub-Area(694)(92%) Model(203)(84%) Month(15)(9%) State (51)(21%)

Week(59)(88%) City (900)(75%)

Table 2: Dimensions of Real Dataset

cult. However, we were able to obtain one such real-world dataset
from an anonymous automotive manufacturer. The fact table con-
tains 797,570 facts, of which 557,255 facts were precise and240,315
were imprecise (i.e., 30% of the total facts are imprecise).There
were 4 dimensions, and the characteristics of each dimension are
listed in Table 2. Two of the dimensions (SR-AREA and BRAND)
have 3 level attributes (including ALL), while the other two(TIME
and LOCATION) have 4.

Each column of Table 2 lists the characteristics of each level at-
tribute for the particular dimension, and ordered from top to bottom
in decreasing granularity. Thus, the bottom attribute is the cell-
level attribute for the dimension. The two numbers next to each
attribute name are, respectively, the number of distinct values the
attribute can take and the percentage of facts that take a value from
that attribute for the particular dimension. For example, for the
SR-AREA dimension, 92% of the facts take a value from leaf-level
Sub-Areaattribute, while 8% take a value from theArea attribute.

Of the imprecise facts, approximately 67% were imprecise ina
single dimension (160,530 facts), 33% imprecise in 2 dimensions
(79,544 facts), 0.01% imprecise in 3 dimensions (241 facts), and
none were imprecise in all 4 dimensions. For this dataset, noim-
precise fact had the attribute value ALL for any dimension.

For several experiments synthetic data was generated usingthe
same dimension tables as the real-world data. The process for gen-
erating synthetic data was to create a fact table with a specific num-
ber of precise and imprecise facts by randomly selecting dimension
attribute values from these 4 dimensions.

The first group of experiments evaluate the performance and scal-
ability of the proposed algorithms, while the second evaluates the
efficiency of the proposed maintenance algorithm for the Extended
Database based on the R-tree.

11.1 Algorithm Performance
This set of experiments evaluates the performance of the algo-

rithms. All algorithms were implemented as stand-alone Java appli-
cations with memory limited to a restricted buffer pool, allowed us
to study disk I/O behavior while running experiments small enough
to complete in a reasonable amount of time. The important param-
eter for all of these experiments is the ratio of the input fact table
size and the available memory. We set the page size to 4KB, and
each tuple was 40 bytes in size.

The first experiment considers the case where the entire facttable
fits into memory, and is intended to directly compare the CPU time
each algorithm requires for in-memory computation. For these ex-
periments, the buffer was set to 40 MB while the fact table foreach
data set was approximately 32 MB.

The algorithms were evaluated on two datasets. The first was
the real-world Automotive dataset described above. All imprecise
facts in the fact table belong to one of 35 imprecise summary ta-
bles, and the largest connected component had 7,092 tuples.The
second dataset was synthetically generated with the same number
of precise and imprecise facts as the Automotive dataset, but impre-
cise facts were now allowed to take the value ALL for at most two
dimensions. For this synthetic data, there were 126 possible impre-
cise fact tables, and the largest connected component had 167,590

400

tuples. Both of these items made the synthetic data computationally
more challenging than the real data.

Each algorithm was executed on both datasets until the∆(c)
value for each cellc converged, with differentε values used to de-
fine convergence (refer to explanation in Section 3.2). It isuseful to
think of each value ofε as corresponding to a number of iterations.
For example, in the Automotive data,ε values of 0.1, 0.05, 0.01,
and 0.005 correspond to 2,3,4 and 6 iterations respectively. In the
synthetic data with the large connected component, the correspond-
ing numbers of iterations for theseε values were 3,4,6 and 10 iter-
ations respectively. We emphasize one should be careful reading
too much into results from a single dataset regarding the required
number of iterations. For datasets with more facts and/or dimen-
sions, tens of iterations may be required for the allocationweights
to converge for a givenε value.

We make two observations regarding the convergence for the
∆(t)(c) value assigned to cellc: 1) If c is not overlapped by any
imprecise facts, then∆t(c) never changes from the initial assigned
value (i.e.∆t(c) = ∆(0)(c) = δ(c) or all iterationst) and 2) More
generally, as the size of the connected component containing c in-
creases, the number of iterations required for∆(c) to converge
tends to increase as well. Thus, ifc is in a small connected com-
ponentCC, fewer iterations over tuples inCC are required for the
∆(c) to converge than for larger connected components.

All three algorithms can exploit the first observation as follows:
During the first iteration, identify cellsc not overlapped by any
imprecise facts and ignore these in subsequent iterations.For Tran-
sitive alone, a further optimization is possible: For each connected
componentCC, iterate over entries inCC until ∆(c) for each cell
c converge. This allows the number of iterations to vary from com-
ponent to component, and only the necessary number of iterations
are performed on any given component. If many connected com-
ponents are small and require few iterations to converge, this sig-
nificantly reduces the number of allocation equations evaluated by
Transitive relative to the other algorithms. Conceptually, Indepen-
dent and Block must perform the same number of iterations forall
cells, which in many cases leads to continued iteration overalready
converged cells and is wasted effort!These straightforward opti-
mizations were included in the algorithm implementations.

The results for the real Automotive dataset and the synthetic
dataset are shown in Figure 5a and Figure 5b respectively. The
reported running times are wall-clock times. Since the I/O opera-
tions are identical in this setting (each fact table is read into memory
once and EDB entries written out), relative differences in running
time between algorithms can be explained in terms of required in-
memory computation for each algorithm.

Independent always does worse than both Block and Transitive,
due to the significant CPU processing required to re-sort thecell
summary table multiple times for each iteration. The additional
overhead of component identification for Transitive results in Block
outperforming Transitive for a small number of iterations.How-
ever, as the number of iterations increases, Transitive eventually
outperforms Block since the savings from detecting early conver-
gence increases. Note the running time of Transitive is verystable
as well.

For the second experiment, we studied algorithm performance
as the buffer size varied. The same datasets from the above exper-
iment were used here, and have total size of 32 MB with approxi-
mately 11 MB of imprecise facts. Thus, the buffer sizes considered
ranged from holding all imprecise facts (12 MB) to holding approx-
imately 5% of the imprecise facts (600K).

Figures 5c – e show results from the Automotive dataset for var-
ious epsilon values (i.e., number of iterations). Results from cor-

0

100

200

300

400

500

0 5 10

Iterations (until converged)

T
im

e
 (

s
e

c
)

Independent
Block
Transitive

 = 0.1 (2 iterations)

0
100
200
300
400
500
600
700
800

600 KB 1MB 2MB 12MB
Buffer Size

T
im

e
 (

s
e

c
)

Independent
Block
Transitive

 = 0.05 (4 iterations)

0

500

1000

1500

2000

2500

600 KB 1MB 6MB 12MB
Buffer Size

T
im

e
 (

s
e
c
)

Independent
Block
Transitive

 = 0.005 (6 iterations)

0

500
1000

1500

2000

2500
3000

3500

4000

600 KB 1MB 6MB 12MB

Buffer Size

T
im

e
 (

s
e
c
)

Independent
Block
Transitive

 = 0.1 (3 iterations)

0

200

400

600

800

1000

1200

1400

600KB 1MB 6MB 12MB

Buffer Size

 T
im

e
 (

s
e
c
)

Independent
Block
Transitive

 = 0.05 (6 iterations)

0

500

1000

1500
2000

2500

3000

3500

4000

600 KB 1MB 6MB 12MB

Buffer Size

T
im

e
 (

s
e

c
)

Indpendent
Block
Transitive

 = 0.005 (10 iterations)

0

1000

2000

3000

4000

5000

6000

7000

600 KB 1MB 6MB 12MB

Buffer Size

T
im

e
 (

s
e

c
)

Independent
Block
Transitive

0

1000

2000

3000

4000

5000

6000

7000

8000

4 MB 10 MB 40 MB 50 MB
Buffer Size

T
im

e
 (

s
e

c
)

Block

Transitive

0

2000

4000

6000

8000

10000

12000

14000

16000

7 MB 20 MB 50 MB

Buffer Size

T
im

e
 (

s
e

c
)

Block

Transitive

0

50

100

150

200

250

300

1 3 5 7

Iterations (until converged)

T
im

e
 (

s
e

c
)

Independent
Block
Transitive

(a) (b)

(c) (d)

(e)

(g)

(f)

(h)

(i) (j)

Figure 5: Experimental Results

responding experiments for the synthetic dataset are givenin Fig-
ures 5f – h. All reported running times are wall-clock times.Since
I/O operations dominate running time for these experiments, rel-
ative performance of the different algorithms can be explained in
terms of the required I/O operations for each algorithm.

For the Automotive data, buffer size had negligible impact on
running time for all algorithms. The amount of memory Indepen-
dent requires is independent of buffer size. For Block and Transi-
tive, the total of the partition sizes for the 35 imprecise summary
tables was 143 pages, which is smaller than even the 600 KB (150
pages) buffer (i.e.,|S| = 1). However, for the synthetic data, the
running times for Transitive and Block are impacted by the buffer
size. The total partition cost for the 126 imprecise summarytables
is 419 pages (1.7 MB). Thus, in terms of the I/O analysis givenin
Section 6 and 8, for a buffer size of 1 MB,|S| = 2, and for 600
KB, |S| = 3.

From the experiments, Independent performed worse than Block
and Transitive, since Independent’s I/O cost is dominated by the
width of the summary table partial order. Block outperformsTran-
sitive for few iterations. However, as the number of iterations in-
crease, Transitive eventually outperforms Block. For bothdatasets,
the number of I/O’s required for Transitive is more stable with re-
spect to the number of iterations than Block. In both datasets, most
tuples are in components which fit entirely into the buffer and are
read into and written from the buffer once regardless of the number

401

of iterations.
The third experiment investigates scalability of the algorithms

for larger input sizes with proportionately larger memory sizes,
and is otherwise similar to the second experiment. Since Block
and Transitive clearly dominate Independent, we did not include
Independent in this experiment. We created two synthetic datasets,
each having 5 million tuples (200 MB) with 30% (1.5 million) im-
precise facts. These datasets were otherwise similar to those for
the second experiment. The total running times for each dataset for
ε = 0.005 are shown in Figures 5i and 5j respectively. The relative
performance of Block and Transitive is similar to the resultfrom
the prior experiment for the same reasons.

11.1.1 Summary of Experiments
Two main conclusions that can be drawn from the performance

experiments. First, Independent is a bad idea, due to the extra CPU
and I/O overhead of repeated sorting. Second, Transitive provides
very stable performance as the number of iterations increases for
the price of the component identification step. Although this over-
head means Block is more efficient for few iterations, Transitive
eventually outperforms Block as the number of iterations increases.
We note that all experimental results are consistent with the I/O
analysis presented along with the algorithm descriptions in Sec-
tions 5, 6, and 8 respectively.

11.2 Extended Database Maintenance
We performed several experiments using the Automotive datato

evaluate the performance of the Extended Database maintenance
algorithm proposed in Section 9. This data has 283,199 totalcon-
nected components, of which 205,874 were precise facts not over-
lapped by any imprecise facts (i.e., a “single” connected compo-
nent) and 77,325 were connected components with multiple en-
tries. Of these, only 1,152 components had more than 20 entries,
500 components had more than 100 entries, and 93 components
had between 1000 and 7092 entries. Thus, most of the connected
components in the real Automotive data have few entries.

For the R-tree, we used an open source implementation of a
disk-based R-tree available from [13]. The Transitive Algorithm
was modified as follows: After the component identification step,
the bounding boxes for each identified connected component were
generated by scanning the factD (which was sorted into compo-
nent order), and bulk loading the R-tree. This process only needs
to be performed once.

For these experiments, we generated the following three repre-
sentative “classes” of update workloads of varying sizes (from be-
tween .1% to 10% of the total facts inD): 1) updates to a certain
percentage of randomly selected precise facts which are notover-
lapped by any imprecise facts, 2) randomly selected precisefacts
(regardless of whether overlapped by imprecise fact or not), and 3)
randomly selected facts (whether precise or not). For each query
workload, we recorded the ratio of the time taken to update the
EDB versus the time taken to recompute the EDB from scratch
using Transitive. A value greater than 1 indicates completely re-
building would have been more efficient.

The results are shown in Figure 6. Updates to the non-overlapped
precise facts do not require evaluating any allocation equations,
thus the running time is quite stable for all workload sizes.Once
overlapping precise facts are selected, performance degrades quickly
beyond a few percent regardless of whether the workload contains
precise or imprecise facts. The main reason for this is that many
entries in the larger connected components are both preciseand
imprecise facts. Once a fact in a large component is selected, it is
irrelevant whether it is precise or not. We note that 2.5% and5% of

the total facts corresponds to roughly 20,000 facts and 40,000 facts
respectively. Thus, for a reasonable number of updates, theEDB
maintenance algorithm is more efficient than rebuilding theentire
EDB from scratch. We note that for these updates the resulting con-
nected component structure did not change, as we only considered
updating existing facts.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 1 2.5 5 10

Percentage Updated

U
p

d
a

te
 T

im
e

 /
 R

e
b

u
il
d

 T
im

e Random Fact

Random Precise

Non-Overlap Precise

Figure 6: Update Experiment Results

12. CONCLUSION
We proposed several scalable,efficient algorithms for performing

allocation. Of the proposed algorithms, the Transitive algorithm is
the most intriguing. Its performance is very stable as the number of
iterations increases, and the connected components it identifies can
be used in an EDB maintenance algorithm we also proposed.

Areas for future work include finding methods for estimating
both the number of required iterations to achieve convergence for
a givenε and size of the largest connected component, and further
exploring issues involving EDB maintenance to reflect updates to
the fact table.

13. REFERENCES
[1] AGARWAL , S., AGRAWAL, R., DESHPANDE, P., GUPTA, A., NAUGHTON,

J. F., RAMAKRISHNAN , R., AND SARAWAGI , S. On the computation of
multidimensional aggregates. InVLDB (1996).

[2] AGRAWAL, R., DAR, S.,AND JAGADISH, H. V. Direct transitive closure
algorithms: Design and performance evaluation. InACM Transactions on
Database Systems(1990), vol. 15.

[3] BOLLOBÁS, B. Random Graphs. Academic Press, London, 1985.
[4] BRADLEY, P., FAYYAD , U., AND REINA , C. Scaling EM (expectation

maximization) clustering to large databases. Tech. Rep. MSR-TR-98-35,
Microsoft Research Report, August 1998.

[5] BURDICK, D., DESHPANDE, P. M., JAYRAM , T. S., RAMAKRISHNAN , R.,
AND VAITHYANATHAN , S. Olap over uncertain and imprecise data. InVLDB
(2005).

[6] BURDICK, D., DESHPANDE, P. M., JAYRAM , T. S., RAMAKRISHNAN , R.,
AND VAITHYANATHAN , S. Olap over uncertain and imprecise data. In
Submitted to VLDB Journal(2006).

[7] CHENG, R., KALASHNIKOV, D. V., AND PRABHAKAR , S. Evaluating
Probabilistic Queries over Imprecise Data. InSIGMOD Conference(2003),
pp. 551–562.

[8] CORMAN, T. H., LEIERSON, C. E.,AND RIVEST, T. L. Introduction to
Algorithms. The MIT Press, 2001.

[9] DALVI , N. N., AND SUCIU, D. Efficient Query Evaluation on Probabilistic
Databases. InVLDB (2004), pp. 864–875.

[10] DAR, S., AND RAMAKRISHNAN , R. A performance study of transitive closure
algorithms. InSIGMOD(1994), pp. 454–465.

[11] DEMPSTER, A., LAIRD , N., AND RUBIN , D. Maximum Likelihood from
Incomplete Data via the EM Algorithm.Journal of the Royal Statistical Society
B (1977).

[12] GUTTMAN , A. R-trees: a dynamic index structure for spatial searching. In
SIGMOD(1984), pp. 47–57.

[13] HADJIELEFTHERIOU, M. Source code for r-tree implementation. R-tree source
code: http://www.dblab.ece.ntua.gr/ mario/rtree/rtree-source.zip.

[14] HARINARAYAN , V., RAJARAMAN , A., AND ULLMAN , J. D. Implementing
data cubes efficiently. InSIGMOD(1996).

[15] ROSS, K. A., AND SRIVASTAVA , D. Fast computation of sparse datacubes. In
VLDB (1997).

[16] WIDOM, J. Trio: A System for Integrated Management of Data, Accuracy, and
Lineage. InCIDR (2005), pp. 262–276.

402

