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ABSTRACT
Personal Information Management Systems require a powerful and
versatile data model that is able to represent a highly heterogeneous
mix of data such as relational data, XML, file content, folder hier-
archies, emails and email attachments, data streams, RSS feeds and
dynamically computed documents, e.g. ActiveXML [3]. Interest-
ingly, until now no approach was proposed that is able to represent
all of the above data in a single, powerful yet simple data model.
This paper fills this gap. We present the iMeMex Data Model (iDM)
for personal information management. iDM is able to represent
unstructured, semi-structured and structured data inside a single
model. Moreover, iDM is powerful enough to represent graph-
structured data, intensional data as well as infinite data streams.
Further, our model enables to represent the structural information
available inside files. As a consequence, the artifical boundary be-
tween inside and outside a file is removed to enable a new class
of queries. As iDM allows the representation of the whole personal
dataspace [20] of a user in a single model, it is the foundation of the
iMeMex Personal Dataspace Management System (PDSMS) [16,
14, 47]. This paper also presents results of an evaluation of an
initial iDM implementation in iMeMex that show that iDM can be
efficiently supported in a real PDSMS.

1. INTRODUCTION

1.1 Motivation
Personal information consists of a highly heterogeneous data

mix of emails, XML, LATEX and word documents, pictures, mu-
sic, address book entries, and so on. Personal information is typ-
ically stored in files scattered among multiple file systems (local
or network), multiple machines (local desktop, network share, mail
server), and most of all different file formats (XML, LATEX, Office,
email formats, etc.).

This work is motivated by the fact that much of the data stored
in those files represents information such as hierarchies and graphs
which are not exploited by current PIM tools to narrow search and
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query results. Moreover, there is an artificial gap between the struc-
tural information inside files and the outside structural information
established by the files&folder hierarchies employed by the user to
classify her files.

This paper proposes an elegant solution to close these gaps. Key
to our approach is to map all available data to single graph data
model — no matter whether it belongs inside or outside a file. For
instance, our model may be applied to represent at the same time
data pertaining to the file system (folder hierarchies) and data per-
taining to the contents inside a file (structural graph). Consequently
the artifical boundary between inside and outside a file is removed.
At the same time, we also remove the boundary between different
subsystems such as file systems and IMAP email servers as we map
that information to the same graph model. This enables new kinds
of queries that are not supported with state-of-the-art PIM tools.

1.2 The Problem
EXAMPLE 1 [INSIDE VERSUS OUTSIDE FILES]
Personal Information includes semi-structured data (XML, Word or
other Office documents1) as well as graph-structured data (LATEX).
These documents are stored as files on the file system. Consider
the following query:

Query 1: “Show me all LATEX ‘Introduction’ sections
pertaining to project PIM that contain the phrase ‘Mike
Franklin’.”

The query references information that is partly kept outside files on
the file system, i.e. all project folders related to the PIM project.
Another part of the query references information kept inside cer-
tain LATEX files, i.e. all introduction sections containing the phrase
‘Mike Franklin’. With current technology, this query cannot be is-
sued in one single request by the user as it has to bridge that inside-
outside file boundary. The user may only search the file system
using simple system tools like grep, find, or a keyword search en-
gine. However, these tools may return a large number of results
which would have to be examined manually to determine the final
result. Even when a matching file is encountered, then, for struc-
tured file formats like Microsoft PowerPoint, the user typically has
to conduct a second search inside the file to find the desired in-
formation [13]. Moreover, state-of-the-art operating systems do
not support at all exploitation of structured information inside the
user’s documents. The structured information inside the files is in
a data cage and cannot be used to refine the query.
Desiderata: What is missing is a technology that enables users to
execute queries that bridge the divide between the graph-structured
information inside their files and the outside file system. 2

1Open Office has stored documents in XML since version 1.0.
MS Office 12 appearing end of 2006 will also enable storage of
files using zipped XML.
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EXAMPLE 2 [FILES VERSUS EMAIL ATTACHMENTS]
Email has become one of the most important applications of per-
sonal information management. Consider a simple project man-
agement scenario. When managing multiple projects, e.g. industry
projects, research projects, PhD students, lectures, and so on, you
may decide to store documents of big projects in a separate folder
on your local hard disk. For smaller projects you may decide to
keep that information as attachments to email messages you ex-
changed with members of the project team. Now let’s consider the
following query:

Query 2: “Show me all documents pertaining to project
‘OLAP’ that have a figure containing the phrase ‘In-
dexing Time’ in its label.”

With state-of-the-art technology this type of query cannot be com-
puted as it requires to consider structural information available on
the different folder hierachies outside, i.e., both the folder hierarchy
on the local hard disk as well as the folder hierarchy on the IMAP
server. Again, the structural constraint “all Figures containing” has
to be evaluated considering structural information present inside
certain files, i.e. locally available files and email attachments.
Desiderata: What is missing is a technology that abstracts from
the different outside subsystems like file systems, and email servers
to enable a unified approach to querying graph-structured personal
information. 2

1.3 Our Contributions
This paper presents an elegant solution to the above problems.

The core idea is to introduce a unified, versatile and yet simple data
model. All personal information like semi-structured documents
(LATEX, Word or other Office documents), relational data, file con-
tent, folder hierarchies, email, RSS feeds and even data streams
can be instantiated in that model. Since we are able to represent
all data inside a single model, we are then in the position to use
a single powerful query language to query all data within a single
query. This paper presents our data model. The full specification
of our query language will be presented as part of future work.

In summary, this paper makes the following contributions:

1. We present the iMeMex Data Model (iDM) for personal infor-
mation management. iDM allows for the unified representa-
tion of all personal information like XML, relational data, file
content, folder hierarchies, email, data streams and RSS feeds
inside a single data model.

2. We present how to instantiate existing data like XML, relations,
files&folders and data streams inside our model. Further, we
show how to instantiate iDM subgraphs based on the structural
content of files such as tree structures (XML) and graph struc-
tures (LATEX).

3. We show that all parts of the iMeMex Data Model (iDM) can
be computed lazily. Because of this, iDM is able to support
so-called intensional data, i.e. data that is obtained by execut-
ing a query or calling a remote service. For this reason, iDM
can model approaches such as Active XML [3] as a use-case.
In contrast, to the latter, however, iDM is not restricted to the
XML domain.

4. iDM is the foundation for the iMeMex Personal Dataspace
Management System (PDSMS) [16, 14, 47]. A PDSMS pro-
vides integrated services on the whole dataspace [20] of a user,
that is the total of all personal information pertaining to a given
individual. We present the core architecture of iMeMex and
show how iDM was implemented in that system.

5. Using an initial iDM implementation in the iMeMex Personal
Dataspace Management System we present results of experi-
ments. The result of our experiments demonstrate that iDM can
be efficiently implemented in a real PDSMS, providing both ef-
ficient indexing times and interactive response times.

This paper is structured as follows. Section 2 presents an over-
view and the formal definition of the iMeMex Data Model (iDM)
for personal information management. Section 3 then describes
how to represent XML, files&folders, as well as data streams using
iDM. After that, Section 4 discusses how to compute an iDM graph.
Section 5 gives an overview on the implementation of iDM and its
query language iQL in the iMeMex Personal Dataspace Manage-
ment System. Section 6 reviews related work. Section 7 presents
experiments with our initial iDM implementation in iMeMex. Fi-
nally, Section 8 concludes the paper.

2. iMeMex DATA MODEL
This section is structured into an overview (2.1), the formal def-

inition of our model (2.2), and a series of examples (2.3).

2.1 Overview
The iMeMex Data Model (iDM) uses the following important

ideas to represent the heterogeneous data mix found in personal
information management:

• In iDM, all personal information available on a user’s desk-
top is exposed through a set of resource views. A resource
view is a sequence of components that express structured,
semi-structured and unstructured pieces of the underlying
data. Thus all personal data items, though varied in their
representation, are exposed in iDM uniformly. For example,
every node in a files&folders hierarchy as well as every ele-
ment in an XML document would be represented in iDM by
one distinct resource view.

• Resource views in iDM are linked to each other in arbitrary
directed graph structures. The connections from a given re-
source view to other resource views are given by one of its
components.

• In contrast to XML approaches [45, 3], iDM does not impose
the need to convert data to a physical XML document repre-
sentation before query processing may take place. Rather, we
favor a clear separation between logical and physical repre-
sentation of data. Data may be dynamically represented in
our model during query processing although it remains pri-
marily stored in its original format and location. Note that
this does not preclude a system that implements iDM to pro-
vide facilities such as indexing or replication of the original
data to speed-up query evaluation.

• We introduce resource view classes to precisely define the
types and representation of resource view components. Any
given resource view may or may not comply to a resource
view class. We show how to use resource view classes to
constrain our model to represent data in files&folders, rela-
tions, XML and data streams in Section 3.

• Resource views may be given extensionally (e.g., files&fold-
ers or tuples in a relational store) or computed intensionally
(e.g., as a result to a query). Further, resource views may
contain components that are finite as well as infinite. Those
aspects of our model are explored in Section 4.
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2.2 Resource Views
In this section, we formally define a resource view and explain

its constituent parts. After that, we present examples of resource
view graphs (see Section 2.3).

DEFINITION 1 (RESOURCE VIEW) A resource view Vi is a 4-tuple
(ηi,τi,χi,γi), where ηi is a name component, τi is a tuple compo-
nent, χi is a content component, and γi is a group component2. We
define each component of a resource view Vi as follows:

ηi NAME COMPONENT: ηi is a finite string that represents the
name of Vi.

τi TUPLE COMPONENT: τi is a 2-tuple (W,T ), where W is a
schema and T is one single tuple that conforms to W. The
schema W =

〈
a j

〉
, j = 1,2, . . . ,k is defined as a sequence of

attributes where attribute a j is the name of a role played by
some domain3 D j in W. The tuple T =

〈
v j

〉
, j = 1,2, . . . ,k is a

sequence of atomic values where value v j is an element of the
domain D j of the attribute a j.

χi CONTENT COMPONENT: χi is a string of symbols taken from
an alphabet Σc. The content χi may be finite or infinite. When
χi is finite, it takes the form of a finite sequence of symbols
denoted by

〈
c1, . . . ,cl

〉
,c j ∈ Σc, j = 1, ..., l; when χi is infi-

nite, the respective sequence is infinite and we denote χi =〈
c1, . . . ,cl

〉
l→∞

,c j ∈ Σc, j = 1, . . . , l, l → ∞.
γi GROUP COMPONENT: γi is a 2-tuple (S,Q), where S is a (pos-

sibly empty) set of resource views and Q is a (possibly empty)
ordered sequence of resource views. Further,

(i) The set S and the sequence Q may be finite or infinite.
When S is finite, we denote S = {Vs1 , . . . ,Vsm}; when it is
infinite, then we denote S = {Vs1 , . . . ,Vsm}m→∞. Likewise,
when Q is finite, we denote Q =

〈
Vq1 , . . . ,Vqn

〉
; when Q is

infinite, then we denote Q =
〈
Vq1 , . . . ,Vqn

〉
n→∞

.
(ii) S∩Q = ∅, i.e., S and Q are disjoint4.

(iii) Assume a resource view Vi has a non-empty γi component.
If there exists a resource view Vk for which Vk ∈ S∪Q holds,
we say that Vk is directly related to Vi, i.e., Vi → Vk. Any
given resource view may be directly related to zero, one or
many other resource views.

(iv) If Vi → Vj → . . . → Vk, we say that resource view Vk is in-
directly related to Vi, i.e., Vi ; Vk.

If any of the components of a resource view is empty, we denote its
value, where convenient, by the empty n-tuple () or by the empty
sequence

〈〉
. 2

The ηi component is a name used to refer to the resource view.
It is of service for the construction of path queries, discussed in
Section 5.1. The τi component has a similar definition as the one
given for tuples in a relational data model [9, 19]. One important
difference is that the schema W is defined for each tuple, instead of

2We use the subscript notation to denote one specific resource view
and its components.
3A domain is considered to be a set of atomic values. In the remain-
der, whenever we mention attributes or domains, we refer to the
definitions given above. Our definitions of domains and attributes
conform to the ones given in [19].
4For the sake of simplicity, we extend notation and use the sym-
bols ∩ and ∪ to denote intersection not only between sets, but also
between a set and a sequence. The ∩ operation returns a set con-
taining the (distinct) elements of the sequence that also belong to
the intersected set. The ∪ operation returns a set containing the
(distinct) elements that belong either to the set or to the sequence.

for a set of tuples. This decision of course creates a tension for rep-
resenting sets of resource views with the same structural features.
Schematic information is important in this setting and we introduce
it in our model by defining resource view classes (see Section 3).

The χi component represents arbitrary unstructured content. For
iDM, it is merely a sequence of atomic symbols from some alpha-
bet, such as characters in a file’s content or in an XML text node.
The χi component may be finite or infinite. Allowing infinite con-
tent is useful to naturally represent media streams in our model.

Finally, the γi component creates a directed graph structure that
connects related views. Note that we impose no restriction on this
graph, so that we may represent trees, DAGs and cyclic graphs. If
the relative order among the connections established between re-
source views is of importance, we represent them in the sequence
Q of γi. Otherwise, they are represented in the set S. Like the χi
component, both the set and/or the sequence of γi may be finite or
infinite. The infinite case is useful for representing data streams as
infinite sequences of resource views in our model.

2.3 Examples
In Figure 1(a), we present a typical files&folders hierarchy con-

taining information on some research projects of one of the authors.
There is one high-level folder that groups all research projects and
we show two sub-folders for specific projects. The ‘PIM’ folder is
further expanded to reveal one LATEX document for one version of
this VLDB 2006 paper, one Microsoft Word document for a grant
proposal, and one folder link to the top-level ‘Projects’ folder. The
contents of those documents are also partially displayed. Both doc-
uments contain sections, subsections and their corresponding text.
In addition, the document ‘vldb2006.tex’ also contains a reference
to section ‘Preliminaries’ in the subsection ‘The Problem’.
Unified Representation. As we may notice in Figure 1(a), there
is a gap between the graph-structured information inside files and
the hierarchies present on the outside file system. We show the rep-
resentation of the same information in iDM in Figure 1(b). Nodes
denote resource views and edges denote the connections induced
by the resource views’ group components. Each node is labeled
with the resource view’s name component.

In iDM, what we call files&folders are only resource views. Each
file or folder is represented as one resource view in Figure 1(b).
Further, the data stored inside files is also uniformly represented as
resource views. The document class, title, abstract and document
portions of the VLDB 2006 paper are some of these resource views.
They are directly related to the ‘vldb 2006.tex’ file resource view.
In addition, any structural information present in the document por-
tion of that file is represented as resource views. Note that the same
applies to the ‘Grant.doc’ resource view. This is possible as an in-
creasing number of office tools, such as Microsoft Office 12, Open
Office and LATEX, offer semi-structured or graph-structured docu-
ment formats that make it feasible to write content converters that
obtain good quality resource view graphs. In addition, structure
extraction techniques [18, 12, 35] may be used in conjunction with
our approach to further increase the quality of resource view sub-
graphs extracted from content components.
Intensional Data. One important aspect of our model is that the
resource view graph is a logical representation of personal infor-
mation. That logical representation does not need to be fully mate-
rialized at once and may be computed lazily. Personal information
does not have to be imported to or exported from our data model,
but rather represented in it. This is in sharp contrast to XML ap-
proaches which are usually tied to having a physical representation
of the whole data as an XML document before querying may be
carried out (see Section 4).
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Figure 1: iDM represents heterogeneous personal information as a single resource view graph. The resource view graph represents
the whole dataspace of a user

Resource Views and their Components. Let us show the de-
tailed representation of one resource view present in Figure 1. Con-
sider the ‘PIM’ folder. We represent it as a resource view VPIM =
(ηPIM,τPIM,χPIM,γPIM), in which:

ηPIM = ‘PIM’;
τPIM = (W,T ), where W =

〈
creation time: date, size: integer, last

modified time: date
〉

and T =
〈
‘19/03/2005 11:54’, 4096,

‘22/09/2005 16:14’
〉
, i.e., the τPIM component represents

the filesystem properties associated with the ‘PIM’ folder;
χPIM =

〈〉
;

γPIM = (S,Q), where S = {Vvldb 2006.tex,VGrant.doc,VAll Projects} and
Q =

〈〉
.

Note that the children of the ‘PIM’ folder in the filesystem are
represented as resource views directly related to VPIM. These re-
source views are Vvldb 2006.tex, VGrant.doc, and VAll Projects. The re-
source views Vvldb 2006.tex and VGrant.doc have their η and τ compo-
nents defined analogously to VPIM, their γ component correspond-
ing to the resource views in their document content and their χ

component equal to the binary stream of each file. The VAll Projects
resource view is also represented analogously to VPIM, except that
its γ component corresponds to the folder ‘Projects’. Here and in
the remainder, we will omit the empty components from the re-
source view notation as they are clear from the context. Therefore,
we denote VPIM = (‘PIM’,τPIM,γPIM). We also use VPIM to repre-
sent a view named ‘PIM’ where there is no risk of confusion with
other views with the same name.
Graph Structures. Some data models, such as XML and tradi-
tional files&folders, organize data in a tree structure. The extension
of that structure to represent graphs is usually done through the in-
clusion of second-class citizens in the model, such as links. iDM
naturally represents graph structures by the connections induced
by the resource views’ group components. The relevance of rep-
resenting and querying arbitrary graph data has been increasingly
recognized in the literature [24, 30].

For example, the VProjects → VPIM → VAll Projects → VProjects path
of directly related resource views in Figure 1(b) forms a cycle in
the resource view graph. Further, in Figure 1(b), resource view
VPreliminaries is directly related to both views Vdocument and Vref.
Schemas. Personal information is trapped inside a large array of
data cages. Some solutions to this problem propose to cast user’s
information into a rigid set of developer defined schemas, e.g. Mi-
crosoft WinFS [44]. They defend that the relational model is the
most appropriate underlying representation for desktop data. Other
proposals, e.g. Apple Spotlight [4], abolish schemas and employ
search engine technology to represent all data as completely un-
structured.

In contrast, iDM offers a schema-agnostic graph representation
of personal information. We may employ resource view classes,
defined in the following section, to enrich iDM with schematic in-
formation and to constrain it to represent a wide array of data mod-
els typically used to represent personal data.

3. INSTANTIATING SPECIALIZED DATA
MODELS

In the following, we show how to instantiate specialized data
models like files&folders, XML, as well as data streams using iDM.
Due to space constraints, we omit details on how to instantiate rela-
tional data. These instantiations will, however, become clear to the
reader based on the discussion for the other data models. Table 1
summarizes the instantiations for the specialized data models.

3.1 Resource View Classes
For convenience, we introduce resource view classes, which con-

strain iDM to represent a particular data model.

DEFINITION 2 (RESOURCE VIEW CLASS) Given a set of resource
views D = {Vi}, i = 1, . . . ,n, we define a resource view class C as a
set of formal restrictions on the ηi, τi, χi and γi components of all
views Vi ∈ D. The formal restrictions specified by a resource view
class include:
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Resource View Class Resource View Components Definition
ηC

i τC
i χC

i γC
i

Description Name S Q

File file N f (WFS,Tf ) C f ∅ 〈〉
Folder folder NF (WFS,TF )

〈 〉
{V child

1 , . . . ,V child
m } 〈〉

child ∈ {file, folder}
Relational Tuple tuple

〈 〉
(WR, ti)

〈 〉
∅ 〈〉

Relation relation NR ( )
〈 〉 {V tuple

1 , . . . ,V tuple
m } 〈〉

V tuple
i =

〈
τ

tuple
i

〉
,τtuple

i = (WR, ti),
i = 1, . . . ,m

Relational database reldb NDB ( )
〈 〉

{V relation
1 , . . . ,V relation

m } 〈〉
XML text node xmltext

〈 〉
( ) Ct ∅ 〈〉

XML element xmlelem NE (WE ,TE)
〈 〉 ∅ 〈

V xmlnode
1 , . . . ,V xmlnode

n
〉

xmlnode ∈ {xmltext,xmlelem}
XML document xmldoc

〈 〉
( )

〈 〉
∅ 〈V xmlelem

root 〉
XML File xmlfile N f (WFS,Tf ) C f ∅ 〈V xmldoc

doc 〉
Data Stream datstream

〈 〉
( )

〈 〉
∅ 〈V1, . . . ,Vn〉n→∞

Tuple stream tupstream
〈 〉

( )
〈 〉

∅ 〈V tuple
1 , . . . ,V tuple

n 〉n→∞

RSS/ATOM stream rssatom
〈 〉

( )
〈 〉

∅ 〈V xmldoc
1 , . . . ,V xmldoc

n 〉n→∞

or: same as in xmldoc

Table 1: Important Resource View Classes to represent files&folders, relations, XML, data streams, and RSS

1. EMPTYNESS OF COMPONENTS: specifies that a certain subset
of the components of resource views that obey to the resource
view class must be empty or not.

2. SCHEMA OF τ: determines the schema W that the τ compo-
nents of resource views must have.

3. FINITENESS OF χ OR γ: enforces content χ or group γ elements
S or Q to be either finite, infinite or empty.

4. CLASSES OF DIRECTLY RELATED RESOURCE VIEWS: given
a resource view Vi, determines the set of resource view classes
that are acceptable for any resource view Vj such that Vi →Vj.

When a view Vi conforms to the resource view class C, we denote it
V C

i . Accordingly, we denote its components ηC
i , τC

i , χC
i , and γC

i .

A given resource view may obey directly to only one class. One
may, however, organize resource view classes in generalization (or
specialization) hierarchies. When a resource view obeys to a given
class C, it automatically obeys to all classes that are generalizations
of C. In this sense, our classes have an object-oriented flavor [8].

Resource view classes may be used by application developers to
provide pre-defined schema information on sets of resource views.
Note that a full specification of schemas, including several differ-
ent categories of integrity constraints, exceeds the scope of this pa-
per. Note, additionally, that not all resource views need to have
a resource view class attached to them. This means that unlike
the relational [9] or object-oriented approaches [8], which support
only a schema-first data modeling strategy, our model also supports
schema-later and even schema-never [20].

3.2 Files&Folders
Traditional filesystems can be seen as trees in which internal

nodes represent non-empty folders and leaves represent files or
empty folders. Each node in the tree has a fixed set of properties,
such as size, creation time, last modified time, etc. The attributes
that appear on each node are defined in a filesystem-level schema
WFS = {size: int, creation time: date, last modified time: date, ...}.
The sequence of values that conform to that schema are expressed

per node and, for a node n, we denote this sequence Tn. Each node
also has a name, denoted Nn. In addition, if n is a file node, then
it has an associated content Cn. In iDM we consider a ‘file’ just
one out of many possible resource views on user data. In order to
have iDM represent the files&folders data model we define a file
resource view class, denoted file, that constrains a view instance
V file

i to represent a file f as follows:

V file
i = (ηfile

i ,τfile
i ,χfile

i ), where:

η
file
i = N f ,τ

file
i = (WFS,Tf ), and χ

file
i = C f .

Based on this definition we can recursively define the concept of a
‘folder’. A folder resource view class, denoted folder, constrains a
view instance V folder

i to represent a folder F as follows:

V folder
i = (ηfolder

i ,τfolder
i ,γfolder

i ), where:

η
folder
i = NF ,τfolder

i = (WFS,TF ), and

γ
folder
i =

(
{V child

1 , . . . ,V child
m },〈〉

)
,child ∈ {file, folder}.

Further, as discussed in Section 2, iDM may be used to exploit
semi-structured content inside files. One special case of this type
of content is XML. We may thus specialize the file resource view
class to define an XML file resource view class, denoted xmlfile, in
which the group component is non-empty and defined as:

γ
xmlfile
i =

(
∅,〈V xmldoc

doc 〉
)
.

The resource view V xmldoc
doc pertains to resource view class xmldoc

and is the document resource view for the XML document. The
xmldoc resource view class is defined in Subsection 3.3. Note that
other specializations of the file resource view class may be defined
analogously for other document formats, e.g. LATEX.

3.3 XML
We assume that XML data is represented according to the defin-

itions in the XML Information Set [46]. Due to space constraints,
we only discuss how to instantiate the core subset of the XML In-
formation Set (document, element, attribute, character) in iDM.

371



In order to have iDM represent the XML data model we first
define an XML text resource view class, denoted xmltext, that con-
strains a view instance V xmltext

i to represent a character information
item with text content Ct =

〈
c1, . . . ,cn

〉
as follows:

V xmltext
i = (χxmltext

i ), where: χ
xmltext
i = Ct .

As a second step, we need to represent element information items
in our model. An element information item E has a name NE , a
set of attributes with values TE and schema WE, and a sequence of
children, each of which is either a text or an element information
item. We define an XML element resource view class, xmlelem,
that constrains a view instance V xmlelem

i to represent an element
information item E as follows:

V xmlelem
i = (ηxmlelem

i ,τxmlelem
i ,γxmlelem

i ), where:

η
xmlelem
i = NE , τ

xmlelem
i = (WE ,TE), and

γ
xmlelem
i = (S,Q),S = ∅,

Q =
〈
V xmlnode

1 , . . . ,V xmlnode
n

〉
,

xmlnode ∈ {xmltext,xmlelem}.

Note that the XML attribute nodes are modelled by the τxmlelem
i

component of V xmlelem
i . Finally, we can define an XML document

resource view class, xmldoc, to represent a document information
item as follows:

V xmldoc
i = (γxmldoc

i ), where:

γ
xmldoc
i =

(
∅,〈V xmlelem

root 〉
)
, and

V xmlelem
root is a view that represents the root element information item

of the document. Figure 2 shows an example of an instantiation

Figure 2: XML fragment represented as a resource view graph

of an XML fragment in iDM. Each node in the XML document is
represented as a resource view. We use an expanded notation in the
figure to represent nodes in the resource view graph and explicitly
indicate their components. The connections among views are given
by the resource views’ γ components.

3.4 Data Streams
We assume that a data stream is an infinite data source delivering

data items. For the moment we do not require any restrictions on
the type of data items. To constrain iDM to represent a generic data
stream model we define a generic data stream resource view class,
datstream, that restricts a resource view V datstream

i as follows:

V datstream
i = (γdatstream

i ), where: γ
datstream
i =

(
∅,〈V1, . . . ,Vn〉n→∞

)
.

Figure 3 shows schematically how the instantiation of a data stream
occurs in iDM. Each data item delivered by that stream is repre-
sented as a resource view. Depending on the data model in which
the item is represented, the corresponding resource views may be

Figure 3: A data stream is represented as a resource view graph

of different classes. The data stream itself is represented as a re-
source view whose γ component contains all corresponding data
item views.

Examples of data streams include streams that deliver tuples. A
tuple stream resource view class, tupstream, is defined to restrict
a view instance V tupstream

i as follows:

V tupstream
i = (γtupstream

i ), where:

γ
tupstream
i =

(
∅,〈V tuple

1 , . . . ,V tuple
n 〉n→∞

)
.

Another example of a data stream is an RSS/ATOM stream deliver-
ing XML messages. An RSS stream resource view class, rssatom,
is defined to restrict a resource view V rssatom

i as follows:

V rssatom
i = (γrssatom

i ),

γ
rssatom
i =

(
∅,〈V xmldoc

1 , . . . ,V xmldoc
n 〉n→∞

)
.

Note that RSS/ATOM streams, even though they are frequently
called ‘streams’, are just simple XML documents that are provided
by a growing number of web servers. There is no notification mech-
anism for the clients interested in those documents. So, one may
argue that an alternative representation for an RSS/ATOM stream
is the same as given for an XML document (see also Table 1).

4. COMPUTING THE iDM GRAPH
This section outlines how to compute resource views and re-

source view graphs. In the following, we show that all components
of a resource view may be computed lazily (Section 4.1). After
that, we discuss three paradigms to compute resource view compo-
nents: extensional components (Section 4.2), intensional compo-
nents (Section 4.3), and infinite components (Section 4.4).

4.1 Lazy Resource Views
It is important to understand that all components of a resource

view may be computed on demand (aka lazily or intensionally). We
do not require that any of the components of the iDM graph are ma-
terialized beforehand. Whether the components of a resource view
are materialized or not is hidden by modelling a resource view as an
interface consisting of four get-methods, one for each component:

Interface ResourceView {
getNameComponent(): return η

getTupleComponent(): return τ

getContentComponent(): return χ

getGroupComponent() : return γ

}

As a consequence, each resource view hides how, when and even
where the different components are computed.

For instance, in Figure 1 the subgraph representing the contents
of LATEX file “vldb 2006.tex” may be transformed to an iDM graph
if a user requests that information, i.e. when she calls getGroup-
Component() on resource view V file

vldb 2006.tex. In the following sec-
tions, we discuss how to obtain the data returned by the four differ-
ent get*Component-methods.

372



4.2 Extensional Components
One important class of resource view components are extensional

components. Extensional components return base facts. No addi-
tional query processing is required to retrieve those facts.

A prominent example of base facts is data that is stored on a hard
disk drive or in main memory. For instance, the byte content of a
Word file is stored on disk. That byte content is considered base
facts. A second example is a DB table that is persisted in one of the
segments of a DBMS.

4.3 Intensional Components
In contrast to extensional components, intensional components

require query processing to compute the component. Examples
of intensional components include computing the result to a query
based on locally available data or based on calling remote hosts.

For instance, a view defined on top of a set of DB tables is con-
sidered intensional data. This holds even if that view was explic-
itly created as a materialized view [25]. In that case that data was
simply precomputed (aka materialized). However, on the logical
iDM level that data is still considered intensional data as it repre-
sents a query result. In our approach, any intensional components
of an iDM graph may be materialized in order to speed-up query
processing and/or graph navigation. The discussion on whether to
materialize a resource view or not is orthogonal to our model. We
are planning to explore that topic as an avenue of future work.

4.3.1 iDM Use-case: Active XML
A special case of querying a remote host is a call to a web ser-

vice. For this reason iDM can also easily represent XML-specific
schemes such as ActiveXML [3]. The basic idea of ActiveXML is
to enrich XML documents with calls to web services. Whenever a
web service is called, the result of that call will be inserted into the
XML document. For instance, consider the ActiveXML document:

<dep>
<sc>web.server.com/GetDepartments()</sc>

</dep>

The <sc> element contains the web service call. When that web
service is executed, its result is inserted into the XML document:

<dep>
<sc>web.server.com/GetDepartments()</sc>
<deplist>

<entry>
<name>Accounting</name>

</entry>
...

</deplist>
</dep>

To instantiate Active XML documents in iDM, it suffices to de-
fine a special subclass AXML of resource view class xmlelem with

γ
AXML
i =

(
∅,〈V sc

j [,V scresult
k ]〉

)
.

Here V sc
j contains the call to the web service and [,V scresult

k ] is an
optional entry that is only part of the group component if the web
service was called.

It is important to note that iDM, in contrast to ActiveXML, also
supports graph data and is not restricted to XML documents. More-
over, the pub/sub features of Active XML can also be instantiated
in iDM. However, due to space constraints the details are not pre-
sented here.

4.4 Infinite Components
Infinite components may occur in two different components of

a resource view. First, the content component χi may be infinite

(see Definition 1). Prominent examples of infinite content are me-
dia streams such as audio and video streams, e.g. Real, QuickTime,
etc. These may be modelled as infinite sequences of symbols de-
livered by a content component χi. Second, the group component
γi may also contain a set and/or a sequence of resource views that
is infinite (see Definition 1). Prominent examples of infinite group
components are data streams (see Section 3.4), publish/subscribe
or information filter message notifications [15], and email. In the
following, we will discuss why email may be considered infinite.

4.4.1 iDM Use-case: EMail
Consider the example of an email repository. An email reposi-

tory subscribes to an infinite stream of messages, e.g. all messages
containing in at least one of the
TO, CC, or BCC fields. The email server keeps a window on the
incoming messages. Users may delete or add messages from/to that
window. Using iDM we have two options to model email:
Option 1: (Model the State). We may model the state of the
INBOX. That state is finite. It can be modelled as

γ
INBOX State
i =

(
∅,〈V message

q1 , . . . ,V message
qn 〉

)
where V message

q1 , . . . ,V message
qn represent the messages window cur-

rently available in the INBOX, i.e. the current state of the INBOX.
Note that for this option the state of that INBOX may be retrieved
multiple times.
Option 2: (Model the Stream). Alternatively, we may model the
stream of incoming messages itself bypassing the state window
offered by the email server. This could be achieved as follows:

γ
INBOX message stream
i =

(
∅,〈V message

q’1 , . . . ,V message
q’n 〉n→∞

)
,

Here, V message
q’1 , . . . ,V message

q’n represent all messages routed to ad-
dress during the lifetime of that
address. As the stream has no state, messages delivered by the
stream cannot be retrieved a second time.

Both options may make sense depending on the application. For
instance, Option 1 may be used in those cases where the user uses
multiple email clients to read email. In that case, Option 1 could
observe the email repository of a user without removing any emails
from the server. In contrast, Option 2 is useful in those cases where
iDM is used as the single point of access to the user’s email repos-
itory. In that case, emails streamed to the user would be delivered
to the client and removed from the server immediately. No other
client would be able to see those messages.

To offer maximum flexibility, our implementation of iDM in
iMeMex supports both options. We may either represent the state
(Option 1) or real data streams providing infinite group compo-
nents (Option 2). In addition, if we are not able to obtain a real data
stream, we may convert a state into a pseudo data stream using a
generic polling facility. In the iDM graph that pseudo data stream
is then represented as an infinite message stream5.

4.4.2 Implementing Streams: Need to Push
In order to efficiently support stream processing, any system im-

plementing iDM graphs has to provide push-based protocols [21].
Our current implementation of iDM in iMeMex already supports
5Interestingly, several popular email services such as POP and
IMAP servers do not support the second option. The same applies
to RSS/ATOM servers. RSS/ATOM is a method useful for pub-
lishing a sequence of messages. However, RSS/ATOM is imple-
mented by simply publishing an XML document containing those
messages on a web server. Clients do not get any notifications on
changes of that document. For this reason, clients have to poll the
server for updates regularly.
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push-based operators. Our push-operators may register for changes
on any of the components of a resource view. Incoming change
events on any resource view, such as a new email message or a
new tuple on a data stream, will then be passed to all subscribed
push-operators. They will process those events immediately. Like
that data-driven stream processing in the spirit of specialized data
stream management systems (DSMS) [1] is enabled.

5. iMeMex ARCHITECTURE
This section gives an overview of the implementation of iDM

which builds the foundation of the iMeMex Personal Dataspace
Management System (PDSMS).

The core idea of iMeMex is to introduce a logical layer that ab-
stracts from underlying subsystems and data sources such as file
systems, email servers, network shares, iPods, RSS feeds, etc. This
expands on the visions presented in [16] and [20]. We term that
logical layer Resource View Layer. Figure 4 depicts that layer and
its implementation in the iMeMex PDSMS.
iMeMex contains two important sublayers: (1) iQL Query Proces-

sor and (2) Resource View Manager.

5.1 iQL Query Processor
The main task of the iQL Query Processsor is to parse incoming

iQL queries and to create query plans for them. Our current imple-
mentation is based on rule-based query optimization. Cost based
optimization will be explored as another avenue of future work.

In order to query iDM, we have developed a simple query lan-
guage termed iMeMexQuery Language (iQL) that we use to evalu-
ate queries on a resource view graph. Our primary design goal was
to have a language that can be used by an end-user, i.e. a language
that is at the same time simple and powerful. For this reason we
decided to design our language as an extension to existing IR key-
word search interfaces as used by Google and other search engines.
Like that users may benefit from our language using only a mini-
mal learning effort. At the same time advanced users may use the
same language and interfaces to execute more advanced queries.

One may argue that XML query languages such as XPath and
XQuery could be extended to work on top of iDM. The main rea-
sons we did not do this, however, were that XPath and XQuery
are too complex to be offered as an end-user language for personal
information management. Neverheless, XPath 2.0 has some inter-
esting features. Some of those we have adopted for our language
iQL such as path expressions and predicates on attributes. In that
respect, our language is close in spirit to NEXI [41]. In contrast to
NEXI, however, iQL will include features important for a PDSMS,
such as support for updates. A full specification of iQL is beyond
the scope of this paper and will be detailed in a separate paper.

In order to get an idea of the expressiveness of our language the
following list presents some example iQL queries:

“Donald Knuth”: returns all resource views containing the phrase
“Donald Knuth” in their content component.

“Donald” and “Knuth”: returns all resource views containing both
keywords “Donald” and “Knuth” in their content component.

[size > 42000 and lastmodified < yesterday()]: returns those
resource views having a tuple component attribute greater than
42000 and a lastmodified date before yesterday.

//Introduction[class=“latex_section”]: returns resource views
named “Introduction” and of resource view class “latex_section”.

//PIM//Introduction[class=“latex_section”]: returns every re-
source view named “Introduction” of class “latex_section” that
is indirectly related to a resource view named “PIM”.

//PIM//Introduction[class=“latex_section”

and “Mike Franklin”]: returns all resour-
ce views named “Introduction” of class “latex_section” that are
indirectly related to a resource view named “PIM”. All returned
results have to contain the phrase “Mike Franklin” in their con-
tent component (solves Example 1 from the Introduction).

//OLAP//[class=“figure” and “Indexing time”]: first, selects re-
source views that are indirectly related to a resource view named
“OLAP”. In addition, all results have to be of resource view class
“figure” and have to contain the phrase “Indexing time” in their
content component (solves Example 2 from the Introduction).
Our current implementation of iQL in iMeMex also supports user-

defined joins and graph branching operations. As ongoing work,
we are extending iQL to support search over all resource view com-
ponents and ranking of query results.

5.2 Resource View Manager
The Resource View Manager (RVM) is the central instance to

managing resource views. It consists of four major components:
(1) Data Source Proxy, (2) Content2iDM Converters, (3) Repli-
ca&Indexes Module, and (4) Synchronization Manager.
(1) The Data Source Proxy provides connectivity to the different
types of subsystems. It contains a set of Data Source Plugins that
represents the data from the different subsystems as an initial iDM
graph. Currently we provide plugins for file systems, IMAP email
servers and RSS feeds.
(2) The Content2iDM Converter further enriches the iDM graph
provided by the data source proxy. This is achieved by converting
content components to iDM subgraphs that reflect the structural
information. Currently we provide converters for XML and LATEX.
(3) The Replica&Indexes Module consists of four parts that reflect
the four components of a resource view (name, tuple, content, and
group component replicas and indexes). In addition, this module
contains a Resource View Catalog. All resource views managed
are registered in that catalog. For each resource view component
we may then choose to insert it into a replica and/or an index. Infi-
nite group components are managed using a stream window.
A Replica creates a copy of a component inside the RVM. For in-
stance, one strategy could be to replicate the group components of
all resource views that were retrieved from remote data sources. As
a consequence queries referring to the group component of resource
views can then be executed exploiting the replicas only. This avoids
time consuming lookups at the remote data source. As replication
may require additional disk and memory space, there is a general
trade-off between data versus query shipping [32] that has to be
considered when creating replication strategies.
An Index creates specialized data structures to speed up look-up
times. For instance, for tuple component indexes hash-tables or
B+-trees can be used to provide efficient access. For textual con-
tent component indexes, search engines based on inverted keyword
lists are state-of-the-art. Note that indexing does not necessarily
include replication. For instance, an inverted keyword list is a con-
tent component index. However, that index is not able to return the
original content component that was used to build the index. This
means, it is not at the same time a content component replica. Fur-
ther note that content indexes are not restricted to text indexes. An
example of that is a content index that uses histogram information
to index pictures based on image similarity [6].
(4) The Synchronization Manager observes all registered data
sources for updates. When a new data source is registered at the
RVM, the Synchronization Manager will analyze the data found
on that data source and send each resource view definition to the
Replica&Indexes Module. Depending on the current replication
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Figure 4: iMeMex Architecture

and indexing strategy the Replica&Indexes
Module will then trigger replication and
indexing for the newly created resource
views. The Synchronization Manager will
also poll the data sources regularly to
synchronize the catalog, replicas and in-
dexes for updates that were done bypass-
ing the RVM layer. Furthermore, if the
data sources support notification events, the
Synchronization Manager will subscribe to
these notifications. As a consequence,
all updates performed on that data source
will then be immediately considered by
the Synchronization Manager and by the
Replica&Indexes Module. For instance,
our current implementation is able to sub-
scribe to file events of the hpfs file system
created by Mac OS X.

6. RELATED WORK
Personal Information Management is an area broad in scope and

we review below several contributions related to our work. We
divide them into four categories: data models, operating systems,
structure extraction and PIM systems. For each of these categories,
we discuss how iDM distinguishes itself from earlier approaches.
Data Models. The relational model has been proposed as a means
to provide universal access to data [9]. In the context of infor-
mation integration, several works have used the relational model
to provide a global, data source independent view of data [33, 5].
The Information Manifold [33], for example, is based on the idea
of a global schema on top of which the data sources may be ex-
pressed as relational views. Object-oriented systems [8] augment
relational approaches to represent complex data types. In [40], the
authors present the Rufus system, which provides an object based
data model for desktop data. The system imports desktop data
into a set of pre-defined classes and provides querying capabili-
ties over those classes. All of these previous approaches are based
on a schema-first modeling strategy that is not well suited for per-
sonal information. In contrast, our data model is in line with the
goals recently presented in [20], which claim that future informa-
tion systems must be capable of offering a wide range of modeling
strategies, such as schema-later or even schema-never.

Semi-structured approaches [37, 45] have been proposed as an
alternative to self-describe data and thus eliminate the need to pro-
vide pre-defined schemas. Currently, the most prominent semi-
structured model is XML [45]. XML is typically associated with
a specific serialization for data exchange, which means that it be-
comes harder to represent data in its data model from a purely log-
ical standpoint, as advocated in [2]. Further, XML is not capable
of representing graph, intensional and infinite data without using
add-on techniques. However, the former types of data are key in
personal information management and therefore fully supported by
iDM. Some approaches have tried to extend XML in order to cope
with these limitations. Colorful XML [28] proposes a data model
in which an XML document is extended with multiple hierarchies,
distinguished by node coloring. ActiveXML [36, 3] represents in-
tensional data in XML documents by embedding web service calls.
In sharp contrast, iDM offers a logical model that represents a wide
range of available heterogeneous personal information and inte-
grates all of the above approaches into one generic framework. For
instance, in Section 4.3.1 we show how ActiveXML may be mod-
eled as a use case of iDM. Some recent works have developed key-
word search techniques considering graph data models to represent

heterogeneous data [30, 24]. The search techniques developed are
orthogonal to our approach and may also be used on top of iDM.
Operating Systems. Recently, modern operating systems have
been amended to provide full-text search capabilities. Examples of
such systems are Google Desktop [23], MS Desktop Search [42],
and Apple Spotlight [4]. These systems use simple data models
based on sequences of words. Unlike in iDM, the structural infor-
mation available within files is not exploited for queries.

The linux add-on file system Reiser FS [38] blurs the distinction
among files and folders by letting files behave as folders in special
circumstances, e.g. by displaying file attributes as files. Microsoft
WinFS [44], now discontinued6, proposed to base storage of per-
sonal information in a relational database. Data was represented
in WinFS in an item data model which is a subset of the object-
oriented data model. Like in previous object-oriented approaches
for personal information [40], WinFS employed a schema-first data
modeling strategy. This problem was addressed in WinFS in a
brute-force fashion, i.e., by shipping the system with a wide ar-
ray of pre-defined schemas for personal information that may then
be extended by application developers. In sharp contrast to that, in
iDM there is no need to import generally available data as a variety
of data models may already be expressed as constrained versions of
iDM (see Section 3). That allows a system based on iDM to be use-
ful from the start — with investment on schemas being made only
if necessary [20]. In addition, from a systems perspective, WinFS
represented a platform-specific solution restricted to a vendor spe-
cific set of devices. Our approach is totally different from that as
the iDM-based iMeMex PDSMS already works with a larger set
of operating systems including Linux and other Unixes, Windows,
and Mac OS X (see Section 5). At the same time, iMeMex is able to
seamlessly integrate into all of the above operating systems [16].
Structure Extraction. Approaches to the problem of structure ex-
traction are automatic and semi-automatic. Some techniques for
automatic structure extraction have a pre-defined schema to which
entity references are matched, e.g. reference reconciliation [18] and
email classification [10, 27], while others seek to detect categories
on the data, e.g. topic and social network analysis [35, 12]. These
techniques are orthogonal to our approach, as they provide means
to extract structure from data; derived information may be repre-
sented in a variety of data models, including iDM.

Fully automatic structure extraction is a long-term goal. There-
fore, semi-automatic extraction approaches [26] try to increase ac-

6The downloadable beta as well as all other preliminary informa-
tion about WinFS were recently removed from its web-site [44].
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curacy by incorporating user interference. Hubble [34] is a sys-
tem that allows users to organize and categorize XML files into
dynamically generated folders using complex XQuery expressions.
In contrast to iDM, Hubble is restricted to extensional XML files
and does not suppport infinite data. Moreover, iDM provides a log-
ical data model to unify the XML file’s elements hierarchy and the
outside folder hierachy.
PIM Systems. Systems such as SEMEX [17] and Haystack [31]
enable users to browse by association. The information in the
desktop is extracted and imported into a repository that encodes
pre-defined schemas about high-level entities like persons, projects,
publications, etc. The rich relationships among such personal data
items call for a data model that may represent arbitrary graph data
and not only trees or DAGs. Lifestreams [22] completely abandons
the files&folders paradigm and bases the organization of informa-
tion on a timeline. MyLifeBits [7] allows visualizations to be built
on top of a unified store for personal information. All informa-
tion, including resource content, is stored in a relational database.
Queries are represented in these systems as collections whose con-
tent is calculated on demand. Such use-cases of intensionally de-
fined data may also be modeled in iDM (see Section 4.3).

7. EVALUATION
The goal of this experimental evaluation is to show that iDM can

be efficiently implemented in a real PDSMS. We present results
based on an initial implementation of iDM in iMeMex. We report
indexing times and sizes for an actual personal dataset. Further,
we execute different classes of queries over iDM and report query
response times.

7.1 Setup
We performed our experiments on an Intel Pentium M 1.8 GHz

PC with 1 GB of main memory and an IDE disk of 60 GB. We
used MS Windows XP Professional SP2 as its operating system and
a volume with NTFS. iMeMex is implemented in Java and we used
Sun’s hotspot JVM 1.4.2_08-b03. The JVM was configured to allo-
cate at most 512 MB of main memory. The Resource View Catalog
is implemented on top of Apache Derby 10.1 and full-text indexes
use Apache Lucene 1.4.3. The full-text of all text based content
and PDF content is indexed. Further, we have implemented con-
verters that take content components in XML or in LATEX formats
and generate resource view graphs as shown in Section 2.

Many authors have observed that there is a lack of benchmarks to
evaluate PIM approaches, e.g. [29, 43]. Thus, we have decided to
use a real personal dataset to evaluate the efficiency of our iDM im-
plementation. Our dataset consists of the personal files and emails
of one of the authors of this paper. All files are kept on the same
computer in which iMeMex is run; emails are kept on a remote
server and are accessed via the IMAP protocol.

The characteristics of the data set used are shown in Table 2. We
show each data source and the total number of resource views ex-
tracted from the data source. The total number of resource views
may be broken into the number of resource views obtained by rep-
resenting base items of the data source (i.e., files&folders for the
filesystem; emails, folders and attachments for email), the number
of resource views extracted from XML content, and the number of
resource views extracted from LATEX content. We also show the
total storage requirements of the items stored in the data sources.

As we may observe in Table 2, the largest portion of the data is
stored locally on the filesystem. Most of the resource views present
on the filesystem data source are obtained from the content of XML
and LATEX files. These views were obtained from 47 XML doc-
uments and 282 LATEX documents. In the email data source, the

number of resource views extracted from XML or LATEX documents
is relatively smaller, as in this dataset these documents are not com-
monly exchanged as attachments to email messages. We have 13
XML documents and 7 LATEX documents as attachments to email
messages. When both data sources are taken together, the num-
ber of resource views derived from base items greatly surpasses the
number of base items.

7.2 Results
We report results on two experiments using the dataset described

in the previous section. In the first experiment, we show iMeMex in-
dex and replica creation times and sizes; in the second experiment,
we evaluate query performance when exploiting iDM to run a set
of queries over structured and unstructured desktop data.
Indexing. iMeMex offers a set of index and replica implementations
to speed-up query processing. In our current implementation, we
use the following structures:
1. Name Index & Replica: an Apache Lucene full-text index that

also stores the values of the resource views’ name components.
2. Tuple Index & Replica: a replica of all resource views’ tuple

components. iMeMex keeps this replica in-memory and an aux-
iliary sorted index structure is also kept in-memory. This index
structure is based on vertical partitioning [11].

3. Content Index: an Apache Lucene full-text index on text ex-
tracted from content components, if possible. This index is not
a replica, i.e., the original content is not saved in the index.

4. Group Replica: a replica of all resource views’ group compo-
nents. iMeMex keeps this replica in-memory.

For the remainder, we refer to indexes and replicas simply by
the term indexes, as their use in this evaluation is to improve query
processing time. In our initial implementation, all resource views
present in the data source are registered in the resource view catalog
and their components are indexed in the structures described above.
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Table 3 shows the resulting index sizes for the personal dataset.
Although the original dataset occupies around 4 GB, we observe
that the net input data size is of about 255 MB. The net input data
size is obtained by excluding the content size of those resource
views whose content could not be converted to a textual represen-
tation (e.g. image formats). That content was therefore not given as
input to the content index. As we may notice on Table 3, the total
size for all indexes is 67.5% of the net input data size. Most of that
total index size is taken by the full-text index on content.

The total indexing time for the personal dataset described in Sec-
tion 7.1 is shown in Figure 5. For each data source, we report the
time necessary to register metadata in the Resource View Catalog
(Catalog Insert), the time spent inserting data in our index struc-
tures (Component Indexing) and the time spent to obtain the data
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Data Source Total # of Resource Views

Size (MB) Base Views Derived Views TotalFiles&Folders Email Total XML LATEX Total
Filesystem 4,243 14,297 0 14,297 117,298 11,528 128,826 143,123

Email / IMAP 189 0 6,335 6,335 672 350 1,022 7,357
Total 4,435 14,297 6,335 20,632 117,970 11,878 129,848 150,480

Table 2: Characteristics of the personal dataset used in the evaluation

Data Source Net Input Index Sizes (MB)
Data Size (MB) Name Tuple Content Group RV Catalog Total

Filesystem 212.3 12.5 11.5 113.0 3.3 24.4 164.7
Email / IMAP 43.1 0.4 1.8 5.0 0.2 0.4 7.8

Total 255.4 12.9 13.3 118.0 3.5 24.8 172.5

Table 3: Index sizes for the personal dataset

from the underlying data sources (Data Source Access). For the
filesystem, the total indexing time is about 22 min. Roughly half of
that time is spent on inserting information on index data structures,
while the remaing time is distributed among catalog maintenance
and the actual scanning of the underlying filesystem. The index-
ing of email takes about 68 min and the time is dominated by data
source access. The catalog maintenance time during email index-
ing is negligible, as the email data source contains only a small
number of resource views. Overall, the influence of indexing the
remote email data source on the total indexing time is significant,
as most of the time is spent with data source access.

iQL Query expression # of Results
Q1 “database” 941
Q2 “database tuning” 39
Q3 [size > 420000 and lastmodified < @12.06.2005] 88
Q4 //papers//*Vision/*[“Franklin”] 2
Q5 //VLDB200?//?onclusion*/*[“systems”] 2
Q6 union( //VLDB2005//*[“documents”], 31

//VLDB2006//*[“documents”] )
Q7 join( //VLDB2006//*[class=“texref”] as A, 21

//VLDB2006//*[class=“environment”]//figure*
as B, A.name=B.tuple.label)

Q8 join ( //*[class = “emailmessage”]//*.tex as A, 16
//papers//*.tex as B, A.name = B.name )

Table 4: iQL queries used in the evaluation

  0

  0.1

  0.2

  0.3

  0.4

  0.5

Q8Q7Q6Q5Q4Q3Q2Q1

Q
ue

ry
 re

sp
on

se
 ti

m
e 

[s
ec

]

Figure 6: Query response times for queries Q1–Q8 [sec]

Query Processing. We focus our evaluation on response times ob-
served for a set of queries over the desktop dataset used. The queries
evaluated are shown in Table 4, along with their number of re-
sults. Figure 6 shows the observed response times for the eight
queries evaluated. We report all execution times with a warm cache,
i.e., each query is executed several times until the deviation on
the average execution time becomes small. As we may notice,

most queries evaluated (Q1-Q7) are executed in less than 0.2 sec-
onds. The only exception is Q8, a join query that includes informa-
tion from different subsystems (email, filesystem) and takes about
0.5 seconds. The reason is that, after fetching the data via index
accesses, our query processor obtains indirectly related resource
views by forward expansion. For Q8, that causes the processing of
a large number of intermediate results when compared to the final
result size. In order to provide even better response times in such
situations, we plan to investigate alternative processing strategies
such as backward or bidirectional expansion [30]. Nevertheless, in
the HCI community it is argued that a response time of less than 1
second should be the goal for every computer system [39]. Thus,
we conclude that for a sample of meaningful queries over real desk-
top data the implementation of iDM in iMeMex allows for query
processing with interactive response times.

8. CONCLUSIONS
Personal Information Management has become a key necessity

of almost everybody. Several techniques and systems have been
proposed for various scenarios and operating systems. Consider-
able progress has been made in the PIM area in the recent past. At
the same time, it has become clear that what is missing is a unified
approach to PIM that is able to represent all personal information in
a single, powerful and yet simple data model. This paper has pro-
posed the iMeMex Data Model (iDM) as a unified and versatile so-
lution. The major advantages of our approach are: (1) iDM clearly
differentiates between the logical data model and its physical repre-
sentation, (2) iDM is powerful enough to represent XML, relations,
files&folders and cyclic graphs in a single data model, (3) iDM
is able to represent the structural contents inside files as part of
the same data model, (4) iDM is powerful enough to represent ex-
tensional data (base facts), intensional data (e.g. ActiveXML), as
well as infinite data (content and data streams), (5) iDM enables a
new class of queries that are not available with state-of-the-art PIM
tools.

iDM builds the foundation of the iMeMex Personal Dataspace
Management System. We have demonstrated that iDM can be ef-
ficiently implemented in such type of system offering both quick
indexing times and interactive query response times.

We point out below some issues relevant to personal dataspace
management that are orthogonal to our model, but which are easier
to tackle once a data model like iDM is in place:
1. Versioning. A PDSMS keeps track of all changes made to the

dataspace. As with classical versioning techniques, logically,
each change creates a new version of the whole dataspace. iDM
allows the representation of the entire dataspace of a user in
one model. Thus, the implementation of versioning is strongly
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simplified.
2. Lineage. Data lineage refers to keeping the history of all data

transformations that originated a given resource view. For ex-
ample, when a user copies a file into another and then modifies
the new file, the system should keep for the new resource view
the information about its provenance. With a unified model
such as iDM, it is possible to keep lineage information across
data sources and formats.

The exploration of these issues is part of ongoing and future
work in the iMeMex Personal Dataspace Management System. We
plan to present an updated and extended description of iMeMex’s
architecture as a separate paper. We will also develop a full speci-
fication of iQL and investigate algorithms for query processing and
cost-based query optimization. In addition, we are planning to ex-
tend our system to enable networks of P2P instances. Finally, we
are planning to explore PIM applications such as reference recon-
ciliation and clustering on top of the iMeMex platform.
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