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ABSTRACT
Web services are becoming a standard method of sharing data and
functionality among loosely-coupled systems. We propose a general-
purpose Web Service Management System (WSMS) that enables
querying multiple web services in a transparent and integrated fash-
ion. This paper tackles a first basic WSMS problem: query opti-
mization for Select-Project-Join queries spanning multiple web ser-
vices. Our main result is an algorithm for arranging a query’s web
service calls into a pipelined execution plan that optimally exploits
parallelism among web services to minimize the query’s total run-
ning time. Surprisingly, the optimal plan can be found in polyno-
mial time even in the presence of arbitrary precedence constraints
among web services, in contrast to traditional query optimization
where the analogous problem is NP-hard. We also give an algo-
rithm for determining the optimal granularity of data “chunks” to
be used for each web service call. Experiments with an initial pro-
totype indicate that our algorithms can lead to significant perfor-
mance improvement over more straightforward techniques.

1. INTRODUCTION
Web services[33] are rapidly emerging as a popular standard

for sharing data and functionality among loosely-coupled, hetero-
geneous systems. Many enterprises are moving towards aservice-
oriented architectureby putting their databases behind web ser-
vices, thereby providing a well-documented, interoperable method
of interacting with their data. Furthermore, data not stored in tra-
ditional databases also is being made available via web services.
There has been a considerable amount of recent work [12, 24] on
the challenges associated with discovering and composing web ser-
vices to solve a given problem. We are interested in the more basic
challenge of providing DBMS-like capabilities when data sources
are web services. To this end we propose the development of a
Web Service Management System(WSMS): a general-purpose sys-
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Figure 1: A Web Service Management System (WSMS)

tem that enables clients to query multiple web services simultane-
ously in a transparent and integrated fashion.

Overall, we expect a WSMS to consist of three major compo-
nents; see Figure 1. TheMetadatacomponent deals with metadata
management, registration of new web services, and mapping their
schemas to an integrated view provided to the client. There is a
large body of work on data integration, see e.g, [7, 22], that applies
to the Metadata component; we do not focus on these problems in
this paper. Given an integrated view of the schema, a client can
query the WSMS through an SQL-like interface. TheQuery Pro-
cessing and Optimizationcomponent handles optimization and ex-
ecution of such declarative queries, i.e., it chooses and executes a
query plan whose operators invoke the relevant web services. The
Profiling and Statisticscomponent profiles web services for their
response time characteristics, and maintains relevant statistics over
the web service data, to the extent possible. This component is
used primarily by the query optimizer for making its optimization
decisions. In this paper we take a first step at realizing a complete
WSMS: We address the problem of query optimization for Select-
Project-Join queries spanning multiple web services.

Most web services provide a function-call like interfaceX → Y
whereX andY are sets of attributes: given values for the attributes
in X , the web service returns values for the attributes inY. For
example, a web service may take a credit card number and return
the card’s credit limit. Due to this very restricted interface, most
query processing over web services can be thought of in terms of
a “workflow” or pipeline: some input data is fed to the WSMS,
and the WSMS processes this data through a sequence of web ser-
vices. The output of one web service is returned to the WSMS and
then serves as input to the next web service in the pipeline, finally
producing the query results. Each web service in the pipeline typ-
ically performs operations such as filtering out data items that are
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not relevant to the query, transforming data items, or appending ad-
ditional information to each data item. Transformed or augmented
data items may be required for further processing of the query (ef-
fectively performing a join across web services), or may become a
part of the final query result.

EXAMPLE 1.1. Suppose a credit card company wishes to send
out mailings for its new credit card offer. The company continu-
ously obtains lists of potential recipients from which it wants to se-
lect only those who have a good payment history on a prior credit
card, and who have a credit rating above some threshold. For pro-
cessing this query, the company has the following three web ser-
vices at its disposal.

WS1 : name (n) → credit rating (cr)
WS2 : name (n) → credit card numbers (ccn)
WS3 : card number (ccn) → payment history (ph)

With a WSMS, one possible way of executing the query is as fol-
lows: The company’s initial list of names (we assume names are
unique) is first processed by WS1 to determine the corresponding
credit ratings, and those below threshold are filtered out (either by
WS1 itself or by the WSMS). The remaining names are then pro-
cessed by WS2 to get the corresponding credit card numbers. Each
card number is then processed by WS3, and if the card is found to
have a good payment history, then the name is output in the result
of the query.

The first obvious step to speed up query execution in a WSMS is
to use the conventional idea ofpipelined parallelism: data already
processed by web service WSi may be processed by a subsequent
web service WSi+1 in the pipeline, at the same time as WSi pro-
cesses new data. Deciding the optimal way to perform this pipelin-
ing poses several new challenges:

1. Different web services may differ widely in their response
time characteristics, as well as in how many output tuples
they produce per input tuple on average (henceforthselectiv-
ity). Hence different arrangements of the web services in the
pipeline may result in significantly different overall process-
ing rates. The optimizer must decide the best arrangement.

2. The web services in the pipeline may not always be freely
reordered, i.e., there might existprecedence constraints. (In
Example 1.1, WS2 must occur before WS3 in the pipeline.)
In such cases, the optimizer must pick the best arrangement
that respects all precedence constraints.

3. A linear ordering of the web services in a pipeline (as in Ex-
ample 1.1) may not be optimal. For example, if there are no
precedence constraints between web services WSi and WSj ,
we need not wait for results from one to invoke the other,
rather they may be invoked in parallel using the same in-
put data. On the other hand, parallelizing all web services
without precedence constraints may not be optimal either,
since one or more of the web services may vastly reduce the
amount of data the others need to process.

4. Each web service call usually has some fixed overhead, typi-
cally parsing SOAP/XML headers and going through the net-
work stack. Hence some web services support sending data
to them in “chunks” rather than one tuple at a time. Through
experiments we found that the response time of a web service
often is not linear in the input chunk size, so the optimizer
must decide the best chunk size to use.

In this paper, we develop new, efficient algorithms that address
each of the above challenges to arrive at the optimal pipelined exe-
cution plan for a given query over a set of web services. A simple

yet significant observation that forms the basis for our algorithms
is that the performance of a pipelined plan over web services (the
rate of data processing through the plan) is dictated by the slowest
web service in the pipeline (referred to as thebottleneck cost met-
ric). In contrast, in a traditional centralized system, the cost of a
pipelined plan is dictated by the sum of the costs of the plan oper-
ators (referred to as thesum cost metric) rather than by the cost of
only the slowest operator. Previous related work [3, 8, 16, 18] has
considered only the sum cost metric. To the best of our knowledge,
our work is the first to consider the bottleneck metric.

We start by considering web services without precedence con-
straints and give a simple algorithm to find the optimal plan based
on the web service response times and selectivities. Our algorithm
reveals the somewhat counterintuitive property that when the selec-
tivity of all web services is≤ 1, the optimal arrangement depends
only on the response times of the web services and is independent
of their selectivities.

Next we give a polynomial-time algorithm to find the optimal
plan when there may be arbitrary precedence constraints among
the web services. It is surprising that such an algorithm exists,
since under the sum cost metric, it is known that the optimal plan is
poly-time computable only for restricted types of precedence con-
straints [18], and for arbitrary precedence constraints the optimal
plan is hard to even approximate [6].

Finally, we consider sending data to web services in chunks. We
show that our query optimization algorithm extends trivially to ac-
count for chunking. We also give an algorithm to determine the
best chunk size to use for each web service. The algorithm is based
on profiling the web services to determine their response times as a
function of the size of the data chunk sent to them.

Since at first glance our work might seem closely related to much
existing literature, we discuss related work next, in Section 2. We
then present the main contributions of this paper:

• We formally define the class of queries we consider, intro-
duce the model for query processing in a WSMS, and formal-
ize the bottleneck cost metric that is used to compare query
plans (Section 3).

• We give algorithms to decide the best arrangement of web
services into a pipelined plan so that the overall processing
rate is maximized, both in the absence of precedence con-
straints (Section 4), and in the presence of arbitrary prece-
dence constraints (Section 5).

• We consider the case when data can be sent to web services in
chunks, and we give an algorithm to decide the optimal data
chunk size for each web service in a query plan (Section 6).

• We have implemented an initial prototype WSMS query opti-
mizer (with simple instantiations of the other WSMS compo-
nents in Figure 1), and we report an experimental evaluation
of our algorithms (Section 7).

2. RELATED WORK

2.1 Web Service Composition
A considerable body of recent work addresses the problem of

composition(or orchestration) of multiple web services to carry out
a particular task, e.g. [12, 24]. In general, that work is targeted more
toward workflow-oriented applications (e.g., the processing steps
involved in fulfilling a purchase order), rather than applications co-
ordinating data obtained from multiple web services via SQL-like
queries, as addressed in this paper. Although these approaches have
recognized the benefits of pipelined processing, they have not, as
far as we are aware, included formal cost models or techniques that

356



result in provably optimal pipelined execution strategies.
Languages such asBPEL4WS[4] are emerging for specifying

web service composition in workflow-oriented scenarios. While
we have not yet specifically applied our work to these languages,
we note that BPEL4WS, for example, has constructs that can spec-
ify which web services must be executed in a sequence and which
can be executed in parallel, similar to the presence and absence
of precedence constraints in our model. We are hopeful that the
optimization techniques developed here will extend to web-service
workflow scenarios as they become more standardized, and doing
so is an important direction for future work.

ActiveXML is a paradigm in which XML documents can have
embedded web service calls in them. However, optimization work
on ActiveXML [1] mostly focusses on deciding which web service
calls in the document need to be made in order to answer a query
posed over the XML document. As ActiveXML gains acceptance,
it can be seen as an interesting mechanism to set up a distributed
query plan over web services: ActiveXML fragments might be in-
put to a web service, thereby making it invoke other web services.

2.2 Parallel and Distributed Query Processing
In our setting of query processing over web services, onlydata

shippingis allowed, i.e., dispatching data to web services that pro-
cess it according to their preset functionality. In traditional dis-
tributed or parallel query processing, each of which has been ad-
dressed extensively in previous work [10, 17, 26], in addition to
data shipping,code shippingalso is allowed, i.e., deciding which
machines are to execute which code over which data. Due to lack
of code shipping, techniques for parallel and distributed query opti-
mization, e.g., fragment-replicate joins [26], are inapplicable in our
scenario. Moreover, most parallel or distributed query optimization
techniques are limited to a heuristic exploration of the search space
whereas we provide provably optimal plans for our problem setting.

2.3 Data Integration and Mediators
Our WSMS architecture has some similarity tomediatorsin data

integration systems [7, 14, 22, 28]. However, query optimization
techniques for mediators, e.g., [13, 25, 35], focus mostly on is-
sues such as choosing the rightbinding access patternto access
each data source, and aim at minimizing thetotal consumption
of resources rather than at minimizing running time by exploiting
parallelism. An important focus in mediators is to optimize the
cost incurred at the data integration system itself, for which clas-
sical relational database optimization techniques (or modifications
thereof) often can be applied. However, our techniques focus not
on optimizing the processing at the WSMS, but on optimizing the
expensive web service calls by exploiting parallelism among them.

A capability frequently required in a WSMS is that of using the
results from one web service to query another. This operation is
essentially the same as theDependent Join, which has been studied
in [13, 21], and whose techniques are applicable in a WSMS.

2.4 Query Processing over Remote Sources
Exploiting parallelism among data sources has generally not been

the focus of prior work. WSQ/DSQ [15] does exploit parallelism
by making multiple asynchronous calls to web sources, but does
not perform any cost-based optimization. Other work [19, 31] has
considered adaptive query processing over remote data sources,
with dynamic reoptimization when source characteristics change
over time, but does not include optimizations to exploit parallelism
among sources.

Our execution model of pipelined processing resemblesdistributed
Eddies[29]. However, unlike our work, the Eddies framework does

not perform static optimization of queries. A problem mathemat-
ically similar to ours has been considered in [9, 20], but only for
the simpler case of no precedence constraints and all web services
being selective, i.e., returning fewer data items than are input to it.
Interestingly, in distributed Eddies, as well as in [9, 20], different
input tuples may follow different plans, a possibility that we have
not considered in our work. So far, we have focused on the prob-
lem of finding the optimal single plan for all tuples. An important
direction of future work is to combine our techniques with those
developed in [9, 20], thereby leading to even higher performance.

3. PRELIMINARIES
Consider a WSMS as shown in Figure 1 that provides an inte-

grated query interface ton web services WS1, . . . ,WSn. We as-
sume that for querying, each web service WSi provides a function-
call like interfaceXi → Yi, i.e., given values for attributes inXi,
the web service returns values for the attributes inYi. Using the no-
tation of binding patterns[13], we write WSi(X

b
i ,Yf

i ) to denote
that, treating WSi as a virtual table, the values of attributes inXi

must be specified (orbound) while the values of attributes inYi are
retrieved (orfree).

Let x̄ andȳ denote value assignments to the attributes inXi and
Yi respectively. Logically, virtual table WSi has a tuple(x̄, ȳ)
whenever the value assignmentȳ is among those returned forYi

when WSi is invoked withXi = x̄. There may be zero, one, or
many tuples in WSi for each possiblēx. Note that ifYi is empty,
then web service WSi acts as a filter, and virtual table WSi contains
a tuplex̄ for every value assignmentx̄ passing the filter.

3.1 Class of Queries Considered
The class of queries we consider for optimization are Select-

Project-Join (SPJ) queries over one or more web services WS1, . . . ,
WSn, and a tableI corresponding to data input by the client to the
WSMS (e.g., the initial set of names in Example 1.1). We assume
that the correspondence among various attributes of various web
services, required for joins, is tracked by the Metadata component
of the WSMS (Figure 1).

DEFINITION 3.1 (SPJ QUERIES OVERWEB SERVICES).

SELECTAS

FROM I(AI) 1 WS1(X b
1 ,Yf

1 ) 1 . . . 1 WSn(X b
n,Yf

n)
WHERE P1(A1) ∧ P2(A2) ∧ . . . ∧ Pm(Am)

whereAs is the set of projected attributes,AI is the set of at-
tributes in the input data, andP1, . . . , Pm are predicates applied
on attributesA1, . . . , Am respectively.

We assume in Definition 3.1 that all predicates are on single at-
tributes, i.e., there are no join conditions except implicit natural
equijoins. We also assume there is only one source of informa-
tion for each attribute: each attribute is either specified in the input
data, or is obtained as a free attribute from exactly one web service.
(When values are available from multiple web services it becomes
important to address issues such as deciding which web service is
of higher quality, which are beyond the scope of this paper.)

DEFINITION 3.2 (PRECEDENCECONSTRAINTS). If a bound
attribute inXj for WSj is obtained from some free attributeYi of
WSi, then there exists aprecedence constraintWSi ≺ WSj , i.e., in
any feasible execution plan for the query, WSi must precede WSj .

The precedence constraints may be represented as a directed
acyclic graph (DAG)G in which there is a node corresponding to
each web service, and there is a directed edge from WSi to WSj
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if there is a precedence constraint WSi ≺ WSj . Note thatG is not
specified by the query, it is implied by which attributes are bound
and which ones are free in the web services involved in the query.

EXAMPLE 3.3. We continue with Example 1.1. With binding
patterns, the three web services can be expressed as WS1(n

b, crf ),
WS2(nb, ccnf ), and WS3(ccnb, phf ). Denoting the input names
by I, the example query can be expressed as:

SELECTn
FROMI(n) 1 WS1(nb, crf ) 1 WS2(nb, ccnf ) 1 WS3(ccnb, phf )
WHEREcr > threshold∧ ph = good

Since the bound attributeccn in WS3 is provided by WS2, there
exists a precedence constraint WS2 ≺ WS3.

3.2 Query Plans and Execution Model
In the following example, we motivate possible execution plans.

EXAMPLE 3.4. We continue with Example 1.1. The execution
plan discussed in Example 1.1 is shown by Plan 1 in Figure 2. Al-
though we show direct arrows between web services, in reality the
arrows imply that data is returned to the WSMS, relevant predicates
are applied, and the results are passed to the next web service.

However, since there is no precedence constraint between WS1

and WS2, we need not wait for output from WS1 to invoke WS2.
Thus, an alternative execution plan for the same query is shown by
Plan 2 in Figure 2, where the input list of namesI is dispatched
in parallel to WS1 and WS2 (denoted by two outgoing arrows from
I). The results from WS2 are then used to invoke WS3 as in Plan
1. The final query result is obtained by joining the results from the
two branches locally at the WSMS.

In general, an execution plan is an arrangement of the web ser-
vices in the query into a DAGH with parallel dispatch of data
denoted by multiple outgoing edges from a single web service, and
rejoining of data denoted by multiple incoming edges into a web
service. Note that the plan DAGH is distinct from the DAGG of
precedence constraints among web services, although if WSi is an
ancestor of WSj in G, then it must also be so inH (i.e.,H respects
the precedence constraintsspecified byG).

Given a plan DAGH, it is executed as follows (see Figure 3). A
threadTi is established for each web service WSi. ThreadTi takes
input tuples from a separate join threadJi that joins the outputs of
the parents of WSi in H. In the special cases when WSi has no
parents inH, Ti takes input from the tableI, and when WSi has
exactly one parent inH (say WSp), Ti takes input directly from the
output of threadTp. ThreadTi uses its input tuples to invoke WSi,
filters the returned tuples, and writes them to its output. The final
query result is obtained from the output of a join threadJout that
performs a join of the outputs of all the web services that are leaves
in the planH. In the special case when there is only one leaf web
service WSl in H (e.g., Plan 1 in Figure 2), the output from WSl

directly forms the query result and threadJout is not needed.
The join threads perform amultiway stream joinof their inputs,

and there are known techniques to perform such joins efficiently,
e.g., [32]. Furthermore, using a technique similar topunctuations
in data streams [11], a unique marker is inserted when branching,

so the join threads know when joining tuples are complete and state
can be discarded.

According to Figure 3, the WSMS has only one outstanding call
to any individual web service at a time, i.e., while the WSMS is
waiting for the results from a previous call to WSi to arrive, it does
not make another call to WSi. However, this assumption is not
important to our approach. As we will see, our algorithms only
rely on a quantity representing the maximum rate at which data can
be obtained from a web service. This rate can often be boosted by
making multiple outstanding calls to the web service [15]; how the
rate is achieved does not affect the applicability of our algorithms.

Also, in this paper we assume that results from one web ser-
vice are returned to the WSMS before being passed on to another
web service. However, with sufficient standardization, it might be
possible for one web service to send it results directly to another.
Our model for pipelined execution and our optimization algorithms
would not change under that model.

3.3 Bottleneck Cost Metric
As a first step in developing a query optimizer for web services,

we assume that the goal of optimization is to minimize the total run-
ning time of queries. In reality, there are other metrics that might
also be important. For example, if a web service call incurs a mone-
tary cost, we may wish to minimize the total number of web service
calls. A study of other interesting metrics and their tradeoff with
query running time is an interesting topic of future work.

To obtain an expression for the running time of a particular query
execution plan, we assume that the following two quantities can be
tracked and estimated for each web service by the Profiling and
Statistics component of the WSMS (Figure 1); we do not focus on
profiling techniques in this paper.

1. Per-tuple Response time (ci): If ri is the maximum rate at
which results of invocations can be obtained1 from WSi, we use
ci = 1/ri as the effective per-tupleresponse time(or intuitively,
the cost) of WSi. The maximum rateri for a web service WSi
(and hence its effective per-tuple response timeci) can often be
boosted by batching several calls together (data chunking, Sec-
tion 6), or making multiple parallel calls (as described at the end
of Section 3.2). Our optimization algorithms are applicable regard-
less of how the best response time for a web service is achieved.

The response time of a web service may depend on a variety of
factors, such as the web service provisioning, the load on the web
service, and the network conditions. In this paper, as a first step,
we give algorithms assuming the response time is a constant, so the
query may need to be reoptimized if significant changes in response
time are detected. As future work, we plan to explore ideas such
as adaptive plans, or plans that are provably robust to variations in
response time.

2. Selectivity (si): Recall lines 2-7 of threadTi (Figure 3) where a
tuple is input to WSi and relevant filters are applied to the returned
results. The average number of returned tuples (per tuple input to
WSi) that remain unfiltered after applying all relevant predicates is
denoted bysi, and is referred to as theselectivityof web service
WSi. si may be≤ 1. For instance, in Example 3.3, if 10% of the
names inI have credit rating above threshold, thens1 = 0.1. In
general,si may also be> 1. In the same example, if every person
holds 5 credit cards on average, thens2 = 5.

In this paper, we assume web service selectivities areindepen-

1Note thatri incorporates the time for transmission over the net-
work, as well as the queuing delays and the processing time at the
web service.
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Algorithm ExecutePlan(H) Thread Ti:
H: An arrangement of web services into a DAG 1. while (tuples available onTi’s input)
1. for each web service WSi 2. read a tuples from Ti’s input
2. launch a threadTi 3. invoke WSi with valuess.Xi

3. if WSi has no parents inH 4. for each returned tuplet
4. set upTi to take input fromI 5. apply all predicatesPj(Aj) whereAj ∈ Yi

5. else if WSi has a single parent WSp in H 6. if t satisfies all predicates
6. set upTi to take input fromTp’s output 7. writes 1 t to Ti’s output
7. else
8. launch a join threadJi Thread Ji

9. set upTi to take input fromJi’s output 1. perform the join of the outputs of WSi’s parents inH
10. launch join threadJout Thread Jout

11. return output ofJout as query result 1. perform the join of the outputs of web services that are leaves inH

Figure 3: Query Execution Algorithm

dent, i.e., the selectivity of a web service does not depend on which
web services have already been invoked. Extending our algorithms
to work with correlatedselectivities is an important direction for
future work. Although, our model of selectivities is fairly general,
it is not adequate to capture scenarios where the web service per-
forms some form of aggregation, i.e., producing a fixed number of
output tuples irrespective of the number of input tuples. Extension
of our algorithms to such web services is an interesting direction of
future work.

Consider the pipelined execution of a plan as specified in Fig-
ure 3. There is a time period at the beginning (respectively end) of
query execution when the pipeline is filling up (respectively emp-
tying out), after which a steady state is reached during which input
tuples flow through the pipeline at a constant rate. For long-running
queries—typically queries in which the input tableI is large—the
time spent to reach steady state is negligible compared to the to-
tal running time of the query. In such cases, minimizing the total
running time is equivalent to maximizing the rate at which tuples
in I are processed through the pipeline in steady state. When time
to reach steady state is nonnegligible, then the query is typically
short-running and less in need of optimization anyway. Thus, we
focus on the processing rate during steady state.

Since all web services can be executing in parallel, the maximum
rate at which input tuples can be processed through the pipelined
plan is determined by thebottleneckweb service: the web service
that spends the most time on average peroriginal input tuple inI.
Next, we derive a formal expression for this cost metric.

Consider a query planH specified as a DAG on the web services
in the query. LetPi(H) denote the set of predecessors of WSi in
H, i.e., all web services that are invoked before WSi in the plan.
Formally,

Pi(H) = {WSj | WSj has a directed path to WSi in H} (1)

Given a setS of web services, we define the combined selec-
tivity of all the web services inS asR[S]. By the independence
assumption among selectivities,R[S] is given by:

R[S] =
∏

i | WSi∈S

σi (2)

Then, for every tuple inI input to planH, the average number
of tuples that WSi needs to process is given byR[Pi(H)]. Since
the average time required by WSi to process a tuple in its input is
ci, the average processing time required by web service WSi (or
intuitively, the cost incurred by WSi) per original input tuple inI

is R[Pi(H)] · ci. Recall that plan cost is determined by the web
service with maximum processing time per original input tuple in
I. Thus the cost of the query planH is given by the following
metric (referred to as thebottleneck cost metric):

cost(H) = max
1≤i≤n

(

R[Pi(H)] · ci

)

(3)

EXAMPLE 3.5. Consider Plan 1 in Figure 2 for the query in
Example 3.3. Let the costs and selectivities of the web services be
as follows:

i 1 2 3
Cost of WSi (ci) 2 10 5

Selectivity of WSi (si) 0.1 5 0.2

Let |I| be the number of tuples in the input dataI. In Plan 1,
with the example selectivities, WS1 needs to process|I| tuples,
WS2 needs to process0.1|I| tuples , and WS3 needs to process
0.5|I| tuples. Thus, the time taken by WS1, WS2 and WS3 per tu-
ple in I is 2, 1, and2.5 respectively. The cost of the plan is then
max(2, 1, 2.5) = 2.5. We arrive at the same number using(3).

Now consider Plan 2 in Figure 2. Its cost (using(3)) is max
(2, 10, 25) = 25. Thus, for this example, Plan 2 is 10 times slower
than Plan 1.

It may appear that the bottleneck cost metric ignores the work
that must be done by the WSMS threads (Figure 3). Formally, we
can treat all the work done at the WSMS as just another call in the
pipeline. Our algorithms are designed under the assumption that
the pipeline stage constituted by the WSMS is never the bottleneck,
which seems realistic since it is unlikely that the simple operations
the WSMS needs to perform will be more expensive than remote
web service calls. This assumption is also validated by our experi-
ments (Section 7).

We can now formally define the query optimization problem
solved in this paper.

DEFINITION 3.6. (QUERY OPTIMIZATION OVER WEB SER-
VICES). Given an SPJ query over web services (Definition 3.1)
implying a DAGG of precedence constraints, find a query plan ar-
ranging the web services into a DAGH that respects all precedence
constraints inG, where cost(H) as given by(3) is minimized.

It is important to understand the basic differences between our
scenario and a traditional centralized setting which also has query
operators characterized by costs and selectivities. In the traditional
setting, each operator is running on the same machine, so the cost
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of the plan is given not by the bottleneck cost but by the sum of the
costs incurred by the operators (referred to as thesum cost metric).
The sum cost metric has been considered in much previous work [3,
8, 16, 18], but to the best of our knowledge, our work is the first to
consider the fundamentally different bottleneck cost metric. One
critical difference between the two metrics as brought out in this
paper is that under the bottleneck cost metric, the optimal plan can
be found in polynomial time for general precedence constraints (as
shown in Section 5), while under the sum cost metric, for general
precedence constraints the optimal plan is hard to even approximate
in polynomial time [6, 18].

In the next two sections, we consider the problem given by Defi-
nition 3.6 first without, and then with precedence constraints. Then
in Section 6, we consider sending data to web services in chunks.
Finally, we report on our experiments in Section 7.

4. NO PRECEDENCE CONSTRAINTS
In this section, we consider the special case of the problem given

by Definition 3.6 when there are no precedence constraints, i.e.,
the DAGG has no edges. The absence of precedence constraints
implies that no web service depends on another for its bound at-
tributes, i.e., all bound attributes are available directly from the in-
put dataI. Then, a simple execution plan is to dispatch the inputI
in parallel to each of the web services, with the results joined back
at the WSMS.

The main problem with simultaneously dispatchingI to all of the
web services is simply that each web service must process all of the
tuples inI. If some web services are selective (i.e., have selectiv-
ity ≤ 1), then it is better for the slower web services to come near
the end of the pipeline, reducing how much data they must process.
This basic observation forms the intuition behind our algorithm for
selective web services (Section 4.1). When web services may be
proliferative (i.e., have selectivity> 1), we do use the idea of dis-
patching input in parallel to multiple web services. One interesting
observation in our results is that the optimal arrangement of web
services depends only on whether their selectivity is≤ 1 or > 1,
but not on the exact selectivity value.

4.1 Selective Web Services
In this section, we focus on the case when there are no prece-

dence constraints and the selectivity of each web service is≤ 1.
Our algorithm for selective web services follows directly from the
following two simple but key observations.

LEMMA 4.1. There exists an optimal plan that is a linear or-
dering of the web services, i.e., has no parallel dispatch of data.

PROOF. Suppose the optimal planH has parallel dispatch of
data to WSi and WSj . Modify H to H′ where WSi is moved to
the point before the parallel dispatch, and the rest ofH remains
unchanged. The amount of data seen by each web service inH′

is either the same as inH, or si times that inH. Sincesi ≤ 1,
the bottleneck inH′ is at most as much inH. Continuing this
flattening, we find a linear plan having cost at most that ofH.

LEMMA 4.2. Let WS1, . . . , WSn be a plan with a linear order-
ing of the web services. Ifci > ci+1, then WSi and WSi+1 can be
swapped without increasing the cost of the plan.

PROOF. Let H be the plan in which the ordering of the web
services is WS1, . . . , WSn, and letH′ denote the same plan but
with WSi swapped with WSi+1. Let f denote

∏i−1

j=1
sj . By (3):

cost(H) = max(fci, fsici+1, other terms) (4)

selectivity <= 1
web services with

web services with
selectivity > 1

Local
join 
at

WSMS
I

Input 
Results

in increasing cost order

Figure 4: Optimal Plan (No Precedence Constraints)

where the other terms are the cost terms for the rest of the web
services. These other terms remain the same when we considerH′.
Thus:

cost(H′) = max(fci+1, fsi+1ci, other terms) (5)

Consider the terms in cost(H′). fci+1 < fci by the lemma state-
ment, andfsi+1ci ≤ fci sincesi+1 ≤ 1. Since other terms in
cost(H′) are also present in cost(H), cost(H′) ≤ cost(H).

Lemmas 4.1 and 4.2 immediately lead to the following result.

THEOREM 4.3. For selective web services with no precedence
constraints, the optimal plan is a linear ordering of the web ser-
vices by increasing response time, ignoring selectivities.

PROOF. From Lemma 4.1, there exists a linear ordering of the
web services that is optimal. Consider any linear ordering of the
web services that is optimal. If, in this ordering, there is a higher
cost service followed immediately by a lower cost service, by
Lemma 4.2 we can swap them without increasing the cost of the
plan. We continue such swapping until there does not exist a higher
cost web service followed immediately by a lower cost one, thereby
obtaining the result.

Recall that in the derivation of the cost expression for plans (Sec-
tion 3.3), we assumed that the selectivities of web services are in-
dependent. If independence does not hold, the cost of the query
plan can be written in terms of conditional rather than absolute se-
lectivities. However, as long the conditional selectivities are also
≤ 1, Theorem 4.3 applies. Thus our result extends to web services
with correlated selectivities.

4.2 Proliferative Web Services
We now consider the case when some web services may have

selectivity> 1.

THEOREM 4.4. The overall optimal plan for a query consisting
of both selective and proliferative web services with no precedence
constraints is as shown in Figure 4.

PROOF. Consider a query consisting of a set of selective web
servicesWs and a set of proliferative web servicesWp, and hav-
ing no precedence constraints. In the absence of precedence con-
straints, a web service WSi ∈ Wp should not occur before any
other web service WSj in a pipeline, since it will only increase
work for WSj . Thus, the web services inWp should be invoked in
parallel at the end of the plan. Using the results from Section 4.1,
the web services inWs should be placed in increasing cost order.
Thus, the overall optimal plan is as shown in Figure 4.

5. PRECEDENCE CONSTRAINTS
In this section, we develop a general, polynomial-time algorithm

for the problem given by Definition 3.6 when there may be prece-
dence constraints among some of the web services in the query
(recall Definition 3.2). Recall that precedence constraints are spec-
ified as a DAGG.
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Figure 5: Placing WSx after a cut Cx in H̄

We defineMi as the set of all web services that are prerequisites
for WSi, i.e.,

Mi = {WSj | WSj ≺ WSi} (6)

Our overall algorithm (described in Section 5.2) builds the plan
DAG H incrementally by greedily augmenting it one web service
at a time. At any stage the web service that is chosen for addition
to H is the one that can be added toH with minimum cost, and
all of whose prerequisite web services have already been added to
H. The crux of the algorithm lies in finding the minimum cost of
adding a web service toH, described next.

5.1 Adding a Web Service to the Plan
Suppose we have constructed a partial planH̄ and we wish to

add WSx to H̄. To find the minimum cost of adding WSx to H̄
(without modifyingH̄), we compute the bestcutCx in the DAGH̄,
such that on placing edges from the web services inCx to WSx, the
cost incurred by WSx is minimized. An example of a cut is shown
in Figure 5. Formally, a cutC in a DAGH is defined as any set of
web services inH such that there does not exist a directed path in
H from one web service in the cut to another. For the cutCx in H̄,
we also define the setPCx

(also shown in Figure 5) as consisting
of all the web services inCx and all their predecessors in̄H, i.e.,
(recall (1) for definition ofPj(H̄))

PCx
= Cx ∪ {WSi | WSi ∈ Pj(H̄) for WSj ∈ Cx} (7)

Note that givenPCx
, the cutCx can be easily computed as only

those web services inPCx
that are not predecessors of some other

web service inPCx
.

Recall definition ofR[S] from (2). When we place edges from
the web services inCx to WSx (as shown in Figure 5), the total
cost incurred by WSx is given by:

cost(WSx) = R[PCx
] · cx

Let us associate a variablezi with every WSi ∈ H̄ that is set to1
if WSi ∈ PCx

, and to0 otherwise. Then, from (2), we have:

R[PCx
] =

∏

i | WSi∈H̄

(σi)
zi (8)

Then the optimal setPCx
(and hence the optimal cutCx) such

that cost(WSx) is minimized, is obtained by solving the following
linear program where the variables are thezis.

Minimize log cx +
∑

i | WSi∈H̄
zi log σi subject to

zi = 1 ∀i | WSi ∈ Mx

zi ≥ zj ∀i, j | WSi ∈ Pj(H̄)
zi ∈ [0, 1] ∀i

(9)

The objective function of the above linear program minimizes
log(cost(WSx)) that is equivalent to minimizing cost(WSx). We
take logarithms to ensure that the objective function is linear in the
variables. The first constraint in (9) ensures thatPCx

includes all

Algorithm Greedy
1. H̄ ← φ; F (H̄) ← {WSi |Mi = φ}
2. while (H̄ does not include all web services inF )
3. for each web service WSx in F (H̄)
4. vx ← optimal value of linear program (9)
5. Cx ← optimal cut inH̄ from the solution to (9)
6. WSopt ← web service WSx with minimumvx

7. add WSopt to H̄ placing edges fromCopt to WSopt

8. updateF (H̄) according to Equation (10)

Figure 6: Greedy Algorithm for Bottleneck Cost Metric

the prerequisite web services for WSx (so that it is feasible to add
WSx after the cutCx). The second constraint ensures that the set
PCx

is chosen according to the current structure ofH̄, i.e., if a web
service WSi is chosen inPCx

, all predecessors of WSi in H̄ are
also chosen inPCx

. Note that the third constraint relaxes the linear
program to include fractionalzi’s instead of just integers. How-
ever, there always exists an optimal integer solution to the above
linear program as shown by the following theorem (the proof ap-
pears in [23]).

LEMMA 5.1. The linear program(9) has an optimal solution
where eachzi is set to either0 or 1.

The optimal integer solution to (9) can be computed by con-
verting the linear program into a network flow problem [6]. Once
the optimal integer solution has been found, all web services with
zi = 1 in the solution define the optimal setPCx

, which in turn
defines the optimal cutCx.

5.2 Greedy Algorithm
We now describe our general greedy algorithm shown in Fig-

ure 6. For a partial plan DAḠH, we first define thefrontier set
F (H̄) as the set of all web services that are candidates for addition
to H̄, since all their prerequisite web services have already been
added toH̄. Formally :

F (H̄) = {WSi | WSi /∈ H̄ ∧ Mi ⊆ H̄} (10)

We start by initializingH̄ as empty, and the frontier setF (H̄)
as all those web services that do not have any prerequisite web
services (Line 1). Then for each web service WSx ∈ F (H̄), we
solve the linear program (9) to determine the optimal cost of adding
WSx to H̄ (Line 4). Let WSopt be the web service having least such
cost (Line 6), and let the optimal cut for adding WSopt beCopt as
given by the solution to the linear program. WSopt is then added
to H̄ by placing directed edges from the web services in cutCopt

to WSopt (Line 7). We update the frontier setF (H̄) according
to Equation (10), and continue in this fashion until the DAḠH
includes all the web services.

5.3 Analysis of Greedy Algorithm
We now show that our algorithmGreedy(Figure 6) is correct,

i.e., it produces the optimal plan. Note that since the cost of a plan
is determined only by the bottleneck in the plan, in general there are
many possible optimal plans. We show that our greedy algorithm
finds an optimal plan. The proof is by induction on the number of
web services added byGreedyto the partial planH̄.

Our inductive hypothesis is that whenk web services have been
added to the DAGH̄ constructed byGreedy, H̄ agrees (in terms
of edges placed) with some optimal solution restricted to just the
web services inH̄, i.e., there exists an optimal solution that hasH̄
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Figure 7: Modifying Hopt to H′
opt

as a subgraph. The base case for our induction isk = 0 which is
trivially satisfied since the empty DAG is a subgraph of any DAG.

LEMMA 5.2. When Greedy adds the(k + 1)th web service, the
inductive hypothesis still holds.

PROOF. Let H̄ denote the partial DAG whenk web services
have been added byGreedy. Let H̄ be a subgraph of some optimal
planHopt (by the inductive assumption). Suppose the(k + 1)th
web service chosen byGreedyto be added toH̄ is WSx. Let the
optimal cut inH̄ for adding WSx beCx. An example is shown in
Figure 7.

Consider the position of WSx in Hopt. SupposeHopt has some
other web service WSy ∈ F (H̄) that takes input only from web
services inH̄, and WSx is placed such that WSy ∈ Px(Hopt)
(see Figure 7). In general, there could be many such WSy ’s that
are predecessors of WSx in Hopt; the proof remains unchanged.
Modify Hopt toH′

opt as follows. Remove the input to WSx inHopt

and make its input the cutCx (just asGreedydoes). The output of
WSx in Hopt is replaced by the join of the output of WSx in H′

opt

and the input to WSx in Hopt. An example of this modification is
shown in Figure 7. We now show thatH′

opt is also an optimal plan.

CLAIM 5.3. On modifyingHopt to H′
opt, the cost incurred by

any web service except WSx cannot increase.

PROOF. The only web services except WSx whose cost inH′
opt

may be different from their cost inHopt are those for which WSx
is a predecessor inHopt. Let S denote this set of web services.
Let A be the setPx(Hopt) ∩ H̄ andB be the setPx(H′

opt). See
Figure 7 for examples ofS, A, andB. Note thatB is the same
asPCx

, i.e., the set thatGreedychooses to place before WSx. The
combined selectivity of the setB−A, i.e.,R[B−A], can be at most
one; if not,Greedywould have chosenPCx

to beB ∩ A instead
of B. Note thatB ∩ A is a feasible choice forPCx

sinceA and
B are both feasible sets of web services to place before WSx. In
Hopt, the web services inS had input from the set of web services
A∪{WSx}∪{other web services/∈ H̄}. InH′

opt, the web services
in S have input from the expanded set of web servicesA ∪ B ∪
{WSx} ∪ {same other web services/∈ H̄}. SinceR[B − A] is at
most1, the number of data items seen by web services inS in H′

opt

is at most as many as inHopt. Thus the cost of any web service in
S cannot increase on modifyingHopt toH′

opt.

Now consider the cost incurred by WSx in H′
opt. If

R[Px(H′
opt)] ≤ R[Px(Hopt)], the cost incurred by WSx also

does not increase, hence combined with Claim 5.3, we have
cost(H′

opt) ≤ cost(Hopt). If R[Px(H′
opt)] > R[Px(Hopt)], there

are two cases:

1. Suppose WSx is the bottleneck inH′
opt. Then the cost in-

curred by any other web service, specifically by WSy in
H′

opt, is smaller. But then since WSy ∈ F (H̄), Greedy

would have chosen WSy to add toH̄ instead of WSx. Hence
this case is not possible.

2. If WSx is not the bottleneck inH′
opt, then cost(H′

opt) is
given by the cost incurred by some other web service. Hence,
by Claim 5.3, we have cost(H′

opt) ≤ cost(Hopt).

Thus in all cases, cost(H′
opt) ≤ cost(Hopt). SinceHopt is an opti-

mal plan,H′
opt is also optimal. AfterGreedyadds WSx to H̄, H̄ is

a subgraph ofH′
opt. Hence assuming that the inductive hypothesis

holds whenk web services have been added toH̄, it still holds on
adding the(k + 1)th web service.

THEOREM 5.4. Algorithm Greedy computes an optimal plan in
O(n5) time wheren is the number of web services.

PROOF. The correctness is immediate from Lemma 5.2 by in-
duction on the number of web services added toH̄. The running
time ofGreedyis at most the time taken to solve the linear program
(9) O(n2) times. The linear program (9) can be solved inO(n3)
time using a network flow algorithm [6]. Thus the total running
time ofGreedyis O(n5).

AlthoughO(n5) complexity may seem high, Theorem 5.4 is still
very interesting since it demonstrates that under the bottleneck cost
metric, the optimal plan can be found in polynomial time for ar-
bitrary precedence constraints. This result is somewhat surprising
given previous negative results for the analogous problem under the
sum cost metric [6, 18]. Also note that the analysis in Theorem 5.4
to obtain theO(n5) bound is pessimistic since it assumes the fron-
tier set is constantly of sizen; in practice, the frontier set will be
smaller due to precedence constraints.

EXAMPLE 5.5. We demonstrate the operation of our algorithm
for optimization of the query in Example 3.3 with costs and selec-
tivities as given in Example 3.5. Initially, WS1 and WS2 belong
to the frontier setF (H̄). Sincec1 < c2, WS1 is added first to the
planH̄. F (H̄) remains unchanged. Now to add WS2, there are two
possibilities: either after WS1, or in parallel with WS1. Since the
former possibility has lower cost, WS2 is added after WS1. F (H̄)
is now updated to{WS3}. There is only possibility for its addition:
after WS2. Thus we find that the optimal plan is a linear one as
shown by Plan 1 in Figure 2.

6. DATA CHUNKING
There is usually some amount of overhead incurred on making

any web service call, e.g., parsing SOAP/XML headers and fixed
costs associated with network transmission. Hence it can be very
expensive to invoke a web service separately for each tuple. To
amortize the overhead, a web service may provide a mechanism
to pass tuples to it in batches, orchunks. Each tuple is still treated
individually by the web service, but the overall overhead is reduced.

When a chunk of input data is passed to web service WSi, we
assume the entire answer arrives back at the WSMS as a single
chunk. The response time of WSi usually depends on the size of
the input chunk. We useci(k) to denoting the response time of
WSi on a chunk of sizek. We assume there is a limitkmax

i on the
maximum chunk size accepted by web service WSi. Chunk-size
limits can arise, e.g., from limits on network packet lengths.

When web services can accept input in the form of chunks, the
query optimizer must decide the optimal chunk size to use for each
web service. The optimal chunk size for web service WSi will
obviously depend on how the response timeci(k) of WSi varies as
a function of the chunk sizek. We first give an example, based on
a real experiment we conducted, showing thatci(k) may depend in
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unexpected ways onk. We then show that the optimal chunk size
for a web service depends only onci(k) and is independent of the
query plan in which it is being invoked, and we give an algorithm
for choosing optimal chunk sizes.

EXAMPLE 6.1. We implemented an ASP.NET web service as
follows. We created a tableT(int a, int b, primary key
a) in a commercial database system, with a clustered index on at-
tribute a. The table was loaded with 100,000 tuples. The web ser-
vice accepted a list of values fora (the chunk) and returned the
corresponding values forb, by issuing a SQL query to the database
system in which the list ofa values was put in an IN clause.

We measured the response time of the web service when queried
by a remote host with various chunk sizes. We found that the re-
sponse time was not just linear in the chunk size, but also had a
small quadratic component to it. Thus, the time per tupler(k)/k
first decreases, and then increases withk. Our current (unveri-
fied) hypothesis is that the quadratic component may be due to
sorting of the IN list by the database query optimizer. The main
point to glean from this example is that depending upon implemen-
tation, web service response times may vary in unexpected ways
with chunk size.

The following theorem gives the optimal chunk size for each web
service WSi and shows that it is independent of the query plan.

THEOREM 6.2. The optimal chunk size to be used by WSi is k∗
i

such thatci(k
∗
i )/k∗

i is minimized for1 ≤ k∗
i ≤ kmax

i .

PROOF. Let ci denote the average response time of WSi per in-
put tuple as in Section 3.2. If WSi uses a chunk sizeki, its per-tuple
response time is given byci = ci(ki)/ki. Recall from Equation (3)

that the cost of a plan is given bymax1≤i≤n

(

(
∏i−1

j=1
sj)ci

)

. Since

the selectivity values remain unchanged in the presence of chunk-
ing, the cost of the plan is minimized whenci is minimized for
each web service WSi. Hence, independent of the actual query
plan, the optimal chunk size for WSi is k∗

i such thatci(k
∗
i )/k∗

i is
minimized.

In general, the response timeci(k) of a web service WSi may be
any function of the chunk sizek, as demonstrated by Example 6.1
above. Hence, to apply Theorem 6.2, the optimizer relies on the
Profiling and Statistics component to measureci(k) for different
values ofk. Profiling may be combined with query processing by
trying out various chunk sizes during query execution and measur-
ing the corresponding response times. Once the optimal chunk size
k∗

i for each web service WSi has been determined, the optimal plan
is found by settingci = ci(k

∗
i )/k∗

i for each WSi, and applying our
query optimization algorithm from Section 5.

Note that according to Theorem 6.2, it might be optimal to use
different chunk sizes with different web services. In steady state,
this is ensured by maintaining a buffer of intermediate results be-
tween any two consecutive web services in the pipelined plan.

7. IMPLEMENTATION AND EXPERIMENTS
We implemented an initial prototype WSMS, described in Sec-

tion 7.1. Here we report on a few experiments with it. Not surpris-
ingly, in our experiments, query plan performance reflects our theo-
retical results (thereby validating our cost model). Using total run-
ning time of queries as a metric, we compared the plans produced
by our optimization algorithm (referred to asOptimizer) against the
plans produced by the following simpler algorithms:

1. Parallel: This algorithm attempts to exploit the maximum
possible parallelism by dispatching data in parallel to web

services whenever possible. For example, if there are no
precedence constraints, data is dispatched in parallel to all
web services followed by a join at the end. An example of
how this algorithm operates in the presence of precedence
constraints will be given in Section 7.3.

2. SelOrder: One heuristic for efficient query processing is to
reduce data as early as possible by putting the web services
with lower selectivities earlier in the pipeline.SelOrdermod-
els this heuristic by building a (linear) plan as follows: Out of
all web services whose input attributes are available, the web
service with lowest selectivity is placed in the plan, and the
process is repeated until all web services have been placed.

We also compared the running times of queries with and without
data chunking, to demonstrate the benefits of chunking. Finally,
we compared the total CPU cost at the WSMS against the cost of
the slowest web service to substantiate our claim that the WSMS is
not the bottleneck in pipelined processing. The main findings from
our experiments are:

1. For scenarios both with and without precedence constraints,
the plans produced byOptimizercan perform vastly better
(up to about 7 times better for the problem instances we
experimented with) than the plans produced byParallel or
SelOrder.

2. Using data chunking query running time can be reduced by
up to a factor of 3.

3. The WSMS cost is significantly lower than the cost of the
slowest web service in the plan, demonstrating that the WSMS
is not the bottleneck in a pipelined plan.

We first describe our WSMS prototype and the experimental
setup in Section 7.1. We then describe our experiments for scenar-
ios with no precedence constraints in Section 7.2, and for scenarios
with precedence constraints in Section 7.3. In Section 7.4, we de-
scribe our experiments with data chunking. Finally, in Section 7.5,
we report our results of measuring the cost incurred at the WSMS.

7.1 Prototype and Experimental Setup
The experimental setup consists of two parts: the client side,

consisting of our WSMS prototype, and the server side, consisting
of web services set up by us.

Our WSMS prototype is a multithreaded system written in Java.
It implements AlgorithmExecutePlan(Figure 3), and can execute
any general execution plan with any specified chunk sizes. For
communicating with web services using SOAP, our prototype uses
Apache Axis [2] tools. Given a description of a web service in the
Web Service Definition Language [34], Axis generates a class such
that the web service can be invoked simply by calling a method
of the generated class. The input and output types of the web ser-
vice are also encapsulated in generated classes. Our prototype uses
these classes to conveniently invoke each web service as if it were
a local function call. However, since the web service that a par-
ticular thread has to interact with is known only at runtime (recall
Figure 3), the names of the corresponding classes to be used are
also known only at runtime. To get around this problem, our pro-
totype uses Java Reflection [27] to load classes and their methods
dynamically.

We use Apache Tomcat [30] as the application server and Apache
Axis [2] tools for web service deployment. Each of our experi-
mental web services WSi runs on a different machine, and has a
tableTi(int a, int b, primary keya) associated with it. WSi is of
the form WSi(ab, bf ): given a value for attributea, WSi retrieves
the corresponding value for attributeb from Ti (by issuing a SQL
query) and returns it. Data chunking is implemented by issuing
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Figure 8: No Precedence Constraints

a SQL query with an IN clause. The tablesTi are stored using
the lightweight IBM Cloudscape DBMS. Since attributea is the
primary key, Cloudscape automatically builds an index ona. The
tablesTi were each populated with tuples of the form(j, j) for j
in {1, . . . , 10,000}.

For our experiments, we needed web services with different costs
and selectivities. To obtain different costs, we introduced a delay
between when a web service obtains the answer from its database
and when it returns the answer to the caller of the web service. The
web service cost is varied by varying this delay. Our experimental
web services, as described in the previous paragraph, return exactly
one tuple for each input value of attributea (sincea is a key). To
obtain a selectivitysi < 1 for web service WSi, we rejected each
tuple returned by WSi at the WSMS with probability1 − si. To
obtainsi > 1, for each tuple returned by WSi, we created between
1 and2si new tuples, each with the same value in attributea as the
returned tuple, and randomly generated values in attributeb from
the range1, . . . , 10,000 (so that these values ofb could be used as
input to another web service).

The WSMS is run on a different machine from the ones on which
the web services were running. For every run, the WSMS randomly
generated 2000 input tuples that formed the input tableI. Each in-
put tuple had a single attribute with value in the range1, . . . , 10,000.
The query executed was a join of all the web services and the input
tableI. For this query, a particular execution planP along with
the chunk sizes to be used by each web service was specified to
the WSMS. The WSMS then processed all the tuples inI through
the planP in a pipelined fashion. Over5 independent runs, the
average processing time per tuple ofI is then used as a metric for
comparingP against other plans.

7.2 No Precedence Constraints
In this experiment, we set up four web services WS1, . . . , WS4

with no precedence constraints among them, i.e., the single at-
tribute in the input tuples served as the input attribute to all the
web services. We did not use data chunking in this experiment.
With its basic functionality of one database lookup, each web ser-
vice had a response time (or cost) of approximately0.2 second per
tuple. We added additional delay to control the costs of different
web services.

We consider various cost rangesc̃, and assign WS1, . . . , WS4

uniformly increasing costs in the rangec̃. To ensure that different
plans are produced byOptimizer(which orders the web services by
increasing cost according to Theorem 4.3), and bySelOrder(which
orders the web services by increasing selectivity), we assigned se-

Figure 9: Precedence Constraints

lectivities to web services in the reverse order of cost: the selectiv-
ities of WS1, . . . , WS4 were set as0.4, 0.3, 0.2, 0.1 respectively.

Figure 8 shows the costs of the plans produced by the various
algorithms as the range of costsc̃ is varied from[0.2, 2] seconds
per tuple to[2, 2] seconds per tuple.Parallel dispatches data to all
web services in parallel and hence has a bottleneck cost equal to the
cost of the highest-cost web service WS4. SelOrderputs WS4 first
since it has lowest selectivity, so it incurs the same bottleneck cost
asParallel. Optimizeris able to reduce the bottleneck cost to well
below the cost of WS4 by placing the web services in increasing
order of cost. Only when all the web services become expensive
doesOptimizerincur a cost equal to that ofParallel or SelOrder. In
this experiment we also verified that the actual per-tuple process-
ing time is very close to that predicted by our cost model, thereby
showing the accuracy of our cost model.

7.3 Precedence Constraints
In this experiment, we again set up for four web services WS1,

. . . , WS4. The single attribute in the input tuples served as the
input attribute to WS1 and WS2. The output attribute from WS1
(respectively WS2) served as the input attribute to WS3 (respec-
tively WS4). Thus, we had two precedence constraints, WS1 ≺
WS3, and WS2 ≺ WS4. We did not use data chunking.

WS1 and WS2 were set up to be proliferative, with selectivities
2 and1 respectively. The selectivities of WS3 and WS4 were set as
0.1 each. The cost of each of WS1, . . . , WS3 was set as0.2 second
per tuple. The cost of WS4 was varied from0.4 to 2 seconds per
tuple.

For this scenario,Parallel chooses a plan in which data is first
dispatched in parallel to WS1 and WS2. Then, to exploit paral-
lelism between WS3 and WS4, WS3 is placed in the WS1 branch,
and WS4 in the WS2 branch. Based on selectivities,SelOrderor-
ders the web services as WS2, WS4, WS1, WS3. Optimizerfirst
groups WS1 and WS3 together, and WS2 and WS4 together. Then
the group containing WS1 is placed before the other, since it has
lower cost. Thus the overall order produced byOptimizeris WS1,
WS2, WS3, WS4.

Figure 9 shows the costs of the plans produced by the various
algorithms as the cost of WS4 is increased. BothParallel and
SelOrderincur the cost of WS4 as the bottleneck, whileOptimizer
reduces the bottleneck cost to below the cost of WS4 by placing it
last in the pipelined plan.

7.4 Data Chunking
In this experiment, we again set up four web services with no
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Figure 10: Effect of Data Chunking

Figure 11: WSMS Cost vs. Bottleneck Cost

precedence constraints as in Section 7.2. For this experiment, we
did not add additional delay to any web service so costs were uni-
form, and the selectivity of each web service was set as0.5. The
web services were arranged in a linear pipeline according toOpti-
mizer, and the chunk size used by each web service was equal.

Figure 10 shows how the per-tuple cost varies as the chunk size
used by the web services is increased. For comparison, we also
show the per-tuple cost without chunking, i.e., with chunk size1.
Even using a chunk size of20 reduces the per-tuple cost by more
than a factor of3. However, on increasing the chunk size further,
the cost does not reduce significantly. Hence most of the benefit of
chunking can be achieved even by using a relatively small chunk
size.

7.5 WSMS Cost
In this experiment, we compared the cost incurred at the WSMS

against the bottleneck web service cost in a pipelined plan. We var-
ied the number of web services involved in the query. There were
no precedence constraints, uniform web service costs, and the se-
lectivity of each web service was set as0.5. To demonstrate that the
WSMS does not become the bottleneck even with data chunking,
each web service used a chunk size of20.

The WSMS cost was measured with the web services arranged
in a linear pipeline according toOptimizer. To demonstrate that the
join threads in a plan (recall Figure 3) does not make the WSMS
the bottleneck, we also executed another plan in which data was
dispatched in parallel to all web services, and the cost of joining

the results at the WSMS was measured.
Figure 11 shows the bottleneck cost, the WSMS cost, and the

cost of the join thread as the number of web services involved in the
query is increased. Even as the number of web services increases,
the WSMS cost remains significantly lower than the cost of the
bottleneck web service. Figure 11 also shows that the cost of the
join thread is negligible compared to the bottleneck cost.

It is important to note that our measurements in the above exper-
iment are only conservative, and numbers in a real setting can only
be better, due to the following reasons:

• In our experiments, the WSMS and the web services were
running on different machines but on the same network. Ac-
cessing web services over the internet may add an additional
order of magnitude to their response time.

• Our WSMS prototype makes heavy use of the Java Reflec-
tion API [27], which is known to be extremely slow com-
pared to direct method invocations. In a separate experiment,
we found that a method call using Reflection can be15 to 20
times slower than a direct call to the same method. The in-
efficiency of Reflection is also evident in how the cost of the
join thread (which does not use Reflection) compares with
the rest of the WSMS cost. In the next version of our pro-
totype, we plan to redesign the system to avoid the use of
Reflection, giving up the convenience of classes generated
by Axis, but decreasing the cost incurred at the WSMS by at
least an order of magnitude.

Given the above factors, it is unlikely that in any real setting, the
WSMS cost can become the bottleneck in the pipelined processing
of a query over multiple web services.

8. CONCLUSIONS
We have proposed the overall goal of a general-purpose Web

Service Management System (WSMS), enabling clients to query
a collection of web services in a transparent and integrated fash-
ion. In this paper, we focus on new query optimization issues that
arise in a WSMS. Our execution model consists of pipelined query
processing over web services, and we derive the “bottleneck” cost
metric to characterize the cost of a pipelined plan. For this cost
metric, we have devised new algorithms to: (a) decide the opti-
mal arrangement of web services in a pipelined plan, respecting
precedence constraints, and (b) decide the optimal chunk size to
use when sending data to each web service. While the algorithms
in this paper form the basis of a WSMS query optimizer, we be-
lieve they only scratch the surface of what promises to be an excit-
ing new research area. There are several interesting directions for
future work:

• An important next step is to extend our algorithms to allow
different input tuples to follow different plans as in [9, 20],
leading to even higher overall performance.

• Our algorithms currently do not incorporate variance or un-
certainty in the response times of web services, or more gen-
erally, quality of service (QoS) information about web ser-
vices. It is important to address the problem of finding plans
that consistently choose the highest-quality available web ser-
vices and that adapt to changes in web service response times.

• Our query optimization algorithm relies on knowledge of
web service response times and selectivities. Hence we need
to develop profiling techniques that can accurately track these
quantities and detect changes in them. Work on self-tuning
histograms [5] may be relevant to track selectivities.

• We have not considered web services withmonetarycosts.
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In that scenario, we may wish to use optimization algorithms
that minimize the running time of a query subject to a certain
budget limit. The dual problem, i.e., minimizing the cost in-
curred subject to a limit on the running time of the query, is
also interesting. Moreover, the response time of a web ser-
vice, or the QoS offered by a web service, may be a function
of how much money is paid per invocation.

• Caching of web service results at the WSMS may lead to sig-
nificant speedups in query processing. Extending the query
optimization algorithms to incorporate caching is an impor-
tant direction for future work.
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