
Multi-c olumn Substring Matching f or Database Schema
Translation

Robert H. Warren
rhwarren@uwaterloo.ca

Frank Wm. Tompa
fwtompa@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT
We describe a method for discovering complex schema translations
involving substrings from multiple database columns. The method
does not require a training set of instances linked across databases
and it is capable of dealing with both fixed- and variable-length
field columns. We propose an iterative algorithm that deduces the
correct sequence of concatenations of column substrings in order to
translate from one database to another. We introduce the algorithm
along with examples on common database data values and examine
its performance on real-world and synthetic datasets.

1. MOTIVATION
As the number, size and complexity of databases increases, the

problem of moving information where it is needed and sharing it is
becoming an important one.

In the past, much work on database integration has been done to
develop standards and interfaces to facilitate the transfer of the data.
Application programming interfaces, such as JDBC and ODBC
make it now possible to easily retrieve information from any table
or column within most databases. With proper documentation of
the database design and operation, a logical process can be written
to integrate multiple databases together.

The integration process is driven by a database expert, and a
great part of the problem is essentially a clerical process that has
little value-add, except for the information extracted about the very
high level semantics of the database. It is this clerical process that
we aim to automate in our research. Whereas several projects have
begun to tackle the problem from a top-down perspective, we use
a bottom-up approach that is data-driven and that focuses on the
matching and the translation of the data from one database to an-
other.

Seligman et al. [19] have published a survey that ranked the ac-
quisition of knowledge about the data sources as the data integra-
tion step that required the most effort. Large and complex industrial
database schemas with over 10,000 tables and over 1,600 attributes
per table are not unheard of, and even with good documentation, the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

search for the right matches is time consuming. Similarly, multiple
standards exist to represent the same information in a concise for-
mat, and understanding which representation is in use takes time.
For example, the Open Group lists 22 locales, each with its own
typeset standard for date and time information1.

This is why we are investigating tools that can automate the
search for matching information within a database schema and in-
fer a mechanism for the translation of the data from one represen-
tation to another. We have in mind situations where databases are
numerous, large and complex and where partial automation of the
process, even when computationally expensive, is desirable.

In particular, we wish to find a general purpose method capa-
ble of resolving complex schema matches made from concatenat-
ing substrings from columns within a database. While heuristics
can be attempted for simple translation operations such as “concat
(firstname, lastname) → fullname,” no general purpose solution
has yet been devised capable of searching for and generating trans-
lation procedures.

We wish to find a method capable of discovering a solution for
problems as diverse as unknown date formats, unlinked login names,
field normalisations, and complex column concatenations. Thus,
we wish to find a generalisable method capable of identifying com-
plex schema translations of the sort “4 leftmost characters of col-
umn lastname + 4 rightmost characters of columnbirthdate →
columnuserid” or translating dates from one undocumented stan-
dard to another, e.g.:“2005/05/29 in databaseD → 05/29/2005 in
databaseD′.”

This paper describes a generalisable method that can be used to
identify complex, multi-column translations from one database to
another in the form of a series of concatenations of column sub-
strings. The algorithm will discover translations as long as there
exists overlap between the translated instances of the source and
target schemas. To our knowledge, this form of matching is previ-
ously untried, and our solution is novel.

2. PREVIOUS WORK
Rahm and Bernstein present a general discussion and taxonomy

of column matching and schema translation [17, 16]. They classify
column matchers as having “high cardinality” when able to deal
with translations involving more than one column. These types of
matchers have been implemented on a limited basis in the CUPID
system [12] for specific, pre-coded problems of the form “concate-
nate A and B.”

As a means of abstracting away from the specific data being pro-
cessed, Doan et al. proposed “format learners” [4]. These infer the

1http://www.opengroup.org/bookstore/catalog/l.htm

331

formatting and matching of different datatypes, but the idea has not
been carried forward to multiple columns. Recently, Carreira and
Galhardas [1] looked at conversion algebras required to translate
from one schema to another, and Fletcher [6] used a search method
to derive the matching algebra. Embley et al. [5] explored methods
of handling multi-column mappings through full string concatena-
tions using an ontology-driven method.

The IMAP system [3] takes a more domain-oriented approach by
utilising matchers that are designed to detect and deal withspecific
types of data, such as phone numbers. It also has an approach to
searching for schema translations for numerical data usingequation
discovery.

We also use a search approach to find translations, but apply it
to string operations. However, unlike IMAP, we do not assumethat
the record instances are pre-matched from one database to another.
This makes the problem more difficult in that a primitive formof
record linkage must be performed as the translation formulais dis-
covered.

We attack the problem of schema matching and translation from
an instance-based approach, where the actual values from individ-
ual columns are translated and matched across databases. This is
done within the context of database integration, and our work is
intended to be incorporated as part of a larger database integration
system, such as IMAP, CUPID or Clio [21].

For example, in our model we assume that a specific ‘aggregate’
column and a number of potential ‘source’ columns have been ten-
tatively identified by the database integration system. We accept
that not all of the suggested source columns may actually be re-
lated to the target column and that a data-driven translation formula
may discover a translation which is not intended. Our objective is
to provide the integration system with possible translations formu-
las, with the understanding that some of these may be discarded
by a higher-level component of the integration system in favour of
another solution.

We have developed our solution to be as generic as possible, as-
suming only that the relational databases provide an SQL facility
that can be accessed through an interface. As with the work of
Koudas et al. [10], we have restricted ourselves to implementing
our algorithms with basic SQL commands in an attempt to ma-
nipulate the data within the database systems. This is necessary
to prevent the integration system from using excessive amounts
of memory when dealing with large, complex databases and from
over-burdening database communication systems.

3. PROPOSED APPROACH
Let us assume that we have a tableT1, which we term the source

table for convenience, with columnsB1, B2, ...,Bn. These columns
may or may not be relevant to the translation. Similarly, we have
a second tableT2, named the target table, with a single aggregate
columnA. The instances ofT1 andT2 are available for retrieval,
but no example translations are provided, nor are individual records
of T1 linked to theirT2 equivalents.

The operating algebra is simple, consisting of two operators:
concatenate and substring. We wish to find a mapping such that
many values in the target columnA can be defined as a series of
concatenation operations of the formA = ω1 + ω2 + · · · + ων ,
where eachωi represents a substring function to be applied to some
source columnsBj , and a single value forA is obtained when all
functions are applied to a single row inT1.

3.1 Principles of the approach
Let target tuplet′ result from concatenating substrings from var-

ious fields within source tuplet. We will write t′ = t [βx1...y1

1
+

βx2...y2

2
+ · · · + βxν ...yν

ν] if the ith subfield oft′ is taken from
charactersxi throughyi from theβi attribute value in tuplet.

We note that a source attributeBj can contribute characters to
several subfields in the target tuple (i.e., theβi are not necessarily
distinct), and in fact a particular sourcecharactermay be copied
to more than one target subfield; however, each target character, by
definition, comes from only one source subfield.

This is asearchproblem (find a tuple in the source table that con-
tains substrings from which the target tuple can be constructed) and
anoptimizationproblem (find a formula that can be reused to create
as many target tuples as possible, each from its own source tuple
while ensuring that the translation is concise). If the source table
contains many columns and many tuples, and especially if some
of the source columns are very wide, the search problem to match
a single target tuple will have many potential solutions, and many
of the potential source tuples will have many potential formulas
that could be applied to form the target value; it is the optimization
problem that dictates which of these solutions is most appropriate.

We have chosen a greedy algorithm to attack the optimization
problem. Although not guaranteed to find an optimal solution, in
practice this approach works well to find a conversion formula that
produces many target tuples from the source table. Whether or not
a sub-optimal solution is obtained, by removing all matchedsource
and target tuples from the input and then repeating the process,
more and more matches can be discovered.

If we could find a subfield in some source column for which
many source tuples could contributes many characters to some tar-
get tuples, we would reduce our problem substantially. Thusour
method comprises three steps: selecting an initial source column
Bk, creating an initial translation recipe that isolates a substring
ωx from it, and then iterating for additional columns. The overall
algorithm is shown in Algorithm 1.

Data: For a setB of columnsB1, B2, ...,Bn and targetA
Find columnBstart most likely part ofA;
Generate a translationτ partially translatingBstart to A;
while τ has unknownsdo

foreach ColumnBk ∈ {B1, B2, ..., Bn} do
Sample rows fromT1 and select values ofA matching
partial translationτ ;
Generate a newτ ′ partially translatingBk to A;
Score eachτ ′, Bk;

end
Insert highest rankedτ ′ to be part of translationτ ;

end

Algorithm 1 : Overall algorithm

In the first step, all source columns are scored to identify those
most likely to be part of the target column. This step serves as
a filter to eliminate all but the most productive column from the
more expensive computation in Step 2. We use the identified col-
umn to create an initial translation formula, which partially maps
the source column to the target column. Using this coarse trans-
lation formula, we iterate through additional substring selections
from any column until either a complete translation formulahas
been found, or the addition of more substrings no longer provides
additional information.

Instead of iteratively determining additional contributing sub-
fields, one alternative approach would be to identify all possible
solutions to the search problem, and then determine which ofthese
are applicable to many tuples. This is clearly infeasible because
of the large number of potential solutions for a single target tuple
(whicha priori could have been produced from any source tuple).

332

Alternatively, we could try to identify several possible starting
points that apply to many tuples, possibly using subfields from sev-
eral source targets, and then determine which of these fit together to
form the beginning of a solution to the search problem. In practice,
however, a target column is often produced from one wide sub-
field and several very narrow ones (see, for example, Table 1). To
find such solutions with this alternative approach, we wouldneed
to include many narrow source fields among our potential starting
points. This would result in an inordinate number of false poten-
tial mappings before any pruning could be applied, especially if the
source table includes one or more wide columns.

In the following sections, we review each of the steps of our
approach in detail, using examples based on the data contained in
Table 1.

Source Target
first middle last ... login

robert h kerry ... nawisema
kyle s norman ... jlmalton

norma a wiseman ... rhkerry
...

amy l case ... alcase
josh a alderman ... ksokmoan
john l malton ... ksnorman

Table 1: The first sample problem, where login names must be
matched to the columns of an unlinked table.

3.2 Beginning the search
In order to choose candidate columns and generate possible trans-

lation formulas for very large tables, we need a method to sample
values from the source columns. The objective is not to get anop-
timal column selection as much as to identify a feasible one.In
effect, we are trying to “bootstrap” the translation with a single
useful column from which we can begin to look for additional con-
tributing subfields.

With the example in Table 1, we would prefer to pick the column
last, out of all possible candidate columns, because it has the most
overlapping data with the target columnlogin. On the other hand,
we can tolerate picking instead any of the other related columns.
This must be done in a manner that is simple and that will take into
account that the match between source and target column instances
is imperfect. In this section, we describe how we select the first
source column, as detailed in Algorithm 2.

For each candidate source column, we first sample a pre deter-
mined fraction of thedistinctvalues within the column, yieldingt
values. We use distinct values to prevent the value distribution in
the source column from influencing the number of matches. The
sampling of the source column is done in an interleaved manner,
where values are taken at equally distanced rows. Gravano etal. [7]
found this sampling to be as good as random sampling, but much
less expensive since a database cursor can be used to retrieve each
value in a single step. (It is even more efficient if the columnhas a
sorted, e.g. B-tree, index.)

We next use each of thoset values from the source column to
produce a larger set ofq-grams [20], that is,q-length subsequences
of consecutive characters from each string. As an example, the
stringpossible, contains five 4-grams, namelyposs, ossi, ssib, sibl
and ible, and in general, a string of lengthn containsn − q + 1
q-grams. We use the set ofq-grams obtained from thet sample
values as search keys for the target column. We then count the
number of matches in the target column and normalise the count to
yield a score that reflects the length of the common substrings and

setBbest to null;
setscorebest to 0;
foreach columnBk of T1 do

count distinct values ofBk asdcount;
sett = dcount∗ fraction;
HitCount=0;
for j = 1 to t do

get valuekey from columnBk in tuple j

fraction;
localc= countT2 whereA includesq-grams ofkey;

HitCount+ =
localc

length(key)
;

end

ScoreCol(Bk) =

„

HitCount
dcount/10

«q

;

if score(Bk)> scorebest then
scorebest = ScoreCol(Bk);
Bbest = Bk;

end
end

Algorithm 2 : Initial column selection using a fixed q-gram and
sample size.

the average record overlap between the source and target columns
(see below). We choose the starting column for our translation to
be the one that generates the highest score.

ScoreCol=

t
X

j=1

HitCount(j)

t ∗ length(keyj)

!q

(1)

More specifically, Equation (1) re-expresses the column scoring
function from Algorithm 2 in a single expression. It serves as a
cheap filter to eliminate all but the most productive column from
the more expensive computations in Step 2. The number of dis-
tinct hits for each key (HitCount(j)) is divided by the length of
the key (length(keyj)) and by the total count of distinct values (t)
sampled within the source column. This yields the average overlap.
By raising this value to the powerq, we account for the decreased
probability of this substring occurring randomly in the target. Note
that by definitionq must be equal to or smaller than the narrowest
column being searched.

0

5000

10000

15000

20000

25000

30000

0 0.05 0.1 0.15 0.2 0.25 0.3

Score

Sample percentage

First Name (B1)

3
33

33
33
3333

3333333
33

3 3 3 3

3
Middle Name (B2)

+

+

++
+

+
++
++
++++

++++++ + + + +

+
Last Name (B3)

2

2
222

2
222

2222222
2222 2 2 2 2

2
Random text

×
×
××
×
×
×
×××××××××××× × × × ×

×
Random Number

44444444444444444444 4 4 4 4

4
Address

???????????????????? ? ? ? ?

?
Timestamp

bbbbbbbbbbbbbbbbbbbb b b b b

b

Figure 1: Effect of sample size on scores.

333

Figure 1 and Table 2 represent empirical evidence of the algo-
rithm’s performance when it is used on a sample dataset similar in
nature to the data in Table 1 and sized at 6,000 rows. To verify
the robustness of the method, we included several noise columns in
the source table, including columns containing random character
strings, time-and-date values, random numbers, and randomstreet
addresses. Figure 1 shows that the column scoring function works
extremely well using 10% of the distinct values in each source col-
umn.

first middle last text time numb. addr
14194 12391 16374 6151 354 792 5505

Table 2: Score results generated with a 10% sample.

An additional experiment shows that the column scoring func-
tion works surprisingly well even with a very small sample when
the dataset is very large. Figure 2 plots the results of the column se-
lection formula on a dataset containing over 700,000 concatenated
first and last names to be matched against a table with first name,
last name, random text, and random addresses. Even with a very
small sample of several hundred rows, the column selection order
reflected by the scores is accurate.

2e+08
4e+08
6e+08
8e+08
1e+09

1.2e+09
1.4e+09
1.6e+09
1.8e+09

0 500 1000 1500 2000 2500

Score

Rows sampled

Random text

3 3 3 3
3

3 3 3 3 3 3 3 3

3
Last name

+
+

+ +
+

+ + + + + + + +

+
First name

2

2
2 2 2 2 2 2

2 2 2 2 2
2

Address

× × × × × × × × × × × ×

×

Figure 2: Effect of sample size on scores for a large dataset.

3.3 Creating an initial translation formula
With a specific columnBk selected as a starting point, we next

need to create a partial translation formula to transform values from
Bk to values found inA. To do this, we need to retrieve instances
of A that are similar to the sampled values from the current source
columnBk. We can then use each sampled value ofBk and the
similar A entities to discover a partial translation formulasA =
ω1 + ω2 + ... + ωi that applies to many of the source values.

3.3.1 Identifying candidate pairs
Recall that, for the sake of efficiency, we are dealing with only a

sample of the chosen source column’s values. Thus we first require
a method that will retrieve similar entities from theA column for
each of the values sampled from the source columnBk. In identi-
fying the best columnBk, we found tuples from columnA based
on the occurrence of anyq-gram element from the sampled value.
While this method was satisfactory for ranking columns, it is inad-
equate for finding suitable matches for specific source values. In
particular, it suffers from low precision due to the serendipitous
occurrences ofq-gram elements.

Bk (last name) A
warner rhwarner

klwarder
ghkarer

amy laramy
amyrose
camyro

wang mkwang
wayne opwayne

Table 3: Instances ofA sufficiently similar to B3.

When trying to identify values from the target column that match
a specific source value, another possibility is to rank target values
according to the number ofq-grams of the sampled columnBk

that are matched. Hence, with bi-grams “ab,” “bc,” and “de” the
instance “abcd” would score lower than the instance “abcde,” in
the manner of Equation 2.

score(a, b) =

j
X

n=1

8

>

<

>

:

1, if instancea of A hasq-gramj

of instanceb of Bk.

0, if not.

(2)

This improves our precision in that the entities that have the most
elements in common with the sampled value will be ranked highest.
However, this still does not take into account the relative frequen-
cies ofq-grams and can improperly rank some entities that contain
many commonly occurringq-grams over extremely rare and rele-
vantq-grams.

We can correct this by borrowing methods from the information
retrieval community. Koudas at al. [10], Chaudhuri et al. [2] and
Gravano et al. [7] all use variations of this approach to match sim-
ilar records using td-idf and cosine similarity [18]. This is done
by assigning a weight to eachq-gram that represents its relative
significance within the database.

Equation 3 represents the tf-idf formula for calculating a weight
for eachq-gram:wij is the weight assigned toq-gramj for instance
i of columnA, wheretfij is the frequency ofq-gramj in instance
i in columnA, N is the number of instances in columnA, andn
is the number of instances in columnA whereq-gramj occurs at
least once. Equation 4 then represents the scoring functionfor a
pair of values fromA andBk.

wij = tfij ∗ log2(N/n) (3)

ScorePair(a, b) =

j
X

n=1

waj ∗ wbj (4)

Thus, to find pairs of similar values from the two columns, first a
sample of values are chosen from columnBk. Then for each source
value, the target table is queried for values having have scores from
Equation 4 that exceed a given threshold. Such generated pairs,
as in Table 3, are then passed on to the next phase of processing.
(Note that as an alternative to keeping all pairs with scoresabove a
given threshold, the topr ranked pairs could be retained instead.)

3.3.2 Creating edit recipes for pairs
With a set of pairs of similar instances from columnA to column

Bk (Table 3), we next find a partial translation formula that will
match the common information between the two sets of column in-
stances. We achieve this by looking for longest common substrings

334

between the pairs of column instances. By keeping track of the lo-
cations of the common substrings over several samples ofBk, we
can both infer the correct area within the target columnA that is
related toBk and what area ofBk is matched.

We characterise a translation formula for a single subfield as tak-
ing characters from certain consecutive positions in some value
from Bk and inserting them into templates forA by assigning
them to a specific location within the target value. For our pur-
poses, we use the termrecipe to characterise such insert opera-
tions, and henceforth the termregion refers to any consecutive se-
ries of characters taken fromBk. For example, one (partial) trans-
lation formula relating the instance “warner” to “rhwarner” would
be “%B3[123456]” which states that characters 1 through 6 from
columnB3 are to be mapped to something (as yet unknown) fol-
lowed by that region.2

To discover appropriate recipes for a single pair of source and
target values, we must be able to describe the shortest editing se-
quence required to transform one string into another. Although
Levenshtein distance [11] provides us with the minimum number
of operations to transform the first string into another, it does not
produce the actual operations used. However, Paterson [15]pro-
vides a good survey of several algorithms available to solvethe
problem. For example, Hirschberg [8] describes a method which is
optimised for the maximal common subsequences in O(|s1| ∗ |s2|)
time. Hunt and Szymanski [9] provide an interesting solution of
complexity O((n + R) log n) wheren is the length of the longest
string andR is the number of substring matches between the two
strings. Most of these methods rely on a matrix of operationssim-
ilar to Table 4 which illustrates the different matches possible for
strings “rhwarner” and “warner.”

0

B

B

B

B

B

B

B

@

r h w a r n e r
w R R = I I I I I
a R R R = I I I I
r = R R D = I I =
n D R R R D = I I
e D R R R D D = I
r = R R R = D D =

1

C

C

C

C

C

C

C

A

Table 4: The longest common string (underlined). “R” stands
for a replaced character, “I” for an inserted character and “ D”
for a deleted one.

The highlighted path contains the longest common substringbe-
tween the two strings. We select this partial path and complete the
recipe using the edit distance metrics to find the lowest-cost path
before and after the longest common substring. In case we findtwo
equal-length common substring, we arbitrarily select the leftmost
string. Selecting potential matches and creating initial recipes is
summarised in Algorithm 3.

3.3.3 Creating a partial translation formula
From these recipes derived from pairs of tuples, we must now

create a partial translation formula (ωn) that is inferred from all
of the collected recipes and that can be applied to the sourceand
target tables as a whole. This is done by creating a candidateωn

from each individual region within a recipe. Then, we collate the
candidate translations and select the one that occurs most often.
Algorithm 4 explains this process in pseudo-code, and we discuss
it here in detail.

2We use the convention that % signifies any match.

Data: A candidate columnBk

Result: Edit recipesR
count distinct values ofBk asdcount;
sett = dcount∗ fraction;
R = null;
for j = 1 to t do

get valuekey from Bk in tuple j

fraction ;
retrieve setA from T2 where ScorePair(a, key) exceeds
threshold;
foreacha in A do

RecipeR = edit-distance(key, a) ;
if R ∈ R then

increase count forR entry by 1 ;
else

create new entry inR for R with score 1;
end

end
end

Algorithm 3 : Creating an initial set of recipes from a candi-
date.

As each recipe is processed, its known and unknown charac-
ter sequences are translated into a series of regions. Each region
ωx represents a string element either from an unknown source or
copied from specific character positions within a designated source
column. The sequence of these regionsω1+ω2+...+ωi describes a
translation formula which provides a partial method to translate the
information from the setB of source columns to the target column
A.

As ωn represents a fragment of one of the source columnsBk

being copied, we need a model for the copying operation. A possi-
bility is to create a regular expression using the recipes asexamples.
Instead of such an expensive general approach, we use the absolute
character positions within the source columns, and build the trans-
lation as a sequence of these column references. This methodhas
the advantage in that it provides some support for columns ofboth
fixed and variable lengths.

For fixed-field data, it is straightforward to identify the com-
monly repeating recipes, because the absolute locations ofthe over-
lapping substrings will always align across recipes. Any super-
fluous matches (that is, other characters matching the overlapping
field) will occur infrequently enough that the outlier recipes can be
recognised and discarded.

For variable-length fields, however, the problem is slightly more
difficult as the absolute locations of the matching values are not
aligned. Thus we need to add some provision to the edit program
to handle these situation. When generating the absolute character
positions of the source column, we check if the region stops at the
end of the string. If it does, we generate an additional copy of the
translation where the current region is explicitly marked as copying
the remainder of the string.

Furthermore, by having the translation behave as a sequence, the
relative ordering in which the substrings occur is preserved. This
allows us to deal with problems such as the dataset in Table 1,
where the column widths are variable. Neither of these proper-
ties hinder fixed-width columns and thus our solution remains gen-
eralisable. Our editing algebra and edit distance methods cannot
accommodate all specification of substrings (e.g.: the second-to-
last character); however our simple algebra is sufficient for most
practical purposes.

Table 5 represents the partial translations that were derived from
the recipes generated in Section 3.3.2. As explained earlier, the

335

Data: Edit recipesR
Result: Partial translation formulasT
foreachR in R do

create emptyT ;
begin region ;
foreach char in R do

if key chars still in sequencethen
region continues ;

else if1st char is from keythen
region continues ;

else ifregion still unknownthen
region continues ;

else if1st char unknownthen
region continues ;

else ifknown region ends on key boundarythen
clone region ;
mark cloned region as end-of-string;
link both regions to end ofT chain ;
begin region ;

else
(un)known region or recipe ends

end
link regions to end ofT chain ;

end
if T ∈ T then

increase count ofT entry by 1 ;
else

create new entry inT for T with score 1;
end

end

Algorithm 4 : Generation of translation formulas from recipes.

typesetting convention used is% for any unmatched region and
column[n] for matched characters, wheren refers to thenth char-
acter of the source column namedColumn. Note that in several
cases, two different translations are produced for a singlerecipe.

Not all recipes will represent correct matches. For instance,
“warner” is similar to both instances “rhwarner” and “klwarder”
with only “rhwarner” being an actual match. However, serendipitous
matches are probabilistically unlikely to occur at the samepositions
and sequence number.

We select the translation that occurs most frequently and discard
the others. For the example in Table 5, we would pick %B3[1–
n] since it occurs most often. The partial translation formula then
becomes the starting point for searching the rest of the database.

3.4 Selecting additional columns
We now begin an iterative process to reduce the sizes and num-

ber of unknown regions within the translation formula by finding
additional fragments of source data that match the target values.
The partial translation we have already found induces a mapping
from values in the start column, and hence rows in the source table,
to values in the column table. Thus the only data fragments that are
available for providing additional information to the target value
are the ones contained within any of the fields of a corresponding
row from the source table.

For example, in the first relation in Table 1, if we have found that
instance “kerry” from columnlast is mapped to instance “rhkerry”
from column login, then for columnfirst to also be involved in
the translation, instance “robert” from that same source row must
contribute some data to that same target instance “rhkerry.” This
restriction on the instances that is provided by the relation allows

Column ω1 + · · · + ωn

B3 A
warner rhwarner %B3[123456]

or %B3[1-n]
klwarder %B3[123]%B3[56]

or %B3[123]%B3[5-n]
ghkarer %B3[23]B3[56]

or %B3[23]B3[5-n]
amy laramy %B3[1]%B3[123]

or %B3[1]%B3[1-n]
amyrose B3[123]%

or B3[1-n]%
camyro %B3[123]%

or %B3[1-n]%
wang mkwang %B3[1234]

or %B3[1-n]
wayne opwayne %B3[12345]

or %B3[1-n]

Table 5: Sample edit recipes for the login data, whereB3 is
used in place of lastname.

us to restrict our search to values and columns likely to formpart
of the target column translation. This is captured in Algorithm 5,
which is described in the remainder of this section.

Whereas initially we first selected a column and then created
a translation from that column, we now create translations for all
candidate columns and then select the best translation regardless of
column. The algorithm depends on two functions, CreateRecipes()
and ScoreTrans(), for which details are given in the following sub-
sections.

The search for improved translation formulas is done by consid-
ering each potential column for new recipes, generating alternative
translation formulas based on the obtained recipes, and selecting
the highest ranked translation formula based on a scoring formula.
This process follows the same basic steps as those describedin Sec-
tion 3.3, namely, find pairs of matching rows, derive edit formulas,
and create the best translation formula. However, each stepis mod-
ified to account for the partial translation formula alreadychosen.

3.4.1 Identifying refined candidate pairs
As before, for each candidate column, we begin by equidistantly

sampling instances from that column. However, we retrieve not
only the values for the candidate column, but also the correspond-
ing values for the source columns that are already part of thetrans-
lation. That is, instances from all source columns are preserved
together throughT1, as in Table 7.

Then, as in Section 3.3.1 we retrieve similar instances fromthe
target columnA. However, instead of merely searching for match-
ing q-grams, we now refine the search for instances that respect the
partial translation that we have developed so far. Hence, should our
partial transformation be %last[1-n], the instance oflast be “kerry”
and the candidate instance formiddle be “henry,” candidate tar-
get values must end with the five characters “kerry” and have some
substring of “henry” within the preceding region.

This has the effect of reducing the number of incorrectly re-
trieved instances from the target column, because we are actively
enforcing the elements of the translations that we have decided
upon and only producing candidate pairs that refine the partial trans-
lation. The resulting record linkage constraint also prevents sam-
pled rows with no equivalent target instances from generating seren-
dipitous recipes.

336

Data: A set of candidate columnsB, a partial translationT
Result: A new translationT
foreach columnBi in B do

R = CreateRecipes(Bi, T);
foreachR in R do

create emptyTnew ;
begin region ;
foreach char in R do

if key chars still in sequencethen
region continues ;

else if1st char from part ofT then
region continues ;

else ifregion still unknownthen
region continues ;

else if1st char unknownthen
region continues ;

else ifknown region ends on key boundarythen
clone region ;
mark cloned region as end-of-string;
link both regions to end ofTnew chain ;
begin region ;

else
(un)known region or recipe ends

end
link regions to end ofTnew chain ;

end
if Tnew ∈ T then

increase count ofTnew entry by 1 ;
else

create new entry inT for Tnew with score 1;
end

end
end
Init Tbest to have score 0;
foreachT in T do

if ScoreTrans(T) > ScoreTrans(Tbest) then
Tbest = T ;

end
end
returnTbest;

Algorithm 5 : Selecting additional columns.

3.4.2 Creating edit recipes for refined pairs
In Section 3.3.2 we used a combination of an edit-distance and

longest common substring method to identify common information
between the instances. We do so again here, but add a constraint
that only characters from the target column that are not known to
be part of the partial translation formula can be used for matching.
This both prevents the algorithm from assigning the same target
region to two source columns and also diminishes the run-time for
the task.

Table 6 graphically represents the matrix of operations forcom-
paring instance “henry” to “rhwarner” from Table 1, where the
target has been masked to remove regions already covered by the
partial translation formula. In this case, two possible recipes are
present and both substrings have the same length; thus we select
the left-most, or earliest occurring, recipe as indicated,leading to
the refined translation formula%first[1-1]last[1-n].

Similarly, recipes are generated for all retrieved instances that
are matched to the values sampled from the target table. Fromthese
recipes, we next create new translation formulas that combine both
the information from the old formula and the information within

0

B

B

B

B

B

@

r h w− a− r− n− e− r−
h R = X X X X X X
e R R X X X X X X
n R R X X X X X X
r = R X X X X X X
y D R X X X X X X

1

C

C

C

C

C

A

Table 6: Restricting the search for the first longest common
substring (underlined).

the recipes.

3.4.3 Improving the partial translation formula
As in Section 3.3.3, we use each recipe to create a new transla-

tion formula, containing both previously selected columnsand the
current candidate column. Algorithm 6 encodes the functionCre-
ateRecipes() that is repeated called from Algorithm 5.

Data: A candidate columnBk, a candidate translationT
Result: Edit recipesR
for Bk and all columns inT do

count distinct relations asdcount;
sett = dcount∗ fraction;

end
for j=1 to t do

Initialize SearchPattern;
foreach region inT do

if region is knownthen
Get value of region column;
Extract substring from column;
Add substring to SearchPattern;

else
SearchPattern =+ ’%’;

end
end
get valuekeyfrom Bk ;
Create setA from T2 whereA matches SearchPattern and
containsq-grams ofkey;
foreach candidatein A do

Setc = candidatemasked by SearchPattern;
RecipeR = edit-distance(key, c) ;
if R ∈ R then

increase count ofR entry by 1 ;
else

create new entry inR for R with score 1;
end

end
end

Algorithm 6 : Creating edit recipes for a new candidate column.

Table 7 represents the new candidate translation formulas created
from combining the previous partial formula and the new recipe.
All of the candidate translation formulas are collated according
to a complete match between the source columns, the sequence
of their individual regions and the character positions within the
source columns.

3.4.4 Scoring and selecting an improved translation
formula

Because we are ranking multiple translation formulas from mul-
tiple candidate columns concurrently, we need to be able to score

337

source target Translation
B3 B1 A Previous Candidate

kerry robert rhkerry %B3[1-n] B1[1]%B3[1-n]
robert klkerry %B3[1-n] %B3[1-n]
robert gkerry %B3[1-n] %B3[1-n]

kyle otto opkyle %B3[1-n] B1[1]%B3[1-n]

Table 7: Improved translation formulas based on partial
recipes.

translations in a normalised manner. To do this, we use the func-
tion ScoreTrans(τj) to score the individual translations based on
both the number of their occurrence and the source column (Bi) in
use.

We found experimentally that with large (> 500,000 rows) and
wide columns (> 80 characters) of random characters, the resulting
serendipitous matches would increase noise to unacceptable levels.
It is doubtful that a noise column of this type would arise in are-
alistic database integration problem, however we provide it as a
worst-case scenario for study.

ScoreTrans(Tτj) =
Frequency(τj)

max(1, AvgLength(Bi) − σ)
(5)

Formula (5) scores candidate translations based on a per-column
normalised occurrence score, but also penalises the score for us-
ing wide columns. The intuition behind the solution is to skew the
selection of columns towards those that provide a concise answer
and thus avoid serendipitous matches on large text fields. The term
Frequencyis the occurrence count of the candidate translationτn

normalised to the total number of translations created by its parent
column Bi. The denominatormax(1, AvgLength(Bi) − σ) is a
penalty term that was added to deal with especially noisy columns
and that provides a gradual back-off for long strings. More specif-
ically, theσ parameter prevents columns with less than a certain
average width from begin penalised, while themax term prevents
the denominator from being negative and ensures a mathemati-
cally well-behaved function. Experimentally, we determined that
columns with an average length of over 4 characters (σ = 2) should
be moderated by this penalty term. We also make an explicit deci-
sion not to implement backtracking in our method: this wouldonly
be worthwhile if the overall database integration system was capa-
ble of providing feedback on translation formulas, and we make no
such assumption.

4. EXPERIMENTAL RESULTS
We implemented this method using the PostgreSQL [13] DBMS

and a Java application front-end. We used bi-grams (i.e.,q = 2) for
scoring purposes and simple bi-gram matching for the retrieval of
similar instances. This choice forq is easy to implement although
precision is adversely affected (i..e., many spurious matches are
found initially). As will be seen from the results, the effectiveness
for finding matches is very good, in spite of the potential loss in
precision.

Recipe generation was implemented using a modified Hirschberg
[8] algorithm and an edit distance method as described by Monge
et al [14]. Sensitivity experiments showed that the specificcost val-
ues for copy vs. deletion vs. replacement were not critical and that
a value of 1 was reasonable for all edit costs.

We experimented with several different datasets. Unless noted
otherwise, 10% samples were used for all experiments, and a se-
ries of noise columns were always added to the source tableT1

so that finding which source columns contribute to the targetwas
not trivialised. More specifically, the extraneous columnsincluded
columns filled with random numerical data, random alphanumeric
data, street addresses, and a full length RFC-2822 timestamp. The
objective was to add enough data to ensure that the column selec-
tion made by the method was not serendipitous, and that the algo-
rithm would work well in the presence of noise.

In the following experiments, small examples were resolvedin
less than 5 minutes, and runtimes for the larger problems were
about 15 minutes, including instrumentation overhead.

4.1 UserID dataset
The first experiment was to match a listing of users’ first, mid-

dle, and last names (with additional noise columns) againstUnix
login names extracted from our university’s undergraduatecom-
puting systems (Table 1). The tables have about 6,000 rows inran-
dom order, and several different translation formulas are known to
exist to create login names from the actual names. Our searchalgo-
rithm returned the translation formulalogin = first[1-1] + last[1-
n], which is, in fact, the most commonly used translation formula,
accounting for about half of the tables’ rows.

As part of our implementation, we added a facility to create SQL
statements that would perform the translation. In the aboveexperi-
ment, the corresponding SQL query was:

s e l e c t s u b s t r i n g(f i r s t from 1 f o r 1) || l a s t as l o g i n from t a b l e where f i r s t i s
not n u l l and ch a r l en g t h (s u b s t r i n g (f i r s t n a m e from 1 f o r 1))=1 and l a s t n ame i s
not n u l l and ch a r l en g t h (l as t n ame)>= 1

If we remove from both tables the records translated by this
formula, and reapply the algorithm on the remaining rows, the
method returns the next dominant translationlogin = first[1-1] +
middle[1-1] + last[1-n], which covers about 1,200 rows. Inspec-
tion of the tables revealed that the remainder of the useridsfollowed
no other dominant pattern.

The results are not surprising in that the tables in this dataset are
balanced, e.g., for each row in the source tableT1 there exists a row
in the target tableT2. We attempted a second experiment with this
dataset that added several rows of instances to each of the source
columns. We selected these instances from another unordered set of
first, middle and last names and inserted them incrementallyalong
with new noise column values into the source table.

We found that with this dataset, the method would tolerate an
additional 3,000 rows of source data (i.e., approximately one-third
of the records were unmatched) before it made a wrong column
selection. As it turned out, the algorithm correctly selected the last
name as being a part of the userid, but then incorrectly selected a
noise column for improving the translation.

4.2 Time dataset
Data similar to that in Table 8 was created using 10,000 ran-

domly generated time-stamps, which were then merged into a sin-
gle string. For this experiment, the correct translation from source
to target column involved no substrings, only simple concatena-
tions.

The same noise columns were used as for the first experiment.
The returned SQL translation query was:

s e l e c t s u b s t r i n g(hour from 1 f o r 2) || s u b s t r i n g (minu tes from 1 f o r 2) ||
s u b s t r i n g (seconds from 1 f o r 2) as f u l l t i m e from t a b l e where hour i s not n u l l
and ch a r l en g t h (s u b s t r i n g (hour from 1 f o r 2)) = 2 and minu tes i s not n u l l and
ch a r l en g t h (s u b s t r i n g (minu tes from 1 f o r 2)) = 2 and seconds i s not n u l l and
ch a r l en g t h (s u b s t r i n g (seconds from 1 f o r 2)) = 2

which corresponds to the correct translation formulatime = hour[1-
2] + minutes[1-2] + seconds[1-2]. This experiment shows that
even when sources columns are short, and the values in those columns
come from highly overlapping domains, correct table matches can

338

Source Target
secs. mins. hrs. ... time
55 59 02 ... 345407
43 23 05 ... 330011
12 55 07 ... 135741
...
33 00 11 ... 004107
34 54 07 ... 192609

Table 8: Time-stamps in single and multiple columns.

be found because of the properties of record linkage incorporated
into the algorithm.

4.3 Name concatenations dataset
For the next experiment, we used a list of names to create data

such as that shown in Table 9, where the first and last names are
merged into a single column. For this experiment, the table con-
tains about 700,000 rows with about 70,000 unique values in both
source columns. The same noise columns were again used.

Source Target
first last ... full

robert kerry ... robertkerry
kyle norman ... kylenorman

norma wiseman ... normawiseman
...

amy case ... amycase
josh alder ... joshalder
john galt ... johngalt

Table 9: Merged names dataset.

The target columnfull was generated using the translationfull =
first[1-n] + last[1-n], and as expected, the SQL translation query
returned by the algorithm was:

s e l e c t f i r s t || l a s t as f u l l from t a b l e where f i r s t i s not n u l l and ch a r l en g t h
(f i r s t)>=1 and l a s t n ame i s not n u l l and ch a r l en g t h (l as t n ame)>=1

4.4 Citeseer dataset
We next used the Citeseer3 citation indexes to provide an addi-

tional real-world translation problem. We pre-processed 526,000
records into a table containing columns for the year of publication,
the title, and a series of 15 columns, each of which contains the
name of a single author (up to 15). We then created a new tableci-
tation from the concatenation of the year of publication, title, and
first author for all 526,000 records (and stored in a randomlyshuf-
fled order). This provides a test to study how our method performs
on a dataset that has many tuples and many similar columns (each
representing one author).

To further examine the robustness of our algorithm, we chosea
sampling size of only 1% of the distinct values from each column.
Even with such a small sample size, we were able to extract the
correct transformation formula:citation = year[1-n] + title[1-n]
+ author1[1-n]. The prior examples were all resolved in less than
5 minutes elapsed time on a Sunfire v880 750MHz machine. In
spite of the size of the problem (526,000 rows in each table and 17
columns in the source table, 15 of which have values from a single
domain), the run time for this example was under 20 minutes in
that same environment. More detailed analysis is provided after
examining the results of our final experiment.
3http://citeseer.ist.psu.edu/oai.html

4.5 Cross dataset translation
A question that remained was how well the method would work

when very little overlap exists between the source and target ta-
bles. To answer this question we designed an experiment where
we attempted to link thecitation column of the Citeseer data to the
DBLP citation index4.

This is a very hard problem, because although we expect that
there should be overlapping citations, the citations oftenhave mis-
spellings, incomplete author lists, and incompatible abbreviations.
We pre-processed the DBLP data in a manner similar to the Cite-
seer data and obtained a 17-column table with 233,000 rows.

While the maximum number of matches between both tables can
be no more than 233,000, closer examination showed that there ex-
ist only 714 records that match based on an exact match of the
year, title, andauthor1 data columns. Hence, when attempting to
find a translation formula for thecitation column from the Cite-
seer dataset to the DBLP dataset, not only must we sort through 17
columns to find the correct ones, but we must also deal with a very
low number of overlapping records.

Surprisingly, our program did not return the expected translation
formula, but instead returned the formulayear [1-n] + title[1-n]
+ author2[1-n]. Subsequent examination of the tables revealed
that there exist 378 records within the Citeseer dataset that are also
present within the DBLP dataset, but with the first and secondau-
thors reversed! Removing the matched records and re-running the
program then produced the expected formula.

While the first translation found actually occurs less oftenthan
the expected translation, both have a very low frequency of oc-
currence within the datasets: much less than 0.5% of the source
records are involved. Which of the two correct solutions is returned
first is determined by which tuples happen to be sampled from the
database.

What is interesting in this experiment is that the first translation
formula found by our method matches a block of articles within the
Citeseer dataset with inverted first and second authors. Although
unintended when we designed this experiment, we have shown that
our method does in fact identify previously unknown relationships
between datasets! This result supports our motivation thattools for
data conversion must operate in environments where the schemas
are only partially understood.

5. ALGORITHMIC ANALYSIS
The computational complexity of the algorithm described inthis

section is dominated by the number of select operations thatmust
be performed to match source tuples in tableT1 to target tuples in
tableT2. Lets1 be the number of tuples inT1 ands2 be the number
of tuples inT2. Let n be the number of potential source columns
from T1, and letw be the maximum number of characters in any
value in the target column inT2. The worst case time is therefore
O(w ∗ n ∗ s1 ∗ s2). The proof of this claim follows from the ob-
servation that the algorithm is dominated by the step described in
Section 3.4, where on each iteration, for each source column, sam-
ples are selected, and for each sample, the target column is searched
for matches. Since each iteration determines an additionalregion
of the target that is included in the formula, at mostw iterations are
needed. In practice, however, regions are larger than one character
each, only a small fraction ofs1 is required, and a smaller fraction
of thes2 target values are matched with each new iteration.

This can be clearly observed in Figure 3, which plots the cumula-
tive time spent up to the end of each step of the method for various

4http://dblp.uni-trier.de/xml/

339

0
2
4
6
8

10
12
14

10 20 30 40 50 60 70 80 90

Mins.

Percentage of Citeseer data processed

Step 1

3 3 3 3 3 3 3

3

Step 2

+ + + + + + +

+
1st Iteration

2
2

2

2

2

2

2
2

2nd iteration

×
×

×

×

×

×

×

×

Figure 3: Wall clock time versus Citeseer dataset size.

subsets of the Citeseer citation example.5 What is evident from
inspecting the plot is the dis-proportionately high cost ofsearch-
ing for the second column during the first iteration of our search:
for that step, the constraints on retrieving instances are few and we
must search all of the columns.

This also shows the performance bottleneck of the method: the
computational balance between retrieving similar instances (database
I/O) and the quadratic time for the longest common substringfor
each string pair (client in-memory). The trade-off should favour ef-
ficient instance retrieval with good SQL engines when the client has
limited capacity. This motivates the algorithms behind Sections 3.2
and 3.3 where the column is selected before recipes are generated.
Notice that in Figure 3, both these operations are less costly than
the first iteration.

The overall method has shown itself to be relatively insensitive
to the size of the sample, much in the manner of Figures 1 and 2.
Hence, it is acceptable to lower the sample size to very low values
to deal with very large datasets. As demonstrated by the finalexper-
iment, in practice, only a few dozen ‘good’ samples are required for
the method to function. Datasets with several million rows even-
tually require and justify the computational overhead for high pre-
cision instance retrieval methods, described in Section 3.3.1. The
overall method in itself remain unchanged for very large datasets.
Choosing sample sizes is problematic only when the overlap be-
tween datasets is unknown. We must ensure that some of the rows
that are sampled have a reasonable expectation of being present
within the other table. In future work, we wish to look at possible
solutions to estimate the overlap and automate the selection of the
sampling parameter.

6. SEARCHING FOR SEPARATORS AND
MANY-TO-MANY TRANSLATIONS

In this section we review two additions to this method that allow
it to deal with non-alphanumeric data separators (e.g., thehyphens
in a date string “2-15-2005”) and with many-to-many translations.

6.1 Non-alphanumeric separators in columns
The method as described so far deals well with translations that

are composed exclusively from the data contained within thesource
columns. However for many reasons, including esthetic, historical,
and error-checking concerns, separators are often presentwithin
the data. Examples include dates “2/15/2005”, times “11:45:34”,
manufacturing part numbers “FRU-13423-2005”, field delimiters
“field a, field b, field c” and phone numbers “+1-321-555-1212”.

5Recall that the experiment was run on a Sunfire v880 750MHz machine
with 1% sampling.

A simple solution to this problem could be to assume that the
separator will be found in the other database. However, suchan as-
sumption is inappropriate for serious database integration work. To
the best of our knowledge, no previous work exists on the problem
of finding separators within database elements.

We make the assumption that a separator character is not al-
phanumeric, that it occurs in all target column instances without
exception, and that it is not to be copied over from any of the source
columns. We attack this by querying the target column for consis-
tent patterns of separator uses and then forcing the use of a sepa-
rator template on the identification of similar pairs and on recipe
generation.

Data: A target columnA
Result: SearchKey: A representation of the separator pattern
SearchKey = null;
for j = 1 to length(A) do

if charAt(j) is a separator character && all charAt(j) are
the samethen

SearchKey = SearchKey + charAt(j);
end
else

SearchKey = SearchKey + ’%’;
end

end

Algorithm 7 : A simple algorithm for finding separators.

Algorithm 7 represents a simple algorithm for creating a sepa-
rator template representing the placement and values of thesepa-
rators in a database column. For example, given a column of in-
stances of timestamps of the form “11:45:34”, the algorithmwould
return a separator search pattern of the form “%:%:%.” We then
use this pattern in two ways. First, whenever we search for similar
instances within the target column, we make sure that searchterms
(individual q-grams) do not contain separators. Thus, we would
not use a search key such as “:4” to search a timestamp column,
as this would retrieve too many instances. Secondly, when building
recipes, we use the characters deemed to be separators to align edit-
ing and translation generation, such as shown in Table 10. This es-
sentially forces the method to generate aligned recipes whose trans-
lations will automatically match the column pattern.

0

B

B

B

B

B

B

B

B

B

B

@

0 4 : 1 2 : 5 3
0 = I I I I I I I
4 D = I I I I I I
: D D = I I = I I
1 D D D = I I I I
2 D D D D = I I I
: D D = D D = I I
7 D D D D D D R R
3 D D D D D D R =

1

C

C

C

C

C

C

C

C

C

C

A

Table 10: The separator “:” aligns the strings.

This approach, however, is too simplistic: it cannot deal with
both fixed and variable length target columns. An example of the
need for a more general method is illustrated by the data in Ta-
ble 11. In one database, the names are inserted into two columns
while in the second database the names are in a single column,but
with a comma and space separating them.

Our solution uses a histogram of all non-alphanumeric charac-
ters within the target column against all potential character posi-

340

Source Target
first last ... full

robert kerry ... kerry, robert
kyle norman ... norman, kyle

norma wiseman ... wiseman, norma
...

amy case ... case, amy
josh alder ... alder, josh
john galt ... galt, john

Table 11: Requiring separators for variable-length regions.

tions. However, in order to be able to handle strings of variable
length, we use relative positions allowing for as many positions as
there are characters in the average length of the instances within the
target column. For example, if the average instance length were 5,
we would compute 5 relative positions, and if the current instance
length were 10, we would retrieve the4th character when generat-
ing a histogram for relative position 2. (Note that this simplifies to
absolute positions when a column is of fixed length.) For exam-
ple, the histogram in Figure 4 plots the occurrence frequencies of
potential separators in thefull column for 700,000 instances simi-
lar to those shown in Table 11. Since the rounded average length
for the column is 15 characters, we plot the histogram for relative
positions 1 through 15.

140000

160000

180000

200000

220000

0 2 4 6 8 10 12 14 16

Count

Relative character position

comma
space

Figure 4: Histogram of possible separators and their locations
within column full of Table 11.

From the histogram, we can see that there are many comma and
space characters in the middle of the instances. We now need an
algorithmic way to select which of these candidate separators and
locations are actually valid for all column instances.

A candidate separator at some location is invalid if there isat
least one instance that does not include it in that position.For a
fixed column width, it would be sufficient to set a threshold tothe
number of instances within the column and simply select the char-
acters and positions that score above it. However, for variable width
columns, we must verify the separator template, as it is possible for
artifacts of the data to generate an incorrect separator format. We
therefore start by examining the most common separator/position
pairs, and testing whether a template specifying those separators in
those positions matches all the instances. If so, we augmentthe
template to include the next most common separator-location pairs
and continue until a candidate template no longer matches all in-
stances.

Algorithm 8 encodes the building of the histograms followedby
the search for the appropriate separator template by repeatedly low-
ering a threshold controlling which separator-location pairs to in-

Data: A target columnA
Result: SearchKey: A representation of the separator pattern
SearchKey = ’%’;
AvgLength = Avg(Length(A));
Total = CountInstances(A);
for j = 1 to AvgLengthdo

foreach Separator characters do
foreach Instancea of A do

if charAt(j/AvgLength*Length(a))==s then
Csj++;

end
end

end
end
Threshold=Max(Csj);
TestSearchKey=SearchKey;
repeat

SearchKey=TestSearchKey;
for j = 1 to AvgLengthdo

foreach Separator characters do
if Csj >Thresholdthen

TestSearchKey= TestSearchKey +s;
else

TestSearchKey= TestSearchKey + ’%’;
end

end
end
Threshold−−;

until (CountInstances(A) like TestSearchKey)< Total;

Algorithm 8 : Seperator indentification algorithm.

clude. Using this algorithm, we are able to recover the separator
recipe “%, %” for the data within thefull column of Table 11.
With the knowledge of this separator recipe and using the multi-
column substring matching method described above, we recovered
the translation formula used to create the column:last[1-n] + “, ”
+ first[1-n].

6.2 Dealing with many-to-many translations
Consider Table 12, where multiple target columns exist. It would

be desirable for us to be able to identify both of the translations in
use in this table while leveraging the fact that there are multiple
concurrent translations in effect.

Source Target
birth day first middle last login DOB

12-21-1923 robert h kerry nawisema 5/6/73
11-13-1956 kyle s norman jlmalton 8/11/48
5-6-1973 norma a wisema rhkerry 12/21/23

...
1-3-1981 amy l case alcase 1/3/81
5-29-1989 josh a alderman ksokmoan 2/20/73
8-11-1948 john l malton ksnorman 11/13/56

Table 12: A version of Table 1 with multiple targets.

The mechanism for choosing which target column to process first
is beyond the scope of this work; we expect it to be chosen by
another part of the database integration system. Our contribution
to this problem assumes that one of the translations has already
been identified and resolved, and we wish to use this knowledge in
finding a subsequent translation.

In Section 3.3.1 we selected target instances based on theirsim-
ilarity to the sampled value, and in Section 3.4.1 we restricted the

341

retrieval further to instances which also fit the partial translation
formula. In the many-to-many case, we already have a translation
that relates rows of the source table to the target table. Therefore we
can use that translation to restrict the selection of similar instances
within rows to be those that are related by the known translation.

For example, let us assume that we have a translation for the
columnlogin that reads asfirst[1-1] + middle[1-1] + last[1-n] in
Table 12. Let us also assume that we are trying to find a translation
for the target columnDOB and that we are retrieving similar val-
ues to thebirth column instance ‘5-6-1973.” If we trace the source
column relation to the known translation for columnsfirst, middle
and last, we constrain possible target instances. For the example,
starting withbirth day = ‘5-6-1973,” we find corresponding fields
first = ‘norma,” middle = ‘a,” and last = ‘wisema”; using the
know translation formula, we obtain a value of ‘nawisema” for tar-
get columnlogin; from which we are constrained to using ‘5/6/73”
for DOB. This is the direct algorithmic equivalent of having infor-
mation about which tuples ofT1 match which tuples ofT2. By us-
ing this prior knowledge about the translations that link the tables,
we are able here to dramatically reduce the number of instances to
be evaluated and thus speed up the processing.

7. CONCLUSION
Whereas previous approaches required specialized domain spe-

cific matchers to form the matches and translations, we present
here a generalized algorithm for most string-based matches. This
method attempts to find a translation formula that composes atarget
column from the concatenation of an arbitrary number of column
substrings. We do this without user training or explicit linkage be-
tween table rows, and experimental results validate the approach
for realistic data.

Because the method matches complex column translations and
because it is computationally expensive, it must function within a
framework of a schema integration system. We make an explicit
assumption that a certain overlap exists between both datasets and
that the framework is able to provide us with both a potentialtarget
column and a set of candidate columns.

Although we found that in our examples, bi-grams and 10% sam-
ple sizes work well in practice, we are currently working on au-
tomating the selection ofq and of sampling parameters that are
used by the method. We also wish to develop a method to com-
bine several applicable translation formulas into a singletransla-
tion formula whenever this is appropriate. For example, it would
be desirable to make use of optional values within translation rules
to achieve greater coverage (e.g.:login = first[1-1] + middle[1-
1] + last[1-n] would also encompass the rulelogin = first[1-1]
+ last[1-n]). We have not done so yet because of the algorithmic
difficulty in searching for a negative result, but we plan to pursue
rule-merging strategies [22] in our future work to achieve this. We
showed how to identify separator data that is not present in the
source columns, but we would like to expand this to the identifica-
tion of other forms of missing information within the sourcetable.

Acknowledgements
We gratefully acknowledge funding support from the OntarioMin-
istry of Training, Colleges, and Universities; the NaturalSciences
and Engineering Research Council of Canada; and the University
of Waterloo.

8. REFERENCES
[1] P. Carreira and H. Galhardas. Execution of data mappers.In

Intl. Workshop on Information Quality in Info. Sys., pages

2–9, 2004.
[2] S. Chaudhuri, K. Ganjam, V. Ganti, and R. M. ani. Robust

and efficient fuzzy match for online data cleaning. InIntl.
Conf. ACM SIGMOD, pages 313–324, 2003.

[3] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. imap: discovering complex semantic matches
between database schemas. InIntl. Conf. ACM SIGMOD,
pages 383–394, 2004.

[4] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: a machine-learning
approach. InIntl. Conf. ACM SIGMOD, page 509, 2001.

[5] D. W. Embley, L. Xu, and Y. Ding. Automatic direct and
indirect schema mapping: experiences and lessons learned.
SIGMOD Rec., 33(4):14–19, 2004.

[6] G. H. L. Fletcher. The data mapping problem: Algorithmic
and logical characterizations. InWorkshop on Databases For
Next Generation Researchers at ICDE, 2005.

[7] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text
joins in an rdbms for web data integration. InIntl. WWW
Conference, pages 90–101, 2003.

[8] D. S. Hirschberg. A linear space algorithm for computing
maximal common subsequences.Comm. ACM,
18(6):341–343, 1975.

[9] J. W. Hunt and T. G. Szymanski. A fast algorithm for
computing longest common subsequences.Comm. ACM,
20(5):350–353, 1977.

[10] N. Koudas, A. Marathe, and D. Srivastava. Flexible string
matching against large databases in practice. InVLDB, pages
1078–1086, 2004.

[11] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals.Soviet Physics - Doklady,
10(8):707–710, Feb. 1966.

[12] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema
matching with cupid. InIntl. Conf. VLDB, page 49, 2001.

[13] B. Momjian.PostgreSQL: introduction and concepts.
Addison Wesley, 2001.

[14] A. E. Monge and C. Elkan. An efficient domain-independent
algorithm for detecting approximately duplicate database
records. InDMKD, pages 0–, 1997.

[15] M. S. Paterson and V. Dancik. Longest common
subsequences. InMath. Foundations of Comp. Sci., pages
127–142, 1994.

[16] E. Rahm and P. Bernstein. On matching schemas
automatically. Technical Report MSR-TR-2001-17,
Microsoft Research, Feb. 2001.

[17] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching.The VLDB Journal,
10(4):334–350, 2001.

[18] G. Salton, A. Wong, and C. S. Yang. A Vector Space Model
for Automatic Indexing.Comm. ACM, 18(11):613, 1975.

[19] L. Seligman, A. Rosenthal, P. Lehner, and A. Smith. Data
integration: Where does the time go?, Nov. 2005.

[20] E. Ukkonen. Approximate string-matching with q-gramsand
maximal matches.Theor. Comp. Sci., 92(1):191–211, 1992.

[21] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-driven
understanding and refinement of schema mappings. InIntl.
Conf. ACM SIGMOD, pages 485–496, 2001.

[22] M. D. Young-Lai and F. Tompa. Stochastic grammatical
inference of text database structure.Machine Learning,
40:111–137, 2000.

342

