Multi-c olumn Substring Matching f or Database Schema
Translation

Robert H. Warren Frank Wm. Tompa
rhwarren@uwaterloo.ca fwtompa@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT search for the right matches is time consuming. Similarly, multiple

We describe a method for discovering complex schema translationsSt"’md"’lrds exist to represent_ the same infor_mat_ion ina concise_ for-
involving substrings from multiple database columns. The method mat, and understanding which r_epresentatlon IS In use _tak_es time.
does not require a training set of instances linked across database5©" €xample, the Open Group. I'St$ 22 locales, each with its own

and it is capable of dealing with both fixed- and variable-length type;et_standard for dat_e and_ tlm_e information

field columns. We propose an iterative algorithm that deduces the This is why we are mvest.lgatln.g .tools that can automate the

correct sequence of concatenations of column substrings in order tosearch for me_ltchlng |nformat|on_W|th|n a database schema and in-
translate from one database to another. We introduce the algorithm!€" @ méchanism for the translation of the data from one represen-

along with examples on common database data values and examinéation to another. We have in mind situations where databases are
its performance on real-world and synthetic datasets numerous, large and complex and where partial automation of the

process, even when computationally expensive, is desirable.
In particular, we wish to find a general purpose method capa-
1. MOTIVATION ble of resolving complex schema matches made from concatenat-

As the number, size and complexity of databases increases, thdNd Substrings from columns within a database. While heuristics
problem of moving information where it is needed and sharing itis €a" be attempted for simple translation operations such as “concat
becoming an important one. (firstname, lastname) — fullname,” no general purpose solution

In the past, much work on database integration has been done td'aS Yet been devised capable of searching for and generating trans-
develop standards and interfaces to facilitate the transfer of the dataation procedures. _ _ ,
Application programming interfaces, such as JDBC and ODBC We wish to _flnd a method capable of d|scover|r_19 a solu_tlon for
make it now possible to easily retrieve information from any table Problems as diverse as unknown date formats, unlinked login names,
or column within most databases. With proper documentation of fild normalisations, and complex column concatenations. Thus,
the database design and operation, a logical process can be writte’® Wish to find a generalisable methoud capable of identifying com-
to integrate multiple databases together. plex schema translations of the sort “4 leftmost characters of col-

The integration process is driven by a database expert, and a¥™" Iastname”+ 4 rightmost characters of colunbirthdate —
great part of the problem is essentially a clerical process that hascolumnuserid” or tra?‘slatlng dates from one undocumented stan-
little value-add, except for the information extracted about the very dard to anf)fher, €.9.:"2005/05/29 in database- 05/29/2005 in
high level semantics of the database. It is this clerical process thatdatabase)”. _ _
we aim to automate in our research. Whereas several projects have . 1NiS paper describes a generalisable method that can be used to
begun to tackle the problem from a top-down perspective, we use identify complex, multi-column translations from one database to
a bottom-up approach that is data-driven and that focuses on the@nother in the form of a series of concatenations of column sub-
matching and the translation of the data from one database to an-Strings. The algorithm will discover translations as long as there
other. exists overlap between the translated instances of the source and

Seligman et al. [19] have published a survey that ranked the ac- target schemas. To our knowledge, this form of matching is previ-
quisition of knowledge about the data sources as the data integra-0USly untried, and our solution is novel.
tion step that required the most effort. Large and complex industrial
database schemas with over 10,000 tables and over 1,600 attribute2. PREVIOUS WORK
per table are not unheard of, and even with good documentation, the Rahm and Bernstein present a general discussion and taxonomy

of column matching and schema translation [17, 16]. They classify

column matchers as having “high cardinality” when able to deal
Permission to copy without fee all or part of this material is granted provided with translations involving more than one column. These types of
that the copies are not made or distributed for direct commercial advantage, matchers have been implemented on a limited basis in the CUPID

the VLDB copyright notice and the title of the publication and its date appear, system [12] for specific, pre-coded problems of the form “concate-
and notice is given that copying is by permission of the Very Large Data nate A and B ’

Base Endowment. To copy otherwise, or to republish, to post on servers . . .
or to redistribute to lists, requires a fee and/or special permission from the ~AS @ means of abstracting away from the specific data being pro-

publisher, ACM. cessed, Doan et al. proposed “format learners” [4]. These infer the
VLDB ‘06, September 12-15, 2006, Seoul, Korea. 1
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09. http://ww. opengroup. or g/ bookst or e/ cat al og/ 1. ht m

331

formatting and matching of different datatypes, but thaildas not G320 ¥2 ... 4 gove-vv] if the " subfield oft’ is taken from

been carried forward to multiple columns. Recently, Caarand characters;; throughy; from theg; attribute value in tuple.
Galhardas [1] looked at conversion algebras required ttskate We note that a source attribuf¢; can contribute characters to
from one schema to another, and Fletcher [6] used a seartiochet several subfields in the target tuple (i.e., theare not necessarily
to derive the matching algebra. Embley et al. [5] explorethoes distinct), and in fact a particular sourcharactermay be copied
of handling multi-column mappings through full string catena- to more than one target subfield; however, each target dearay
tions using an ontology-driven method. definition, comes from only one source subfield.

The IMAP system [3] takes a more domain-oriented approach by This is asearchproblem (find a tuple in the source table that con-
utilising matchers that are designed to detect and dealspitiific tains substrings from which the target tuple can be congdyand
types of data, such as phone numbers. It also has an appach tanoptimizationproblem (find a formula that can be reused to create
searching for schema translations for numerical data wesjngtion as many target tuples as possible, each from its own soupbe tu
discovery. while ensuring that the translation is concise). If the seuable

We also use a search approach to find translations, but apply i contains many columns and many tuples, and especially iesom
to string operations. However, unlike IMAP, we do not asstina¢ of the source columns are very wide, the search problem tormat
the record instances are pre-matched from one databasettean a single target tuple will have many potential solutions] arany
This makes the problem more difficult in that a primitive foah of the potential source tuples will have many potential folas
record linkage must be performed as the translation formsudés- that could be applied to form the target value; it is the optation
covered. problem that dictates which of these solutions is most gpjate.

We attack the problem of schema matching and translation fro We have chosen a greedy algorithm to attack the optimization
an instance-based approach, where the actual values fdiwidin problem. Although not guaranteed to find an optimal solytian

ual columns are translated and matched across databasiesis Th practice this approach works well to find a conversion foanthht
done within the context of database integration, and oulkvisr produces many target tuples from the source table. Whethwesto

intended to be incorporated as part of a larger databasgratien a sub-optimal solution is obtained, by removing all matceearce
system, such as IMAP, CUPID or Clio [21]. and target tuples from the input and then repeating the pspce
For example, in our model we assume that a specific ‘aggregate more and more matches can be discovered.

column and a number of potential ‘source’ columns have been t If we could find a subfield in some source column for which
tatively identified by the database integration system. Wept many source tuples could contributes many characters te samm
that not all of the suggested source columns may actuallyebe r get tuples, we would reduce our problem substantially. Tdwrs
lated to the target column and that a data-driven transidionula method comprises three steps: selecting an initial soukemm
may discover a translation which is not intended. Our objeds By, creating an initial translation recipe that isolates assiig

to provide the integration system with possible transtetiformu- w, from it, and then iterating for additional columns. The aler

las, with the understanding that some of these may be disdard algorithm is shown in Algorithm 1.
by a higher-level component of the integration system iofaof

another solution. Data: For a se3 of columnsBi, Bs, ..., B, and targetd

We have developed our solution to be as generic as possible, a | Find columnBs most likely part ofA;
suming only that the relational databases provide an SQlityac Generate a translatianpartially translatingBstar to A;
that can be accessed through an interface. As with the work of | \while + has unknownslo
Koudas et al. [10], we have restricted ourselves to impleingn foreach ColumnBy, € {B1, Ba, ..., B»} do
our algorithms with basic SQL commands in an attempt to ma- Sample rows fronT} and select values of matching
nipulate the data within the database systems. This is sa&ges partial translatiorr;
to prevent the integration system from using excessive atsou Generate a new’ partially translatingB;, to A;
of memory when dealing with large, complex databases amd fro Score each’, By;
over-burdening database communication systems. end

Insert highest ranked’ to be part of translation;

3. PROPOSED APPROACH end

Let us assume that we have a table which we term the source Algorithm 1: Overall algorithm
table for convenience, with columi, Bs, ..., B,. These columns
may or may not be relevant to the translation. Similarly, \agéeh In the first step, all source columns are scored to identifgeh
a second tabl@%, named the target table, with a single aggregate most likely to be part of the target column. This step sengs a
columnA. The instances dl} and7: are available for retrieval, a filter to eliminate all but the most productive column frone t
but no example translations are provided, nor are indiVick@ords more expensive computation in Step 2. We use the identified co
of T1 linked to theirT: equivalents. umn to create an initial translation formula, which palyiahaps

The operating algebra is simple, consisting of two opesator the source column to the target column. Using this coarsestra
concatenate and substring. We wish to find a mapping such thatlation formula, we iterate through additional substringesgons
many values in the target columt can be defined as a series of from any column until either a complete translation formhées

concatenation operations of the foth= w; + w2 + -+ + wy, been found, or the addition of more substrings no longerigesy
where eachy; represents a substring function to be applied to some additional information.
source columng3;, and a single value faod is obtained when alll Instead of iteratively determining additional contrimgti sub-
functions are applied to a single rowTR. fields, one alternative approach would be to identify allgiloe
.. solutions to the search problem, and then determine whitese
3.1 Principles of the approach are applicable to many tuples. This is clearly infeasibleabse
Let target tuplg’ result from concatenating substrings from var- of the large number of potential solutions for a single tatgple
ious fields within source tuple We will write ¢’ = ¢ [B7* Yt + (whicha priori could have been produced from any source tuple).

332

Alternatively, we could try to identify several possiblaming
points that apply to many tuples, possibly using subfieldsfsev-
eral source targets, and then determine which of these éthiegto
form the beginning of a solution to the search problem. Icfice,
however, a target column is often produced from one wide sub-
field and several very narrow ones (see, for example, Tabl&dl)
find such solutions with this alternative approach, we wmnddd
to include many narrow source fields among our potentiatistar
points. This would result in an inordinate number of falséepe
tial mappings before any pruning could be applied, espgdfahe
source table includes one or more wide columns.

In the following sections, we review each of the steps of our
approach in detail, using examples based on the data cedtain
Table 1.

Source Target
first | middle last login
robert h kerry nawisema
kyle S norman jlmalton
norma a wiseman rhkerry
amy | case alcase
josh a alderman ksokmoan
john | malton ksnorman

Table 1: The first sample problem, where login names must be
matched to the columns of an unlinked table.

3.2 Beginning the search

In order to choose candidate columns and generate pogsibte t
lation formulas for very large tables, we need a method tgpéam
values from the source columns. The objective is not to gefan
timal column selection as much as to identify a feasible oime.
effect, we are trying to “bootstrap” the translation with ingte
useful column from which we can begin to look for additionahe
tributing subfields.

With the example in Table 1, we would prefer to pick the column
last, out of all possible candidate columns, because it has tls# mo
overlapping data with the target colurtogin. On the other hand,
we can tolerate picking instead any of the other relatednooiu
This must be done in a manner that is simple and that will tate i
account that the match between source and target colunamaest
is imperfect. In this section, we describe how we select trs fi
source column, as detailed in Algorithm 2.

For each candidate source column, we first sample a pre deter-

mined fraction of thedistinctvalues within the column, yielding
values. We use distinct values to prevent the value digtabun
the source column from influencing the number of matches. The
sampling of the source column is done in an interleaved nranne
where values are taken at equally distanced rows. Gravaio[@t
found this sampling to be as good as random sampling, but much
less expensive since a database cursor can be used toaeaiev
value in a single step. (It is even more efficient if the columas a
sorted, e.g. B-tree, index.)

We next use each of thogevalues from the source column to
produce a larger set gfgrams [20], that isq-length subsequences
of consecutive characters from each string. As an exampée, t
string possible contains five 4-grams, hamehpss ossj ssih sibl
andible, and in general, a string of length containsn — ¢ + 1
g-grams. We use the set gfgrams obtained from the sample
values as search keys for the target column. We then count the
number of matches in the target column and normalise thet¢oun
yield a score that reflects the length of the common substramgl

333

set Bpestto null;
setscorgestto O;
foreach columnB;, of T} do
count distinct values aB;, asdcount
sett = dcountx fraction;
HitCount=0;
for j =1totdo
get valuekey from columnB;, in tuple m

localc = countT: where A includesg-grams ofkey,
localc

length(key) ;

)

HitCount+ =

end
_ (HitCount
ScoreColBy) = (W

if scoréB},)> scoraesithen
SCOl@est — SCOFGCO|Bk);
Bhuest= By;

end

end

Algorithm 2 : Initial column selection using a fixed g-gram and
sample size.

q

the average record overlap between the source and targeticsl
(see below). We choose the starting column for our tramsiat
be the one that generates the highest score.

) q
More specifically, Equation (1) re-expresses the colummisgo

function from Algorithm 2 in a single expression. It servesaa

cheap filter to eliminate all but the most productive colurromnf

the more expensive computations in Step 2. The number of dis-

tinct hits for each key HitCount(5)) is divided by the length of

the key (ength(key;)) and by the total count of distinct values (

sampled within the source column. This yields the averagéeap.

By raising this value to the power, we account for the decreased

probability of this substring occurring randomly in theget. Note

that by definitiong must be equal to or smaller than the narrowest

column being searched.

t

>

j=1

HitCount(j)

ScoreCol= < m v

30000 — : :
: middia Name (82} &
: iddle Name ot
25000~ Last Name {B3)—=—]
: Random text: - x- - -
20000 Random Numbe _

. Address: % --
Timestamp—e—

Score 15000 Al
_ e
X h:H»
X —
10000 ”
5000 :33& z ---- % X_ag
ol o
0 005 01 015 02 025 03

Sample percentage

Figure 1: Effect of sample size on scores.

Figure 1 and Table 2 represent empirical evidence of the-algo
rithm’s performance when it is used on a sample datasetagitmil
nature to the data in Table 1 and sized at 6,000 rows. To verify
the robustness of the method, we included several noisencislin
the source table, including columns containing random azttar
strings, time-and-date values, random numbers, and rastieest
addresses. Figure 1 shows that the column scoring functioksy
extremely well using 10% of the distinct values in each sewal-
umn.

middle
12391

addr
5505

numb.
792

time
354

text
6151

last
16374

first
14194

Table 2: Score results generated with a 10% sample.

An additional experiment shows that the column scoring func
tion works surprisingly well even with a very small sampleemh
the dataset is very large. Figure 2 plots the results of thenoose-
lection formula on a dataset containing over 700,000 cemeaéd
first and last names to be matched against a table with firsepnam
last name, random text, and random addresses. Even witlya ver
small sample of several hundred rows, the column selectidero
reflected by the scores is accurate.

1.8e+09 I —
1.6e+09
1.4e+09
1.2e+09
1e+09
8e+08
6e+08
4e+08
2e+08

- T T
Random text —&—
~Last name :
First name
"Address

—_—

Score

2 3 W e X

2000 2500

N M X
1000 1500
Rows sampled

500

Figure 2: Effect of sample size on scores for a large dataset.

3.3 Creating an initial translation formula

With a specific colummBy, selected as a starting point, we next
need to create a partial translation formula to transforimegsfrom
By, to values found irA. To do this, we need to retrieve instances
of A that are similar to the sampled values from the current sourc
column B,. We can then use each sampled valueBgfand the
similar A entities to discover a partial translation formulds=
w1 + w2 + ... + w; that applies to many of the source values.

3.3.1 Identifying candidate pairs

Recall that, for the sake of efficiency, we are dealing witly@n
sample of the chosen source column’s values. Thus we firsireeq
a method that will retrieve similar entities from tiecolumn for
each of the values sampled from the source coliynIn identi-
fying the best columrBy, we found tuples from columnl based
on the occurrence of anygram element from the sampled value.
While this method was satisfactory for ranking columnss iniad-
equate for finding suitable matches for specific source gallie
particular, it suffers from low precision due to the sergitdus
occurrences of-gram elements.

334

By (lastname) A

warner rhwarner
kiwarder

ghkarer

amy laramy
amyrose

camyro

wang mkwang
wayne opwayne

Table 3: Instances ofA sufficiently similar to Bs.

When trying to identify values from the target column thatcha
a specific source value, another possibility is to rank tavgkies
according to the number aof-grams of the sampled columBy
that are matched. Hence, with bi-grams “ab,” “bc,” and “deé t
instance “abcd” would score lower than the instance “aBidde,
the manner of Equation 2.

j |1, ifinstancea of A hasg-gramy
score(a,b) = Y of instanceb of By. @)
n=110, ifnot.

This improves our precision in that the entities that haeertfost
elements in common with the sampled value will be rankeddsgh
However, this still does not take into account the relatieg|fien-
cies ofg-grams and can improperly rank some entities that contain
many commonly occurring-grams over extremely rare and rele-
vantg-grams.

We can correct this by borrowing methods from the infornratio
retrieval community. Koudas at al. [10], Chaudhuri et al} 48d
Gravano et al. [7] all use variations of this approach to matm-
ilar records using td-idf and cosine similarity [18]. Thisdone
by assigning a weight to eagjigram that represents its relative
significance within the database.

Equation 3 represents the tf-idf formula for calculating eigit
for eachg-gram:w;; is the weight assigned tegramyj for instance
i of column A, wheretf, ; is the frequency of-gramj in instance
i in column A, N is the number of instances in colun#h andn
is the number of instances in columhwhereg-gramj occurs at
least once. Equation 4 then represents the scoring funftiioa
pair of values fromA and B,.

wij = tf,; *log2(N/n) (3
J
ScorePaifa, b) = _ wa; * wy; (4)
n=1

Thus, to find pairs of similar values from the two columnsifirs
sample of values are chosen from columin Then for each source
value, the target table is queried for values having haveesdoom
Equation 4 that exceed a given threshold. Such generates| pai
as in Table 3, are then passed on to the next phase of pragessin
(Note that as an alternative to keeping all pairs with scates/e a
given threshold, the topranked pairs could be retained instead.)

3.3.2 Creating edit recipes for pairs

With a set of pairs of similar instances from columrio column
By (Table 3), we next find a partial translation formula thatl wil
match the common information between the two sets of column i
stances. We achieve this by looking for longest common sulst

between the pairs of column instances. By keeping trackeofcth
cations of the common substrings over several samplé3, pfve
can both infer the correct area within the target columthat is
related toBy, and what area oBy, is matched.

We characterise a translation formula for a single subfiglhk-
ing characters from certain consecutive positions in soalaev
from By, and inserting them into templates for by assigning
them to a specific location within the target value. For ourpu
poses, we use the terracipeto characterise such insert opera-
tions, and henceforth the temegion refers to any consecutive se-
ries of characters taken frof,. For example, one (partial) trans-
lation formula relating the instance “warner” to “rhwarherould
be “%B3[123456]” which states that characters 1 through 6 from
column B3 are to be mapped to something (as yet unknown) fol-
lowed by that regioR.

To discover appropriate recipes for a single pair of sourc a
target values, we must be able to describe the shorteshgdié-
guence required to transform one string into another. Aigo
Levenshtein distance [11] provides us with the minimum nemb
of operations to transform the first string into another,desl not
produce the actual operations used. However, Patersorpfb5]
vides a good survey of several algorithms available to stiee
problem. For example, Hirschberg [8] describes a methodwisi
optimised for the maximal common subsequences jgQf |s2|)
time. Hunt and Szymanski [9] provide an interesting solutid
complexity O(f + R) log n) wheren is the length of the longest
string andR is the number of substring matches between the two
strings. Most of these methods rely on a matrix of operatms
ilar to Table 4 which illustrates the different matches flussfor
strings “rhwarner” and “warner.”

s
svIRS

NN ~e

)

Il UUEIINN%
UUEII.’\N\NN3

il N~~~

L

MNN N~

ool =
i=viiavisviisviias!
i=viiavisviisvii=y

Table 4: The longest common string (underlined). “R” stands
for a replaced character, “I” for an inserted character and “ D"
for a deleted one.

The highlighted path contains the longest common subsiréng
tween the two strings. We select this partial path and coraphe
recipe using the edit distance metrics to find the lowest-path
before and after the longest common substring. In case wéfimd
equal-length common substring, we arbitrarily select #ferost
string. Selecting potential matches and creating iniggipes is
summarised in Algorithm 3.

3.3.3 Creating a partial translation formula

From these recipes derived from pairs of tuples, we must now

create a partial translation formula,() that is inferred from all

of the collected recipes and that can be applied to the sande
target tables as a whole. This is done by creating a candidate
from each individual region within a recipe. Then, we call#te
candidate translations and select the one that occurs rftest o
Algorithm 4 explains this process in pseudo-code, and weuds

it here in detail.

2\We use the convention that % signifies any match.

335

Data: A candidate colummB;
Result Edit recipeskR
count distinct values aB;, asdcount
sett = dcountx fraction;
R = null;
for j =1totdo
get valuekey from By, in tuplem ;
retrieve setd from T> where ScorePaid(key) exceeds
threshold;
foreacha in A do

RecipeR = edit-distancefey; a) ;

if R € R then

| increase count foR entry by 1 ;

else
| create new entry ifR for R with score 1;

end
end
end

Algorithm 3: Creating an initial set of recipes from a cand
date.

As each recipe is processed, its known and unknown charac-
ter sequences are translated into a series of regions. Egnr
w, represents a string element either from an unknown source or
copied from specific character positions within a desighatairce
column. The sequence of these regions-w2+...+w; describes a
translation formula which provides a partial method to state the
information from the seB of source columns to the target column
A.

As w,, represents a fragment of one of the source colufps
being copied, we need a model for the copying operation. Aipos
bility is to create a regular expression using the recipexasples.
Instead of such an expensive general approach, we use thletabs
character positions within the source columns, and buidithns-
lation as a sequence of these column references. This me#sod
the advantage in that it provides some support for columnmtf
fixed and variable lengths.

For fixed-field data, it is straightforward to identify thense
monly repeating recipes, because the absolute locatidhs ofver-
lapping substrings will always align across recipes. Angesu
fluous matches (that is, other characters matching theapmrg
field) will occur infrequently enough that the outlier reegpcan be
recognised and discarded.

For variable-length fields, however, the problem is slightore
difficult as the absolute locations of the matching values raot
aligned. Thus we need to add some provision to the edit pnogra
to handle these situation. When generating the absolutactea
positions of the source column, we check if the region stopisea
end of the string. If it does, we generate an additional cdph@
translation where the current region is explicitly markedapying
the remainder of the string.

Furthermore, by having the translation behave as a sequibrece
relative ordering in which the substrings occur is presgrvehis
allows us to deal with problems such as the dataset in Table 1,
where the column widths are variable. Neither of these prope
ties hinder fixed-width columns and thus our solution remgjien-
eralisable. Our editing algebra and edit distance methadsaat
accommodate all specification of substrings (e.g.: therstto-
last character); however our simple algebra is sufficienniost
practical purposes.

Table 5 represents the partial translations that were e fiom
the recipes generated in Section 3.3.2. As explained gatttie

Data: Edit recipesk
Result Partial translation formula®
foreach R in R do
create emptyl” ;
begin region ;
foreach charin R do
if key chars still in sequendben
| region continues ;
else if 1% char is from keythen
| region continues ;
else ifregion still unknowrthen
| region continues ;
else if1°* char unknowrthen
| region continues ;
else ifknown region ends on key boundahen
clone region ;
mark cloned region as end-of-string;
link both regions to end df’ chain ;
begin region ;
else
| (un)known region or recipe ends
end
link regions to end of” chain ;

end
if T'e 7T then
| increase count df’ entry by 1 ;

else
| create new entry iff for T" with score 1;

end

end
Algorithm 4 : Generation of translation formulas from recipes.

typesetting convention used % for any unmatched region and
column[n] for matched characters, wheteefers to theath char-
acter of the source column nam€&dlumn. Note that in several
cases, two different translations are produced for a sireglipe.

Not all recipes will represent correct matches. For instanc
“warner” is similar to both instances “rhwarner” and “kivdar”
with only “rhwarner” being an actual match. However, seipitdus
matches are probabilistically unlikely to occur at the spostions
and sequence number.

We select the translation that occurs most frequently aschdil
the others. For the example in Table 5, we would picBd—
n] since it occurs most often. The partial translation folarthen
becomes the starting point for searching the rest of thébedata

3.4 Selecting additional columns

Column w1+ +wn
Bs A
warner | rhwarner| %B3[123456]
or %Bs[1-n]
kiwarder | %B3[123]%Bs[56]
or %B3[123]% Bs[5-n]
ghkarer | %B3[23]B5[56]
or %B3[23]B3[5-n]
amy laramy | %Bs[1]%B3[123]
or %B3[1]%Bs[1-n]
amyrose | B3[123]%
or B;;[l-n]%
camyro | %B3[123]%
or %B3 [1-n]%
wang | mkwang | %B3[1234]
or %B;;[l-n]
wayne | opwayne| %B3[12345]
or %Bs[1-n]

Table 5: Sample edit recipes for the login data, whereBs is
used in place of lastname.

us to restrict our search to values and columns likely to fpert
of the target column translation. This is captured in Algor 5,
which is described in the remainder of this section.

Whereas initially we first selected a column and then created
a translation from that column, we now create translatiansafl
candidate columns and then select the best translatiordiega of
column. The algorithm depends on two functions, Creatgies()
and ScoreTrans(), for which details are given in the follaysub-
sections.

The search for improved translation formulas is done byidens
ering each potential column for new recipes, generatiregrative
translation formulas based on the obtained recipes, aedtsa
the highest ranked translation formula based on a scorimgufia.
This process follows the same basic steps as those desiried-
tion 3.3, namely, find pairs of matching rows, derive edinfatas,
and create the best translation formula. However, eactistapd-
ified to account for the partial translation formula alreatipsen.

3.4.1 Identifying refined candidate pairs

As before, for each candidate column, we begin by equidigtan
sampling instances from that column. However, we retrieee n
only the values for the candidate column, but also the cpomd-
ing values for the source columns that are already part df fms-
lation. That is, instances from all source columns are pvese
together througHi, as in Table 7.

We now begin an iterative process to reduce the sizes and num- Then, as in Section 3.3.1 we retrieve similar instances fitwen

ber of unknown regions within the translation formula by firgd
additional fragments of source data that match the targeesa
The partial translation we have already found induces a mgpp
from values in the start column, and hence rows in the soatie,t
to values in the column table. Thus the only data fragmeiatisatie
available for providing additional information to the tatgvalue
are the ones contained within any of the fields of a correspgnd
row from the source table.

For example, in the first relation in Table 1, if we have founaltt
instance “kerry” from colummast is mapped to instance “rhkerry”
from columnlogin, then for columnfirst to also be involved in
the translation, instance “robert” from that same souree mast
contribute some data to that same target instance “rhkefilyis
restriction on the instances that is provided by the refatitows

336

target columnA. However, instead of merely searching for match-
ing g-grams, we now refine the search for instances that respect th
partial translation that we have developed so far. Henamyldlour
partial transformation be %last[1-n], the instancéast be “kerry”
and the candidate instance finiddle be “henry,” candidate tar-
get values must end with the five characters “kerry” and hawes
substring of “henry” within the preceding region.

This has the effect of reducing the number of incorrectly re-
trieved instances from the target column, because we airelgct
enforcing the elements of the translations that we havedddci
upon and only producing candidate pairs that refine thegdarains-
lation. The resulting record linkage constraint also pnésesam-
pled rows with no equivalent target instances from genegateren-
dipitous recipes.

Data: A set of candidate columris, a partial translatio”
Result A new translatioril”
foreach columnB; in B do
R = CreateRecipe#;, T);
foreach R in R do
create emptyhew;
begin region ;
foreach charin R do
if key chars still in sequendben
| region continues ;
else if1°* char from part ofl” then
| region continues ;
else ifregion still unknowrthen
| region continues ;
else if1°* char unknowrthen
| region continues ;
else ifknown region ends on key boundahen
clone region ;
mark cloned region as end-of-string;
link both regions to end dfnew chain ;
begin region ;
else
| (un)known region or recipe ends
end
link regions to end offhew chain ;

end
if Thew € 7 then
| increase count dfpewentry by 1;
else
| create new entry ifl” for Tnew With score 1;
end

end

end
Init Thestto have score O;
foreachT in 7 do
if ScoreTrand(’) > ScoreTranslpes) then
| Thest="T,
end
end
returnTbest,

Algorithm 5: Selecting additional columns.

3.4.2 Creating edit recipes for refined pairs

In Section 3.3.2 we used a combination of an edit-distande an
longest common substring method to identify common infaroma
between the instances. We do so again here, but add a cabstrai end
that only characters from the target column that are not kntaw
be part of the partial translation formula can be used forchiag.
This both prevents the algorithm from assigning the sanmgetar
region to two source columns and also diminishes the rue-fon

the task.

Table 6 graphically represents the matrix of operationséon-

r h w-a-—+* A€+
hAR=ZXXXXXX
eRRXX X X XX
nRRX XX X XX
r=RXXXXXX
y DRX X X XXX

Table 6: Restricting the search for the first longest common
substring (underlined).

the recipes.

3.4.3 Improving the partial translation formula

As in Section 3.3.3, we use each recipe to create a new transla
tion formula, containing both previously selected coluransd the
current candidate column. Algorithm 6 encodes the funcGoe-
ateRecipes() that is repeated called from Algorithm 5.

Data: A candidate colummBy, a candidate translatidh
Result Edit recipesk
for By and all columns iril” do
count distinct relations agcount;
sett = dcountx fraction;
end
for j=1 to ¢ do
Initialize SearchPattern;
foreachregion inT do
if region is knowrthen
Get value of region column;
Extract substring from column;
Add substring to SearchPattern;
else
| SearchPattern =+ "%,
end
end
get valuekeyfrom By, ;
Create setd from T> whereA matches SearchPattern and
containsg-grams ofkey,
foreach candidatein A do
Setc = candidatemasked by SearchPattern;
RecipeR = edit-distancefey;) ;
if R € Rthen
| increase count oR entry by 1;
else
| create new entry ifR for R with score 1;

end
end

Algorithm 6 : Creating edit recipes for a new candidate column.

Table 7 represents the new candidate translation formuéase!

paring instance “henry” to “rhwarner” from Table 1, whereeth from combining the previous partial formula and the new peci
target has been masked to remove regions already coverdetby t All of the candidate translation formulas are collated adiw

partial translation formula. In this case, two possibleipes are

to a complete match between the source columns, the sequence

present and both substrings have the same length; thus wet sel of their individual regions and the character positionshimitthe

the left-most, or earliest occurring, recipe as indicatedding to

the refined translation formubéfirst[1-1]last[1-n].

Similarly, recipes are generated for all retrieved insesnthat
are matched to the values sampled from the target table. frese
recipes, we next create new translation formulas that coenoth
the information from the old formula and the information st

source columns.

3.4.4 Scoring and selecting an improved translation
formula

Because we are ranking multiple translation formulas froah-m
tiple candidate columns concurrently, we need to be abledces

337

source target Translation
Bs B A Previous | Candidate
kerry | robert || rhkerry | %Bs[1-n] | B1[1]%DB3[1-n]
robert || klkerry | %Bs[1-n] | %Bs[1-n]
robert || gkerry | %Bs[1-n] | %Bs[1-n]
kyle | otto opkyle | %B3[1-n] | B1[1]%B3[1-n]
Table 7: Improved translation formulas based on partial

recipes.

translations in a normalised manner. To do this, we use the-fu
tion ScoreTrans(;) to score the individual translations based on
both the number of their occurrence and the source colusphig
use.

We found experimentally that with large-(500,000 rows) and
wide columns £ 80 characters) of random characters, the resulting
serendipitous matches would increase noise to unaccepeells.

It is doubtful that a noise column of this type would arise irea
alistic database integration problem, however we providesia
worst-case scenario for study.

Frequencyr;)
max (1, AvgLengtliB;) — o)

ScoreTranfl'r;) = (5)

Formula (5) scores candidate translations based on a pergo
normalised occurrence score, but also penalises the sooresf
ing wide columns. The intuition behind the solution is towskae
selection of columns towards those that provide a conciseen
and thus avoid serendipitous matches on large text fieldstdrim
Frequencyis the occurrence count of the candidate translatipn
normalised to the total number of translations createdspatent
column B;. The denominatornaz(1, AvgLengtliB;) — o) is a
penalty term that was added to deal with especially noisyrook
and that provides a gradual back-off for long strings. Mqrecs-
ically, the o parameter prevents columns with less than a certain
average width from begin penalised, while thex term prevents
the denominator from being negative and ensures a mathemati
cally well-behaved function. Experimentally, we deteredrthat
columns with an average length of over 4 characters:(2) should
be moderated by this penalty term. We also make an explicit de
sion not to implement backtracking in our method: this waardly
be worthwhile if the overall database integration systers eapa-
ble of providing feedback on translation formulas, and wé&enzo
such assumption.

4. EXPERIMENTAL RESULTS

We implemented this method using the PostgreSQL [13] DBMS
and a Java application front-end. We used bi-grams §i.e. 2) for
scoring purposes and simple bi-gram matching for the retrief
similar instances. This choice fagris easy to implement although
precision is adversely affected (i..e., many spurious hegtcare
found initially). As will be seen from the results, the effigeness
for finding matches is very good, in spite of the potentiaklgs
precision.

Recipe generation was implemented using a modified Hirgghbe
[8] algorithm and an edit distance method as described bygdon
et al [14]. Sensitivity experiments showed that the speciit val-
ues for copy vs. deletion vs. replacement were not critindlthat
a value of 1 was reasonable for all edit costs.

We experimented with several different datasets. Unlessdno
otherwise, 10% samples were used for all experiments, aed a s
ries of noise columns were always added to the source fBble

338

so that finding which source columns contribute to the tangget
not trivialised. More specifically, the extraneous colurmwuded
columns filled with random numerical data, random alpharmigne
data, street addresses, and a full length RFC-2822 timpstahe
objective was to add enough data to ensure that the coluran-sel
tion made by the method was not serendipitous, and that ¢oe al
rithm would work well in the presence of noise.

In the following experiments, small examples were resolived
less than 5 minutes, and runtimes for the larger problems wer
about 15 minutes, including instrumentation overhead.

4.1 UserlD dataset

The first experiment was to match a listing of users’ first, - mid
dle, and last names (with additional noise columns) agaimst
login names extracted from our university’s undergraduze-
puting systems (Table 1). The tables have about 6,000 rovesin
dom order, and several different translation formulas ae to
exist to create login names from the actual names. Our safgoh
rithm returned the translation formulagin = first[1-1] + last[1-
n], which is, in fact, the most commonly used translation folan

accounting for about half of the tables’ rows.

As part of our implementation, we added a facility to crea®.S
statements that would perform the translation. In the aleaperi-
ment, the corresponding SQL query was:

select substring(first from 1 for 1) || last as login from table where first is
not null and char_length(substring(first_.name from 1 for 1))=1 and last.name is
not null and char_length(last.name)>= 1

If we remove from both tables the records translated by this
formula, and reapply the algorithm on the remaining rowg th
method returns the next dominant translatiogin = first[1-1] +
middle[1-1] + last[1-n], which covers about 1,200 rows. Inspec-
tion of the tables revealed that the remainder of the uséoiisved
no other dominant pattern.

The results are not surprising in that the tables in thissgatare
balanced, e.g., for each row in the source tahléhere exists a row
in the target tablds. We attempted a second experiment with this
dataset that added several rows of instances to each of tineeso
columns. We selected these instances from another undrsietref
first, middle and last names and inserted them incremerdhdlyg
with new noise column values into the source table.

We found that with this dataset, the method would tolerate an
additional 3,000 rows of source data (i.e., approximately-third
of the records were unmatched) before it made a wrong column
selection. As it turned out, the algorithm correctly sedeldthe last
name as being a part of the userid, but then incorrectly teelex
noise column for improving the translation.

4.2 Time dataset

Data similar to that in Table 8 was created using 10,000 ran-
domly generated time-stamps, which were then merged inito-a s
gle string. For this experiment, the correct translatiamfrsource
to target column involved no substrings, only simple coewcat

tions.]))
The same noise columns were used as for the first experiment.

The returned SQL translation query was:

select substring(hour from 1 for 2) || substring(minutes from 1 for 2) ||
substring (secondsfrom 1 for 2) as fulltime from table where hour is not null
and char_length (substring(hour from 1 for 2)) = 2 and minutes is not null and
char_length(substring(minutes from 1 for 2)) = 2 and seconds isnot null and
char_length(substring(seconds from 1 for 2)) = 2

which corresponds to the correct translation forntintee = hour[1-
2] + minutes[1-2] + seconds[1-2]. This experiment shows that

even when sources columns are short, and the values in thlosers
come from highly overlapping domains, correct table matatan

Source Target

secs.| mins. | hrs. time
55 59 02 345407
43 23 05 330011
12 55 07 135741
33 00 11 004107
34 54 07 192609

Table 8: Time-stamps in single and multiple columns.

be found because of the properties of record linkage incatpd
into the algorithm.

4.3 Name concatenations dataset
For the next experiment, we used a list of names to create data

4.5 Cross dataset translation

A question that remained was how well the method would work
when very little overlap exists between the source and taege
bles. To answer this question we designed an experimentewher
we attempted to link theitation column of the Citeseer data to the
DBLP citation index'.

This is a very hard problem, because although we expect that
there should be overlapping citations, the citations offtave mis-
spellings, incomplete author lists, and incompatible atbiations.

We pre-processed the DBLP data in a manner similar to the Cite
seer data and obtained a 17-column table with 233,000 rows.

While the maximum number of matches between both tables can
be no more than 233,000, closer examination showed that éxer
ist only 714 records that match based on an exact match of the
year, title, andauthorl data columns. Hence, when attempting to
find a translation formula for theitation column from the Cite-

such as that shown in Table 9, where the first and last names areS€€r dataset to the DBLP dataset, not only must we sort thrbdg

merged into a single column. For this experiment, the table c
tains about 700,000 rows with about 70,000 unique valuesthn b
source columns. The same noise columns were again used.

Source Target
first last full
robert | kerry robertkerry
kyle norman kylenorman
norma| wiseman normawiseman
amy case amycase
josh alder joshalder
john galt johngalt

Table 9: Merged names dataset.

The target columifull was generated using the translatfafi =
first{1-n] + last[1-n], and as expected, the SQL translation query
returned by the algorithm was:

select first||last as full from table where first is not null and char_length
(first)>=1 and last_.name is not null and char_length(last.name)>=1

4.4 Citeseer dataset

We next used the Citesegritation indexes to provide an addi-
tional real-world translation problem. We pre-process2d,800
records into a table containing columns for the year of matbion,
the title, and a series of 15 columns, each of which contdias t
name of a single author (up to 15). We then created a new table
tation from the concatenation of the year of publication, titled an
first author for all 526,000 records (and stored in a randashlyf-
fled order). This provides a test to study how our method perso
on a dataset that has many tuples and many similar columok (ea
representing one author).

To further examine the robustness of our algorithm, we claose
sampling size of only 1% of the distinct values from each goiu
Even with such a small sample size, we were able to extract the
correct transformation formulecitation = year[1-n] + title[1-n]

+ authorl[1-n]. The prior examples were all resolved in less than
5 minutes elapsed time on a Sunfire v880 750MHz machine. In
spite of the size of the problem (526,000 rows in each takdelan
columns in the source table, 15 of which have values fromglesin
domain), the run time for this example was under 20 minutes in
that same environment. More detailed analysis is providest a
examining the results of our final experiment.

3http: //citeseer.ist.psu.edu/oai.htmn

339

columns to find the correct ones, but we must also deal withnya ve
low number of overlapping records.

Surprisingly, our program did not return the expected tegitn
formula, but instead returned the formylear [1-n] + title[1-n]

+ author2[1-n]. Subsequent examination of the tables revealed
that there exist 378 records within the Citeseer datastatkalso
present within the DBLP dataset, but with the first and se@rd
thors reversed! Removing the matched records and re-rgrihen
program then produced the expected formula.

While the first translation found actually occurs less oftiesn
the expected translation, both have a very low frequencycef o
currence within the datasets: much less than 0.5% of thecsour
records are involved. Which of the two correct solutiongisimed
first is determined by which tuples happen to be sampled flam t
database.

What is interesting in this experiment is that the first ttatisn
formula found by our method matches a block of articles withi
Citeseer dataset with inverted first and second authordi0Adth
unintended when we designed this experiment, we have shwtn t
our method does in fact identify previously unknown relasibips
between datasets! This result supports our motivationttiads for
data conversion must operate in environments where themsshe
are only partially understood.

5. ALGORITHMIC ANALYSIS

The computational complexity of the algorithm describethis
section is dominated by the number of select operationsntiigt
be performed to match source tuples in tableto target tuples in
tableTs. Lets; be the number of tuples ifi, ands. be the number
of tuples inT». Letn be the number of potential source columns
from 71, and letw be the maximum number of characters in any
value in the target column ith>. The worst case time is therefore
O(w * n * s1 * s2). The proof of this claim follows from the ob-
servation that the algorithm is dominated by the step desdrin
Section 3.4, where on each iteration, for each source cqleam-
ples are selected, and for each sample, the target colurearished
for matches. Since each iteration determines an additiagidn
of the target that is included in the formula, at masterations are
needed. In practice, however, regions are larger than caracter
each, only a small fraction of; is required, and a smaller fraction
of the s, target values are matched with each new iteration.

This can be clearly observed in Figure 3, which plots the damu
tive time spent up to the end of each step of the method foouwari

“http://dbl p.uni-trier.de/xm/

14 | I | | T
12 - Step 1 —o— el
10 - Stepz..+.. X
g L 1st Iteration—&—

Mins. 2nd iteration- « x- -+ -’
6 WX -
4 - e _
2 [pig= |
0 I|Aqg};.7k+_$_'f-$

10 20 30 40 50 60 70 80

Percentage of Citeseer data processed

90

Figure 3: Wall clock time versus Citeseer dataset size.

subsets of the Citeseer citation exampl&Vhat is evident from
inspecting the plot is the dis-proportionately high cosseérch-
ing for the second column during the first iteration of ourreka
for that step, the constraints on retrieving instanceseweaid we
must search all of the columns.

This also shows the performance bottleneck of the methaal: th
computational balance between retrieving similar instar{database
1/0) and the quadratic time for the longest common substitdng
each string pair (clientin-memory). The trade-off shoalddur ef-
ficient instance retrieval with good SQL engines when thentlhas
limited capacity. This motivates the algorithms behindt®es 3.2
and 3.3 where the column is selected before recipes areajeder
Notice that in Figure 3, both these operations are lessyctish
the first iteration.

The overall method has shown itself to be relatively indéresi
to the size of the sample, much in the manner of Figures 1 and 2.
Hence, it is acceptable to lower the sample size to very lduega
to deal with very large datasets. As demonstrated by thedipsr-
iment, in practice, only a few dozen ‘good’ samples are negliior
the method to function. Datasets with several million rowsre
tually require and justify the computational overhead fightpre-
cision instance retrieval methods, described in Secti8ril3.The
overall method in itself remain unchanged for very largeadets.
Choosing sample sizes is problematic only when the overéap b
tween datasets is unknown. We must ensure that some of tlse row
that are sampled have a reasonable expectation of beingnpres
within the other table. In future work, we wish to look at pibés
solutions to estimate the overlap and automate the safectithe
sampling parameter.

6. SEARCHING FOR SEPARATORS AND
MANY-TO-MANY TRANSLATIONS

In this section we review two additions to this method thhval
it to deal with non-alphanumeric data separators (e.ghypbens
in a date string “2-15-2005") and with many-to-many tratiskas.

6.1 Non-alphanumeric separators in columns

The method as described so far deals well with translatioas t
are composed exclusively from the data contained withistiece
columns. However for many reasons, including estheti¢phcal,
and error-checking concerns, separators are often prestrin
the data. Examples include dates “2/15/2005", times “1B4%5
manufacturing part numbers “FRU-13423-2005", field defars
“field a, field b, field ¢” and phone numbers “+1-321-555-1212"

SRecall that the experiment was run on a Sunfire v880 750MHzimac
with 1% sampling.

340

A simple solution to this problem could be to assume that the
separator will be found in the other database. However, andas-
sumption is inappropriate for serious database integratimrk. To
the best of our knowledge, no previous work exists on thelprob
of finding separators within database elements.

We make the assumption that a separator character is not al-
phanumeric, that it occurs in all target column instancethouit
exception, and that it is not to be copied over from any of thece
columns. We attack this by querying the target column forseon
tent patterns of separator uses and then forcing the useeagaa s
rator template on the identification of similar pairs and enipe
generation.

Data: A target columnA4
Result SearchKey: A representation of the separator patte
SearchKey = null;

for j = 1to length(4) do
if charAt(j) is a separator character && all charA}(@are
the samehen
| SearchKey = SearchKey + charf{
end
else
| SearchKey = SearchKey + '%’;
end

end
Algorithm 7 : A simple algorithm for finding separators.

Algorithm 7 represents a simple algorithm for creating aasep
rator template representing the placement and values cfepa-
rators in a database column. For example, given a column-of in
stances of timestamps of the form “11:45:34", the algorithould
return a separator search pattern of the form “%:%:%.” Wa the
use this pattern in two ways. First, whenever we search foilai
instances within the target column, we make sure that searots
(individual g-grams) do not contain separators. Thus, we would
not use a search key such as “:4” to search a timestamp column,
as this would retrieve too many instances. Secondly, whédibg
recipes, we use the characters deemed to be separatorgiedit-
ing and translation generation, such as shown in Table 1i8.€gh
sentially forces the method to generate aligned recipeseitrans-
lations will automatically match the column pattern.

04 : 12 :53
o0o=111T1T1T11
4Di=1111T1TI
:DD;=11=11
1DDD;=1111
2DDDD:=111
DD =DDi=11
TDDDDDD,RR
3DDDDDDR:=

Table 10: The separator “:” aligns the strings.

This approach, however, is too simplistic: it cannot deahwi
both fixed and variable length target columns. An exampléef t
need for a more general method is illustrated by the data in Ta
ble 11. In one database, the names are inserted into two nslum
while in the second database the names are in a single cohuhn,
with a comma and space separating them.

Our solution uses a histogram of all non-alphanumeric @hara
ters within the target column against all potential chamagiosi-

Source Target
first last full
robert | kerry kerry, robert
kyle norman norman kyle
norma| wiseman wiseman norma
amy case case amy
josh alder alder, josh
john galt galt, john

Table 11: Requiring separators for variable-length regiors.

tions. However, in order to be able to handle strings of \deia
length, we use relative positions allowing for as many pass as
there are characters in the average length of the instaritten the
target column. For example, if the average instance lengtie &,
we would compute 5 relative positions, and if the currentanse
length were 10, we would retrieve tH& character when generat-
ing a histogram for relative position 2. (Note that this slifigs to
absolute positions when a column is of fixed length.) For exam
ple, the histogram in Figure 4 plots the occurrence fregesnaf
potential separators in tHall column for 700,000 instances simi-
lar to those shown in Table 11. Since the rounded averag¢hleng
for the column is 15 characters, we plot the histogram faaties
positions 1 through 15.

I I I
220000 -gomma—— 7
200000 .
Count 180000 — —
160000 |- : -
140000} : -
| | | ’7 L1 | ‘1 |
0 2 4 6 8 10 12 14 16

Relative character position

Figure 4: Histogram of possible separators and their locatins
within column full of Table 11.

Data: A target columnA
Result SearchKey: A representation of the separator patte
SearchKey ='%’;
AvgLength = Avg(Lengthd));
Total = Countinstances);
for 5 = 1 to AvgLengthdo
foreach Separator characterdo

foreach Instancen of A do

if charAt(j/AvgLength*Length))==s then
| CSJ-++;
end

end
end
end
Thresholé=Max(Cs;);
TestSearchKeySearchKey;
repeat
SearchKey-TestSearchKey;
for j = 1 to AvgLengthdo
foreach Separator characterdo

if Cs; >Thresholdthen

| TestSearchKey= TestSearchKey #;
else
| TestSearchKey: TestSearchKey + '%’;

end

end

end
Threshold-—;
until (Countinstances|) like TestSearchKeyx Total;

Algorithm 8 : Seperator indentification algorithm.

clude. Using this algorithm, we are able to recover the sgpar
recipe “%, %" for the data within théull column of Table 11.
With the knowledge of this separator recipe and using theimul
column substring matching method described above, we eeedv

the translation formula used to create the colutast[1-n] + “,
+ first[1-n].

6.2 Dealing with many-to-many translations

Consider Table 12, where multiple target columns exist.olihgt
be desirable for us to be able to identify both of the transhatin
use in this table while leveraging the fact that there aretipial

From the histogram, we can see that there are many comma and-oncurrent translations in effect.

space characters in the middle of the instances. We now nmeed a
algorithmic way to select which of these candidate sepesatod
locations are actually valid for all column instances.

A candidate separator at some location is invalid if theratis
least one instance that does not include it in that positiéor a
fixed column width, it would be sufficient to set a thresholdHhe
number of instances within the column and simply select Hee-c
acters and positions that score above it. However, for blriaidth
columns, we must verify the separator template, as it isiplestor
artifacts of the data to generate an incorrect separatorafiorWe
therefore start by examining the most common separatatiquos
pairs, and testing whether a template specifying thosea&pa in
those positions matches all the instances. If so, we augthent
template to include the next most common separator-latgihirs
and continue until a candidate template no longer matches-al
stances.

Algorithm 8 encodes the building of the histograms folloviogd
the search for the appropriate separator template by regigabw-
ering a threshold controlling which separator-locatioirg#o in-

341

Source Target

birth day first | middle last login DOB
12-21-1923| robert h kerry nawisema| 5/6/73
11-13-1956| kyle s norman jimalton 8/11/48

5-6-1973 | norma a wisema rhkerry | 12/21/23

1-3-1981 amy | case alcase 1/3/81
5-29-1989 | josh a alderman|| ksokmoan| 2/20/73
8-11-1948 | john | malton ksnorman | 11/13/56

Table 12: A version of Table 1 with multiple targets.

The mechanism for choosing which target column to process fir
is beyond the scope of this work; we expect it to be chosen by
another part of the database integration system. Our boititsn
to this problem assumes that one of the translations haadgire
been identified and resolved, and we wish to use this knowlétg
finding a subsequent translation.

In Section 3.3.1 we selected target instances based orstheir
ilarity to the sampled value, and in Section 3.4.1 we regti¢he

retrieval further to instances which also fit the partiahsiation 2-9, 2004.
formula. In the many-to-many case, we already have a tramsla [2] S. Chaudhuri, K. Ganjam, V. Ganti, and R. M. ani. Robust

that relates rows of the source table to the target tablereftre we and efficient fuzzy match for online data cleaninglnti.
can use that translation to restrict the selection of sinmilstances Conf. ACM SIGMODpages 313-324, 2003.
within rows to be those that are related by the known traiasiat [3] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
For example, let us assume that we have a translation for the P. Domingos. imap: discovering complex semantic matches
columnlogin that reads afirst[1-1] 4+ middle[1-1] + last[1-n] in between database schemasnith Conf. ACM SIGMOD
Table 12. Let us also assume that we are trying to find a trizmisla pages 383-394, 2004.
for the target colummMOB and that we are retrieving similar val- [4] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
ues to thebirth column instance ‘5-6-1973." If we trace the source schemas of disparate data sources: a machine-learning
column relation to the known translation for colunfirst, middle approach. Irintl. Conf. ACM SIGMODpage 509, 2001.

andlast, we constrain possible target instances. For the example, [5] D. W. Embley, L. Xu, and Y. Ding. Automatic direct and
starting withbirth day = ‘5-6-1973," we find corresponding fields indirect schema mapping: experiences and lessons learned.
first = ‘norma,” middle = ‘a,” and last = ‘wisema”; using the SIGMOD Reg.33(4):14-19, 2004.

know translation formula, we obtain a value of ‘nawisema”tfr- '
get columnogin; from which we are constrained to using ‘5/6/73"
for DOB. This is the direct algorithmic equivalent of having infor-
mation about which tuples &} match which tuples df:. By us-
ing this prior knowledge about the translations that liné thbles, [7]
we are able here to dramatically reduce the number of inssarc

be evaluated and thus speed up the processing.

[6] G. H. L. Fletcher. The data mapping problem: Algorithmic
and logical characterizations. Workshop on Databases For
Next Generation Researchers at ICOHD05.
L. Gravano, P. Ipeirotis, N. Koudas, and D. SrivastawextT
joins in an rdbms for web data integration.liml. WWW
Conferencepages 90-101, 2003.
[8] D. S. Hirschberg. A linear space algorithm for computing
maximal common subsequenc€mm. ACM

7. CONCLUSION 18(6):341-343, 1975.

Whereas previous approaches required specialized dopein s [9] J. W. Hunt and T. G. Szymanski. A fast algorithm for

cific matchers to form the matches and translations, we ptese computing longest common subsequen&mm. ACM
here a generalized algorithm for most string-based matches 20(5):350-353, 1977.

method attempts to find a translation formula that composagat [10] N. Koudas, A. Marathe, and D. Srivastava. Flexiblensri
column from the concatenation of an arbitrary number of mwiu matching z;gainst Iargeldatabases in practic¥/LIBB, pages
substrings. We do this without user training or explicikbige be- 1078-1086, 2004. '

tween table rows, and experimental results validate theoagh
for realistic data.

Because the method matches complex column translations and
because it is computationally expensive, it must functidgthiw a
framework of a schema integration system. We make an ekplici
assumption that a certain overlap exists between botheatatarsd = ' ;
that the framework is able to provide us with both a poteniajet [13] B. Momjian. PostgreSQL. introduction and concepts
column and a set of candidate columns. Addison Wesley, 2001. N o

Although we found that in our examples, bi-grams and 10% sam- [14] A. E. Monge and C. Elkan. An efficient domain-indepertden

[11] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and revers&saviet Physics - Doklady
10(8):707-710, Feb. 1966.

[12] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic sahem
matching with cupid. Irintl. Conf. VLDB page 49, 2001.

ple sizes work well in practice, we are currently working an a algorithm for detecting approximately duplicate database
tomating the selection of and of sampling parameters that are records. IrDMKD, pages 0-, 1997.
used by the method. We also wish to develop a method to com- [15] M. S. Paterson and V. Dancik. Longest common
bine several applicable translation formulas into a sirigi@sla- subsequences. Math. Foundations of Comp. Scpages
tion formula whenever this is appropriate. For example,atild 127-142, 1994.
be desirable to make use of optional values within trarstatiles [16] E. Rahm and P. Bernstein. On matching schemas
to achieve greater coverage (e.tpgin = first[1-1] + middle[1- automatically. Technical Report MSR-TR-2001-17,
1] + last[1-n] would also encompass the rulegin = first[1-1] Microsoft Research, Feb. 2001.
+ last[1-n]). We have not done so yet because of the algorithmic [17] E. Rahm and P. A. Bernstein. A survey of approaches to
difficulty in searching for a negative result, but we plan togue automatic schema matchinghe VLDB Journal
rule-merging strategies [22] in our future work to achievis.t We 10(4):334-350, 2001.
showed how to identify separator data that is not presenhén t [18] G. Salton, A. Wong, and C. S. Yang. A Vector Space Model
source columns, but we would like to expand this to the idieati for Automatic IndexingComm. ACM18(11):613, 1975.
tion of other forms of missing information within the soutedle. [19] L. Seligman, A. Rosenthal, P. Lehner, and A. Smith. Data
integration: Where does the time go?, Nov. 2005.

Acknowledgements [20] E. Ukkonen. Approximate string-matching with g-grasms
We gratefully acknowledge funding support from the Ontaia- maximal matchesTheor. Comp. Sgi92(1):191-211, 1992.
istry of Training, Colleges, and Universities; the Natugaiences ~ [21] L. L. Yan, R.J. Miller, L. M. Haas, and R. Fagin. Data#n
and Engineering Research Council of Canada; and the Uitivers understanding and refinement of schema mappingsitilin
of Waterloo. Conf. ACM SIGMODpages 485-496, 2001.

[22] M. D. Young-Lai and F. Tompa. Stochastic grammatical
8. REFERENCES inference of text database structusachine Learning

[1] P. Carreira and H. Galhardas. Execution of data mappers. 40:111-137, 2000.

Intl. Workshop on Information Quality in Info. Sypages

342

