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ABSTRACT

This paper considers the problem of scalably processingge la
number of continuous queries. We propose a flexible framlewor
with novel data structures and algorithms for group-prsicesand
indexing continuous queries by exploiting potential ospsd in query
predicates. Our approach partitions the collection of iooiius
queries into groups based on the clustering patterns of ukeyq
ranges, and then applies specialized processing strategtbose
heavily-clustered groups (drotspoty. To maintain the partition
dynamically, we present efficient algorithms that maintimearly
optimal partition in nearly amortized logarithmic time. \Wbow
how to use the hotspots to scalably process large numbeositihe
uous select-join and band-join queries, which are much rcloaé
lenging than simple range selection queries. Experimesrisot-
strate that this approach can improve the processing thpuidy
orders of magnitude. As another application of hotspotsshav
how to use them to build a high-quality histogram for intésvia
linear time.

1. INTRODUCTION

Continuous query processing has attracted much interakein
database community recently because of a wide range ofitnaali
and emerging applications, e.g., trigger and productide puo-
cessing [23, 13], data monitoring [5], stream processi&j, [2nd
publish/subscribe systems [18, 7, 21, 10]. In contrastaditional
query systems, where each query runs once against a snapshot
the database, continuous query systems support standergesju
that continuously generate new results (or changes tots¢ag
new data continues to arrive in a stream. In this paper wegsep
a novel technique for indexing and processing continuoesies,
with the goal of addressing the increasing challenge ol
in continuous query processing systems.
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Challenge of scalability. Formally, acontinuous queryefined
by a relational expressio@ issued over a database stdle ini-
tially returnsQ(Dy); then, for each subsequent database update
that changes the database state flbm; to D;, the query needs
to return the changes betwe€{D;) andQ(D;_1), if any. How
can a continuous query processing system handle thousaedsro
millions of such continuous queries in a scalable way? Fon @&
coming data tuple, the system needs to identify the subsetrin-
uous queries whose results are affected by the tuple, andutem
changes to these results. If there are many continuouseguexi
brute-force approach that processes each of them in turbeviih-
efficient and unable to meet the response-time requirenienost
applications.

A powerful observation made by recent work on scalable oenti
uous query processing is the interchangeable roles ofegiard
data. Continuous queries can be treated as data, while eaagh d
tuple can be treated as a query requesting the subset ohigons
queries affected by the tuple. Thus, it is natural to apptieking
and processing techniques traditionally intended for dateon-
tinuous queries. For example, many index structures hagea be
applied to continuous queries to support efficient iderdtfon of
affected queries without scanning through the whole sgt,(E.3]
and others). In particular, consider range-selectionigsef the
form o4, <a<s, R, WhereA is an attribute of relatiol® andas, b;
are query parameters. These queries can be indexed as &set-of
vals{[as, b;]} using, for example, interval tree [8] or interval skip
list [12]. Given an insertionr into R, the set of affected queries
are exactly those whose intervals atabbedby r. A (i.e., contain
r.A). With an appropriate index, stabbing querywhich returns
the subset of all intervals stabbed by a given point, can bevared
in logarithmic time.

However, for complex continuous queries such as continuous
joins, the problem of scalable processing becomes a reliéoba,
because these queries act over two or more data streamadnste
of a single data stream. As far as we know, most existing work
on indexing relational continuous queries has only focusesim-
ple selection conditions or conjunction of selection ctinds, and
there has been little work on how to scalably index complex co
tinuous queries such as joins, which are not only importatéir
own right but also essential in building more complex querie

Opportunity for optimization.  We propose a novel technique
for indexing and processing continuous queries applicahjens.
The main idea is to exploit clustering patterns in the setaf-c
tinuous queries. For example, consider continuous quéersesd
by stock traders for monitoring the market. Suppose theseieg!
include selections that restrict the stocks of intereshasé with
price/earning ratio within given ranges. We expect manyheté
price/earning ratio ranges to overlap significantly (tHougt nec-



essarily to be identical), perhaps with a high-densityteluat low
price/earning ratios because traders tend to be interesttdcks
with good value.

Such clustering patterns often arise in the continuousyosetr
ting. Following this observation, suppose that we clusher et
of continuous queries based on the similarity of their quanges.

be several hotspots fdr depending on the distribution of the query
ranges.

As continuous queries are inserted or deleted, the hotspays
also evolve over time. For example, people tend to pay moee-at
tion to high temperatures in summer, but more to low tempeeat
when winter comes. Therefore we need an efficient mechamism t

Then, like in the above stock trader example, we may be able to keep track of the evolution of the hotspots. The main bodyisf t

identify a number of large clusters (botspot$ containing the ma-
jority of all continuous queries. Let us call the querieshiege clus-
tershotspot queriesand the remaining queriesattered queries
Our idea is then to index hotspot queries and scatteredegusep-
arately. The key is that, because hotspot queries in eacheclu
share similarity in their query ranges, they can be inderegécial
ways that support much faster processing. For scatteraéeguen
the other hand, we may a traditional processing method sHass
efficient. The hope is that scatter queries will be the migpso
overall we gain a significant speedup in processing all oootiis
queries.

Note that our approach naturally leads to faster procedsing
more clustered query ranges. In the unlikely worst case vileen
most query ranges are scattered, it gracefully degradesaiiria-
ditional processing method, which is the best we can do lsecau
there is no opportunity for clustered processing.

Contributions.
two main technical issues: (1) how to identify hotspot gegidnd
their corresponding clusters, and keep track of theseerkisthen
continuous queries are inserted into or deleted from thiesyq?2)
how similarity of queries inside a hotspot can be exploitethtex
and process them in an efficient manner. The firstissue iasisd

in Section 2. The second issue depends on specific applisaiitd

is illustrated by three representative examples in Se&ion

In particular, the main contributions of this paper are diefcs:

e In Section 2, we introduce the notions sthbbing partition
andstabbing set indefS S| for short) as a tool to discover and
exploit the clustering patterns of continuous queries. Wive f
ther introduce the notion dfotspotdo identify large clusters
from the partition, and present efficient algorithms to main
tain the hotspots when continuous queries are constantly in
serted into and deleted from the system.

e In Section 3, we show how similarity in the query ranges
within each hotspot can be exploited for more efficient pro-
cessing. We give three representative examples:

(1) indexing continuous band joins [9] whose join condi-
tions check whether the difference between two join at-
tribute values falls within some range;

(2) indexing continuous equality joins with different Idéca
range selections; and

(3) building a high-quality histogram for a set of intervals
in linear time for selectivity estimation.

e In Section 4, we demonstrate through experiments that our

new algorithms and processing framework are very effec-
tive and deliver significantly better performance than itrad

tional approaches for processing a large number of continu-

ous queries.

2. THE HOTSPOT-TRACKING SCHEME

Consider a sel of continuous queries whose query ranges are
defined over a numerical attributé. Intuitively, if many query
ranges ofl contain some value € A, thenx is likely to be a
“hotspot” for this set of continuous queriésn general there could

This is the one-dimensional case. For multi-dimensionargu
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To materialize the idea above, we need to address

section is dedicated to this task.

2.1 Stabbing Partition and Stabbing Set Index

We begin by introducing some tools for discovering and eiplo
ing the clustering patterns of a set of intervals.

DEFINITION 1. LetT be a set of intervals. Atabbing parti-
tion of I is a partition of the intervals of into disjoint groups
I, I, ..., I, such that within each group;, a common poinp;
stabs all intervals in this group (in other words, the comnen
tersection of all intervals in this group is nonempty). Wd ca
the stabbing numbe(or sizg of this stabbing partition, ang; the
stabbing pointof groupI;. The setP = {p1,--- ,p-} is called a
stabbing sebf I.

p1 p3

I3

I \ |

I

Figure 1. A stabbing partition of 10 intervals. I; and I are
0.4-hotspots.

An example of the stabbing partition is shown in Figure 1slt i
not hard to see that an optimal stabbing partition of a settefvals
that results in the fewest number of groups (irés minimized) can
be computed in a greedy manner, as follows. We scan the aiserv
in increasing order of their left endpoints, while maintaga list
of intervals we have seen. As soon as we encounter an inteatal
does not overlap with the common intersection of the interira
our list, we output all intervals in our list as a group, andate
any point in their common intersection as the stabbing pfuint
this group. The process then continues with the list commtgianly
the newly encountered interval. The cost of this procedsicmi-
nated by sorting the intervals by their left endpoints. Werto the
resulting stabbing partition df as itscanonical stabbing partition
Note that the canonical stabbing partition has the smatlessi-
ble stabbing number, which we shall denoterfy). We state the
above fact as a lemma for future use.

LEMMA 1. Given a sefl of n intervals, the canonical stabbing
partition of I, whose size is(I), can be computed by the greedy
algorithm inO(n logn) time.

We next briefly introduce the general frameworkstdbbing set
index(SSl for short), which is able to exploit the clustering pats
of continuous queries for more efficient processing. It \giler be
instantiated for specific uses in Section 3. Given a set dilcoous
queries, SSI works by first deriving a sebf intervals from these
queries, one interval for each query, and computing a stalyimr-
tition J of I. SSI stores the stabbing points, . .., p- in sorted
order in a search tree. Furthermore, for each grbugE J, SSI

ranges, one can project them to each dimension and talk about
hotspots in each dimension.
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Figure 2: Hotspot coverage in Zipf distribution.

maintains a separate data structure on the set of contimumries
corresponding to the intervals @f, which can be as simple as a
sorted list, or as complex as an R-tree. Thus SSI is complatel
nostic about the underlying data structure used, whichlesais to
apply SSI to different types of continuous queries. Inveity, the
fact that intervals within the same group are stabbed by acmm
point enables us to process the set of queries correspotudingse
intervals more efficiently by “sharing” work among them.

Note that, as mentioned in the introduction, we actually ap-
ply SSI to the subset of large clusters (i.e., hotspots)ersthbbing
partition instead of the entire set of clusters. The reasothat
scattered queries do not benefit from the specialized tquksi
designed to exploit clustering; in fact, they incur extraiead.
Therefore, we process scattered queries using traditdgalithms.

2.2 Tracking Hotspots

Clusters in the SSI may be unbalanced, as illustrated byothe f
lowing simple example. Suppose that user interests foll&ipa
fian distribution, widely recognized to model popularityhkings
such as website popularity or city populations. In paracuif we
regard each stabbing group as a group of users interestezbin-a
mon hotspot, Zipf's law states that the number of querieiwia
stabbing group is roughly inversely proportional to itskémpop-
ularity. That is, the numbei;, of queries in thé:-th largest group
is proportional tok~®, where/ is a positive constant close to 1.
Suppose there are a total numbebs000 groups in a stabbing par-
tition. Figure 2 shows the percentage of queries coverechby t
top-k largest stabbing groups out of 4000 stabbing groups if the
group sizes are governed by a Zipfian distribution with paat@m
B € [1.0,1.2]. From this figure we can see that t6p0 largest
stabbing groupsl(% of all groups) cover abotit0% of all queries
wheng = 1, and the coverage increases with a larger

Motivated by the above example, we next introduce the notion
of a-hotspots

DEFINITION 2. Leta > 0 be a fixed parameter. Suppdbke-
{I,---,I;} is a stabbing partition of. A group/; € J is called
an a-hotspotif |I;| > «a|I|. An interval of I is called ahotspot
interval (with respect td) if it falls into an a-hotspot, and is called
ascattered intervabtherwise (see Figure 1).

In other words, if we think of the intervals ihas query ranges
of the continuous queries, then anhotspot/; contains at least
« fraction of all continuous queries. Note that the numbenof
hotspots is at most/« by definition.

It is quite easy to identify all the hotspots once a stabbiagip
tion J of I is given. We next turn our attention to the problem of
tracking hotspots as intervals Irare being inserted or deleted over
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time. When designing such a hotspot-tracking scheme, oadsne
to keep the following two issues in mind:

(1) Note that the definition ofi-hotspots depends on the speci-
fied stabbing partitiod of I. In order to extract meaningful
hotspots fronV, it is important to require that the size bfs
as small as possible, because intuitively small stabbiniiy pa
tions provide more accurate pictures on how the intervals in
I are clustered. Thus, to keep tracksehotspots as intervals
are inserted into or deleted frof one needs to maintain a
stabbing partition of of size close ta-(I).

Let S C I denote the set of all scattered intervals, and let
H = I\ S denote the set of all hotspot intervals. As the
hotspots ofl evolve over time, intervals may move in
(from H) or out of S (into H) accordingly. Since we will be
using different indexing schemes fSrand H, it is desirable
for efficiency reasons to minimize the number of intervals
that move in or out of5' at each update.

@)

We next describe an algorithm for tracking hotspots thatsalare
of both issues. Specifically, let o > 0 be fixed parameters; the
algorithm will maintain a stabbing partitiahof I and a partition
of J into two setsJy andJs = J \ I that satisfy the following
three invariants all the time:

(I11) Jx contains alla-hotspots of], and possibly a fewa/2)-
hotspots, but nothing more. Hendgy; | < 2/a;

(12) The size ofl is at most(1 + )7 (1) + 2/«;
(I3) Let.S denote the set of intervals in the groupsief Then

the amortized number of intervals moving into or out%of
per update i$)(1) (in fact, at most 5).

We need the following lemma, which says that one can maintain
a stabbing partition of of size close tor(7) in amortized loga-
rithmic time per update. Katz et al. [16] first proved thisuledy
presenting an algorithm with the claimed performance bound
Section 2.3 we will describe a slightly better algorithmttisamore
suitable for real-time applications, as well as simple aratiical
variants of the algorithm.

LEMMA 2. Lete > 0 be a fixed parameter. We can maintain a
stabbing partition off of size at mostl + ¢)7(I) at all times. The
amortized cost per insertion and deletiorigs " log | I|).

The hotspot-tracking algorithm works as follows. At anydim
we implicitly maintain a stabbing partitidhof I by maintaining a
partition ofJ into two setsl y andJs = J\ . We useS to denote
the set of intervals falling into the groups &, andH = I\ S
to denote the set of intervals falling into the groups gf Hence,
Js is a stabbing partition of, andJx is a stabbing partition of
H. Initially whenI = 0, we haveJ = 0, Jy = Js = (), and
S = H = (. A schematic view of the algorithm is depicted in
Figure 3.

Insertion. When an intervaly is inserted intd/, we first check if
~ can be added to any group € J, such that the common inter-
section of the intervals in that group remains nonempty afieing
~. This can be done brute-forcely ®(1/«) time by maintaining
the common intersection of each groupli, or in O(log(1/«))
time by using a more complicated data structure (e.g., ardima
priority search tree [20]); we omit the details.

If there indeed exists such a grodp € Jg, we simply addy
into I; and are done. If there is no such group, we addto the
set.S, and then use the algorithm of Lemma 2 to update the stab-
bing partition ofS, i.e.,Js. As a consequence, the sizes of some
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Figure 3: Schematic view of the hotspot-tracking algorithm

groups inJs may become> «|I|. We “promote” all such groups
of Js into Iy (because they becomehotspots). Consequently,
intervals in these groups should be moved oufofWe maintain
the stabbing partitiods of S by deleting these intervals froifi
one by one and using Lemma 2 to update (But in practice, it
might be unnecessary to use Lemma 2 to uptlat@s the intervals
are moved out of' in groups.)

Note that after an insertion, the size bfis increased by one.
Therefore, the sizes of some group§ inmay become< (a/2)|I].
We "demote” all such groups dfy into Js (because they are no
longer («/2)-hotspots). Consequently, intervals in these groups
are moved intaS. We again use Lemma 2 to upddke by in-
serting these intervals int§ one by one. Note that when these
insertions are finished, some groupd inmight again become new
a-hotspots, in which case we “promote” these groups fnioas
done in the previous paragraph.

Deletion. When an intervaly is deleted froml, the situation
is somewhat symmetric to the case of insertion. We first check
whethery is contained in some group 6f;. This can be done in
constant time by maintaining appropriate pointers frorarivels to
groups.

If there indeed exists such a grodipe Jx, we removey from
this group. The removal might malleno longer ar{«/2)-hotspot
(note, however, the other groupsdip remain(«a/2)-hotspots be-
cause their sizes do not change but the sizeddcreases by one.)
In this case, we “demotel; into Js by inserting the intervals af;
into S one by one and updatiriig using Lemma 2. Otherwise, we
know thaty € S. We removey from S and updaté s accordingly
using Lemma 2.

After that, some groups ifis could becomex-hotspots. We
“promote” these groups inthy and remove their intervals froisi
as before.

THEOREM 1. The above algorithm maintains the three invari-
ants (11)—(13) at all times. Furthermore, the amortizedtdos each
update isO(e " log |T]).

PRoOF (I1) Obvious from the algorithm. Initiallf z = (). The
algorithm guarantees that: (i) whenever a groufjdrbecomes an
a-hotspot, it is promoted tdz; and (i) when a group id is no
longer an(a/2)-hotspot, it is demoted tis.

(12) Since we used Lemma 2 to maintdig, we havelJs| < (1 +
e)T(S) < (1+4¢)r(I). By (11), we also havgd | < 2/a. Hence,

Il =Pal+[Ps| < (1 +e)r(I) + 2/a.
(I3) We prove this invariant by an accounting argument. Specifi-
cally, we show how to deposit credits into thetervalsof .S and

the groupsof Iz, for each insertion and deletion iy so that the
following two invariants hold:
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(i) atany time, each interval if has one credit;

(i) when a group of is demoted tdls, it has at leasty|I|
credits.

If these two invariants hold, then we can pay the cost of n@vin
intervals into or out ofS by the credits associated with the relevant
intervals, as follows. When an interval moves outS{because
of a promotion), we simply pay this move-out by the one credit
deposited in that interval. When intervals are moved fteecause
of a demotion of a group; € Iy, note that the number of intervals
in this group,|I;|, is at most(«/2)|I|. Sincel; has accumulated
at leasta|/| credits, we us€a/2)|I| credits to pay for each of
the|I;| move-ins, and deposit the remainifwg/2)|I| credits to the
intervals of I; so that each interval has one credit (because they
now belong taS and thus have to have one credit each by the first
invariant). Overall, since each move-in or move-out candid py
one credit, the total number of intervals moving into and @fu$
over the entire history is bounded by the total number of ditpd
credits.

How is the credit deposited for each updatel th For each in-
sertiony, we always deposita credits to each group iy . Fur-
thermore, ify does not fall into any group dfx (recall that in
this case our algorithm insertsinto S), we deposit another one
credit toy. Since|Jx| < 2/a by (11), an insertion deposits at most
2a- (2/a) + 1 = 5 credits. For each deletion, if v belongs to
a group!; in i, we deposit two credits to the group otherwise
we deposit nothing. Clearly, if there are a total numben afiser-
tions and deletions, the total number of credits deposaed(i).

By the discussion of the previous paragraph, we then knotithlea
amortized number of intervals moving into or out®fs O(1) for
each update.

It remains to show that (i) and (ii) hold for the above credit-
deposit scheme. By the above discussion, we know that (i is a
easy consequence of (ii). So we only have to show (ii).

Let I; € Ju be a group to be demoted. We know tliatwas
promoted tdJ ; at an earlier time. Let, be the size of; andng
be the size of at the time of its promotion. Also let; be the size
of I; andn, be the size of at the time of its demotion. Itis clear
thatzo > ang andz: < («/2)ni. Supposek insertions and’
deletions occur i between the times of promotion and demotion.
Thenniy =no + k — 4.

Because the size df changes fromx, to z1. At leastzo — 1
deletions happened to the grofip(xzo — x1 might be a negative
number, but it does not hurt our argument). Therefore, atlea
2(xo — x1) credits are deposited intl by those deletions. Mean-
while, I; also receiveQak credits from thek insertions. In total,

I; must have accumulated at le@éto — x1) + 2k credits for the
time period from its promotion to its demotion. Observe that

2(xo —x1) + 20k > 2(ano —ani/2) + 2ak
2amo — a(no + k — €) + 2ak
ang + ak + ol

Oc(no + k- f) = Qani.

>

In other words,/; has accumulated at least; credits before its
demotion, as desired.

Finally, the bound on the amortized cost is a corollary of @8d
Lemma 2. Note that the cost for each update is dominated by the
cost for updating/s using Lemma 2. Since the amortized num-
ber of intervals moving into and out &f is O(1) per update, by
Lemma 2, we know that the amortized cost for updating the-stab
bing partitionJs of S'is O(¢ ' log|I|). O



2.3 Dynamic Stabbing Partitions

This section is devoted to an efficient implementation of hear®.
Because it is not a prerequisite for the subsequent dismssif
this paper, this section can be skipped at the reader’satisor

We first observe that if one were to maintain the smallest-stab
bing partition of/ (such as the canonical stabbing partition) as in-
tervals are inserted or deleted, then the stabbing pariitid may
completely change after a small constant number of ingertar
deletions. (A simple example is omitted for brevity.) Thus
resort to a stabbing partition approximatelysmallest size. More
precisely, we want to maintain a partition of size at maste ) (1)
for some parameter > 0, where recall that (1) is the size of the
smallest stabbing partition df. Although the quality of the stab-
bing partition is compromised, the benefit of resorting toapn
proximation is that the cost required for maintaining sucelaxed
partition is much lower than for maintaining the smallest.on

Typically we choose to be a small constant. The valuesofan
be used as a tunable parameter to achieve flexible tradextifgbn
the quality of the stabbing partition and the maintenancs:ca
smallere results in a better stabbing partition, but also increases
the maintenance cost. Next we describe in detail how to miaint
the stabbing partitions.

A simple strategy. We sketch a lazy maintenance strategy that
guarantees the quality of the stabbing partition. It is veagy to
implement and works reasonably well in practice, but mayoper
poorly in the worst case.

Let I be a set of intervals, anct > 0 be a fixed positive pa-
rameter. The lazy strategy works as follows. We begin with th
canonical stabbing partitiohof I of sizery = 7(I) as well as a
corresponding stabbing s€&t When a new interval is inserted
into 7, we simply pick a poinp, € v and letP = P U {p4}; we
also create a singleton grogp} and add it tdJ. When an interval
~ is deleted from7, suppose that belongs to some group € J.
We then removey from I;, and if I, becomes empty after the re-
moval of~, we also removd,; from J and the stabbing point df;
from P. After e7o/(e + 2) number of insertions and deletions, we
trigger areconstruction stagewe use Lemma 1 to reconstruct the
canonical stabbing partition (whose sizerid)) for the currentZ,
which takesO(n log n) time.

LEMMA 3. The above procedure maintains a stabbing parti-
tion of size at mostl + ¢)7 (/) at all times.

PrRoOOF Omitted for brevity. [

The above strategy can be refined in several ways to impreve it
efficiency at runtime. For example, for a newly insertedrivaéy,
if there already exists a poipt in the current stabbing set that stabs
v, and suppose; is the stabbing point for the group, then we
can simply addy into I;, instead of creating a new singleton group
{~} in the stabbing partition. A more careful implementatiomois
maintain the common intersection of each group, insteadsifg
single stabbing point. For each new insertigrwe check whether
there exists a group whose common intersection overlags-yit
and if so, addy to that group.

The condition for triggering a reconstruction stage (ivehen
the total number of insertions and deletions reacheg(e + 2))
can also be relaxed. Létdenote the set of intervals after the last
reconstruction andy, = 7(T). Suppose that: intervals have been
deleted from! so far since the last reconstruction (the total number
of deletions so far could be larger because some intervayshma
inserted and subsequently deleted), then we invoke a reaotien
stage only if|P| > (1 + ¢)(70 — m), where|P| is the size of the
maintained stabbing set at that time. Note that it is wediam the
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old trigger condition, and hence leads to less frequentcations
of reconstruction stages.

A refined algorithm. The amortized cost per insertion and dele-
tion in the above simple strategy @(n logn/(e70)). In the full
version of the paper [1], we describe a refined algorithm faimm
taining the stabbing partition i®(s~* log n) amortized time per
update, by a careful implementation of the reconstructtagesin
the above simple strategy. Moreover, each insertion otidalaf-
fects onlyonegroup in the stabbing partition. In the general SSI
scheme, changes in the stabbing partition often need todpapr
gated to the data structures associated with the group® -
bing partition. Our algorithm therefore requires infrequerop-
agations and is suitable for real-time applications. Duspace
constraint we only state the main result and leave the @ettaigo-
rithm and its pseudocode to the full version of this paper [1]

THEOREM 2. Lete > 0 be a fixed parameter. The above al-
gorithm maintains a stabbing partition df of size at most1 +
e)7(I) at all times. The amortized cost per insertion and deletion
is O(e'log|I|). Before the reconstruction stage, each insertion
or deletion affects at most one group in the stabbing pantiti

3. APPLICATIONS

In this section we give three representative applicatidnsuo
stabbing set index (SSI) and hotspot-tracking schemedaldea
processing of continuous band joins, continuous equalitysjwith
local selections, and building histograms for selectieiggimation.
Each of these applications has a somewhat different flavat, a
achieves notable performance improvement over traditipra
cessing techniques. This list of applications is not meauiet ex-
haustive, but should help illustrate the main idea of ounmégues.

In particular, we consider the following two types of coniirus
queries over relation®(A, B) andS(B, C):

Equality join with local selections:

UAErangcAR >XR.B=5.B UCGrangcCS-

Band join: R Xis.B—R.BerangeB S-
In equality join with local selections, the query parametenge A
and rangeC' in the local selection conditions are ranges over nu-
meric domains of?2. A andS.C, respectively. In band joinange B
in the join condition is a range over the numeric domaifkaB and
S.B. These two types of queries are important in their own right,
and also essential as building blocks of more complex gsieviée
give two examples of these queries below.

Example 1. Consider a listing database for merchants with the
following two relations:Supply(suppId, prodId, quantity,...),
andDemand(custId,prodld, quantity,...). Merchants are in-
terested in tracking supply and demand for products. Eaah me
chant, depending on its size and business model, may besteer

in different ranges of supply and demand quantities. Fomgike,
wholesalers may be interested in supply and demand witle larg
quantities, while small retailers may be interested in §upnd
demand with small quantities. Thus, each merchant defines-a c
tinuous query

O quantityErangeS; SUPP1Y > O quantity €ErangeD; Demand7

which is an equality join (with equality imposed @ttodId) with
local range selections.

Example 2. For an example of band joins, consider a monitoring
system for coastal defense with relati@ias t (id, model, pos, .. .)
andTarget(id, type, pos, .. .), wherepos specifies points on the
one-dimensional coast line. We want to get alerted whengetar



appears within the effective range of a unit. For each claasits,
e.g., gun batteries, a continuous query can be defined ®pthi
pose: e.g.,

Onodel="pp’ Unit NUnits.poszargets.pOSE’runge Otype=' surface’ Target-

whereBB is a fictitious model of gun batteriesgnge is the firing
range of this model, and the selection conditiorTanget captures
the fact that this model is only effective against surfacgdss. This
continuous query is a band join with local selections. Nabiat t
for different classes of units, the band join conditionsdifferent
because of different firing ranges.

3.1 Band Joins

We first consider the problem of processing a group of continu
ous band joins, each of the for® <is. 5—r.BerangeB; S. When
a newR-tuple r arrives, we need to identify the subset of contin-
uous queries whose query results are affected baynd compute
changes to these results. The case in which a $iguple arrives
is symmetric.

Previous approaches. We first note that existing techniques based
on sharing identical join operations [7] do not apply to bgwids
because eachunge B; can be different. The state-of-art approach
to handle continuous queries with different join condigda pro-
posed by PSoup [6], where multiple “hybrid structures”.(idata-
carrying, partially processed join queries) are applied database
relation together as a group, by treating these structiwesrala-
tion to be joined with the database relation.

Following the PSoup approach, we can process each Rew
tupler as follows. First, we “instantiate” the band join conditson
by the actual value of.B, resulting in a set of selection condi-
tions {S.B € rangeB; + r.B} local to S. Then, this set of se-
lections can be treated as a relation of interfatsige B; + r.B}
and joined withS; eachS-tuple s such thats. B stabs the interval
range B; + r.B corresponds to a new result tuple for the i-th
band join. Depending on which join algorithms to use, we have
several possible strategies.

e BJ-QOuter(band join processing with queries as the outer
relation) processes each intervainge B; + r. B in turn, and
uses an ordered index ad(B) (e.g., B-tree) to search for
S-tuples within the interval.

e BJ-DOuter(band join processing with data as the outer re-
lation) utilizes an index on rangeggange B; } (e.g., priority
search tree or external interval tree). For ef8etuple s, BJ-
DOuter probes the index for ranges containing — r.B.

e BJ-MJ(band join processing with merge jginses the merge
join algorithm to join the interval§ range B; + r.B} with
S. This strategies requires that we maintain the intervals
{range B;} in sorted order of their left endpoints (note that
addition of r.B does not alter this order), and that we also
maintain S in sortedS.B order (which can be done by an
ordered index, e.g., B-tree, &f( B)). Otherwise, BJ-MJ re-
quires additional sorting.

Clearly, all three strategies have processing times at lie@sr in

the size ofS or in the number of band joins (the detailed bounds are
provided in Theorem 3 below), which may be unable to meet the
response-time requirement of critical applications. THecdlty
comes in part from the fact that each continuous band joiriteas
own join condition, and at first glance it is not clear at alixho
to share the processing cost across different band joins.SGL+
based approach overcomes this difficulty.
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The SSI approach. We now present an algorithrBJ-SSl(band

join processing with S$Ibased on an SSI for the continuous queries
constructed on the band join rangesinge B; }. The index struc-
ture is rather simple. Each group in the SSI is stored in two
sequences! andI;: I} stores all ranges ifi; in increasing order

of their left endpoints, whild; stores all ranges itf; in decreas-
ing order of their right endpoints. The total space of thestesl
sequences is clearly linear in the number of queries. Welalgd

a B-tree index orb(B).

! 1 | > S(B)

Sl—b 82—b ‘ pj+:b

Figure 4: The SSI algorithm for band join processing. Arrows
indicate the order in which the intervals are visited.

When a newR-tupler(a, b) is inserted, the problem is to identify
all band joins that are affected and compute results for thbm
terms of the ranges that we index in the SSI, we are lookinghir
set of all rangesange B; that are stabbed by some poinB — b
wheres € S.

BJ-SSI processes the nefétuple r(a, b) in two steps: in the
first step it finds all queries that are affectedityand in the second
step it returns the new results for each affected query.

(STEP1) BJ-SSIproceeds for each grofign the SSI as follows.
Using the B-tree index of(B), we look up the search key; + b,
wherep; is the stabbing point fof;. This lookup locates the two
adjacent entries in the B-tree whaS&3 valuess; andsz surround
the pointp; + b (or equivalently,s; — b ands2 — b surroundp;,
as illustrated in Figure 4). If eithen or sz coincides withp; + b,
then it is obvious that all queries i) are affected by the incoming
update (at the very least tifetuple with B = p; + b joins withr
for all these queries). Otherwise, the exact subset of gsiémi/;
affected by the incoming tuple can be identified as follove= (e
left part of Figure 4): (1) We scafﬁ in order up to the first query
range with left endpoint greater than— b; all queries encountered
before this one are affected. (2) Similarly, we sddrin order up
to the first query range with right endpoint less than- b; again,
all queries encountered before this one are affected.

To see that the above procedure correctly returns the sdt of a
affected continuous band joins I, recall that all query ranges in
I; are stabbed by the poipj. Any query range whose left endpoint
is less than or equal ta —b must contairs; —b (because it contains
p;); similarly, any query range whose right endpoint is gretitan
or equal tose — b must contains; — b. On the other hand, query
ranges whose left and right endpoints fall in the gap betweenb
and sz — b produce no new join result tuples, becauseand s
are adjacent in the B-tree &( B) and hence there is ng-tuple s
such thats.B € (s1, s2).

(STeP 2) Once we have found the set of all affected queries in
I;, we can compute changes to the results of these queries-as fol
lows (see right part of Figure 4). Observe that the queryalef
each affected continuous query in the grdypgovers a consecutive
sequence of-tuples, including eithes, or s». Therefore, to com-
pute the new result tuples for each affected query, we caplgim
traverse the leaves of the B-tree index®(53), in both directions
starting from the poinp; + b (which we have already found ear-



lier), to produce result tuples for this query. We stop asisaowe
encounter &. B value outside the query range.

In summary, BJ-SSI has the following nice properties:

(1) BJ-SSI never considers a tuple$hunless it contributes to
some join result or happens to be closest to some stabbing
point offset byb (there are at most two such tuples per group);

(2) BJ-SSI never considers a band join query unless it wilkge
erate some new result tuple or it terminates the scanning of
someI} or I7 (again, there are at most two such queries per

group).

In contrast, BJ-QOuter, BJ-DOuter, and BJ-MJ must scareéh
queries or all tuples irb, many of which may not actually con-
tribute any result. We conclude with the following theorem.

THEOREM 3. Letn denote the number of continuous band joins,
7 denote the stabbing numben, denote the size of, and k de-
note the output size. The worst-case running times to psoars
incoming R-tuple are as follows:

e BJ-QOuter:O(nlogm + k);
e BJ-DOuter:O(mlogn + k);
e BJ-MJ:O(m+n+k).

e BJ-SSIIO(7logm + k);

SSI + hotspot-tracking. Applying BJ-SSI to the sety of Theo-
rem 1 (i.e., the collection of hotspots), we immediatelyaiioain ef-
ficient algorithm for processing the subset of hotspot egseriNote
that |Jz| < 2/a, hence by Theorem 3 (with < 2/«), we can
then process all hotspot queriesfa* log m + k) time, which
is a huge speedup in comparison to the other processinggirat

3.2 Equality Joins with Local Selections

We now turn our attention to the problem of processing caonrtin
ous equality joins with local selections, each of the form

O A€rangeA; R ™R p=s.B OCerangeC; S.

Each such query can be represented by a rectangle spanned b
two rangesrangeC; andrangeA; in the two-dimensional product
spaceS.C' x R.A, asillustrated in Figure 5. Suppose that a Hew
tupler(a,b) has been inserted. In the product spac€ x R.A,
each tuplers resulted from joining- with S can be viewed as a
point on the lineR.A = a because these tuples have the sdiné
value (fromr) but differentS.C values (from different-tuple that
join with ). We call these pointfin result points To identify
the subset of affected queries and compute changes to thtsrels
these queries, our task reduces to reporting which quetsngles
cover which join result points.

Previous approaches. When a newR-tuple r arrives, there are
two basic strategies depending on the order in which we peoce
joins and selections.

e SJ-JoinFirst(select-join processing with join fijsproceeds
as follows: (1) it first joing- with S; (2) for each join result
tuple, it checks the local selection conditions to see which
continuous queries are affected. In more detail, the join be
tweenr and.S can be done efficiently by probing an index
on S(B) (e.g., a B-tree) using.B. For each join result tu-
ple rs with ».B = s.B, we then probe a two-dimensional
index (e.g., an R-tree) constructed on the set of querymecta
gles{rangeC; x rangeA;} with the point(s.C,r.A). The
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subset of continuous queries that need to retyras a new
result tuple are exactly those whose query rectanglesiconta
the point(s.C, r.A).

SJ-SelectFirsfselect-join processing with selection f)rpto-
ceeds as follows: (1) it first identifies the subset of contin-
uous queries whose local selections Bnare satisfied by
the incoming tupler; (2) for each such query, it computes
new result tuples by joining with S and applying the lo-
cal selection or5. In more detail, to identify the subset of
continuous queries whose local selectionsfbare satisfied
by r, we can use.A to probe an index on query ranges
{rangeA;} (e.g., a priority search tree [8] or external in-
terval tree [3]). To compute the new result tuples for each
identified query with query rangaingeC; on .S, we can use
an ordered index fof with composite search ke§(B, C')
(e.g., a B-tree). We search the index ftuples satisfying
S.B=r.BANS.C € rangeC;.

Both SJ-JoinFirst and SJ-SelectFirst are prone to the @molaf
large intermediate results generated at step (1) of eadchitg.
Consider the supply/demand example again. Suppose thaterur
chants are not interested in matching low-quantity supjitly ligh-
quantity demand (though many are interested in matchinglgup
and demand that are both low in quantity). Further suppaseath
particular product is in popular demand and mostly with lgghn-
tities. When a low-quantity supply source for this prodympears,
it will generate lots of joins (in the SJ-JoinFirst case) aadisfy
local selections of many continuous queries (in the SJeHelst
case), but very few continuous queries will actually be ciéd
in the end. Therefore in this case, neither SJ-JoinFirstSwbr
SelectFirstis efficient because of the large intermedesgslts gen-
erated at step (1).

The SSlapproach. We now present our algorithr8J-SS(select-
join processing with S$lwhich circumvents the aforementioned
problems of SJ-JoinFirst and SJ-SelectFirst by using anf&Sl
the continuous queries constructed on the local selectioges
{rangeC}, i.e., projections of the query rectangles onto thé'
axis. (Here we focus on processing incomiRgtuples; to pro-
ess incomings-tuples, we would need a corresponding SSI con-
tructed on{range A;}.) Each group in the SSI is stored as an
R-tree that indexes the member queries by their query rgletsn
The total space of these data structures is linear in the auofb
queries since each query is stored only once in some group.

R.A
| rangeC N
| I
5]
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] g
.
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bj

Figure 5: The SSI algorithm for processing equality joins wth
local selections.

To process an insertianinto R, for each grougd; with stabbing
pointp;, we look for the search keff. B, p;) in a B-tree index of
tableS on S(B, C). This lookup locates the two joining-tuples
whoseC' valuesq: andg. are closest (or identical) t@; from left
and from right, respectively. Looking at Figure 5, they espond



to the two join result pointég: , a) and(gz, a) closest top;, a) in
the product spacs.C' x R.A. We use these two join result points
to probe the R-tree for group;. In the event that eithey; or ¢»
coincides withp;, only one probe is needed.

We claim that the query rectangles returned by the R-trdailmo
constitute precisely the set of continuous querieg;ithat are af-
fected byr. To see this, recall that by our construction, all queries
in the groupl; intersects the line&s.C' = p;. Any query in;
that contains neithefq:,a) nor (g2, a) cannot possibly contain
any join result point at all — such queries either do not et
the lineR.A = a or happen to fall in the gap between andg-.
On the other hand, any query that contains eitlgera) or (g2, a)
is clearly affected and produces at least one of the two jesuilt
points.

Finally, observe that the query rectangle of each affectedir-
uous query in the group; covers a consecutive sequence of join
result points on the lind?.A = a, including eitherg: or ¢» (see
Figure 5). Therefore, to compute the new result tuples fahea
affected query, we can proceed as follows. For each quetgnec
gle returned, we traverse the leaves of the B-tree5S0R, C'), in
both directions starting from the entries f@r and¢», to produce
all result tuples for this query. We stop as soon as we eneoant
differentS. B value or aS.C value outside the query range. This is
similar to what we have done for band joins in the previousisec

SJ-SSlavoids the problems of SJ-JoinFirst and SJ-Setstitier
cause of the following nice properties:

(1) SJ-SSI never considers a join result point unless itveiel
by some query rectangle or is closest to some stabbing point;

(2) SJ-SSI never considers a query rectangle unless it over
some join result point.

To summarize, we give the complexity of SJ-JoinFirst, Sl&QEirst,
and SJ-SSI in the following theorem.

THEOREM 4. Letn denote the number of continuous equality
joins, 7 denote the stabbing numbert, denote the size of, andk
denote the output size. Furthermore,dét:) denote the complexity
of answering a stabbing query on an indexrofwo-dimensional
ranges. The worst-case running times to process an incotiling
tuple are as follows:

e SJ-JoinFirst: O(log m + m’g(n) + k), wherem’ < m is
the number of5-tuples that join with the incoming tuple;

e SJ-SelectFirstO(log n+n'log m+k), wheren’ < nis the
number of queries whose local selectionsR®re satisfied
by the incoming tuple;

e SJ-SSIO(1(logm + g(n)) + k).

SSI + hotspot-tracking. Applying SJ-SSI to the séty of Theo-
rem 1 (i.e., the collection of hotspots), we immediatelyaidan ef-
ficient algorithm for processing the subset of hotspot egserSince
Tu] < 2/a, by Theorem 3 (withr < 2/«), we can then process
all hotspot queries i (o~ (logm + g(n)) + k) time, which is
in sharp contrast to the other two algorithms, whose runtimgs
are at the mercy of the size of the intermediate resultsr n’.

3.3 Histograms for Intervals in Linear Time

In this section we consider the following problem, which ten
used for estimating the number of continuous join querieseseh
local selection conditions are satisfied by an incomingeuplet
I be a set of intervals. Given ane R, we want to estimate how
many intervals off are stabbed by. We denote byf;(x) be the
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number of intervals stabbed hyin I. The basic idea is clearly
to build a histogranmh(z) (i.e., a step function) that approximates
the functionfr(x). Assuming that the distribution of the incoming
tuplex is governed by a probability density functigiix), then the
mean-squared relative error betwégn) and f7(x) is

h(z) = f1(=)?
E*(h, fr) = / Ihi@) = f1(@)]? x) dz.
Our goal is to find a histogram(x) with few break points that
minimizes the above error. We assume ib@t) is given; it can be

acquired by standard statistical methods at runtime.

Previous approaches. Most known algorithms for the above prob-
lem or similar problems use dynamic programming, whoseingnn
time is polynomial but rather large [15, 17]. In contrastr aew
algorithm below is simple, runs in nearly linear time, anteof
provides a high-quality histogram. To be fair though, theatyic-
programming approaches usually guarantee to find an opsicial
lution (i.e., minimizing the error), while the histograntueed by
our algorithm does not. Nonetheless, since histogramsrarnap

ily for estimation purposes, an optimal histogram is notlyazec-
essary in practice.

Our approach. Our new approach radically differs from those
dynamic-programming approaches, by taking advantageedbth
lowing main observation: Computing an optimal histogranmefach
group of a stabbing partition df can be reduced to a simple geo-
metric clustering problem. The algorithm is simple to impént,
modulo a standard one-dimensiokameans clustering subroutine.

In more detail, we first compute the canonical stabbing thanti
J={hL,---,I.}for I asinLemma 1, and then build a histogram
for each group of.. The final histogram is obtained by summing
up these histograms. Let be the stabbing point of am-hotspot
I, € J, and Ietf}i (resp. f1,) be the part of the functiorf; to
the left (resp. right) op;. To compute the histograr; (x) for a
hotspotZ;, we compute two functions; andh; to approximatef;,
and f, respectively, and then lét (z) = hi(z) + hj (z).

We now focus on how to compute a histograhiz) with at most
k buckets to minimize the erraf”(hi, f},), wherek is a given
fixed parameter; the case for computilgis symmetric. Clearly,
f}i is a monotonically increasing step function (see Figurded);
x1,--- ,xm be the break points of}i. Assume without loss of
generality thak < m.

LEMMA 4. There is an optimal histogram with at mdsbuck-
ets such that each bucket boundary passes through one afhle b
pointsz1, -+ , Tm.

PrROOF Take any optimal histogram whose bucket boundaries
do not necessarily pass through those break points. Obtfertveo
bucket completely lies between any two consecutive breaktgo
x; andx;11; otherwise one can expand the bucket to the entire
interval [z, z;+1] and decrease the error. As such, there is at most
one bucket boundary between andz;:. This boundary can
be moved to eithet; or z;4 1 without increasing the error. Repeat
this process for all such boundaries and we obtain a degitatal
histogram.

By the above lemma, it is sufficient to consider those histogr
whose bucket boundaries pass through the break points- | z,.
For such a histograrh., suppose its bucket boundaries divide the
break points intd: groups:

Tz }y s {x2k71+17 e 7xzk}7

{x20+17 o 7zzl}; {le‘f’h o
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Figure 6: Reducing to a one-dimensional weighted:-means
clustering problem.

wherezo = 0 andz;, = m. Furthermore, let the value &f within
the j-th bucket be a constanf, for 0 < j < k. Then the error
E(hi, f1,) can be written as

. k—1 Zj41 |y[—C| 041
why =3 S el [owan
j=0¢f=z;+1 Ye Te
wherey, = f7, ().

To find a histogranh! () that minimizes (1), we solve the fol-
lowing weightedk-means clustering problem in one dimension:
Given a set ofn pointsy; = fi (z1), -+ ,ym = f1,(zm), and a
weightw, = [+ ¢() da/|y|? for each pointy,, find k cen-
terscy, - - - , ¢, and an assignment of eaghto one of the centers
so that the weighte#l-means clustering cost is minimized (see the
left part of Figure 6). We have the following lemma to estsiflihe
correctness of our algorithm.

LEMMA 5. Minimizing (1) is equivalent to solving the above
weightedk-means clustering problem.

Since typically the total amount of buckets allocated tothele
histogram is fixed, the remaining issue is how to assign alvl
buckets to each group. One way to completely get around this
problem is to map all points in eadhinto a one-dimensional space
such that the points within each group are sufficiently faaaftom
the points in other groups, as shown in the right part of Fdir
Then we can run the-means algorithm of [14] on the whole point
set to compute aa-approximate optimal histogram in nearly lin-
ear timeO(n) + poly(k, 1/¢,logn), which automatically assigns
an appropriate number of buckets to edghin practice, one may
wish to use the simpler iterativemeans clustering algorithm [11]
instead. Since the iterativemeans algorithm is sensitive to the ini-
tial assignment of clusters, we can heuristically assigh ggoup a
number of buckets proportional to the cardinality of theugrowe
then run the iterativé-means algorithm on each group separately.

4. EXPERIMENTS

To compare our techniques against traditional processiclg-t
nigues in terms of their scalability with a large number ofitiou-
ous queries, we have implemented various algorithms discLin
previous sections in Java SDK 1.5.0. Unless otherwise naiiéd
experiments were conducted on a Sun Blade 150 with(MHz
UltraSPARC-III processor angll2 MB of memory. We measured
the processing throughput, i.e., the number of data updesete

that each approach is able to process per second. We exclude

the output time from measurement since it is applicatiopedelent
and common to all approaches. We also measured the costof mai
taining associated data structures in all approaches.

Workload generation. We generated two synthetic tablB$A, B)
andS(B, C), whereB is the join attribute andi, C' are the local
selection attributes, all integer-valued. Each tableaiost 00, 000
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tuples indexed by standard B-treeR.is updated by an incoming
stream of insertion events, whoskeand B values are drawn uni-
formly at random from the respective domains. For tuples'jn
their C values are uniformly distributed, while theit values fol-
low a discretized normal distribution, in order to modelyiag join
selectivity.

We created two sets of continuous queries, each With 000
queries initially. The first set consists of equality joinghnocal
selections discussed in Section 3.2, and the second sestsoos
band joins discussed in Section 3.1. The midpointswige A;
follow a normal distribution, and the midpoints efnge B; and
rangeC; are uniformly distributed. The lengths of all ranges are
normally distributed. At runtime, users may insert new comus
queries, and delete or update existing ones. Table 1 sumsari
the data and workload parameters, wheys ando;’s are used to
adjust various input characteristics that affect perfaoroeasuch as
selectivities of incoming events against continuous @seais well
as the degree of overlap among continuous queries.

Parameter Value
Size of each base table 100, 000
Initial number of continuous queries 100, 000

Join attributeR. B
Local selection attributé. A, S.C'
Join attributeS. B
Domain ofS.B
Midpoint of range A;
Length ofrange A;,rangeC;
Midpoint of range B;, rangeC;
Length ofrange B;

Uni(0, 10000)
Uni(0, 10000)
Normal(5000, 1000)
[0, 10000]
Normal(p1,0?)
Normal(uz,03)
Uni(0, 10000)
Normal(us, 03)

Table 1: Experimental parameters.

Equality joins with local selections. In addition to the algo-
rithms SJ-SSI, SJ-J(oinFirst), and SJ-S(electFirstudised in Sec-
tion 3.2, we have also implemented an algorithm called NAIVE
which first joins the newR tuple with S to generate a list of in-
termediate result tuples ordered BYC, and then evaluates the
local selections of each continuous query over this inteiate
result. NAIVE serves as a baseline for comparison; its cest i
O(log m + nlog |S’| + k), whereS' is the subset of that joins
with the newR tuple.

To focus our attention on the effectiveness of SJ-SSI teedf
first present a series of results obtained by applying SJk&al
stabbing groups (regardless of whether they are hotspdisihen
present results for combining SSI and hotspots afterwards.

Figure 7{) compares the throughput of various approaches as the
number of continuous queries increases fidhto 100, 000. In this
set of experiments, the stabbing number{feingeC;} is roughly
30; each incomingR tuple on average joins with000 S tuples.

In this figure, we see that NAIVE'’s performance degradesalitye
with the number of continuous queries and therefore is cetafyl
unscalable. The average selectivity of an event on the kelak-
tion ranges{range A;} is 0.1; that is, an incoming event satisfies
the R. A selection for1 0% of all continuous queries. Consequently,
SJ-S, which works by iterating through queries whésel selec-
élon is satisfied, performs well only when the number of ceeis
small. Similar to NAIVE, it degrades linearly with the nunmhf
queries and thus is not scalable either. The performanceatse
of SJ-J can be attributed to higher cost in two-dimensiowahtp
stabbing queries; in our experiments we used R-trees toosupp
these queries. Although the performance of SJ-J does nptafro
drastically as SJ-S and NAIVE, its throughput is less thghof
SJ-SSlin the case D0k queries.
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(iii) over event selectivity with respect to local selections oR. A, and (iv) over event selectivity with respect to the joining tableS.

Compared with the other approaches, SJ-SSI demonstrates exqueries are highly clustered since to@0 stabbing groups cover

cellent scalability. Its throughput only drops by less tBafg when

the number of queries increases frafo to 100, 000. The reason

is that SJ-SSI depends primarily on the number of stabbiogpy
rather than the number of queries. As long as the number apgro
is stable (roughi\30 for these experiments), SJ-SSI's performance
is relatively stable. The slight performance drop comemftbe
increasing cost of the point stabbing query within each stap
group, because each group on average contains more queries.

Figure 7{i) compares the performance of various approaches
over a range of clusteredness amownggeC;’s. The number of
continuous queries stays @00, 000, but we increase the num-
ber of stabbing groups by decreasing mean and varianceesf int
val lengths. As can be seen, NAIVE and SJ-S are completely in-
different about the clusteredness of queries, while SJbBBéfits
from smaller numbers of stabbing groups. SJ-S outperfodirSS
when there are more tha30 stabbing groups, as the event selec-
tivity on R.A selections is roughl250 in these experiments. In the
worse case, when all query ranges are disjoint, SJ-SSI degjes
to NAIVE. As a side node, itis interesting that SJ-J perfolbeker
on less clustered queries. The reason is that the cost ofiggem
R-tree tends to be lower if the indexed objects overlap less.

Figure 7(ii) shows the throughput of SJ-S and SJ-SSI when we
decrease the average event selectivity on Iétal selections (SJ-

J and NAIVE are unaffected by this parameter). We contrd thi
selectivity by fine-tuning the distribution oftinge A;'s. From this
figure, we see that SJ-S is very sensitive to this selectiohgr
which its throughput deteriorates linearly (since thigesgVity di-
rectly controls how large:’ is in Theorem 4). On the other hand,
SJ-SSlis unaffected by this selectivity.

Figure 7{v) studies the impact of event selectivity on joining
tableS, i.e., how manys tuples join with the incoming event, con-
trolled by fine-tuning the distribution of.B. Except for SJ-J, all
other approaches are immune to increase in this select®iyd’s
performance degrades linearly as the number of interme¢bat
result tuples increases.

SSI + hotspot-tracking. In all previous experiments we applied
SJ-SSlto every group in the stabbing partition, ignoriregtbtspot
optimization. Now, we conduct experiments to demonstrage t
effect of hotspot-tracking in group processing equalitygowith
local selections. For each experiment in this set, we gémera
workload of 500, 000 queries, with varying degrees of clustered-
ness across these workloads. We choose a fairly smadlue (on
the order 0f0.1%) for each workload, such that no more thait
groups are chosen ashotspots. In Figure 8, the horizontal axis
shows the ten workloads in increasing degree of clustessqha-
beled by the percentage of intervals in hotspat®)% means that
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all 500, 000 intervals, while10% means the queries are relatively
scattered and consequently tej) stabbing groups can only cover
10% of all intervals.

The vertical axis of Figure 8 plots the average processimg ti
per event, measured ovéd, 000 events for each experiment. We
compare two approaches here: TRADITIONAL simply use SJ-
S(electFirst); HOTSPOT-BASED uses SJ-SSI on the hotspats,
SJ-S on the remaining, scattered intervals. The traditapp@roach,
unable to exploit the clusteredness, behaves identicalbsa work-
loads. On the other hand, the performance of the hotspesbss
proach improves linearly with the increasing coverage hgats,
as it benefits from the ability of SSI in exploiting clusteneds for
efficient group processing. Moreover, this hotspot-baggmtaach
offers an additional advantage over the “purist” approathm
plying SJ-SSI to every stabbing group. By restricting SJ48S
hotspots, the hotspot-based approach is able to focus gmdéab-
bing groups where SJ-SSI really shines, while avoiding trer-o
head of going over a large number of small groups for whicl$SU-
may be outperformed by more traditional approaches.

[ TRADITIONAL
B HOTSPOT-BASED

PROCESSING TIME (1 s)

20

30 40 50 60 70 80 90 100
PERCENTAGE OF INERVALS IN HOTSPOTS (%)

Figure 8: SSI with hotspot-tracking.

Band joins. In this set of experiments, we study the performance
of our SSl-based algorithm for band-join queries. We compar
BJ-SSI with BJ-D(Outer), BJ-Q(Outer), and BJ-MJ, discdsise
Section 3.1. Again, to focus our attention on the effectssnof
BJ-SSI itself, we show results of applying BJ-SSI to all biag
groups without the hotspot optimization.

Figure 9() shows the throughput of various approaches over an
increasing number of continuous queries frofnto 500, 000. As
the number of queries increases, the number of stabbingpgrou
also increases from aboid to 60 accordingly. In BJ-D, for each
tuple in base tablé, an offset is added and used to probe the index



of all band join windows. Although BJ-D is not very sensitie
the number of queries, it is inefficient because a large basle t
will easily destroy the throughput. BJ-Q, similar to NAIVEgm-
pletely breaks down on a large number of queries. lIts thrpugh
drops belowl00 when there are more tha®00 queries. The pro-
cessing time of BJ-MJ is linear both in the size of the basle tahd

in the number of queries. As shown in the figure, BJ-MJ enjoys a
stable throughput when the number of queries is small, sectne
cost of traversing the sorted base table dominates the qaotaly
time. However, once the number of queries reacke$00, the
throughput of BJ-MJ starts to decrease quickly. In shargrast)
BJ-SSI always outperforms the other approaches by ordensigf
nitudes, and is very stable over an increasing number ofegidts
performance drops to roughly’3 when the number of queries has
increased by a factor a*.

Figure 9(i) shows the throughput over an increasing number of
stabbing groups, while the total number of continuous @seis
kept constant at00, 000. We have omitted BJ-Q in this figure due
to its extremely poor performance on a large number of qgseBé-
MJ and BJ-D are insensitive to the number of the stabbingpgou
while the performance of BJ-SSI deteriorates linearly asrbm-
ber increases. Nevertheless, BJ-SSI outperforms the ttlesp-
proaches even when there are as marfy0a8 groups in the parti-
tion, which is a fairly large number in practice.
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Figure 9: Throughput of band-joins (i) over the number of con-
tinuous queries and (i) over the number of stabbing groups.

Dynamic maintenance. In the previous experiments, we have
demonstrated that our SSlI-based approaches offer excestiah
ability over a large number of continuous queries. We now-com
pare the dynamic maintenance cost of SSl-based approadties w
other alternatives. For this purpose, starting from thgahset of
100, 000 queries, we generat®0, 000 updates to this set at run
time. The update is either an insertion of a new query or aidele

of an existing query, each with probability5.

Figure 10 shows the amortized maintenance cost for eacteof th
algorithms BJ-D, BJ-Q, BJ-MJ, and BJ-SSI. Since BJ-Q doés no
maintain any index structure on the queries, its maintemanst is
constantly0. For BJ-D, the maintenance involves updating the dy-
namic priority search tree that indexes all band join winslowor
BJ-MJ, the maintenance involves updating a sorted list néljain
windows. The dynamic maintenance algorithm for BJ-SSl is de
scribed in Section 2.3, for which have choses 3. Consequently,
the query time of BJ-SSlis increased by a factot efc = 4 com-
pared to that of BJ-SSI based on an optimal stabbing partifibis
approximation factor is acceptable as BJ-SSI outperfohmsther
approaches by orders of magnitudes in the previous expetéme
Note that the reconstruction stage occurs fairly infredjyebe-
cause all subscriptions are from the same distribution amatally
clustered, and therefore with high probability a new supson
will be inserted into an existent stabbing group withoutr@asing
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Figure 10: Maintenance cost
for band-join algorithms.

Figure 11: Quality of various
histograms for intervals.

the number of of the stabbing groups. As shown in Figure 1, th
amortized maintenance cost of BJ-SSI is o2yt more than that
of BJ-MJ, which is well justified by a substantial improvernen
event processing scalability.

SSl-based histogram construction. We compare SSI-HIST, the
histogram constructed by our SSl-based algorithm in Se@i3,
with EQW-HIST, the standard equal-width histogram, andhwit
OPTIMAL, the optimal histogram constructed using dynamig-p
gramming. We creat@00, 000 intervals in the rangg0, 10000].
Their midpoints and lengths are governedNxyrmal(5000, 1500)
and Normal(1000, 2000), and they happen to form8 stabbing
groups. Given a fixed number of buckets, we build SSI-HIST us-
ing thek-mean algorithm and the heuristics to assign the number of
buckets to each stabbing group based on its cardinalitgssithed
in Section 3.3. Construction of SSI-HIST completes withireo
minute. However, construction of OPTIMAL using dynamic pro
gramming for100, 000 intervals proved to be unacceptably slow
on our computing platform. Instead, we built OPTIMAL on jast
sample ofl0, 000 intervals and ran experiments multiple times un-
til a stable estimation is reached. Even with one-tenth efattig-
inal data, OPTIMAL took roughly6.5 hours on a computer with
3GHz processor an?2iGB memory, in sharp contrast to the ease of
constructing SSI-HIST.

Figure 11 compares the performance of SSI-HIST, EQW-HIST,
and OPTIMAL, as we increase the size of the histogram f26rto
70 buckets. Each data point is obtained by runrifigo uniformly
distributed stabbing queries; we compute the relativer éebween
true and estimated result sizes, and then report the avefalgese
errors. As expected, OPTIMAL consistently wins; howevais t
advantage is greatly offset by its impracticality in terniscon-
struction cost. On the other hand, SSI outperforms EQW-HIET
the time and dramatically reduces the gap between EQW-HIET a
OPTIMAL. Specifically, given only20 buckets, SSI-HIST achieves
an error rate as small d€.9%, while that of EQW-HIST is more
than70%. In fact, EQW-HIST would requiré0 buckets to reach
the same error rate as that of SSI-HIST widthbuckets.

5. RELATED WORK

As mentioned in Section 1, scalable continuous query psaces
ing plays a pivotal role in many applications (e.qg., [23, 3,322]).
For example, publish/subscribe systems [18, 7, 21, 10] ffipice
tion need to handle a huge number of subscriptions (contsuo
queries) efficiently. Our earlier work [2] considered thelgem of
indexing continuous band-join queries, and presented @exing
structure with subquadratic space and sublinear query: titogv-
ever, the structure is mainly of theoretical interest. Ca phacti-
cal side, several continuous query and stream processgignsy
(e.g.,[7, 19, 6, 22]) have been proposed recently. NiagargTis
able to group-process selections and share processingraidell
join operations. However, it cannot group process joins wlit-



ferent join conditions (such as band joins). Moreover, ldia@Q
groups selections and joins separately, resulting inegjies$ similar
to SJ-JoinFirst and SJ-SelectFirst, whose limitationsevadready
discussed in Section 3.2. Our work is able to overcome these |
itations. CACQ [19] is a continuous query engine that legesa
Eddies [4] to route tuples adaptively to different operston the
fly. It is able to group-process filters, and supports dynaraic
ordering of joins and filters. However, like NiagaraCQ, ill stoes
not support group processing of joins with different joimddaions,
and processes selections and joins separately. PSoup46j ttata
and queries analogously, thereby making it possible too@xpét-
oriented processing on group of joins with arbitrary joimdiions.
However, PSoup is not specific on what efficient techniquesé&
for different types of join conditions. Its approach of mstiating
partially completed join queries implies time complexiiyear in
the number of queries. In contrast, our new approach camiexpl
clustering of queries to achieve sublinear complexity.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a novel technique for handlingge la
number of continuous queries by tracking the hotspots in imse
terests. Our technique has a number of applications inojusttal-
able continuous join processing and histogram constnudtioin-
terval data. Our work opens the door for many interestindgpro
lems. First, it would be interesting to extend the idea oftu
ing by stabbing partition to multidimensional spaces, st the
can handle multi-attribute selection conditions. Moreagafily, we
plan to investigate group processing for more complex gses.g.,
those combining both band-join and local selection coodgj as
well as possible aggregation. Although we have taken thiestiep
with this paper, it remains a challenging problem to devetagih-
ods for composing group-processing techniques for morgtem
queries. Finally, we are developing a general cost-bastohiaa-
tion framework for identifying the best processing strateygood
starting point is the previous work on group optimizationNi
agaraCQ [7]. However, our space of alternatives is conaimer
richer. In addition, we are making our system adaptive athmuc
finer granularity—every incoming data update event canmiatiéy
be processed using a different strategy.
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