
Scalable Continuous Query Processing by
Tracking Hotspots∗

Pankaj K. Agarwal Junyi Xie Jun Yang Hai Yu
Department of Computer Science

Duke University

{pankaj, junyi, junyang, fishhai}@cs.duke.edu

ABSTRACT
This paper considers the problem of scalably processing a large
number of continuous queries. We propose a flexible framework
with novel data structures and algorithms for group-processing and
indexing continuous queries by exploiting potential overlaps in query
predicates. Our approach partitions the collection of continuous
queries into groups based on the clustering patterns of the query
ranges, and then applies specialized processing strategies to those
heavily-clustered groups (orhotspots). To maintain the partition
dynamically, we present efficient algorithms that maintaina nearly
optimal partition in nearly amortized logarithmic time. Weshow
how to use the hotspots to scalably process large numbers of contin-
uous select-join and band-join queries, which are much morechal-
lenging than simple range selection queries. Experiments demon-
strate that this approach can improve the processing throughput by
orders of magnitude. As another application of hotspots, weshow
how to use them to build a high-quality histogram for intervals in
linear time.

1. INTRODUCTION
Continuous query processing has attracted much interest inthe

database community recently because of a wide range of traditional
and emerging applications, e.g., trigger and production rule pro-
cessing [23, 13], data monitoring [5], stream processing [22], and
publish/subscribe systems [18, 7, 21, 10]. In contrast to traditional
query systems, where each query runs once against a snapshotof
the database, continuous query systems support standing queries
that continuously generate new results (or changes to results) as
new data continues to arrive in a stream. In this paper we propose
a novel technique for indexing and processing continuous queries,
with the goal of addressing the increasing challenge of scalability
in continuous query processing systems.

∗Research by the first and fourth authors is supported by NSF under
grants CCR-00-86013, EIA-01-31905, CCR-02-04118, and DEB-
04-25465, by ARO grants W911NF-04-1-0278 and DAAD19-03-
1-0352, and by a grant from the U.S.–Israel Binational Science
Foundation. Research by the second and third authors is supported
by NSF CAREER award IIS-0238386 and an IBM Faculty Award.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

Challenge of scalability. Formally, acontinuous querydefined
by a relational expressionQ issued over a database stateD0 ini-
tially returnsQ(D0); then, for each subsequent database update
that changes the database state fromDi−1 to Di, the query needs
to return the changes betweenQ(Di) andQ(Di−1), if any. How
can a continuous query processing system handle thousands or even
millions of such continuous queries in a scalable way? For each in-
coming data tuple, the system needs to identify the subset ofcontin-
uous queries whose results are affected by the tuple, and compute
changes to these results. If there are many continuous queries, a
brute-force approach that processes each of them in turn will be in-
efficient and unable to meet the response-time requirement of most
applications.

A powerful observation made by recent work on scalable contin-
uous query processing is the interchangeable roles of queries and
data. Continuous queries can be treated as data, while each data
tuple can be treated as a query requesting the subset of continuous
queries affected by the tuple. Thus, it is natural to apply indexing
and processing techniques traditionally intended for datato con-
tinuous queries. For example, many index structures have been
applied to continuous queries to support efficient identification of
affected queries without scanning through the whole set (e.g., [13]
and others). In particular, consider range-selection queries of the
form σai≤A≤bi

R, whereA is an attribute of relationR andai, bi

are query parameters. These queries can be indexed as a set ofinter-
vals{[ai, bi]} using, for example, interval tree [8] or interval skip
list [12]. Given an insertionr into R, the set of affected queries
are exactly those whose intervals arestabbedby r.A (i.e., contain
r.A). With an appropriate index, astabbing query, which returns
the subset of all intervals stabbed by a given point, can be answered
in logarithmic time.

However, for complex continuous queries such as continuous
joins, the problem of scalable processing becomes a real challenge,
because these queries act over two or more data streams instead
of a single data stream. As far as we know, most existing work
on indexing relational continuous queries has only focusedon sim-
ple selection conditions or conjunction of selection conditions, and
there has been little work on how to scalably index complex con-
tinuous queries such as joins, which are not only important in their
own right but also essential in building more complex queries.

Opportunity for optimization. We propose a novel technique
for indexing and processing continuous queries applicableto joins.
The main idea is to exploit clustering patterns in the set of con-
tinuous queries. For example, consider continuous queriesissued
by stock traders for monitoring the market. Suppose these queries
include selections that restrict the stocks of interest to those with
price/earning ratio within given ranges. We expect many of these
price/earning ratio ranges to overlap significantly (though not nec-

31

essarily to be identical), perhaps with a high-density cluster at low
price/earning ratios because traders tend to be interestedin stocks
with good value.

Such clustering patterns often arise in the continuous query set-
ting. Following this observation, suppose that we cluster the set
of continuous queries based on the similarity of their queryranges.
Then, like in the above stock trader example, we may be able to
identify a number of large clusters (orhotspots) containing the ma-
jority of all continuous queries. Let us call the queries in these clus-
tershotspot queries, and the remaining queriesscattered queries.
Our idea is then to index hotspot queries and scattered queries sep-
arately. The key is that, because hotspot queries in each cluster
share similarity in their query ranges, they can be indexed in special
ways that support much faster processing. For scattered queries, on
the other hand, we may a traditional processing method that is less
efficient. The hope is that scatter queries will be the minority, so
overall we gain a significant speedup in processing all continuous
queries.

Note that our approach naturally leads to faster processingfor
more clustered query ranges. In the unlikely worst case, i.e., when
most query ranges are scattered, it gracefully degrades into a tra-
ditional processing method, which is the best we can do because
there is no opportunity for clustered processing.

Contributions. To materialize the idea above, we need to address
two main technical issues: (1) how to identify hotspot queries and
their corresponding clusters, and keep track of these clusters when
continuous queries are inserted into or deleted from the system; (2)
how similarity of queries inside a hotspot can be exploited to index
and process them in an efficient manner. The first issue is discussed
in Section 2. The second issue depends on specific applications and
is illustrated by three representative examples in Section3.

In particular, the main contributions of this paper are as follows:
• In Section 2, we introduce the notions ofstabbing partition

andstabbing set index(SSI for short) as a tool to discover and
exploit the clustering patterns of continuous queries. We fur-
ther introduce the notion ofhotspotsto identify large clusters
from the partition, and present efficient algorithms to main-
tain the hotspots when continuous queries are constantly in-
serted into and deleted from the system.

• In Section 3, we show how similarity in the query ranges
within each hotspot can be exploited for more efficient pro-
cessing. We give three representative examples:
(1) indexing continuous band joins [9] whose join condi-

tions check whether the difference between two join at-
tribute values falls within some range;

(2) indexing continuous equality joins with different local
range selections; and

(3) building a high-quality histogram for a set of intervals
in linear time for selectivity estimation.

• In Section 4, we demonstrate through experiments that our
new algorithms and processing framework are very effec-
tive and deliver significantly better performance than tradi-
tional approaches for processing a large number of continu-
ous queries.

2. THE HOTSPOT-TRACKING SCHEME
Consider a setI of continuous queries whose query ranges are

defined over a numerical attributeA. Intuitively, if many query
ranges ofI contain some valuex ∈ A, thenx is likely to be a
“hotspot” for this set of continuous queries.1 In general there could
1This is the one-dimensional case. For multi-dimensional query

be several hotspots forI , depending on the distribution of the query
ranges.

As continuous queries are inserted or deleted, the hotspotsmay
also evolve over time. For example, people tend to pay more atten-
tion to high temperatures in summer, but more to low temperatures
when winter comes. Therefore we need an efficient mechanism to
keep track of the evolution of the hotspots. The main body of this
section is dedicated to this task.

2.1 Stabbing Partition and Stabbing Set Index
We begin by introducing some tools for discovering and exploit-

ing the clustering patterns of a set of intervals.

DEFINITION 1. Let I be a set of intervals. Astabbing parti-
tion of I is a partition of the intervals ofI into disjoint groups
I1, I2, . . . , Iτ such that within each groupIj , a common pointpj

stabs all intervals in this group (in other words, the commonin-
tersection of all intervals in this group is nonempty). We call τ
thestabbing number(or size) of this stabbing partition, andpj the
stabbing pointof groupIj . The setP = {p1, · · · , pτ} is called a
stabbing setof I .

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

I3

p1 p2 p3

I1

I2

Figure 1: A stabbing partition of 10 intervals. I1 and I2 are
0.4-hotspots.

An example of the stabbing partition is shown in Figure 1. It is
not hard to see that an optimal stabbing partition of a set of intervals
that results in the fewest number of groups (i.e.,τ is minimized) can
be computed in a greedy manner, as follows. We scan the intervals
in increasing order of their left endpoints, while maintaining a list
of intervals we have seen. As soon as we encounter an intervalthat
does not overlap with the common intersection of the intervals in
our list, we output all intervals in our list as a group, and choose
any point in their common intersection as the stabbing pointfor
this group. The process then continues with the list containing only
the newly encountered interval. The cost of this procedure is domi-
nated by sorting the intervals by their left endpoints. We refer to the
resulting stabbing partition ofI as itscanonical stabbing partition.
Note that the canonical stabbing partition has the smallestpossi-
ble stabbing number, which we shall denote byτ (I). We state the
above fact as a lemma for future use.

LEMMA 1. Given a setI of n intervals, the canonical stabbing
partition of I , whose size isτ (I), can be computed by the greedy
algorithm inO(n log n) time.

We next briefly introduce the general framework ofstabbing set
index(SSI for short), which is able to exploit the clustering patterns
of continuous queries for more efficient processing. It willlater be
instantiated for specific uses in Section 3. Given a set of continuous
queries, SSI works by first deriving a setI of intervals from these
queries, one interval for each query, and computing a stabbing par-
tition I of I . SSI stores the stabbing pointsp1, . . . , pτ in sorted
order in a search tree. Furthermore, for each groupIj ∈ I, SSI

ranges, one can project them to each dimension and talk about
hotspots in each dimension.

32

0 100 200 300 400 500
10

20

30

40

50

60

70

80

90

NUMBER OF LARGEST STABBING GROUPS

P
E

R
C

E
N

T
A

G
E

 O
F

 Q
U

E
R

IE
S

 C
O

V
E

R
E

D

β = 1
β = 1.1
β = 1.2

Figure 2: Hotspot coverage in Zipf distribution.

maintains a separate data structure on the set of continuousqueries
corresponding to the intervals ofIj , which can be as simple as a
sorted list, or as complex as an R-tree. Thus SSI is completely ag-
nostic about the underlying data structure used, which enables us to
apply SSI to different types of continuous queries. Intuitively, the
fact that intervals within the same group are stabbed by a common
point enables us to process the set of queries correspondingto these
intervals more efficiently by “sharing” work among them.

Note that, as mentioned in the introduction, we actually only ap-
ply SSI to the subset of large clusters (i.e., hotspots) in the stabbing
partition instead of the entire set of clusters. The reason is that
scattered queries do not benefit from the specialized techniques
designed to exploit clustering; in fact, they incur extra overhead.
Therefore, we process scattered queries using traditionalalgorithms.

2.2 Tracking Hotspots
Clusters in the SSI may be unbalanced, as illustrated by the fol-

lowing simple example. Suppose that user interests follow aZip-
fian distribution, widely recognized to model popularity rankings
such as website popularity or city populations. In particular, if we
regard each stabbing group as a group of users interested in acom-
mon hotspot, Zipf’s law states that the number of queries within a
stabbing group is roughly inversely proportional to its rank in pop-
ularity. That is, the numbernk of queries in thek-th largest group
is proportional tok−β , whereβ is a positive constant close to 1.
Suppose there are a total number of5000 groups in a stabbing par-
tition. Figure 2 shows the percentage of queries covered by the
top-k largest stabbing groups out of all5000 stabbing groups if the
group sizes are governed by a Zipfian distribution with parameter
β ∈ [1.0, 1.2]. From this figure we can see that top-500 largest
stabbing groups (10% of all groups) cover about70% of all queries
whenβ = 1, and the coverage increases with a largerβ.

Motivated by the above example, we next introduce the notion
of α-hotspots.

DEFINITION 2. Letα > 0 be a fixed parameter. SupposeI =
{I1, · · · , Iτ} is a stabbing partition ofI . A groupIi ∈ I is called
an α-hotspotif |Ii| ≥ α|I |. An interval of I is called ahotspot
interval (with respect toI) if it falls into anα-hotspot, and is called
a scattered intervalotherwise (see Figure 1).

In other words, if we think of the intervals inI as query ranges
of the continuous queries, then anα-hotspotIi contains at least
α fraction of all continuous queries. Note that the number ofα-
hotspots is at most1/α by definition.

It is quite easy to identify all the hotspots once a stabbing parti-
tion I of I is given. We next turn our attention to the problem of
tracking hotspots as intervals inI are being inserted or deleted over

time. When designing such a hotspot-tracking scheme, one needs
to keep the following two issues in mind:

(1) Note that the definition ofα-hotspots depends on the speci-
fied stabbing partitionI of I . In order to extract meaningful
hotspots fromI , it is important to require that the size ofI is
as small as possible, because intuitively small stabbing parti-
tions provide more accurate pictures on how the intervals in
I are clustered. Thus, to keep track ofα-hotspots as intervals
are inserted into or deleted fromI , one needs to maintain a
stabbing partition ofI of size close toτ (I).

(2) Let S ⊆ I denote the set of all scattered intervals, and let
H = I \ S denote the set of all hotspot intervals. As the
hotspots ofI evolve over time, intervals may move intoS
(from H) or out ofS (into H) accordingly. Since we will be
using different indexing schemes forS andH , it is desirable
for efficiency reasons to minimize the number of intervals
that move in or out ofS at each update.

We next describe an algorithm for tracking hotspots that takes care
of both issues. Specifically, letε, α > 0 be fixed parameters; the
algorithm will maintain a stabbing partitionI of I and a partition
of I into two setsIH andIS = I \ IH that satisfy the following
three invariants all the time:

(I1) IH contains allα-hotspots ofI, and possibly a few(α/2)-
hotspots, but nothing more. Hence,|IH | ≤ 2/α;

(I2) The size ofI is at most(1 + ε)τ (I) + 2/α;

(I3) Let S denote the set of intervals in the groups ofIS . Then
the amortized number of intervals moving into or out ofS
per update isO(1) (in fact, at most 5).

We need the following lemma, which says that one can maintain
a stabbing partition ofI of size close toτ (I) in amortized loga-
rithmic time per update. Katz et al. [16] first proved this result by
presenting an algorithm with the claimed performance bound. In
Section 2.3 we will describe a slightly better algorithm that is more
suitable for real-time applications, as well as simple and practical
variants of the algorithm.

LEMMA 2. Let ε > 0 be a fixed parameter. We can maintain a
stabbing partition ofI of size at most(1 + ε)τ (I) at all times. The
amortized cost per insertion and deletion isO(ε−1 log |I |).

The hotspot-tracking algorithm works as follows. At any time,
we implicitly maintain a stabbing partitionI of I by maintaining a
partition ofI into two setsIH andIS = I\IH. We useS to denote
the set of intervals falling into the groups ofIS , andH = I \ S
to denote the set of intervals falling into the groups ofIH . Hence,
IS is a stabbing partition ofS, andIH is a stabbing partition of
H . Initially when I = ∅, we haveI = ∅, IH = IS = ∅, and
S = H = ∅. A schematic view of the algorithm is depicted in
Figure 3.

Insertion. When an intervalγ is inserted intoI , we first check if
γ can be added to any groupIi ∈ IH , such that the common inter-
section of the intervals in that group remains nonempty after adding
γ. This can be done brute-forcely inO(1/α) time by maintaining
the common intersection of each group inIH , or in O(log(1/α))
time by using a more complicated data structure (e.g., a dynamic
priority search tree [20]); we omit the details.

If there indeed exists such a groupIi ∈ IH , we simply addγ
into Ii and are done. If there is no such group, we addγ into the
setS, and then use the algorithm of Lemma 2 to update the stab-
bing partition ofS, i.e., IS . As a consequence, the sizes of some

33

becomes α-hotspot

no longer (α/2)-hotspot

IH
IS

Hotspot Intervals H Scattered Intervals S

Figure 3: Schematic view of the hotspot-tracking algorithm.

groups inIS may become≥ α|I |. We “promote” all such groups
of IS into IH (because they becomeα-hotspots). Consequently,
intervals in these groups should be moved out ofS. We maintain
the stabbing partitionIS of S by deleting these intervals fromS
one by one and using Lemma 2 to updateIS . (But in practice, it
might be unnecessary to use Lemma 2 to updateIS , as the intervals
are moved out ofS in groups.)

Note that after an insertion, the size ofI is increased by one.
Therefore, the sizes of some groups inIH may become< (α/2)|I |.
We ”demote” all such groups ofIH into IS (because they are no
longer (α/2)-hotspots). Consequently, intervals in these groups
are moved intoS. We again use Lemma 2 to updateIS by in-
serting these intervals intoS one by one. Note that when these
insertions are finished, some groups inIS might again become new
α-hotspots, in which case we “promote” these groups intoIH as
done in the previous paragraph.

Deletion. When an intervalγ is deleted fromI , the situation
is somewhat symmetric to the case of insertion. We first check
whetherγ is contained in some group ofIH . This can be done in
constant time by maintaining appropriate pointers from intervals to
groups.

If there indeed exists such a groupIi ∈ IH , we removeγ from
this group. The removal might makeIi no longer an(α/2)-hotspot
(note, however, the other groups inIH remain(α/2)-hotspots be-
cause their sizes do not change but the size ofI decreases by one.)
In this case, we “demote”Ii into IS by inserting the intervals ofIi

into S one by one and updatingIS using Lemma 2. Otherwise, we
know thatγ ∈ S. We removeγ from S and updateIS accordingly
using Lemma 2.

After that, some groups inIS could becomeα-hotspots. We
“promote” these groups intoIH and remove their intervals fromS
as before.

THEOREM 1. The above algorithm maintains the three invari-
ants (I1)–(I3) at all times. Furthermore, the amortized cost for each
update isO(ε−1 log |I |).

PROOF. (I1) Obvious from the algorithm. InitiallyIH = ∅. The
algorithm guarantees that: (i) whenever a group inIS becomes an
α-hotspot, it is promoted toIH ; and (ii) when a group inIH is no
longer an(α/2)-hotspot, it is demoted toIS .

(I2) Since we used Lemma 2 to maintainIS , we have|IS | ≤ (1 +
ε)τ (S) ≤ (1 + ε)τ (I). By (I1), we also have|IH | ≤ 2/α. Hence,

|I| = |IH | + |IS| ≤ (1 + ε)τ (I) + 2/α.

(I3) We prove this invariant by an accounting argument. Specifi-
cally, we show how to deposit credits into theintervalsof S and
the groupsof IH , for each insertion and deletion inI , so that the
following two invariants hold:

(i) at any time, each interval inS has one credit;

(ii) when a group ofIH is demoted toIS , it has at leastα|I |
credits.

If these two invariants hold, then we can pay the cost of moving
intervals into or out ofS by the credits associated with the relevant
intervals, as follows. When an interval moves out ofS (because
of a promotion), we simply pay this move-out by the one credit
deposited in that interval. When intervals are moved intoS because
of a demotion of a groupIi ∈ IH , note that the number of intervals
in this group,|Ii|, is at most(α/2)|I |. SinceIi has accumulated
at leastα|I | credits, we use(α/2)|I | credits to pay for each of
the|Ii| move-ins, and deposit the remaining(α/2)|I | credits to the
intervals ofIi so that each interval has one credit (because they
now belong toS and thus have to have one credit each by the first
invariant). Overall, since each move-in or move-out can be paid by
one credit, the total number of intervals moving into and outof S
over the entire history is bounded by the total number of deposited
credits.

How is the credit deposited for each update inI? For each in-
sertionγ, we always deposit2α credits to each group inIH . Fur-
thermore, ifγ does not fall into any group ofIH (recall that in
this case our algorithm insertsγ into S), we deposit another one
credit toγ. Since|IH | ≤ 2/α by (I1), an insertion deposits at most
2α · (2/α) + 1 = 5 credits. For each deletionγ, if γ belongs to
a groupIi in IH , we deposit two credits to the groupIi; otherwise
we deposit nothing. Clearly, if there are a total number ofn inser-
tions and deletions, the total number of credits deposited is O(n).
By the discussion of the previous paragraph, we then know that the
amortized number of intervals moving into or out ofS is O(1) for
each update.

It remains to show that (i) and (ii) hold for the above credit-
deposit scheme. By the above discussion, we know that (i) is an
easy consequence of (ii). So we only have to show (ii).

Let Ii ∈ IH be a group to be demoted. We know thatIi was
promoted toIH at an earlier time. Letx0 be the size ofIi andn0

be the size ofI at the time of its promotion. Also letx1 be the size
of Ii andn1 be the size ofI at the time of its demotion. It is clear
that x0 ≥ αn0 andx1 < (α/2)n1. Supposek insertions andℓ
deletions occur inI between the times of promotion and demotion.
Thenn1 = n0 + k − ℓ.

Because the size ofIi changes fromx0 to x1. At leastx0 − x1

deletions happened to the groupIi (x0 − x1 might be a negative
number, but it does not hurt our argument). Therefore, at least
2(x0 − x1) credits are deposited intoIi by those deletions. Mean-
while, Ii also receives2αk credits from thek insertions. In total,
Ii must have accumulated at least2(x0 −x1)+2αk credits for the
time period from its promotion to its demotion. Observe that

2(x0 − x1) + 2αk ≥ 2(αn0 − αn1/2) + 2αk

= 2αn0 − α(n0 + k − ℓ) + 2αk

= αn0 + αk + αℓ

≥ α(n0 + k − ℓ) = αn1.

In other words,Ii has accumulated at leastαn1 credits before its
demotion, as desired.

Finally, the bound on the amortized cost is a corollary of (I3) and
Lemma 2. Note that the cost for each update is dominated by the
cost for updatingIS using Lemma 2. Since the amortized num-
ber of intervals moving into and out ofS is O(1) per update, by
Lemma 2, we know that the amortized cost for updating the stab-
bing partitionIS of S is O(ε−1 log |I |).

34

2.3 Dynamic Stabbing Partitions
This section is devoted to an efficient implementation of Lemma 2.

Because it is not a prerequisite for the subsequent discussions of
this paper, this section can be skipped at the reader’s discretion.

We first observe that if one were to maintain the smallest stab-
bing partition ofI (such as the canonical stabbing partition) as in-
tervals are inserted or deleted, then the stabbing partition of I may
completely change after a small constant number of insertions or
deletions. (A simple example is omitted for brevity.) Thus,we
resort to a stabbing partition ofapproximatelysmallest size. More
precisely, we want to maintain a partition of size at most(1+ε)τ (I)
for some parameterε > 0, where recall thatτ (I) is the size of the
smallest stabbing partition ofI . Although the quality of the stab-
bing partition is compromised, the benefit of resorting to anap-
proximation is that the cost required for maintaining such arelaxed
partition is much lower than for maintaining the smallest one.

Typically we chooseε to be a small constant. The value ofε can
be used as a tunable parameter to achieve flexible tradeoffs between
the quality of the stabbing partition and the maintenance cost: a
smallerε results in a better stabbing partition, but also increases
the maintenance cost. Next we describe in detail how to maintain
the stabbing partitions.

A simple strategy. We sketch a lazy maintenance strategy that
guarantees the quality of the stabbing partition. It is veryeasy to
implement and works reasonably well in practice, but may perform
poorly in the worst case.

Let I be a set ofn intervals, andε > 0 be a fixed positive pa-
rameter. The lazy strategy works as follows. We begin with the
canonical stabbing partitionI of I of sizeτ0 = τ (I) as well as a
corresponding stabbing setP . When a new intervalγ is inserted
into I , we simply pick a pointpγ ∈ γ and letP = P ∪ {pγ}; we
also create a singleton group{γ} and add it toI. When an interval
γ is deleted fromI , suppose thatγ belongs to some groupIi ∈ I.
We then removeγ from Ii, and if Ii becomes empty after the re-
moval ofγ, we also removeIi from I and the stabbing point ofIi

from P . After ετ0/(ε + 2) number of insertions and deletions, we
trigger areconstruction stage: we use Lemma 1 to reconstruct the
canonical stabbing partition (whose size isτ (I)) for the currentI ,
which takesO(n log n) time.

LEMMA 3. The above procedure maintains a stabbing parti-
tion of size at most(1 + ε)τ (I) at all times.

PROOF. Omitted for brevity.

The above strategy can be refined in several ways to improve its
efficiency at runtime. For example, for a newly inserted interval γ,
if there already exists a pointpi in the current stabbing set that stabs
γ, and supposepi is the stabbing point for the groupIi, then we
can simply addγ into Ii, instead of creating a new singleton group
{γ} in the stabbing partition. A more careful implementation isto
maintain the common intersection of each group, instead of just a
single stabbing point. For each new insertionγ, we check whether
there exists a group whose common intersection overlaps with γ,
and if so, addγ to that group.

The condition for triggering a reconstruction stage (i.e.,when
the total number of insertions and deletions reachesετ0/(ε + 2))
can also be relaxed. LetI denote the set of intervals after the last
reconstruction andτ0 = τ (I). Suppose thatm intervals have been
deleted fromI so far since the last reconstruction (the total number
of deletions so far could be larger because some intervals may be
inserted and subsequently deleted), then we invoke a reconstruction
stage only if|P | ≥ (1 + ε)(τ0 − m), where|P | is the size of the
maintained stabbing set at that time. Note that it is weaker than the

old trigger condition, and hence leads to less frequent invocations
of reconstruction stages.

A refined algorithm. The amortized cost per insertion and dele-
tion in the above simple strategy isO(n log n/(ετ0)). In the full
version of the paper [1], we describe a refined algorithm for main-
taining the stabbing partition inO(ε−1 log n) amortized time per
update, by a careful implementation of the reconstruction stage in
the above simple strategy. Moreover, each insertion or deletion af-
fects onlyonegroup in the stabbing partition. In the general SSI
scheme, changes in the stabbing partition often need to be propa-
gated to the data structures associated with the groups of the stab-
bing partition. Our algorithm therefore requires infrequent prop-
agations and is suitable for real-time applications. Due tospace
constraint we only state the main result and leave the detailed algo-
rithm and its pseudocode to the full version of this paper [1].

THEOREM 2. Let ε > 0 be a fixed parameter. The above al-
gorithm maintains a stabbing partition ofI of size at most(1 +
ε)τ (I) at all times. The amortized cost per insertion and deletion
is O(ε−1 log |I |). Before the reconstruction stage, each insertion
or deletion affects at most one group in the stabbing partition.

3. APPLICATIONS
In this section we give three representative applications of our

stabbing set index (SSI) and hotspot-tracking schemes: scalable
processing of continuous band joins, continuous equality joins with
local selections, and building histograms for selectivityestimation.
Each of these applications has a somewhat different flavor, and
achieves notable performance improvement over traditional pro-
cessing techniques. This list of applications is not meant to be ex-
haustive, but should help illustrate the main idea of our techniques.

In particular, we consider the following two types of continuous
queries over relationsR(A,B) andS(B, C):

Equality join with local selections:
σA∈rangeAR ⊲⊳R.B=S.B σC∈rangeCS.

Band join: R ⊲⊳S.B−R.B∈rangeB S.
In equality join with local selections, the query parametersrangeA
andrangeC in the local selection conditions are ranges over nu-
meric domains ofR.A andS.C, respectively. In band join,rangeB
in the join condition is a range over the numeric domain ofR.B and
S.B. These two types of queries are important in their own right,
and also essential as building blocks of more complex queries. We
give two examples of these queries below.

Example 1. Consider a listing database for merchants with the
following two relations:Supply(suppId, prodId, quantity, . . .),
andDemand(custId, prodId, quantity, . . .). Merchants are in-
terested in tracking supply and demand for products. Each mer-
chant, depending on its size and business model, may be interested
in different ranges of supply and demand quantities. For example,
wholesalers may be interested in supply and demand with large
quantities, while small retailers may be interested in supply and
demand with small quantities. Thus, each merchant defines a con-
tinuous query

σquantity∈rangeSi
Supply ⊲⊳ σquantity∈rangeDi

Demand,

which is an equality join (with equality imposed onprodId) with
local range selections.

Example 2. For an example of band joins, consider a monitoring
system for coastal defense with relationsUnit(id, model, pos, . . .)
andTarget(id, type, pos, . . .), wherepos specifies points on the
one-dimensional coast line. We want to get alerted when a target

35

appears within the effective range of a unit. For each class of units,
e.g., gun batteries, a continuous query can be defined for this pur-
pose: e.g.,

σmodel=’BB’Unit ⊲⊳Units.pos−Targets.pos∈range σtype=’surface’Target.

whereBB is a fictitious model of gun batteries,range is the firing
range of this model, and the selection condition onTarget captures
the fact that this model is only effective against surface targets. This
continuous query is a band join with local selections. Note that
for different classes of units, the band join conditions aredifferent
because of different firing ranges.

3.1 Band Joins
We first consider the problem of processing a group of continu-

ous band joins, each of the formR ⊲⊳S.B−R.B∈rangeBi
S. When

a newR-tupler arrives, we need to identify the subset of contin-
uous queries whose query results are affected byr and compute
changes to these results. The case in which a newS-tuple arrives
is symmetric.

Previous approaches. We first note that existing techniques based
on sharing identical join operations [7] do not apply to bandjoins
because eachrangeBi can be different. The state-of-art approach
to handle continuous queries with different join conditions is pro-
posed by PSoup [6], where multiple “hybrid structures” (i.e., data-
carrying, partially processed join queries) are applied toa database
relation together as a group, by treating these structures as a rela-
tion to be joined with the database relation.

Following the PSoup approach, we can process each newR-
tupler as follows. First, we “instantiate” the band join conditions
by the actual value ofr.B, resulting in a set of selection condi-
tions {S.B ∈ rangeBi + r.B} local to S. Then, this set of se-
lections can be treated as a relation of intervals{rangeBi + r.B}
and joined withS; eachS-tuples such thats.B stabs the interval
rangeBi + r.B corresponds to a new result tuplers for the i-th
band join. Depending on which join algorithms to use, we have
several possible strategies.

• BJ-QOuter(band join processing with queries as the outer
relation) processes each intervalrangeBi + r.B in turn, and
uses an ordered index onS(B) (e.g., B-tree) to search for
S-tuples within the interval.

• BJ-DOuter(band join processing with data as the outer re-
lation) utilizes an index on ranges{rangeBi} (e.g., priority
search tree or external interval tree). For eachS-tuples, BJ-
DOuter probes the index for ranges containings.B − r.B.

• BJ-MJ(band join processing with merge join) uses the merge
join algorithm to join the intervals{rangeBi + r.B} with
S. This strategies requires that we maintain the intervals
{rangeBi} in sorted order of their left endpoints (note that
addition ofr.B does not alter this order), and that we also
maintainS in sortedS.B order (which can be done by an
ordered index, e.g., B-tree, onS(B)). Otherwise, BJ-MJ re-
quires additional sorting.

Clearly, all three strategies have processing times at least linear in
the size ofS or in the number of band joins (the detailed bounds are
provided in Theorem 3 below), which may be unable to meet the
response-time requirement of critical applications. The difficulty
comes in part from the fact that each continuous band join hasits
own join condition, and at first glance it is not clear at all how
to share the processing cost across different band joins. Our SSI-
based approach overcomes this difficulty.

The SSI approach. We now present an algorithm,BJ-SSI(band
join processing with SSI), based on an SSI for the continuous queries
constructed on the band join ranges{rangeBi}. The index struc-
ture is rather simple. Each groupIj in the SSI is stored in two
sequencesI l

j andIr
j : I l

j stores all ranges inIj in increasing order
of their left endpoints, whileIr

j stores all ranges inIj in decreas-
ing order of their right endpoints. The total space of these sorted
sequences is clearly linear in the number of queries. We alsobuild
a B-tree index onS(B).

pj

s1 − b s2 − b

Ij

s1 s2 S(B)
pj + b

Figure 4: The SSI algorithm for band join processing. Arrows
indicate the order in which the intervals are visited.

When a newR-tupler(a, b) is inserted, the problem is to identify
all band joins that are affected and compute results for them. In
terms of the ranges that we index in the SSI, we are looking forthe
set of all rangesrangeBi that are stabbed by some points.B − b
wheres ∈ S.

BJ-SSI processes the newR-tuple r(a, b) in two steps: in the
first step it finds all queries that are affected byr, and in the second
step it returns the new results for each affected query.

(STEP1) BJ-SSI proceeds for each groupIj in the SSI as follows.
Using the B-tree index onS(B), we look up the search keypj + b,
wherepj is the stabbing point forIj . This lookup locates the two
adjacent entries in the B-tree whoseS.B valuess1 ands2 surround
the pointpj + b (or equivalently,s1 − b ands2 − b surroundpj ,
as illustrated in Figure 4). If eithers1 or s2 coincides withpj + b,
then it is obvious that all queries inIj are affected by the incoming
update (at the very least theS-tuple withB = pj + b joins with r
for all these queries). Otherwise, the exact subset of queries inIj

affected by the incoming tuple can be identified as follows (see the
left part of Figure 4): (1) We scanI l

j in order up to the first query
range with left endpoint greater thans1−b; all queries encountered
before this one are affected. (2) Similarly, we scanIr

j in order up
to the first query range with right endpoint less thans2 − b; again,
all queries encountered before this one are affected.

To see that the above procedure correctly returns the set of all
affected continuous band joins inIj , recall that all query ranges in
Ij are stabbed by the pointpj . Any query range whose left endpoint
is less than or equal tos1−b must contains1−b (because it contains
pj); similarly, any query range whose right endpoint is greater than
or equal tos2 − b must contains2 − b. On the other hand, query
ranges whose left and right endpoints fall in the gap betweens1−b
ands2 − b produce no new join result tuples, becauses1 ands2

are adjacent in the B-tree onS(B) and hence there is noS-tuples
such thats.B ∈ (s1, s2).

(STEP 2) Once we have found the set of all affected queries in
Ij , we can compute changes to the results of these queries as fol-
lows (see right part of Figure 4). Observe that the query interval of
each affected continuous query in the groupIj covers a consecutive
sequence ofS-tuples, including eithers1 or s2. Therefore, to com-
pute the new result tuples for each affected query, we can simply
traverse the leaves of the B-tree index onS(B), in both directions
starting from the pointpj + b (which we have already found ear-

36

lier), to produce result tuples for this query. We stop as soon as we
encounter aS.B value outside the query range.

In summary, BJ-SSI has the following nice properties:

(1) BJ-SSI never considers a tuple inS unless it contributes to
some join result or happens to be closest to some stabbing
point offset byb (there are at most two such tuples per group);

(2) BJ-SSI never considers a band join query unless it will gen-
erate some new result tuple or it terminates the scanning of
someI l

j or Ir
j (again, there are at most two such queries per

group).

In contrast, BJ-QOuter, BJ-DOuter, and BJ-MJ must scan either all
queries or all tuples inS, many of which may not actually con-
tribute any result. We conclude with the following theorem.

THEOREM 3. Letn denote the number of continuous band joins,
τ denote the stabbing number,m denote the size ofS, andk de-
note the output size. The worst-case running times to process an
incomingR-tuple are as follows:

• BJ-QOuter:O(n log m + k);

• BJ-DOuter:O(m log n + k);

• BJ-MJ:O(m + n + k).

• BJ-SSI:O(τ log m + k);

SSI + hotspot-tracking. Applying BJ-SSI to the setIH of Theo-
rem 1 (i.e., the collection of hotspots), we immediately obtain an ef-
ficient algorithm for processing the subset of hotspot queries. Note
that |IH | ≤ 2/α, hence by Theorem 3 (withτ ≤ 2/α), we can
then process all hotspot queries inO(α−1 log m + k) time, which
is a huge speedup in comparison to the other processing strategies.

3.2 Equality Joins with Local Selections
We now turn our attention to the problem of processing continu-

ous equality joins with local selections, each of the form

σA∈rangeAi
R ⊲⊳R.B=S.B σC∈rangeC i

S.

Each such query can be represented by a rectangle spanned by
two rangesrangeCi andrangeAi in the two-dimensional product
spaceS.C×R.A, as illustrated in Figure 5. Suppose that a newR-
tupler(a, b) has been inserted. In the product spaceS.C × R.A,
each tuplers resulted from joiningr with S can be viewed as a
point on the lineR.A = a because these tuples have the sameR.A
value (fromr) but differentS.C values (from differentS-tuple that
join with r). We call these pointsjoin result points. To identify
the subset of affected queries and compute changes to the results of
these queries, our task reduces to reporting which query rectangles
cover which join result points.

Previous approaches. When a newR-tuple r arrives, there are
two basic strategies depending on the order in which we process
joins and selections.

• SJ-JoinFirst(select-join processing with join first) proceeds
as follows: (1) it first joinsr with S; (2) for each join result
tuple, it checks the local selection conditions to see which
continuous queries are affected. In more detail, the join be-
tweenr andS can be done efficiently by probing an index
on S(B) (e.g., a B-tree) usingr.B. For each join result tu-
ple rs with r.B = s.B, we then probe a two-dimensional
index (e.g., an R-tree) constructed on the set of query rectan-
gles{rangeCi × rangeAi} with the point(s.C, r.A). The

subset of continuous queries that need to returnrs as a new
result tuple are exactly those whose query rectangles contain
the point(s.C, r.A).

• SJ-SelectFirst(select-join processing with selection first) pro-
ceeds as follows: (1) it first identifies the subset of contin-
uous queries whose local selections onR are satisfied by
the incoming tupler; (2) for each such query, it computes
new result tuples by joiningr with S and applying the lo-
cal selection onS. In more detail, to identify the subset of
continuous queries whose local selections onR are satisfied
by r, we can user.A to probe an index on query ranges
{rangeAi} (e.g., a priority search tree [8] or external in-
terval tree [3]). To compute the new result tuples for each
identified query with query rangerangeCi onS, we can use
an ordered index forS with composite search keyS(B, C)
(e.g., a B-tree). We search the index forS-tuples satisfying
S.B = r.B ∧ S.C ∈ rangeCi.

Both SJ-JoinFirst and SJ-SelectFirst are prone to the problem of
large intermediate results generated at step (1) of each algorithm.
Consider the supply/demand example again. Suppose that ourmer-
chants are not interested in matching low-quantity supply with high-
quantity demand (though many are interested in matching supply
and demand that are both low in quantity). Further suppose that a
particular product is in popular demand and mostly with highquan-
tities. When a low-quantity supply source for this product appears,
it will generate lots of joins (in the SJ-JoinFirst case) andsatisfy
local selections of many continuous queries (in the SJ-SelectFirst
case), but very few continuous queries will actually be affected
in the end. Therefore in this case, neither SJ-JoinFirst norSJ-
SelectFirst is efficient because of the large intermediate results gen-
erated at step (1).

The SSI approach. We now present our algorithm,SJ-SSI(select-
join processing with SSI), which circumvents the aforementioned
problems of SJ-JoinFirst and SJ-SelectFirst by using an SSIfor
the continuous queries constructed on the local selection ranges
{rangeCi}, i.e., projections of the query rectangles onto theS.C
axis. (Here we focus on processing incomingR-tuples; to pro-
cess incomingS-tuples, we would need a corresponding SSI con-
structed on{rangeAi}.) Each group in the SSI is stored as an
R-tree that indexes the member queries by their query rectangles.
The total space of these data structures is linear in the number of
queries since each query is stored only once in some group.

a

R.A

S.C
q2

pj

rangeC i

ra
n
ge

A
i

q1

Figure 5: The SSI algorithm for processing equality joins with
local selections.

To process an insertionr into R, for each groupIj with stabbing
point pj , we look for the search key(r.B, pj) in a B-tree index of
tableS on S(B, C). This lookup locates the two joiningS-tuples
whoseC valuesq1 andq2 are closest (or identical) topj from left
and from right, respectively. Looking at Figure 5, they correspond

37

to the two join result points(q1, a) and(q2, a) closest to(pj , a) in
the product spaceS.C × R.A. We use these two join result points
to probe the R-tree for groupIj . In the event that eitherq1 or q2

coincides withpj , only one probe is needed.
We claim that the query rectangles returned by the R-tree lookup

constitute precisely the set of continuous queries inIj that are af-
fected byr. To see this, recall that by our construction, all queries
in the groupIj intersects the lineS.C = pj . Any query inIj

that contains neither(q1, a) nor (q2, a) cannot possibly contain
any join result point at all — such queries either do not intersect
the lineR.A = a or happen to fall in the gap betweenq1 andq2.
On the other hand, any query that contains either(q1, a) or (q2, a)
is clearly affected and produces at least one of the two join result
points.

Finally, observe that the query rectangle of each affected contin-
uous query in the groupIj covers a consecutive sequence of join
result points on the lineR.A = a, including eitherq1 or q2 (see
Figure 5). Therefore, to compute the new result tuples for each
affected query, we can proceed as follows. For each query rectan-
gle returned, we traverse the leaves of the B-tree onS(B, C), in
both directions starting from the entries forq1 andq2, to produce
all result tuples for this query. We stop as soon as we encounter a
differentS.B value or aS.C value outside the query range. This is
similar to what we have done for band joins in the previous section.

SJ-SSI avoids the problems of SJ-JoinFirst and SJ-SelectFirst be-
cause of the following nice properties:

(1) SJ-SSI never considers a join result point unless it is covered
by some query rectangle or is closest to some stabbing point;

(2) SJ-SSI never considers a query rectangle unless it covers
some join result point.

To summarize, we give the complexity of SJ-JoinFirst, SJ-SelectFirst,
and SJ-SSI in the following theorem.

THEOREM 4. Let n denote the number of continuous equality
joins,τ denote the stabbing number,m denote the size ofS, andk
denote the output size. Furthermore, letg(n) denote the complexity
of answering a stabbing query on an index ofn two-dimensional
ranges. The worst-case running times to process an incomingR-
tuple are as follows:

• SJ-JoinFirst: O(log m + m′g(n) + k), wherem′ ≤ m is
the number ofS-tuples that join with the incoming tuple;

• SJ-SelectFirst:O(log n+n′ log m+k), wheren′ ≤ n is the
number of queries whose local selections onR are satisfied
by the incoming tuple;

• SJ-SSI:O(τ (log m + g(n)) + k).

SSI + hotspot-tracking. Applying SJ-SSI to the setIH of Theo-
rem 1 (i.e., the collection of hotspots), we immediately obtain an ef-
ficient algorithm for processing the subset of hotspot queries. Since
|IH | ≤ 2/α, by Theorem 3 (withτ ≤ 2/α), we can then process
all hotspot queries inO(α−1(log m + g(n)) + k) time, which is
in sharp contrast to the other two algorithms, whose runningtimes
are at the mercy of the size of the intermediate resultsm′ or n′.

3.3 Histograms for Intervals in Linear Time
In this section we consider the following problem, which canbe

used for estimating the number of continuous join queries whose
local selection conditions are satisfied by an incoming tuple. Let
I be a set of intervals. Given anx ∈ R, we want to estimate how
many intervals ofI are stabbed byx. We denote byfI(x) be the

number of intervals stabbed byx in I . The basic idea is clearly
to build a histogramh(x) (i.e., a step function) that approximates
the functionfI(x). Assuming that the distribution of the incoming
tuplex is governed by a probability density functionφ(x), then the
mean-squared relative error betweenh(x) andfI(x) is

E2(h, fI) =

Z

|h(x) − fI(x)|2

|fI(x)|2
φ(x) dx.

Our goal is to find a histogramh(x) with few break points that
minimizes the above error. We assume thatφ(x) is given; it can be
acquired by standard statistical methods at runtime.

Previous approaches. Most known algorithms for the above prob-
lem or similar problems use dynamic programming, whose running
time is polynomial but rather large [15, 17]. In contrast, our new
algorithm below is simple, runs in nearly linear time, and often
provides a high-quality histogram. To be fair though, the dynamic-
programming approaches usually guarantee to find an optimalso-
lution (i.e., minimizing the error), while the histogram returned by
our algorithm does not. Nonetheless, since histograms are primar-
ily for estimation purposes, an optimal histogram is not really nec-
essary in practice.

Our approach. Our new approach radically differs from those
dynamic-programming approaches, by taking advantage of the fol-
lowing main observation: Computing an optimal histogram for each
group of a stabbing partition ofI can be reduced to a simple geo-
metric clustering problem. The algorithm is simple to implement,
modulo a standard one-dimensionalk-means clustering subroutine.

In more detail, we first compute the canonical stabbing partition
I = {I1, · · · , Iτ} for I as in Lemma 1, and then build a histogram
for each group ofI. The final histogram is obtained by summing
up these histograms. Letpi be the stabbing point of anα-hotspot
Ii ∈ I, and letf l

Ii
(resp.fr

Ii
) be the part of the functionfIi

to
the left (resp. right) ofpi. To compute the histogramhi(x) for a
hotspotIi, we compute two functionshl

i andhr
i to approximatef l

Ii

andfr
Ii

respectively, and then lethi(x) = hl
i(x) + hr

i (x).
We now focus on how to compute a histogramhl

i(x) with at most
k buckets to minimize the errorE2(hl

i, f
l
Ii

), wherek is a given
fixed parameter; the case for computinghr

i is symmetric. Clearly,
f l

Ii
is a monotonically increasing step function (see Figure 6);let

x1, · · · , xm be the break points off l
Ii

. Assume without loss of
generality thatk < m.

LEMMA 4. There is an optimal histogram with at mostk buck-
ets such that each bucket boundary passes through one of the break
pointsx1, · · · , xm.

PROOF. Take any optimal histogram whose bucket boundaries
do not necessarily pass through those break points. Observethat no
bucket completely lies between any two consecutive break points
xj and xj+1; otherwise one can expand the bucket to the entire
interval [xj , xj+1] and decrease the error. As such, there is at most
one bucket boundary betweenxj and xj+1. This boundary can
be moved to eitherxj or xj+1 without increasing the error. Repeat
this process for all such boundaries and we obtain a desired optimal
histogram.

By the above lemma, it is sufficient to consider those histograms
whose bucket boundaries pass through the break pointsx1, · · · , xm.
For such a histogramhl

i, suppose its bucket boundaries divide the
break points intok groups:

{xz0+1, · · · , xz1
}; {xz1+1, · · · , xz2

}; · · · ; {xzk−1+1, · · · , xzk
},

38

Ij Ij+1 Ij+2Ii

x1 x2 x5x4x3 x6 hj hj+2
x7 hj+1

Figure 6: Reducing to a one-dimensional weightedk-means
clustering problem.

wherez0 = 0 andzk = m. Furthermore, let the value ofhl
i within

the j-th bucket be a constantcj , for 0 ≤ j < k. Then the error
E(hl

i, f
l
Ii

) can be written as

E2(hl
i, f

l
Ii

) =

k−1
X

j=0

zj+1
X

ℓ=zj+1

|yℓ − cj |
2

|yℓ|2

Z xℓ+1

xℓ

φ(x) dx, (1)

whereyℓ = f l
Ii

(xℓ).
To find a histogramhl

i(x) that minimizes (1), we solve the fol-
lowing weightedk-means clustering problem in one dimension:
Given a set ofm pointsy1 = f l

Ii
(x1), · · · , ym = f l

Ii
(xm), and a

weight wℓ =
R xℓ+1

xℓ
φ(x) dx/|yℓ|

2 for each pointyℓ, find k cen-
tersc1, · · · , ck and an assignment of eachyℓ to one of the centers
so that the weightedk-means clustering cost is minimized (see the
left part of Figure 6). We have the following lemma to establish the
correctness of our algorithm.

LEMMA 5. Minimizing (1) is equivalent to solving the above
weightedk-means clustering problem.

Since typically the total amount of buckets allocated to thewhole
histogram is fixed, the remaining issue is how to assign available
buckets to each groupIi. One way to completely get around this
problem is to map all points in eachIi into a one-dimensional space
such that the points within each group are sufficiently far away from
the points in other groups, as shown in the right part of Figure 6.
Then we can run thek-means algorithm of [14] on the whole point
set to compute anε-approximate optimal histogram in nearly lin-
ear timeO(n) + poly(k, 1/ε, log n), which automatically assigns
an appropriate number of buckets to eachIi. In practice, one may
wish to use the simpler iterativek-means clustering algorithm [11]
instead. Since the iterativek-means algorithm is sensitive to the ini-
tial assignment of clusters, we can heuristically assign each group a
number of buckets proportional to the cardinality of the group. We
then run the iterativek-means algorithm on each group separately.

4. EXPERIMENTS
To compare our techniques against traditional processing tech-

niques in terms of their scalability with a large number of continu-
ous queries, we have implemented various algorithms discussed in
previous sections in Java SDK 1.5.0. Unless otherwise noted, all
experiments were conducted on a Sun Blade 150 with a650MHz
UltraSPARC-III processor and512 MB of memory. We measured
the processing throughput, i.e., the number of data update events
that each approach is able to process per second. We excluded
the output time from measurement since it is application-dependent
and common to all approaches. We also measured the cost of main-
taining associated data structures in all approaches.

Workload generation. We generated two synthetic tablesR(A,B)
andS(B, C), whereB is the join attribute andA, C are the local
selection attributes, all integer-valued. Each table contains100, 000

tuples indexed by standard B-trees.R is updated by an incoming
stream of insertion events, whoseA andB values are drawn uni-
formly at random from the respective domains. For tuples inS,
their C values are uniformly distributed, while theirB values fol-
low a discretized normal distribution, in order to model varying join
selectivity.

We created two sets of continuous queries, each with100, 000
queries initially. The first set consists of equality joins with local
selections discussed in Section 3.2, and the second set consists of
band joins discussed in Section 3.1. The midpoints ofrangeAi

follow a normal distribution, and the midpoints ofrangeBi and
rangeCi are uniformly distributed. The lengths of all ranges are
normally distributed. At runtime, users may insert new continuous
queries, and delete or update existing ones. Table 1 summarizes
the data and workload parameters, whereµi’s andσi’s are used to
adjust various input characteristics that affect performance, such as
selectivities of incoming events against continuous queries as well
as the degree of overlap among continuous queries.

Parameter Value
Size of each base table 100, 000

Initial number of continuous queries 100, 000
Join attributeR.B Uni(0, 10000)

Local selection attributeR.A, S.C Uni(0, 10000)
Join attributeS.B Normal(5000, 1000)
Domain ofS.B [0, 10000]

Midpoint of rangeAi Normal(µ1, σ2
1
)

Length ofrangeAi,rangeCi Normal(µ2, σ2
2
)

Midpoint of rangeBi, rangeCi Uni(0, 10000)
Length ofrangeBi Normal(µ3, σ2

3)

Table 1: Experimental parameters.

Equality joins with local selections. In addition to the algo-
rithms SJ-SSI, SJ-J(oinFirst), and SJ-S(electFirst) discussed in Sec-
tion 3.2, we have also implemented an algorithm called NAIVE,
which first joins the newR tuple with S to generate a list of in-
termediate result tuples ordered byS.C, and then evaluates the
local selections of each continuous query over this intermediate
result. NAIVE serves as a baseline for comparison; its cost is
O(log m + n log |S′| + k), whereS′ is the subset ofS that joins
with the newR tuple.

To focus our attention on the effectiveness of SJ-SSI itself, we
first present a series of results obtained by applying SJ-SSIto all
stabbing groups (regardless of whether they are hotspots).We then
present results for combining SSI and hotspots afterwards.

Figure 7(i) compares the throughput of various approaches as the
number of continuous queries increases from10 to100, 000. In this
set of experiments, the stabbing number for{rangeCi} is roughly
30; each incomingR tuple on average joins with1000 S tuples.
In this figure, we see that NAIVE’s performance degrades linearly
with the number of continuous queries and therefore is completely
unscalable. The average selectivity of an event on the localselec-
tion ranges{rangeAi} is 0.1; that is, an incoming event satisfies
theR.A selection for10% of all continuous queries. Consequently,
SJ-S, which works by iterating through queries whoseR.A selec-
tion is satisfied, performs well only when the number of queries is
small. Similar to NAIVE, it degrades linearly with the number of
queries and thus is not scalable either. The performance decrease
of SJ-J can be attributed to higher cost in two-dimensional point
stabbing queries; in our experiments we used R-trees to support
these queries. Although the performance of SJ-J does not drop as
drastically as SJ-S and NAIVE, its throughput is less than5% of
SJ-SSI in the case of100k queries.

39

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

NUMBER OF CONT. QUERIES

T
H

R
O

U
G

H
P

U
T

NAIVE
SJ−J
SJ−S
SJ−SSI

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

NUMBER OF STABBING GROUPS

T
H

R
O

U
G

H
P

U
T

NAIVE
SJ−J
SJ−S
SJ−SSI

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10
x 10

5

EVENT SELECTIVITY ON LOCAL R.A SELECTIONS

T
H

R
O

U
G

H
P

U
T

SJ−S
SS−SSI

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

EVENT SELECTIVITY ON JOINING TABLE S

T
H

R
O

U
G

H
P

U
T

NAIVE
SJ−J
SJ−S
SJ−SSI

(i) (ii) (iii) (iv)

Figure 7: Throughput of equality joins with local selections (i) over number of continuous queries, (ii) over size of stabbing partition,
(iii) over event selectivity with respect to local selections onR.A, and (iv) over event selectivity with respect to the joining tableS.

Compared with the other approaches, SJ-SSI demonstrates ex-
cellent scalability. Its throughput only drops by less than20% when
the number of queries increases from100 to 100, 000. The reason
is that SJ-SSI depends primarily on the number of stabbing groups
rather than the number of queries. As long as the number of groups
is stable (roughly30 for these experiments), SJ-SSI’s performance
is relatively stable. The slight performance drop comes from the
increasing cost of the point stabbing query within each stabbing
group, because each group on average contains more queries.

Figure 7(ii) compares the performance of various approaches
over a range of clusteredness amongrangeCi’s. The number of
continuous queries stays at100, 000, but we increase the num-
ber of stabbing groups by decreasing mean and variance of inter-
val lengths. As can be seen, NAIVE and SJ-S are completely in-
different about the clusteredness of queries, while SJ-SSIbenefits
from smaller numbers of stabbing groups. SJ-S outperforms SJ-SSI
when there are more than250 stabbing groups, as the event selec-
tivity on R.A selections is roughly250 in these experiments. In the
worse case, when all query ranges are disjoint, SJ-SSI degenerates
to NAIVE. As a side node, it is interesting that SJ-J performsbetter
on less clustered queries. The reason is that the cost of querying an
R-tree tends to be lower if the indexed objects overlap less.

Figure 7(iii) shows the throughput of SJ-S and SJ-SSI when we
decrease the average event selectivity on localR.A selections (SJ-
J and NAIVE are unaffected by this parameter). We control this
selectivity by fine-tuning the distribution ofrangeAi’s. From this
figure, we see that SJ-S is very sensitive to this selectivity, over
which its throughput deteriorates linearly (since this selectivity di-
rectly controls how largen′ is in Theorem 4). On the other hand,
SJ-SSI is unaffected by this selectivity.

Figure 7(iv) studies the impact of event selectivity on joining
tableS, i.e., how manyS tuples join with the incoming event, con-
trolled by fine-tuning the distribution ofS.B. Except for SJ-J, all
other approaches are immune to increase in this selectivity. SJ-J’s
performance degrades linearly as the number of intermediate join
result tuples increases.

SSI + hotspot-tracking. In all previous experiments we applied
SJ-SSI to every group in the stabbing partition, ignoring the hotspot
optimization. Now, we conduct experiments to demonstrate the
effect of hotspot-tracking in group processing equality joins with
local selections. For each experiment in this set, we generate a
workload of500, 000 queries, with varying degrees of clustered-
ness across these workloads. We choose a fairly smallα value (on
the order of0.1%) for each workload, such that no more than500
groups are chosen asα-hotspots. In Figure 8, the horizontal axis
shows the ten workloads in increasing degree of clusteredness, la-
beled by the percentage of intervals in hotspots.100% means that

queries are highly clustered since top500 stabbing groups cover
all 500, 000 intervals, while10% means the queries are relatively
scattered and consequently top500 stabbing groups can only cover
10% of all intervals.

The vertical axis of Figure 8 plots the average processing time
per event, measured over10, 000 events for each experiment. We
compare two approaches here: TRADITIONAL simply use SJ-
S(electFirst); HOTSPOT-BASED uses SJ-SSI on the hotspots,and
SJ-S on the remaining, scattered intervals. The traditional approach,
unable to exploit the clusteredness, behaves identically across work-
loads. On the other hand, the performance of the hotspot-based ap-
proach improves linearly with the increasing coverage by hotspots,
as it benefits from the ability of SSI in exploiting clusteredness for
efficient group processing. Moreover, this hotspot-based approach
offers an additional advantage over the “purist” approach of ap-
plying SJ-SSI to every stabbing group. By restricting SJ-SSI to
hotspots, the hotspot-based approach is able to focus on large stab-
bing groups where SJ-SSI really shines, while avoiding the over-
head of going over a large number of small groups for which SJ-SSI
may be outperformed by more traditional approaches.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

PERCENTAGE OF INERVALS IN HOTSPOTS (%)

P
R

O
C

E
S

S
IN

G
 T

IM
E

 (µ
 s

)

TRADITIONAL
HOTSPOT−BASED

Figure 8: SSI with hotspot-tracking.

Band joins. In this set of experiments, we study the performance
of our SSI-based algorithm for band-join queries. We compare
BJ-SSI with BJ-D(Outer), BJ-Q(Outer), and BJ-MJ, discussed in
Section 3.1. Again, to focus our attention on the effectiveness of
BJ-SSI itself, we show results of applying BJ-SSI to all stabbing
groups without the hotspot optimization.

Figure 9(i) shows the throughput of various approaches over an
increasing number of continuous queries from50 to 500, 000. As
the number of queries increases, the number of stabbing groups
also increases from about10 to 60 accordingly. In BJ-D, for each
tuple in base tableS, an offset is added and used to probe the index

40

of all band join windows. Although BJ-D is not very sensitiveto
the number of queries, it is inefficient because a large base table
will easily destroy the throughput. BJ-Q, similar to NAIVE,com-
pletely breaks down on a large number of queries. Its throughput
drops below100 when there are more than1000 queries. The pro-
cessing time of BJ-MJ is linear both in the size of the base table and
in the number of queries. As shown in the figure, BJ-MJ enjoys a
stable throughput when the number of queries is small, because the
cost of traversing the sorted base table dominates the totalquery
time. However, once the number of queries reaches50, 000, the
throughput of BJ-MJ starts to decrease quickly. In sharp contrast,
BJ-SSI always outperforms the other approaches by orders ofmag-
nitudes, and is very stable over an increasing number of queries. Its
performance drops to roughly1/3 when the number of queries has
increased by a factor of104.

Figure 9(ii) shows the throughput over an increasing number of
stabbing groups, while the total number of continuous queries is
kept constant at100, 000. We have omitted BJ-Q in this figure due
to its extremely poor performance on a large number of queries. BJ-
MJ and BJ-D are insensitive to the number of the stabbing groups,
while the performance of BJ-SSI deteriorates linearly as this num-
ber increases. Nevertheless, BJ-SSI outperforms the othertwo ap-
proaches even when there are as many as5000 groups in the parti-
tion, which is a fairly large number in practice.

50 500 5000 50000 500000
10

3

10
4

10
5

10
6

10
7

NUMBER OF CONT. QUERIES

T
H

R
O

U
G

H
P

U
T

BJ−D
BJ−Q
BJ−MJ
BJ−SSI

10
2

10
3

10
4

10
3

10
4

10
5

10
6

NUMBER OF STABBING GROUPS

T
H

R
O

U
G

H
P

U
T

BJ−D
BJ−MJ
BJ−SSI

(i) (ii)

Figure 9: Throughput of band-joins (i) over the number of con-
tinuous queries and (ii) over the number of stabbing groups.

Dynamic maintenance. In the previous experiments, we have
demonstrated that our SSI-based approaches offer excellent scal-
ability over a large number of continuous queries. We now com-
pare the dynamic maintenance cost of SSI-based approaches with
other alternatives. For this purpose, starting from the initial set of
100, 000 queries, we generate100, 000 updates to this set at run
time. The update is either an insertion of a new query or a deletion
of an existing query, each with probability0.5.

Figure 10 shows the amortized maintenance cost for each of the
algorithms BJ-D, BJ-Q, BJ-MJ, and BJ-SSI. Since BJ-Q does not
maintain any index structure on the queries, its maintenance cost is
constantly0. For BJ-D, the maintenance involves updating the dy-
namic priority search tree that indexes all band join windows. For
BJ-MJ, the maintenance involves updating a sorted list of band join
windows. The dynamic maintenance algorithm for BJ-SSI is de-
scribed in Section 2.3, for which have chosenε = 3. Consequently,
the query time of BJ-SSI is increased by a factor of1+ε = 4 com-
pared to that of BJ-SSI based on an optimal stabbing partition. This
approximation factor is acceptable as BJ-SSI outperforms the other
approaches by orders of magnitudes in the previous experiments.
Note that the reconstruction stage occurs fairly infrequently be-
cause all subscriptions are from the same distribution and naturally
clustered, and therefore with high probability a new subscription
will be inserted into an existent stabbing group without increasing

BJ−D BJ−Q BJ−MJ BJ−SSI
0

10

20

30

40

50

60

A
M

O
R

T
IZ

E
D

 U
P

D
A

T
E

 T
IM

E
 (

ns
)

Figure 10: Maintenance cost
for band-join algorithms.

20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

NUMBER OF BUCKETS

A
V

E
R

A
G

E
 R

E
LA

T
IV

E
 E

R
R

O
R

 %

EQW−HIST
SSI−HIST
OPTIMAL

Figure 11: Quality of various
histograms for intervals.

the number of of the stabbing groups. As shown in Figure 10, the
amortized maintenance cost of BJ-SSI is only20% more than that
of BJ-MJ, which is well justified by a substantial improvement in
event processing scalability.

SSI-based histogram construction. We compare SSI-HIST, the
histogram constructed by our SSI-based algorithm in Section 3.3,
with EQW-HIST, the standard equal-width histogram, and with
OPTIMAL, the optimal histogram constructed using dynamic pro-
gramming. We create100, 000 intervals in the range[0, 10000].
Their midpoints and lengths are governed byNormal(5000, 1500)
and Normal(1000, 2000), and they happen to form18 stabbing
groups. Given a fixed number of buckets, we build SSI-HIST us-
ing thek-mean algorithm and the heuristics to assign the number of
buckets to each stabbing group based on its cardinality, as described
in Section 3.3. Construction of SSI-HIST completes within one
minute. However, construction of OPTIMAL using dynamic pro-
gramming for100, 000 intervals proved to be unacceptably slow
on our computing platform. Instead, we built OPTIMAL on justa
sample of10, 000 intervals and ran experiments multiple times un-
til a stable estimation is reached. Even with one-tenth of the orig-
inal data, OPTIMAL took roughly6.5 hours on a computer with
3GHz processor and2GB memory, in sharp contrast to the ease of
constructing SSI-HIST.

Figure 11 compares the performance of SSI-HIST, EQW-HIST,
and OPTIMAL, as we increase the size of the histogram from20 to
70 buckets. Each data point is obtained by running5000 uniformly
distributed stabbing queries; we compute the relative error between
true and estimated result sizes, and then report the averageof these
errors. As expected, OPTIMAL consistently wins; however, this
advantage is greatly offset by its impracticality in terms of con-
struction cost. On the other hand, SSI outperforms EQW-HISTall
the time and dramatically reduces the gap between EQW-HIST and
OPTIMAL. Specifically, given only20 buckets, SSI-HIST achieves
an error rate as small as14.9%, while that of EQW-HIST is more
than70%. In fact, EQW-HIST would require50 buckets to reach
the same error rate as that of SSI-HIST with20 buckets.

5. RELATED WORK
As mentioned in Section 1, scalable continuous query process-

ing plays a pivotal role in many applications (e.g., [23, 13,5, 22]).
For example, publish/subscribe systems [18, 7, 21, 10] by defini-
tion need to handle a huge number of subscriptions (continuous
queries) efficiently. Our earlier work [2] considered the problem of
indexing continuous band-join queries, and presented an indexing
structure with subquadratic space and sublinear query time. How-
ever, the structure is mainly of theoretical interest. On the practi-
cal side, several continuous query and stream processing systems
(e.g., [7, 19, 6, 22]) have been proposed recently. NiagaraCQ [7] is
able to group-process selections and share processing of identical
join operations. However, it cannot group process joins with dif-

41

ferent join conditions (such as band joins). Moreover, NiagaraCQ
groups selections and joins separately, resulting in strategies similar
to SJ-JoinFirst and SJ-SelectFirst, whose limitations were already
discussed in Section 3.2. Our work is able to overcome these lim-
itations. CACQ [19] is a continuous query engine that leverages
Eddies [4] to route tuples adaptively to different operators on the
fly. It is able to group-process filters, and supports dynamicre-
ordering of joins and filters. However, like NiagaraCQ, it still does
not support group processing of joins with different join conditions,
and processes selections and joins separately. PSoup [6] treats data
and queries analogously, thereby making it possible to exploit set-
oriented processing on group of joins with arbitrary join conditions.
However, PSoup is not specific on what efficient techniques touse
for different types of join conditions. Its approach of instantiating
partially completed join queries implies time complexity linear in
the number of queries. In contrast, our new approach can exploit
clustering of queries to achieve sublinear complexity.

6. CONCLUSION AND FUTURE WORK
In this paper we presented a novel technique for handling a large

number of continuous queries by tracking the hotspots in user in-
terests. Our technique has a number of applications including scal-
able continuous join processing and histogram construction for in-
terval data. Our work opens the door for many interesting prob-
lems. First, it would be interesting to extend the idea of cluster-
ing by stabbing partition to multidimensional spaces, so that we
can handle multi-attribute selection conditions. More generally, we
plan to investigate group processing for more complex queries, e.g.,
those combining both band-join and local selection conditions, as
well as possible aggregation. Although we have taken the first step
with this paper, it remains a challenging problem to developmeth-
ods for composing group-processing techniques for more complex
queries. Finally, we are developing a general cost-based optimiza-
tion framework for identifying the best processing strategy. A good
starting point is the previous work on group optimization inNi-
agaraCQ [7]. However, our space of alternatives is considerably
richer. In addition, we are making our system adaptive at much
finer granularity—every incoming data update event can potentially
be processed using a different strategy.

7. REFERENCES
[1] P. K. Agarwal, J. Xie, J. Yang, and H. Yu. Scalable

continuous queries processing by tracking hotspots.
Technical report, Department of Computer Science, Duke
University, 2006.
http://www.cs.duke.edu/˜junyi/papers/joincq/vldb06-full.pdf.

[2] P. K. Agarwal, J. Xie, J. Yang, and H. Yu. Monitoring
continuous band-join queries over dynamic data. InProc. of
the 16th Intl. Sympos. Algorithms and Computation, pages
349–359, 2005.

[3] L. Arge and J. Vitter. Optimal external memory interval
management.SIAM J. Comput., 32(6):1488–1508, 2003.

[4] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. InProc. of the 19th ACM
SIGMOD Intl. Conf. on Management of Data, pages
261–272, 2000.

[5] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik.
Monitoring streams - a new class of data management
applications. InProc. of the 28th Intl. Conf. on Very Large
Data Bases, pages 215–226, 2002.

[6] S. Chandrasekaran and M. J. Franklin. Psoup: a system for
streaming queries over streaming data.VLDB Journal,
12(2):140–156, 2003.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagraCQ: A
scalable continuous query system for internet databases. In
Proc. of the 19th ACM SIGMOD Intl. Conf. on Management
of Data, pages 379–390, 2000.

[8] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf.Computational Geometry: Algorithms and
Applications. Springer-Verlag, 2nd edition, 2000.

[9] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An
evaluation of non-equijoin algorithms. InProc. of the 17th
Intl. Conf. on Very Large Data Bases, pages 443–452, 1991.

[10] J.-P. Dittrich, P. M. Fischer, and D. Kossmann. Agile:
adaptive indexing for context-aware information filters. In
Proc. of the 24th ACM SIGMOD Intl. Conf. on Management
of Data, pages 215–226, 2005.

[11] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi
tessellations: Applications and algorithms.SIAM Reviews,
41:637–676, 1999.

[12] E. Hanson and T. Johnson. The interval skip list: A data
structure for finding all intervals that overlap a point. In
Proc. of the 2nd Workshop on Algorithms and Data
Structures, pages 153–164, 1991.

[13] E. N. Hanson, C. Carnes, L. Huang, M. Konyala,
L. Noronha, S. Parthasarathy, J. B. Park, and A. Vernon.
Scalable trigger processing. InProc. of the 15th Intl. Conf.
on Data Engineering, pages 266–275, 1999.

[14] S. Har-Peled and S. Mazumdar. Coresets fork-means and
k-median clustering and their applications. InProc. of the
36th Annu. Sympos. Theory of Computing, pages 291–300,
2004.

[15] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. InProc. of the 24th Intl. Conf. on Very Large
Data Bases, pages 275–286, 1998.

[16] M. Katz, F. Nielsen, and M. Segal. Maintenance of a piercing
set for intervals with applications.Algorithmica,
36(1):59–73, 2003.

[17] N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal
histograms for hierarchical range queries. InProc. of the
19th ACM Sympos. on Principles of Database Systems, pages
196–204, 2000.

[18] L. Liu, C. Pu, and W. Tang. Continual queries for Internet
scale event-driven information delivery.IEEE Trans. on
Knowledge and Data Engineering, 11(4):610–628, 1999.

[19] S. Madden, M. Shah, J. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams. In
Proc. of the 21st ACM SIGMOD Intl. Conf. on Management
of Data, pages 49–60, 2002.

[20] E. M. McCreight. Priority search trees.SIAM J. Comput.,
14:257–276, 1985.

[21] J. Pereira, F. Fabret, H. A. Jacobsen, F. Llirbat, and
D. Shasha. Webfilter: A high-throughput XML-based
publish and subscribe system. InProc. of the 27th Intl. Conf.
on Very Large Data Bases, pages 723–724, 2001.

[22] Special issue on data stream processing.IEEE Data Eng.
Bull., 26(1), 2003.

[23] J. Widom and S. Ceri.Active Database Systems: Triggers
and Rules For Advanced Database Processing.Morgan
Kaufmann, 1996.

42

