
An Algebraic Query Model for
Effective and Efficient Retrieval of XML Fragments

Sujeet Pradhan
Kurashiki University of Science and the Arts

Nishinoura 2640, Tsurajima-cho
Kurashiki, Japan

sujeet@cs.kusa.ac.jp

ABSTRACT
Finding a suitable fragment of interest in a non-schematic
XML document with a simple keyword search is a complex
task. To deal with this problem, this paper proposes a theo-
retical framework with a focus on an algebraic query model
having a novel query semantics. Based on this semantics,
XML fragments that look meaningful to a keyword-based
query are effectively retrieved by the operations defined in
the model. In contrast to earlier work, our model supports
filters for restricting the size of a query result, which oth-
erwise may contain a large number of potentially irrelevant
fragments. We introduce a class of filters having a special
property that enables significant reduction in query process-
ing cost. Many practically useful filters fall in this class and
hence, the proposed model can be efficiently applied to real-
world XML documents. Several other issues regarding al-
gebraic manipulation of the operations defined in our query
model are also formally discussed.

1. INTRODUCTION AND MOTIVATION
While it is widely-accepted that keyword search is the

most friendly interface for querying XML documents, there
is considerably less agreement on how to answer such keyword-
based queries. Given a set of keywords as a query, there is no
consensus on what portion or portions of an XML document
should be retrieved as the answer.

An XML document is commonly modelled as a rooted tree
(either ordered or unordered). The problem of finding a por-
tion of interest in an XML document is thus equivalent to
the problem of identifying an appropriate subtree of the tree
which represents the document in consideration. While sev-
eral studies have been done in the recent past regarding this
issue in the literature[4][5][12][15][20], the primary focus has
been on so-called data-centric XML documents such as bib-
liographic data. Data-centric XML documents are highly
schematic and their element tag names are generally “se-
mantically meaningful”. As a result, one can exploit both
the schema and the tag names to identify meaningful XML

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

fragments to some precision. For example in [4] and [5],
document components are indexed according to their inter-
relationships which are determined by analysing semantic
meanings of tag names such as < book >, < author > in a
document.

In contrast, a document-centric XML document such as
the one shown in Figure 1, hardly has any fixed schema, usu-
ally has long textual contents, and typically has tag names
such as < section >, < subsection >, < par > etc. which
only describe structural relationship, but offer little help
in determining any semantic relationship among document
components.

It is often argued that given a set of keywords as a query
against an XML tree, the smallest subtree containing all
the keywords is enough to answer this query[5][7][12][15][20].
While this argument seems logical enough in the realm of
data-centric XML documents, it is not guaranteed to be ef-
fective to compute even a simple and intuitive answer to
a query against general document-centric XML documents.
As an illustration, consider a query {XQuery, optimization}
against an XML document shown in Figure 1. According to
the conventional query semantics, the smallest subtree con-
taining both the keywords XQuery and optimization (the
paragraph represented by node n17 in Figure 1) would be
the answer to this query. However, a general user may find
the fragment represented by the nodes n16, n17, and n18
more intuitive and more appropriate since it is self-contained
and more informative than n17 alone. Our first challenge
is how to retrieve such a fragment as one single answer unit
effectively by merely exploiting the structural relationship
among the components of the underlying data.

Obviously the problem of retrieval unit in a document-
centric XML document is more complex than in a data-
centric one mainly because of the facts that 1) document-
centric XML documents are non-schematic; 2) the tag names
are not guaranteed to carry any literal semantics that would
assist in determining the retrieval unit and 3) there is no
prior knowledge of how keywords would be split across the
nodes of a desired XML subtree (refer to Figure 2). As a
result, we need a more effective query mechanism, which
goes beyond the smallest subtree semantics, for identifying
potential fragments of interest, particularly in document-
centric XML documents.

In this paper, we intend to compute fragments of inter-
est, which in most cases, may be larger than the fragments
that would have been retrieved according to the smallest
subtree semantics. One question that naturally arises then
is: How large a fragment is large enough? There is no con-

295

<proceedings title="VLDB Conference"> n0
<paper title="A New Query Language for XML data"> n1
<section heading="Introduction"> n2
<par> ... XML data is ...</par> n3

</section>

...

<section heading="Query Processing"> n14
<par>.. logical </par> n15
<subsection heading="Optimization Issues"> n16
<par> ... successful implementation of XQuery ... query optimization ... </par> n17
<par> ... some of these techniques in XQuery are borrowed from ... </par> n18

</subsection>

</section>

...

</paper>

...

<paper title="Efficient Stream Data Management"> n79
<section heading="Introduction and Motivation"> n80
<par> ... optimization is an integral part of any ... </par> n81

</section>

...

</paper>

...

</proceedings>

n0

n1

n2

n3

... n14

n15 n16

n17 n18

...

... n79

n80

n81

...

Figure 1: An Example XML Document and its Tree Representation

crete answer to this question as the old adage goes, “One
size does not fit all”. Although no one fixed size (or shape)
of a fragment meets all queries, this paper attempts to find
relevant-looking fragments; a relevant-looking fragment in
this paper means a subtree containing all the query key-
words, and, in addition, this subtree would have no extra-
neous nodes. Having said that, however, we do not wish
to generate each and every computable fragment, because
this may return an answer set with several potentially irrel-
evant fragments. For example, consider the fragment repre-
sented by the nodes n0,n1,n14,n16,n17,n18,n79,n80,n81
in Figure 1. Even though this fragment consists of the
nodes containing all the query keywords in our example
query {XQuery, optimization}, it may still be considered
irrelevant because a substantial portion of its contents are
unrelated to each other. Not only will this overwhelm the
user with a huge number of often irrelevant fragments, but
it will also degrade the performance of the overall system.
Therefore, our next challenge is how to avoid computation
of fragments that are potentially irrelevant to a user.

This paper describes the formal framework of an algebraic
query model designed to address the two challenges stated
above for an effective and efficient XML keyword search.
This query model is supported by selection and join oper-
ations; the two primary operations in traditional database
systems. Keyword queries are transformed into algebraic
expressions and XML fragments of interest are effectively
computed by joining several document components whose
contents would contain the specified keywords.

We then shift our focus on restricting the generation of a
large number of irrelevant fragments in an answer set. For
that purpose, we provide various filters, which in fact are
selection predicates. Our main interest is however, not only
in the restriction of the size of the query result, but also in
investigating whether such filters would contribute to sig-
nificant reduction of query processing cost. We explore the
algebraic properties of several filters and show that not all
filters are capable of contributing to query optimization. In

addition, this paper proves that selection with a specific
class of filters, what we call anti-monotonic filters, can in-
deed be pushed down in the query evaluation tree ahead
of join operations. As a result, by incorporating practi-
cally useful filters with anti-monotonic property in our query
mechanism, we can expect a substantial performance gain
in our query processing. We also discuss several other al-
gebraic manipulation of the operations of our model, which
could enable us to achieve better processing efficiency under
certain conditions.

Our contributions in this paper can be summarized as:

• To find appropriate fragments of interest with a simple
keyword search in a non-schematic XML document, we
provide a novel query semantics — a semantics that
is different from the smallest subtree semantics com-
monly adopted for schematic XML documents.

• Our algebra has a strong theoretical foundation with
several promises for query optimization, which can be
exploited by a query processor for performance gain.

• To prevent an overwhelming size of an answer set, we
propose database style filtering instead, which would
complement existing XML retrieval systems that apply
IR-style ranking techniques.

• Although no experiments have been conducted yet to
verify the viability of our model, we provide formal
proofs and convincing examples to justify our claims.

The rest of the paper is organized as follows. In Section 2,
query model is formalized by defining all the algebraic opera-
tions required to compute answers to a query. Optimization
techniques are discussed in Section 3. In Section 4, we give
an illustrative example to explain different query evaluation
strategies that the model offers. Section 5 sheds some light
on a few important issues that are not fully investigated in
this paper. Related work is provided in Section 6, and finally
we conclude by highlighting our contributions.

296

n1

k1 n2 k2 n3

k1 n1

k1
k2

n2

n1

k1
k2

n2 k1
k2

n3

n1

k1 n2 k2 n3

k1 n4

Figure 2: A few possible variations of the way two keywords k1 and k2 are split across the nodes of the target
subtrees of interest

2. QUERY MODEL
In this section, we formally describe our query model.

Preliminary ideas regarding this model are also given in our
earlier work[14].

2.1 Basic Definitions

Definition 1 (Document). An XML document, is a
rooted ordered tree D = (N, E) with a set of nodes N and a
set of edges E ⊆ N×N. There exists a distinguished root node
from which the rest of the nodes can be reached by traversing
the edges in E. Each node except the root has a unique parent
node.

Each node n of the document tree is associated with a logi-
cal component such as < section > or < par > of the docu-
ment. As in [7][9], we do not distinguish between tag/attribute
names and text contents. There is a function keywords(n)
that returns the representative keywords of the correspond-
ing component in n. The nodes are arranged in such a way
that the depth-first pre-order traversal of the tree would pre-
serve the topology of the document. We write nodes(D) for
all the nodes N.

Definition 2 (Document Fragment). Let D be an
XML document. Then f ⊆ D is a document fragment, or
simply a fragment, iff nodes(f) ⊆ nodes(D) and the sub-
graph induced by nodes(f) in D is a rooted tree. In other
words, the induced subgraph is connected.

A fragment can thus be denoted by a subset of nodes in a
document tree — the tree induced by which is also a rooted
ordered tree. A fragment may consist of only a single node or
all the nodes which constitute the whole document tree. In
Figure 1, the set of nodes 〈n16, n17, n18〉1 is a fragment of the
sample document tree. Hereafter, unless stated otherwise,
the first node of a fragment represents the root of the tree
induced by it. For clarity, we refer to a single-node fragment
simply as a node.

2.2 Algebra
To formally define the operational semantics of a query, we

first need to define operations on fragments and sets of frag-
ments. The operations can be basically classified as (1) se-
lection and (2) join operations.

Definition 3 (Selection). Supposing F be a set of frag-
ments of a given document, and P be a predicate which maps
a document fragment into true or false, a selection from F

by the predicate P, denoted by σP, is defined as a subset F′

of F such that F′ includes all and only fragments satisfying
P. Formally, σP(F) = {f | f ∈ F, P(f) = true}.
1For clarity, we use ‘〈’ and ‘〉’ instead of conventional ‘{’ and
‘}’ to enclose the nodes of a fragment

Hereafter, the predicate P is also called a filter of the selection
σP.

The simplest filter is for the keyword selection of the type
‘keyword = k ’ which selects only those document fragments
having the word ‘k ’. Several other filters will be introduced
in Section 3.3 below.

Next, we define various join operations on document frag-
ments.

Definition 4 (Fragment Join). Let f1, f2, f be frag-
ments of the document tree D. Then, fragment join between
f1 and f2 denoted by f1 � f2 is f iff

1. f1 ⊆ f,

2. f2 ⊆ f and

3. � ∃f′ such that f′ ⊆ f ∧ f1 ⊆ f′ ∧ f2 ⊆ f′

Intuitively, the fragment join operation takes two fragments
f1 and f2 of D as its input and finds the minimal fragment
f in D such that the resulting fragment would contain both
the input fragments f1 and f2, and there exists no other
smaller fragment f′ contained by f in D, which would also
contain the input fragments f1 and f2. Figure 3 (b) shows
the operation between two fragments 〈n4, n5〉 and 〈n7, n9〉
(refer to Figure 3 (a)) which finds its minimal subgraph frag-
ment 〈n3, n4, n5, n6, n7, n9〉 (fragment inside dashed line in
Figure 3 (b)). By its definition, the fragment join operation
between arbitrary fragments f1, f2 and f3 has the following
algebraic properties.

Idempotency f1 � f1 = f1

Commutativity f1 � f2 = f2 � f1

Associativity (f1 � f2) � f3 = f1 � (f2 � f3)

Absorption f1 � (f2 ⊆ f1) = f1

These properties not only enable an easy implementation of
the operations but also lay foundation for optimizing query
evaluation by enabling algebraic manipulation of operations
defined further below.

Next, we extend this operation to a set of fragments.
called pairwise fragment join, which is the set-variant of
fragment join.

Definition 5 (Pairwise Fragment Join). Let F1 and
F2 be two sets of fragments in a document D, pairwise frag-
ment join of F1 and F2, denoted by F1 � F2, is defined as
a set of fragments yielded by taking fragment join of every
combination of an element in F1 and an element in F2 in a
pairwise manner. Formally,

F1 � F2 = {f1 � f2 | f1 ∈ F1, f2 ∈ F2}.
Figure 3 (a),(c) illustrates an example of pairwise frag-

ment join operation. For given F1 = {f11, f12} and F2 =
{f21, f22}, F1 � F2 produces a set of fragments {f11 �

f21, f11 � f22, f12 � f21, f12 � f22}.
For arbitrary fragment sets F1, F2, and F3, pairwise frag-

ment join has the following algebraic properties.

297

F1 = {f11, f12}

F2 = {f21, f22}

n0

n1

n2 n3

n4

n5

n6

n7

n8 n9

n10

n11 n12

n13 n14

n15

n16

n17

f11

f12 f21

f22

(a) (b)f12 � f22 n0

n1

n2 n3

n4

n5

n6

n7

n8 n9

n10

n11 n12

n13 n14

n15

n16

n17

(c) (d)F1 � F2

n3

n4

n5

n6
f12 � f21

n3

n4

n5

n6

n7

n9

f12 � f22

n6

n7

n8

f11 � f21

n7

n8 n9
f11 � f22

F1 �∗ F2
n3

n4

n5

n6
f12 � f21

n3

n4

n5

n6

n7

n9

f12 � f22

n6

n7

n8

f11 � f21

n7

n8 n9
f11 � f22n3

n4

n5

n6

n7

n8
f11 � f12 � f21

n3

n4

n5

n6

n7

n8 n9

f11 � f12 � f22

n6

n7

n8 n9

f11 � f21 � f22

Figure 3: (a) A Document Tree (b) Fragment Join (c) Pairwise Fragment Join and (d) Powerset Fragment
Join Operations

Commutativity F1 � F2 = F2 � F1

Associativity (F1 � F2) � F3 = F1 � (F2 � F3)

Monotonicity F1 � F1 ⊇ F1

Distributive Law F1 � (F2 ∪ F3) = (F1 � F2) ∪ (F1 � F3)

The pairwise fragment join operation does not satisfy the
idempotency property as we can easily prove by showing
counter examples for it.

We now define powerset fragment join — another variant
of the fragment join operation.

Definition 6 (Powerset Fragment Join). Let F1

and F2 be two sets of fragments in a document D, powerset
fragment join between F1 and F2, denoted by F1 �∗ F2, is
defined as a set of fragments produced by applying fragment
join operation to an arbitrary number (but not 0) of elements
in F1 and F2. Formally,

F1 �
∗
F2 = {� (F′1 ∪ F

′
2) | F′1 ⊆ F1, F

′
2 ⊆ F2, F

′
1 �= φ, F′2 �= φ}

where � {f1, f2, . . . , fn} = f1 � . . . � fn.

Figure 3 (a),(d) illustrates an example of powerset frag-
ment join operation. It should be noted here that for the
same two sets of fragments F1 = {f11, f12} and F2 = {f21, f22}
in Figure 3 (a), powerset fragment join produces more frag-
ments than pairwise fragment join (refer to Figure 3 (c)).
It should also be noted that some of the fragments are pro-
duced more than once due to the algebraic properties of
fragment join and pairwise fragment join.

2.3 Query Evaluation

Definition 7 (Query). A query can be denoted by
QP{k1, k2, ..., km} where kj is called a query term for all
j = 1, 2, . . . , m and P is a selection predicate.

We write k ∈ keywords(n) to denote that query term k ap-
pears in the textual contents (element contents in XML ter-
minology) associated with the node n.

Definition 8 (Query Answer). Given a query
QP{k1, k2, ..., km}, answer A to this query is a set of document
fragments defined to be
{ f | (∀k ∈ Q)∃ n ∈ f : n is a leaf node of f ∧

k ∈ keywords(n) ∧ P(f) = true }.

Note that as in [7], we also adopt conjunctive query seman-
tics. Intuitively, an answer to a query is a document frag-
ment consisting of several structurally-related logical com-
ponents and each keyword in the query must appear in at
least one component that constitutes the fragment. In ad-
dition, the fragment must satisfy the selection predicate(s)
specified in the query.

A query represented by {k1, k2} and a selection predicate
P against a document D can be evaluated by the following
formula.

QP{k1, k2} = σP(F1 �
∗
F2)

where F1 = σkeyword=k1 (F), F2 = σ,keyword=k2 (F) and F =
nodes(D).

298

Since powerset fragment join operation often can be very
expensive, evaluation of an answer set as it is may turn out
very costly (See Section 4 for an example of query evalua-
tion). In the following section, we provide several optimiza-
tion techniques for reducing the cost of answer evaluation.

3. OPTIMIZATION ISSUES
Query processors in a traditional database management

system have two basic kinds of optimizations: algebraic ma-
nipulation and cost-estimation strategies[18]. The focus of
this paper would be on the former.

Given an algebraic expression, the main goal of algebraic
manipulation is to investigate if there exist other equivalent,
but more efficient, algebraic expressions. If such alternative
expressions are available, then a query processor can derive
logically optimized query plans in order to minimize the re-
sponse time. Note that such plans can be derived irrespec-
tive of how they are implemented.

In this section, we present several algebraic transforma-
tion rules crucial for optimization of our query model. First,
we provide an equivalent expression for the powerset frag-
ment join operation, which otherwise is an expensive op-
eration. Second, we discuss how selection operations can
be pushed down in a query evaluation tree, if the selection
predicates belong to a class of filters having a simple prop-
erty.

3.1 Algebraic Manipulation of Powerset Frag-
ment Join

The implementability of powerset fragment join operation
comes in question, especially when the input size is very
large. However, we show that powerset fragment join can
be transformed into an equivalent expression whose compu-
tation cost, under certain circumstances, can be much less
than the original expression. We first define several new
operations required for this equivalent expression.

Definition 9 (Fixed Point). If F be a set of fragments
of the document tree D, its fixed point F+ is defined as

F
+ = {� Fi | Fi ⊆ F ∧ Fi �= ∅}.

Intuitively, given a fragment set, the fixed point of a frag-
ment set is another fragment set that would include all the
fragments obtained by performing fragment join operation
on every possible combination of an arbitrary number of
fragments of the given set. A naive algorithm can compute
fixed point of a fragment set by performing pairwise frag-
ment join operation 2|F| times on itself where | F | is the
number of fragments in the set. Obviously, such an algo-
rithm is impractical for a large value of | F | . Below, we
provide several solutions to overcome this problem.

3.1.1 Naive Solution
An obvious solution to this problem is to devise an algo-

rithm using dynamic programming technique. This is possi-
ble because the definition of fixed point given above can be
expanded as:

F
+ = F ∪ (F � F) ∪ (F � F � F) ∪ . . .

Computation of fixed point can then be done by perform-
ing pairwise fragment join operation iteratively between a
pair of the given set and the intermediate set generated

n1

n2

n3

n5

n6

n7

{〈n1〉, 〈n3〉, 〈n5〉, 〈n6〉, 〈n7〉}

n1

n2

n3

n5

n6

n7

{〈n1〉, 〈n5〉, 〈n7〉}

Figure 4: Fragment Set Reduction

in the previous iteration until the resulting set stabilizes.
At this point, no new fragments are generated by any fur-
ther pairwise fragment join operation and the computa-
tion can be stopped. However, evaluating fixed point even
with this technique may lead to redundant computation.
This is because, after each iteration one must perform fixed
point checking (that is checking whether a fragment set has
reached its fixed point or not). As it will be explained later,
fixed point computation is an integral part of our query pro-
cessing and, among many other critical issues, its efficient
evaluation is also crucial for the efficiency of our overall
query mechanism. What follows here is a means to avoid
overhead caused by fixed point checking computation dur-
ing the evaluation of fixed point of a fragment set.

3.1.2 Alternative Solution
The basic idea here is to derive the number of iterations

required for obtaining the fixed point of a given fragment
set before the actual fixed point computation. This would
eliminate the need of fixed point checking and consequently
speed up the convergence to the fixed point of a fragment set.
Interestingly, we have observed that the number of iterations
required to obtain the fixed point of a fragment set depends
not on the total number of elements in the set, but on the
number of elements in one of its subsets. This subset is
unique and would not contain any fragment which would
be subsumed by a resulting fragment produced by fragment
join operation between any two arbitrary elements of the
set. Based on this observation, we define an operation that
would reduce a fragment set to a smaller set by eliminating
all those fragments, which are redundant for estimating the
required number of iterations.

Definition 10 (Fragment Set Reduce). Let F be a
fragment set. Then the fragment set reduce operation on F

is defined as

�(F) = {f | � ∃f′, f′′ ∈ F such that f ⊆ f
′
� f

′′}
where f, f′, f′′ are all distinct fragments in F.

We call �(F) the reduced set of F. Intuitively, given a frag-
ment set F, fragment set reduce operation eliminates those
fragments from F, which are the sub-fragments of fragments
obtained from any two arbitrary fragments in the set F.

Theorem 1. The cardinality of the reduced set denoted
by | � (F)| gives the number of iterations required to obtain
the fixed point of the fragment set F. That is, if | F |
is n and | � (F)| is k (k <= n), and supposing �n (F) is a

299

F1 F1 F1

�

�

F2 F2 F2

�

�

�

σPa

(a)

σPa
(F1) σPa

(F1) σPa
(F1)

�

σPa

�

σPa

σPa
(F2) σPa

(F2) σPa
(F2)

�

σPa

�

σPa

�

σPa

(b)

Figure 5: (a) Initial Query Evaluation Tree for σPa((F1 � F1 � F1) � (F2 � F2 � F2)) (b) Equivalent Query
Evaluation Tree Implementing ‘Push-down’ Strategy

short form to denote the fragment set obtained by performing
pairwise fragment join (�) operation on n number of F, then
�n (F) =�k (F).

Proof. See Appendix.

In Figure 4, a set of fragments F = {〈n1〉, 〈n3〉, 〈n5〉, 〈n6〉, 〈n7〉}
is reduced to �(F) = {〈n1〉, 〈n5〉, 〈n7〉} after eliminating 〈n3〉
and 〈n6〉 because they are the sub-fragments of 〈n1〉 � 〈n5〉
and 〈n1〉 � 〈n7〉 respectively. Here, since the cardinality of
the reduced set is 3, ((F � F) � F) should give the fixed point
F+ of the fragment set F.

3.1.3 Transformation of Powerset Fragment Join
Having defined these two new operations, we are now

ready to provide the algebraic transformation of powerset
fragment join operation.

Theorem 2. The powerset fragment join operation be-
tween two fragment sets F1 and F2 in a document D can be
transformed into the following equivalent expression:

F1 �
∗
F2 = F

+
1 � F

+
2

where F+
1 and F+

2 are fixed points of F1 and F2 respectively.

Proof. Formal proof is omitted for space reasons.

We give an informal justification for this claim. The seman-
tics of powerset fragment join between fragments sets F1 and
F2 is to produce a fragment set F consisting of fragments gen-
erated by taking at least one fragment from each operand F1
and F2. We know that the fixed points of F1 and F2 consist
of fragments produced by performing fragment join opera-
tion on each possible combination of element fragments in
F1 and F2 respectively. Therefore, the pairwise fragment join
operation between these two fixed points of F1 and F2 would
produce the same resulting fragment set as the one that
would have been produced by the powerset fragment join
operation.

3.1.4 Significance of Fragment Set Reduction
Recall that F+

1 can be obtained by performing | � (F1)|
number of � on F1 and similarly F+

2 can be obtained by per-
forming | � (F2)| number of � on F+

2 . In addition, we need
to perform fragment set reduce operation on each F1 and F2

in order to obtain their respective | � (F1)| and | � (F2)|.
One obvious doubt that may come up in a reader’s mind
is: How significant the operation fragment set reduce really

is? In other words, is it judicious to perform this operation
under any circumstances? The simple answer is “no”, al-
though it may be fair to say it depends largely upon how
these operations are going to be evaluated in the implemen-
tation level. In order to give a more definitive answer, we
require a formal cost model that enables us to estimate cost
of these operations. Cost models are beyond the scope of
this paper. At this point, our emphasis is on discovering
equivalent expressions for our algebraic operations, which
can be exploited by a query processor for optimization op-
portunities. We shall elaborate our views on the necessity
of a cost model in Section 5.

Intuitively, the amount of reduction in query processing
cost due to fragment set reduce operation depends upon how
significantly the fragment sets can be reduced. The larger
the factor, by which the fragment sets are reduced, the more
opportunities there are for optimization. In the worst case, if
the original sets cannot be reduced at all, the overall compu-
tation cost of generating all potential fragments will remain
considerably large. Consequently, it may still be impractical
to generate all computable fragment first, and then, only af-
terwards, disregard the irrelevant ones. Below, we show how
this problem can be overcome by introducing filters that fall
under a special class.

3.2 Commuting Selection with Join Operations
One of the main principles for algebraic manipulation in

conventional database systems is to perform selection as
early as possible[18]. Our goal here is to apply the same
principle to our query mechanism so that without affect-
ing the end result, we can eliminate as many unnecessary
fragments as possible at an early stage of query processing.
However, in order to achieve this goal, we must ensure that
selection can indeed be pushed down in the query evaluation
tree; that is even if we perform selection ahead of join, we
are still guaranteed the same desired result. Unfortunately,
as it will be shown later, this commutativity between se-
lection and join cannot be achieved for all types of filters.
Only a class of filters having anti-monotonic property allows
selection operation to be pushed down in the query tree.

Below we shall formally define an anti-monotonic filter
and show how optimization can be achieved by ‘push-down’
strategy in cases when selection predicates have anti-monotonic
property. Several filters having this property will also be in-
troduced in the following subsections.

300

n3

n4 n6

n6

n7

n3

n4 n6

n7

n0

n1

n3

n4 n6

n7

n10

n11

F

n3

n4 n6

n6

n7

σsize≤3(F)

n3

n4 n6

n6

n7

n3

n4 n6

n7

σheight≤2(F)

Figure 6: Anti-monotonic Filters

3.3 Anti-monotonic Filters

Definition 11. Given a fragment f, a filter P is anti-
monotonic iff

∀f′ ⊆ f : P(f) = true ⇒ P(f′) = true

Thus, if a fragment f satisfies a filter predicate P, then all
sub-fragments of f also satisfies P. In other words, if a fil-
ter P has anti-monotonic property, then for any fragment
not satisfying P, none of its super-fragment can satisfy P
either. It is obvious that both conjunction and disjunction
of anti-monotonic filters have also anti-monotonic property.
That is, if P1 and P2 are two distinct anti-monotonic filters,
then P1 ∧ P2 and P1 ∨ P2 are also anti-monotonic filters.
However, the negation of an anti-monotonic filter does not
retain the anti-monotonic property, as we can easily prove
this by giving a counter example. We exclude negation of
anti-monotonic filters from our further discussion. We de-
note a filter having anti-monotonic property as Pa whenever
necessary to distinguish it from other filters.

Theorem 3. Selection with anti-monotonic filters can be
pushed ahead of pairwise fragment join operation, that is,

σPa(F1 � F2) = σPa(σPa(F1) � σPa(F2))

where F1 and F2 are two (not necessarily distinct) fragment
sets and Pa is an anti-monotonic filter.

Proof. See Appendix.

From Theorem 3 we can conclude that selection with anti-
monotonic filters can be pushed ahead of all join operations
(see Figure 5). Therefore, in the presence of anti-monotonic
filters, the powerset fragment join can be evaluated as:

σPa(F
+
1 � F

+
2) = σPa(σPa(F

+
1) � σPa(F

+
2))

= σPa(σPa(σPa(F1) � σPa(F1) � . . .

� σPa(F1))

� σPa(σPa(F2) � σPa(F2) � . . .

� σPa(F2)))

Since both conjunction and disjunction of anti-monotonic fil-
ters also possess the anti-monotonic property, construction
of more complex anti-monotonic filters is possible. Con-
sequently, we can expect a significant performance gain if
practically useful filters having anti-monotonic property do
actually exist. The following subsection introduces several
such filters.

3.3.1 Size of a Fragment
From a user’s point of view, one natural way of restricting

a query result is by specifying the size limit of a fragment.
In other words, if the number of nodes of a answer fragment
exceeds a certain value, it should be eliminated from the an-
swer set. Beyond a certain size, the larger the fragment, the
more possibility there is for that fragment to be irrelevant to
the query. Supposing size(f) denotes the number of nodes
of fragment f, then σsize≤3 (F) will map only those fragments
of F into true, whose size(f) does not exceed the value 3 .
Clearly, this filter has anti-monotonic property because if
size(f) ≤ 3 is mapped into false, then all those fragments
having size(f) value larger than 3 (super-fragments of f)
will also be mapped into false. See Figure 6.

3.3.2 Height and Width of a Fragment
Logically interrelated components of a document are typ-

ically close to each other. Therefore, both the vertical and
horizontal distance between nodes of a tree representing
such a document are good measures of inter-relationship be-
tween nodes. It is fair to say that users are likely to judge
fragments, in which horizontal or vertical distance between
the nodes containing the query keywords exceed a certain
threshold, be irrelevant. Supposing, height(f) denotes the
vertical distance between the root and the farthest leaf node
of the fragment f, then σheight≤2 (F) will map only those frag-
ments of F into true whose height(f) does not exceed the
value 2 (See Figure 6). Similar filter can be considered for
eliminating fragments according to maximal horizontal dis-
tance between extreme nodes (the leftmost and the right-
most) of a fragment. Obviously, such filters also possess
anti-monotonic property.

Of course, we can go on considering other filters having

301

anti-monotonic property and the list may be endless. How-
ever, our intention is not to create such a list but to give
readers an insight into the existence of several filters that
are practically useful and at the same time possess the anti-
monotonic property.

3.4 Other Filters
One obvious question would be whether or not all filters

have anti-monotonic property. A simple example of filters
not having this property is a filter for all fragments consist-
ing of nodes, whose number is greater than a certain value.
We introduce another filter which looks more practically use-
ful, which however, does not possess this property. We call
this filter an ‘equal depth filter’; it selects fragments in which
each node having keyword k1 is at the same vertical distance
as the node having keyword k2 from the root. In Figure 7,
although the fragment f′ does not satisfy the predicate de-
fined by this filter, fragment f, which is a super-fragment of
f′ satisfies it. Therefore, it is clear that not all filters are
anti-monotonic filters.

n2

n3

k1 n4

n5

k2 n6

n7

k2 n8 k1 n9

f′

n2

n3

k1 n4

n5

k2 n6

n7

k2 n8 k1 n9

f

Figure 7: Filter not having Anti-monotonic Prop-
erty

4. EXAMPLE OF QUERY EVALUATION
Having provided the theoretical foundation, we now illus-

trate how the operations we described in the previous sec-
tions can be applied to our running example query {XQuery,
optimization} against the document shown in Figure 1.
Remember our objectives are twofold: 1) to generate the tar-
get fragment (refer to Figure 8(b)), which, to the best of our
knowledge, none of the existing techniques would have pro-
duced, and 2) to exclude irrelevant-looking fragments such
as the one shown in Figure 8(c) at the earliest possible stage
of query processing for saving the cost.

First, let D, the tree shown in Figure 8(a), represents our
example XML document of Figure 1 and QPa{k1, k2} denotes
the example query, where k1 = XQuery, k2 = optimization

and Pa is an anti-monotonic filter. For this particular exam-
ple, we choose this filter to be size ≤ 3 .

Now, according to the explanation given in Section 2.3,
this query can be evaluated as:

QPa
{k1, k2} = σsize≤3 (F1 �

∗
F2)

where F1 = σkeyword=XQuery(F), F2 = σkeyword=Optimization(F)
and F = nodes(D). We have, F1 = {〈n17〉, 〈n18〉} and F2 =
{〈n16〉, 〈n17〉, 〈n81〉}. For clarity, we write 〈n16〉 as f16, 〈n17〉 as
f17 and so on. We show how each evaluation strategy given
below produces the same final result. We shall also explain
why some strategies have more opportunities for optimiza-
tion than the others.

4.1 Brute-Force Evaluation
This strategy does not consider any algebraic manipula-

tion of the operations, and for this reason is the most in-
efficient way of producing a query result. However, for ex-
perimental evaluation of the model in future, it will provide
the basis for performance comparison with other available
alternative strategies.

Here, the answer set is computed, first, by directly apply-
ing the powerset fragment join operation between the two
fragment sets F1 and F2 to generate a set of all computable
fragments, and then, by applying the selection operation on
this set for filtering irrelevant-looking fragments. Remember
that powerset fragment join between F1 and F2 is equivalent
to the fragment join on pairwise union of all non-empty
subsets of F1 and F2. Following this definition, our exam-
ple produces 11 unique pairwise unions (candidate fragment
sets) on which we need to perform fragment join operation.
These candidate fragments sets and the fragments produced
by them after the fragment join operation are listed in Ta-
ble 1 (column two and three respectively).

Note that some of the fragments, for example No.1 and
No.8 in Table 1, are generated more than once. Among
these 11 fragments, only the top seven (No.1-7 in Table 1)
are unique. The last four at the bottom of Table 1 (No.8-
11) are duplicates and will be removed from the set before
performing the filter operation. Since our filter is size ≤ 3 ,
only the first four fragments (No.1-4) will remain in the fi-
nal answer set. Among these four, the first fragment rep-
resented by 〈n16, n17, n18〉 is the fragment of interest, which
we have successfully generated and consequently, met our
first objective. The remaining three fragments (No.2-4) are
overlapping answers which may or may not be of interest to
users. See Section 5 for our views on overlapping answers.

4.2 Application of Set Reduction Technique
According to the definition of fragment set reduce (see

Definition 10), �(F2) = {f17, f81} while F1 is already a re-
duced set as its cardinality is 2 . Hence, according to Theo-
rem 1, F+

1 and F+
2 , the corresponding fixed points of F1 and

F2, can be computed by F1 � F1 and F2 � F2 respectively.
Note F+

1 = {f17, f18, f17 � f18}. Similarly, F+
2 = {f16, f17,

f81, f16 � f17, f16 � f81, f17 � f81}. Note also that the
operation F+

1 � F+
2 produces the same 11 unique candidate

fragment sets as listed in Table 1 (second column). It clearly
illustrates that the expressions F1 �∗ F2 and F+

1 � F+
2 are

indeed equivalent.
What is not yet clear, however, is whether or not there will

be a significant performance gain by applying this strategy
instead of the one explained above. One important thing to
note here is, unlike brute-force evaluation strategy, applica-
tion of set reduction technique does offer an opportunity for
optimization, because it avoids exhaustive means of com-
puting all the candidate fragment sets that are to be joined.
We believe by developing efficient algorithms that would re-
quire minimal overhead to compute fragment set reduce, we
can expect a large performance gain — not in all cases —
but in cases when fragment sets are estimated to be reduced
by a factor over a certain numerical value. See Section 5 for
more on estimating this value.

4.3 Introduction of an Anti-monotonic Filter
The idea here is to perform all the selections with anti-

monotonic filters as early as possible. Consider f16 � f81

302

Table 1: Input Fragment Sets and their Corresponding Output Fragments

No. Fragment set to be joined Fragment generated after join
Irrelevant

(to be filtered)
Duplicate

(to be removed)
1 f17 � f18 〈n16, n17, n18〉
2 f16 � f17 〈n16, n17〉
3 f16 � f18 〈n16, n18〉
4 f17 〈n17〉
5 f17 � f81 〈n0, n1, n14, n16, n17, n79, n80, n81〉 •
6 f18 � f81 〈n0, n1, n14, n16, n18, n79, n80, n81〉 •
7 f17 � f18 � f81 〈n0, n1, n14, n16, n17, n18, n79, n80, n81〉 •
8 f16 � f17 � f18 〈n16, n17, n18〉 •
9 f16 � f17 � f81 〈n0, n1, n14, n16, n17, n79, n80, n81〉 • •

10 f16 � f18 � f81 〈n0, n1, n14, n16, n18, n79, n80, n81〉 • •
11 f16 � f17 � f18 � f81 〈n0, n1, n14, n16, n17, n18, n79, n80, n81〉 • •

which produces the fragment 〈n0, n1, n14, n16, n79, n80, n81〉.
Since this fragment does not satisfy the selection predicate
of our filter size ≤ 3 , this and any other join involving
f16 � f81 (for example No.10 and No.11 in Table 1) can be
ignored for further processing. Consequently, we can avoid
several unnecessary join computations which would eventu-
ally produce irrelevant fragments. This clearly represents a
great benefit in terms of amount of computation to be per-
formed. Note that those fragment sets, which participate
in producing relevant fragments in the final answer set, are
never filtered out by anti-monotonic filters.

Particularly in a large XML tree, in which a significant
number of potentially irrelevant fragments to a query may
exist, this strategy of pushing down selection operations
ahead of join operations will play a crucial role for gain-
ing efficiency.

From the analysis given above, it should be clear that,
1) use of brute force strategy will make little sense in prac-
tical applications, 2) set reduction technique should be used
if we can estimate that the fragment sets will be reduced by
a factor over a certain value, and 3) more importantly, selec-
tion operations should be performed ahead of any join oper-
ations if the selection predicates possess an anti-monotonic
property. These strategies should provide a strong founda-
tion to achieve our second objective mentioned above.

5. DISCUSSIONS
In this section, we present several issues which we did

not explore thoroughly in this paper. Without going into
technical details, we shall keep our discussion simple and in-
formal. First, we discuss the requirement of a cost model for
estimating the cost of the operations defined in our query
mechanism. Choice of an appropriate cost model is often
implementation-dependent, yet, to prove the viability of our
query model, simply presenting the techniques of logical
query optimization may be inadequate. A formal cost model
would also enable us to provide more authentic answers to
issues such as the one raised in Section 3.1.4.

In [13], we investigated the feasibility of implementing
our proposed model in a conventional relational database.
With the assumption that we shall continue the relational
database as our implementation platform, we plan to de-
velop a cost model that also takes into account of these par-
ticular implementation-specific details, which will provide a

basis for detecting various cost-based optimization strate-
gies. Among many other things that a cost model has to
consider, cost analysis of fragment set reduce operation, in
particular, requires special attention for enabling judicious
application of the set reduction technique (Section 4.2) to
compute fixed point of a fragment set. We believe the cost
of fragment set reduce operation on a fragment set F will
depend not only on the cardinality of F, but also on the size
of each fragment that each possible subset of F is going to
produce. It will also depend upon the way we map under-
lying data into relational tables, the type of indices to be
used, and more importantly, upon whether or not fragment
set reduce will be able to take advantage of these indices.

Once we develop a suitable cost model, the next impor-
tant issue would be to investigate the primary challenges
that a query optimizer might face. Here, we give an insight
into one such challenge. Before proceeding further into this
discussion, let us informally define a term “reduction fac-
tor” that quantifies the amount of reduction obtained after
fragment set reduce operation on a fragment set F. We de-
note this factor as RF and to keep this issue simple, let us
suppose that RF can be computed as RF = (a−b)/a where
a = | F | and b = | � (F) |. Note that 0 >= RF < 1, and
RF = 0 means that no reduction has been obtained at all,
while a higher value of RF means a significant reduction in
the number of fragments in the fragment set. Through sev-
eral experiments, suppose we can come up with a value v of
RF such that, any value that is less than v implies there will
be no benefit in applying fragment set reduce operation. The
query optimizer can then estimate RF and compare it with
v to decide whether or not to perform fragment set reduce
operation for computing the fixed point of a fragment set.
The challenge then for the optimizer would be to estimate
RF accurately.

Before ending the discussion on this issue, we emphasize
that further analysis is required both for devising a concrete
cost model, and for designing a reliable query optimizer as
well.

The second issue we are going to discuss is how to treat
overlapping answers that we mentioned in Section 4.1. Note
that overlapping answers here are similar to the ones that
the IR-community has been debating in recent years[10][3].
There are contrasting views on whether or not some overlap
in the results should be tolerated. An element-based XML
retrieval system typically returns a set of ranked XML ele-

303

k1 = XQuery
k2 = optimization n0

n1

n2

n3

... n14

n15 k2
n16

k1, k2
n17 k1

n18

...

... n79

n80

k2
n81

...

Q = σsize≤3 { k1, k2 }

(a)

k2
n16

k1, k2
n17 k1

n18

(b)

n0

n1

n14

k2
n16

k1, k2
n17 k1

n18

n79

n80

k2
n81

(c)

Figure 8: (a) An XML Tree and an Example Query, (b) Fragment of Interest, and (c) Potentially an Irrelevant
Fragment

ments as a search result. In such a system, it may be wise
to penalize overlapping results, otherwise the system might
produce a result in which the top ranks are dominated by
many structurally related elements[3]. In our case, overlap-
ping answers are simply the sub-fragments of target frag-
ments. We believe it is only a question of how they should
be presented to the users. Either they can be completely
hidden, or, together with target fragments, they can be pre-
sented in a visually pleasing way to show their structural
relationships.

6. RELATED WORK
In contrast to complex syntax of structure-based query

languages such as XQuery[19], keyword search offers a sim-
ple query interface to general users. In addition, it re-
lieves users from being aware of the underlying structure
of a document to formulate queries. Several studies on key-
word search over XML documents have been done in the
recent past. They can be classified according to 1) whether
primary target documents are data-centric or document-
centric, 2) the way query processing is carried out, and
3) whether or not any preprocessing of documents is car-
ried out in order to build indices so that those indices can
assist in efficient query processing.

Data-centric vs Document-centric Data: Several stud-
ies described in the literature[4][5][12][15][20] assume their
target data to be highly schematic XML documents. Conse-
quently, as explained in the Introduction, the query seman-
tics proposed in these studies are not sufficient to effectively
retrieve meaningful portions of less schematic document-
centric XML documents even for simple queries.

Although studies described in [1][6][7][8][16] are focussed
on keyword search over document-centric XML documents,
none of them except [8] deals with the issue of retrieval
unit. [16] provides extended SQL-like language for sup-
porting both structure-based and IR-like keyword queries.
XRank[7], largely influenced by Web-like search, proposes
various techniques for ranking a large number of query re-
sults. [1][6] on the other hand, proposes methods for inte-
grating keyword queries into conventional structural queries.

Database-style vs IR-style Query Processing: The
idea of providing an interface as simple as “keyword search”
for querying documents was originated by the IR commu-
nity in the first place. Therefore, it is natural that several
studies described in [7][5][1][6][17] adopt IR-style query pro-
cessing. That is, instead of providing a strict query seman-
tics, they provide several ranking techniques to deal with
often overwhelming answers to a query. In contrast, we have
limited our work within a framework which is purely based
on database-style query processing, although ranking tech-
niques described in those studies can be easily incorporated
into our work. We provide a filtering mechanism, instead of
ranking techniques, to restrict size of the query result. Our
main interest lies in set-based operations and query opti-
mization based on algebraic manipulation.

Preprocessing of Data: Some existing work [8][5][9]
proposes preprocessing of the data for performance enhance-
ment. In [8], it is claimed that several XML fragments,
which may never be answer unit to a query, can be disre-
garded while building the index. This will help reduce the
size of the index and thus enhance the performance of the
system. Statistical measures have been taken into consid-

304

eration for identifying such irrelevant fragments. Our work
differs from them in that no preprocessing of data is car-
ried out and all answer fragments of interest are computed
dynamically.

Direct comparison between the processing efficiency of ex-
isting approaches and the approach presented in this paper
is difficult since existing methods are ineffective in achieving
our goal in the first place. Our approach may fall short of
efficiency under certain circumstances, as there is a natural
trade-off between effectiveness and efficiency. However, we
believe this trade-off can be compensated, at least partly,
as we showed that there are several practically useful filters
having anti-monotonic property which can be applied for
better performance results. Our work can therefore serve as
a complement to several other studies carried out for effi-
cient keyword search over XML documents.

The problem related to retrieval unit for keyword-based
queries has been studied by many researchers in various con-
texts. [2] deals with this problem in the context of rela-
tional database management systems while [11] does that in
the context of logical web documents consisting of multiple
pages. In either of these papers, the underlying data is mod-
elled as a graph and heuristic methods have been proposed
to find out the most relevant answers from the graph. Both
suffer from the problem of computational complexity. We
have stated the problem of computing retrieval unit in the
context of document-centric XML documents, and provided
a query model that can compute potentially relevant answers
effectively and efficiently under certain circumstances.

7. CONCLUSIONS AND FUTURE WORK
A theoretical framework for an effective and efficient key-

word search over document-centric XML documents was de-
scribed. We showed that even for simple queries, existing
approaches are not always effective in retrieving fragments
of interest. Opportunity for optimization is sought by any
query mechanism to reduce the query-processing cost. In
this paper, we presented several optimization techniques
that guarantees better efficiency for keyword search over
tree-structured documents. We provided several analysis
and theoretical proof which would allow a query proces-
sor to manipulate operations algebraically. Moreover, we
defined a particular class of filters having anti-monotonic
property. We theoretically showed that these filters, when
used as selection predicates, are capable of reducing signifi-
cant processing cost. The model can be easily implemented
on top of an existing relational database and hence, can ac-
commodate a very large collection of XML documents[13].

Experimental evaluation involving real data sets, algo-
rithms to implement all the operations and their precise
complexity analyses, answer presentation techniques for over-
lapping answers considered natural in document-centric XML
documents, and other optimization issues at implementation
level to complement our algebraic optimization are some of
the issues for our future work.

Acknowledgements
The author is grateful to Professor Katsumi Tanaka of Kyoto
University for his encouragement in initiating this work and
for suggestions he provided through numerous discussions.
The author is also thankful to the anonymous referees for
their invaluable comments and suggestions.

8. REFERENCES
[1] Shurug Al-Khalifa, Cong Yu, and H. V. Jagadish.

Querying structured text in an XML database. In
SIGMOD 2003, pages 4–15, 2003.

[2] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, pages 431–440,
2002.

[3] Charles L. A. Clarke. Controlling overlap in
content-oriented XML retrieval. In SIGIR, pages
314–321, 2005.

[4] S. Cohen, Y. Kanza, and B. Kimelfeld.
Interconnection semantics for keyword search in XML.
In Proc. of CIKM, pages 389–396, 2005.

[5] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A semantic search engine for XML. In Proc.
of 29th VLDB, pages 45–56, 2003.

[6] D. Florescu, D. Kossman, and I. Manolescu.
Integrating keyword search into XML query
processing. In International World Wide Web
Conference, pages 119–135, 2000.

[7] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRank: ranked keyword
search over XML documents. In SIGMOD, pages
16–27. ACM, June 2003.

[8] K. Hatano, H. Kinutani, T. Amagasa, Y. Mori,
M. Yoshikawa, and S. Uemura. Analyzing the
properties of XML fragments decomposed from the
INEX document collection. In INEX, pages 168–182,
2004.

[9] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on XML graphs. In ICDE,
pages 367–378. IEEE, 2003.

[10] G. Kazai, M. Lalmas, and A. P. de Vries. The overlap
problem in content-oriented XML retrieval evaluation.
In SIGIR, pages 72–79, 2004.

[11] W.S. Li, K. S. Candan, Q. Vu, and D. Agrawal.
Retrieving and organizing web pages by ‘Information
Unit’. In Tenth International WWW Conference,
Hong Kong, China, pages 230–244, 2001.

[12] Y. Li, C. Yu, and H. V. Jagadish. Schema-free
XQuery. In Proc. of 30th VLDB, pages 72–83, 2004.

[13] S. Pradhan. A framework for the relational
implementation of tree algebra to retrieve structured
document fragments. In 5th Int’l Conf. on Web
Information Systems Engineering, pages 206–217.
Springer-Verlag, Nov 2004.

[14] S. Pradhan and K. Tanaka. Retrieval of relevant
portions of structured documents. In Proc. 15th Int’l
Conf. of Database and Expert Systems Applications,
pages 328–338. Springer-Verlag, Aug-Sep 2004.

[15] A. Schmidt, M. Kersten, and M. Windhouwer.
Querying XML documents made easy: Nearest
concept queries. In ICDE, pages 321–329, 2001.

[16] A. Theobald and G. Weikum. The index-based XXL
search engine for querying XML data with relevance
ranking. In EDBT 2002: 8th International Conference
on Extending Database Technology, pages 477–495.
Springer-Verlag, 2002.

[17] Martin Theobald, Ralf Schenkel, and Gerhard
Weikum. An efficient and versatile query engine for
TopX search. In VLDB, pages 625–636, 2005.

305

n1

n2

n3

n5

n6

n7

f1 = 〈n1〉, f3 = 〈n3〉, f5 = 〈n5〉,
f6 = 〈n6〉, f7 = 〈n7〉

F = {f1, f3, f5, f6, f7}
F1 = {f1, f5, f7}
F2 = {f3, f6}

F = F1 ∪ F2 Fk = F3 ∪ F4

F3 = {f1 � f5 � f7}
F4 = {f1 � f5 � f3, f1 � f5 � f6, f1 � f3 � f6,

f5 � f7 � f3, f5 � f7 � f6, f5 � f3 � f6,

f7 � f1 � f3, f7 � f1 � f6, f7 � f3 � f6}

(F1 ∪ F2) � (F3 ∪ F4) = F � Fk = Fk

Examples (Case 2 and 3): x � y = x′

(f1 � f5 � f3) � f6 = f1 � f5 � f6

(f1 � f3 � f6) � f7 = f1 � f3 � f7

Figure 9: Illustrative Proof for Theorem 1

[18] J. D. Ullman. Principles of Database and
Knowledge-Base Systems Vol. II. Computer Science
Press, 1989.

[19] W3C. XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery/.

[20] Y. Xu and Y. Papakonstantinou. Efficient keyword
search for smallest LCAs in XML databases. In
SIGMOD, pages 527–538. ACM, June 2005.

Appendix

Proof Theorem 1. For | F | <= 2, the proof is trivial,
since for any fragment set to be reduced, the set should con-
tain at least three elements. In order to prove �n (F) =�k

(F), we only need to prove �k (F) =�k+1 (F) =�k (F) � F.
We shall prove this by showing �k (F)⊆ �k (F) � F and
�k (F) � F ⊆�k (F).

Here, �k (F) ⊆�k (F) � F is obvious because of monotonic
property of pairwise fragment join operation. However, we
need further analysis of the operation in order to prove �k

(F) � F ⊆�k (F). Let Fk denotes the fragments produced in
the kth iteration, that is, Fk =�k (F)− �k−1 (F). We now
only need to show Fk � F ⊆�k (F).

Let F1 denotes the reduced set of F and F2 = F− F1. We
know, Fk may contain at most n!

k!(n−k)!
(combinations of n-

fragments taken k-fragments at a time) number of element
fragments. Let F3 denotes {f1 � f2 � . . . � fk} where
fi is the ith element of F1. Obviously, {f1 � f2 � . . . �

fk} ∈ Fk. Supposing F4 = Fk − F3 then we must show that
(F � F3) ∪ (F1 � F4) ∪ (F2 � F4) ⊆ Fk because
F � Fk = (F1 ∪ F2) � (F3 ∪ F4) =
(F1 � F3) ∪ (F1 � F4) ∪ (F2 � F3) ∪ (F2 � F4) =
(F � F3) ∪ (F1 � F4) ∪ (F2 � F4). Now, we analyse all three
cases.

Case 1 (F � F3). Obviously, all the fragments in F are
the sub-fragments of F3 since F3 is a singleton consisting of
the largest fragment that could be generated from the ele-
ments in F. Therefore, F � F3 ⊆ Fk ⊆�k (F).

Case 2 (F2 � F4). Let x ∈ F4, y ∈ F2 and y′, y′′ ∈ F

(y �= y′ �= y′′) such that y ⊆ y′ � y′′. Now, if y ⊆ x, then
x � y = x. If y �⊆ x, there must exist x′ ∈ Fk such that y′ ⊆
x′ and y′′ ⊆ x′ because Fk consists of all k-way combinations
of n fragments of F and for each fragment f in F4 there
exists f′ ∈ F2 such that f′ ⊆ f. It implies, x′ = x � y

(refer to Figure 9). Therefore, x � y ∈ Fk which follows
F2 � F4 ⊆ Fk ⊆�k (F).

Case 3 (F1 � F4). Let x ∈ F4, y ∈ (F1) and y′, y′′ ∈ F

(y �= y′ �= y′′) such that y ⊆ y′ � y′′. Now, if y ⊆ x, then
x � y = x. If y �⊆ x, there must exist x′ ∈ Fk such that either
1. (y ⊆ x′ and y′ ⊆ x′) or 2. (y ⊆ x′ and y′′ ⊆ x′) because
Fk consists of all k-way combinations of n fragments of F

and for each fragment f in F4 there exists f′ ∈ F2 such that
f′ ⊆ f. It implies, x′ = x � y (refer to Figure 9). Therefore,
x � y ∈ Fk which follows F1 � F4 ⊆ Fk ⊆�k (F).

This proves the theorem.

Proof Theorem 3. We prove this theorem by showing
σPa(σPa(F1) � σPa(F2)) ⊆ σPa(F1 � F2) and σPa(F1 � F2) ⊆
σPa(σPa(F1) � σPa(F2)). In order to do that, first we define
the following lemma.

Lemma 1. A fragment f is the sub-fragment of the re-
sulting fragment produced by the fragment join operation be-
tween f and any arbitrary fragment f′, that is, f ⊆ f � f′.

Proof. Obvious from the definition of fragment join.

We have σPa(F1) ⊆ F1 and σPa(F2) ⊆ F2 from the defini-
tion of selection. It follows σPa(F1) � σPa(F2) ⊆ F1 � F2.
Therefore, σPa(σPa(F1) � σPa(F2)) ⊆ σPa(F1 � F2).

Now, let f ∈ σPa(F1 � F2). Since σPa(f) = true, there
must be f1 ∈ F1 and f2 ∈ F2 such that f1 � f2 = f. Since
f1 ⊆ f according to Lemma 1, and Pa is an anti-monotonic
filter, it follows σPa(f1) = true. Therefore, f1 ∈ σPa(F1).
Similarly, f2 ∈ σPa(F2). As σPa(f) = true and f1 � f2 = f,
it follows f1 � f2 ∈ σPa(σPa(F1) � σPa(F2)). Hence, σPa(F1 �

F2) ⊆ σPa(σPa(F1) � σPa(F2)).

306

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

