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ABSTRACT
Tree pattern matching is one of the most fundamental tasks for
XML query processing. Holistic twig query processing techniques
[4, 16] have been developed to minimize the intermediate results,
namely, those root-to-leaf path matches that are not in the final
twig results. However, useless path matches cannot be completely
avoided, especially when there is a parent-child relationship in the
twig query. Furthermore, existing approaches do not consider the
fact that in practice, in order to process XPath or XQuery state-
ments, a more powerful form of twig queries, namely, Generalized-
Tree-Pattern (GTP) [8] queries, is required. Most existingworks on
processing GTP queries generally calls for costly post-processing
for eliminating redundant data and/or grouping of the matching re-
sults.

In this paper, we first propose a novelhierarchical stack encod-
ing scheme to compactly represent the twig results. We introduce
Twig2Stack, a bottom-up algorithm for processing twig queries
based on this encoding scheme. Then we show how to efficiently
enumerate the query results from the encodings for a given GTP
query. To our knowledge, this is the first GTP matching solu-
tion that avoidsanypost path-join, sort, duplicate elimination and
grouping operations. Extensive performance studies on various
data sets and queries show that the proposedTwig2Stack algo-
rithm not only has better twig query processing performancethan
state-of-the-art algorithms, but is also capable of efficiently pro-
cessing the more complex GTP queries.

1. INTRODUCTION
The rich content and the flexible semi-structure of XML doc-

uments demand efficient support for complex declarative queries.
XML documents can be viewed as ordered tree structures where
each tree node corresponds to documentELEMENTS (ATTRIBUTES)
and edges represent parent-child (element→sub-element) relation-
ships. Figure 1 depicts one sample XML document tree. Common
XML query languages, such as XPath [21] and XQuery [22], issue
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structural queriesover the XML data. Due to their significance to
many practical applications, efficient processing of such structural
queries has received significant attentions from both academic and
industrial communities [3, 4, 16, 23]. One of the most common
structural queries is thetree (twig) patternquery. A sample tree
pattern query is shown on the right side of Figure 1. Here a docu-
ment elementa can be a match to query nodeA when it has path
matches forboth//A/B//D and//A/B/C 1.

Efficient matching of tree pattern queries over XML data is one
of the most fundamental challenges for processing XQuery [13].
Most existing works on processing twig queries decompose the
twig queries into paths and then join the path matches [3, 23]. This
approach may introduce very large intermediate results. Consider
the sample XML document tree and a tree pattern query in Figure 1.
For instance, the path match(a1, b4, d4) for path//A/B//D does
not lead to any final result since there is no childC node underb4.
To solve this problem,holistic twig pattern matching[4, 16] has
been developed in order to minimize the intermediate results, i.e.,
only to enumerate those root-to-leaf path matches that willbe in the
final twig results. However, when the twig query contains parent-
child relationship, these solutions may still generate large numbers
of useless matches [4, 16]. In this paper, we will show that the ex-
plicit join of individual root-to-leaf path matches or eventhe enu-
meration of these path matches arenot necessary for processing
twig queries.
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Figure 1: A Sample XML Document Tree and A Twig Query

Yet another challenge for processing XQuery is that there may be
multiple path expressions in the FOR, LET, WHERE and RETURN
clauses, all withdifferentsemantics. Existing work shows that it
is better to consider the matching of these expressions as a whole
in terms of ageneralized tree pattern(GTP) [8] in order to avoid
1In this paper, we assume the document elements with labels in
lower-case letter match the query nodes with labels in the corre-
sponding upper-case letter. For instance,a2 anda3 match nodeA.
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repetitive work. Figure 2 depicts two sample XQuery statements
and their respective GTPs. InXQuery1, D is not a return node,
i.e., only its existence is of interest. In XQuery2, nodeC is optional
(in general, any expression in the LET or RETURN clauses is op-
tional) in the sense that aB element can be a match even without
any descendantC elements. Any matchingC elements, however,
must begroupedtogether under their commonB ancestor element.

Most existing works on holistic twig query processing focusonly
on returning the entire twig results [4, 14, 16]. In practice, how-
ever, returning the entire twig results is seldom necessaryfor either
XPath or XQuery and may consequently cause duplicate elimina-
tion or ordering problems (Section 2). Moreover, many XQuery
statements in practice require grouping the results [8]. Applying
post-duplicate elimination, sorting and grouping operations to ad-
dress these problems has already been shown to be expensive in
many existing works [8, 10].
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FOR $b in //A/B[C][//D]
RETURN $b

XQuery2:

FOR $b in //B,
$d in $b//D

LET $c := $b//C
RETURN $b, $d, $c

Figure 2: Generalized Tree Pattern and XQuery

In this paper, we provide a comprehensive solution to tacklethe
above challenges. In summary, the main contributions are:

• We propose a novelhierarchical stack encodingscheme to
compactly represent the twig results. This scheme also re-
duces the complexity for twig query processing.

• Based on this encoding scheme, we proposeTwig2Stack, a
bottom-up query processing algorithm for a givengeneral-
ized tree pattern (GTP)[8], which is a fundamental building
block for XQuery processing.

• Then we show how to efficiently enumerate the GTP query
results from the encodings. To our knowledge, this is the first
GTP matching solution that is free of any post path-join, sort,
duplicate elimination, and grouping operations.

• We propose an early result enumeration mechanism by using
a hybrid of top-down and bottom-up computation method to
reduce the runtime memory usage.

• Extensive performance studies on various data sets and queries
show that ourTwig2Stack algorithm not only has better
performance for twig query processing than existing works,
such asTwigStack [4] andTJFast [16], but is also capable
of efficiently processing the more complex GTP queries.

2. DATA MODEL AND QUERY LANGUAGE
An XML document is modeled as a nested structure ofelements.

The scope of an element is defined by its start-tag and end-tag. An
example XML document tree is demonstrated in Figure 1.

The common query languages over XML are XPath [21] and
XQuery [22]. One fundamental task for processing XPath and
XQuery is to match twig patterns queries. The concept ofgeneral-
ized twig pattern (GTP)is introduced in [8] to consider the evalua-
tion of an XQuery as a whole to avoid repetitive work.

We now give a brief review of GTP. As shown in Figure 2, GTP
query may have solid and dotted edges, representing mandatory
and optional structural relationships, respectively. In this paper,
we consider parent-child (PC) and ancestor-descendant (AD) re-
lationships. The mandatory semantics corresponds to thosepath
expressions in the FOR or WHERE clauses. The optional seman-
tics corresponds to those path expressions in the LET or RETURN
clauses. For a given GTP, not all nodes are return nodes. For the
path expressions in the FOR clause, only the last node is the return
node. One example is theB node ofGTP1 in Figure 2. For the
path expression in LET or RETURN clause, we may need to group
the matching elements under their common ancestor element.One
example is theC node ofGTP2 in Figure 2. Please refer to [8] for
detailed definition of GTP and how to translate XQuery into GTPs.

These rich semantics introduce new challenges for handlingthe
duplicatesand ordering issues. We now briefly review how the
query results are generated when there are non-return nodesin the
GTP query through the following three examples. Consider the
document tree in Figure 1. (i) For path query//B//D, let us
first assumeB and D are both return nodes. The final matches
are(b1, d1), (b2, d2), (b2, d3), (b3, d2), (b3, d3) and(b4, d4). (ii)
Now let us assumeD is the only return node. In this case, the re-
sults should be(d1), (d2), (d3) and (d4). Clearly, if we were to
generate the distinct path matches first as in the first case, dupli-
cate elimination becomes unavoidable. (iii) Lastly, let usconsider
path query//A/B whereB is the only return node. The results
are(b1), (b2), (b3) and(b4). This order is different from the or-
der for the entire path matches, namely,(a1, b4),(a2, b2),(a3, b1)
and(a4, b3). If we were to generate these entire path matches first,
sorting theseB elements becomes unavoidable.

In this paper, we use the region encoding for the XML docu-
ment, which is widely used in XML query processing [4, 19, 23].
Region encoding associates each XML document element with a3-
tuple[LeftPos, RightPos], Level. HereLevelis the depth of the ele-
ment in the document tree.LeftPosandRightPosare both integers.
Given any two document elements,e1 ande2, e1 is e2’s ancestoriff
e1.LeftPos < e2.LeftPos ande2.RightPos < e1.RightPos.
Furthermore, ife1.Level = e2.Level − 1, then e1 is e2’s par-
ent. This encoding allows efficient structural checking between two
document elements. Figure 1 also includes the region encodings.

3. EFFICIENT GTP PROCESSING
In this section, we propose theTwig2Stack algorithm for pro-

cessing a GTP query. We start with an in-depth study of the existing
PathStack [4] algorithm. OurTwig2Stack algorithm is inspired
by the similar principles.

3.1 Motivation
Bruno et.al [4] proposed a novel path matching algorithm, called

PathStack, for processing linear path expressions. Consider the
path query//A/B//D and the data patha1, a2, b2, a4, b3, d2, d3
in Figure 1. The entire path query is processed in a top-down fash-
ion by visiting the document elements in pre-order. First, each
query nodeE is associated with a stack,S[E]. The algorithm
pushes the document element into the stackiff the relationship be-
tween this element and thetop element in its parent stack satisfies
the axis requirement in the query. Once a document element is
pushed into the leaf stack,PathStack algorithm knows that there
must be some answers to this path query. Figure 3 shows how this
query is processed given the above input. The result enumeration
is done in reverse, i.e., starting from the elements in the leaf query
nodes. For example,d3 points tob3 and implicitly to b2 as well
since the axis is AD.b3 andb2 point toa4 anda2, respectively. So
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the path matches ford3 are(a2, b2, d3) and(a4, b3, d3).

S[A]
a1

S[B]
b2
b3a2

S[D]
d2

a4
d3

Figure 3: PathStack: Path-based Stack Encoding

The following main observation can be made from this algo-
rithm. That is, the partial/complete path results are encoded by
recording the AD relationships either 1) between the elements in
different query stacks by using explicit edges, or 2) between the
elements in the same stack, which are implicitly recorded based on
their positions in the stack. Note that this partial/complete path re-
sult encoding scheme not onlyavoids to generate large intermedi-
ate results, but alsoreduces the query processing cost. The reason
is that only thetopelement in the parent stack needs to be checked.
In Figure 3,d2 only needs to consider its relationship tob3 not b2.

In [4], the authors further proposed theTwigStack algorithm
for holistic processing of twig queries. The basic idea is tooutput
a matching path only when it contributes to the final twig results.
This is done by checking the node indexes to make sure all the
branches are satisfied. However, this approach is shown to benot
optimal for twig queries with PC edges, i.e., the resulting root-to-
leaf path matches are not guaranteed to be in the final twig results.

Inspired by thePathStack algorithm, our goal is to process twig
queries with similar principles, i.e., we need an effectivemech-
anism to encode partial/complete twig results in order to mini-
mize the intermediate results and to reduce the query processing
cost. In particular, we need to record the AD relationships between
the document elements in different query nodes as well as those
in the same query node in order to minimize the intermediate re-
sults. While we can use explicit edges to record the AD relation-
ships for the document elements in different query nodes (similar
to PathStack), for the elements in the same query node, we find
that they naturally form atree structureas well. For example, in
Figure 1, botha2, a3 anda4 satisfy the twig query nodeA. Here
a2 is an ancestor for botha3 anda4, while a3 anda4 have no AD
relationship. Based on this observation, we propose to organize the
elements that match the same query node in ahierarchicalstructure
to explicitly capture their AD relationships.

In this paper, we show that such a hierarchical structure canbe
produced based on thepost-orderdocument traversal. Intuitively,
for any document elemente, when we visite during pre-order
traversal, we can only determine ife satisfies aprefix pathquery
from root to query nodeE. When we visite during post-order
traversal, we can determine ife satisfies asub-twigquery rooted at
query nodeE. The latter is based on the fact that only when the
entire subtree ofe is visited, can we determine ife has required
descendant elements. Hence in order to encode the twig results, a
post-order document traversal is required.

3.2 Hierarchical Stack Encoding

3.2.1 Notations and Data Structures
In this section, we introduce ahierarchical stack encodingscheme

to capture the AD relationships for the elements in the same query
node as motivated in the previous section.

For each query nodeN of a twig queryQ, we associate it with
a hierarchical stackHS[N ]. Each hierarchical stackHS[N ] con-
sists of an ordered sequence (the sequence order will be described
shortly) ofstack treesST . A stack treeST is an ordered tree (the
tree order will be described shortly), where each tree node is astack

S. For example, in Figure 4,HS[A] contains one stack tree, while
HS[D] contains three stack trees.

Each stackS contains zero or more document elements. The AD
relationship between the document elements in a stack treeST is
implicitly captured as follows:one document element is an ances-
tor for all elements below in the same stack and is also an ancestor
for all elements in its descendant stacks.Note that any two ele-
ments have no AD relationship if their corresponding stackshave
no AD relationship. ConsiderHS[A] in Figure 4,a2 is ancestor
for botha3 anda4, while a3 anda4 have no AD relationship.

In order to create the hierarchical structure among stacks when
visiting the document elements in the post-order, we associate each
stackS with a region encoding, similar to that for a document ele-
ment. TheLeftPosfor a stackS is defined as the smallestLeftPos
among all the elements in stackS and all ofS’s descendant stacks.
TheRightPosfor a stackS is defined as the largestRightPosamong
all the elements in stackS and all ofS’s descendant stacks. For
instance, in Figure 4, the top stack ofHS[B] has region encod-
ing [4, 24] (Level is not used for stacks), where4 is the smallest
LeftPos and24 is the largestRightPos among its descendant
elements. The region encodings for other stacks are shown inthe
figure. Next, the region encoding for a stack treeST is the same as
the encoding ofST ’s root stack. Finally, for a given hierarchical
stackHS[N ], its stack trees are ordered based on theirRightPos.
For a given stackS, its child stacks are also ordered based on their
RightPos.
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Figure 4: Hierarchical Stack Encoding

3.2.2 Creating Hierarchical Stacks through Merging
Since the leaves are visited before the root in post-order doc-

ument traversal, the hierarchical structure is built in a bottom-up
manner. We now introduce amergeoperation for creating the hier-
archy among stacks. The merge operation is leveraged to combine
multiple stack trees into a single one. Intuitively, this means that
the entiresub-treeof e has been visited. Figure 5 shows how the
stack trees inHS[A] in Figure 4 are created.

HS[A]

a3 a4
[3,10] [12,21]

[3,21]

HS[A]

a3 a4
[3,10] [12,21]

Visiting a2 [2,25]

before after

Figure 5: Example of Merge Operation
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EXAMPLE 1. During the post-order traversal of the XML doc-
ument in Figure 1, we visit a3, a4 and then a2. The hierarchical
stackHS[A] before visiting a2 in Figure 5 is on the left side. When
visiting a2, we find that a2 is an ancestor of both stacks (we ex-
tend the notion of AD relationship between document elementand
stack trees based on their encodings). Hence, a new merged stack
is created.

Figure 6 depicts the pseudo code of themergealgorithm. Here
createMergedStackTree(line 12) creates a new stack and lets all
stack trees inSTS (if more than one) be its children. Line 5-10
is to process one query step, which will be described in the next
section. The newly created or merged stack tree must always have
the largestRightPos. Hence, their order is naturally maintained.

Boolean merge (HierarchicalStack HS[M], docElement e, Axis axis)
Boolean Satisfied = FALSE; 
StackTreeSet STS = empty; 
1. BEGIN
2.        FOR each stack tree ST of HS[M] 

//Visit in descending order of ST.RightPos
3.              IF ST.RightPos < e.LeftPos
4.                   break; //No need to keep visiting more stack trees;
5.              IF axis = PC AND ST.top.Level = e.Level+1
6.                   Satisfied = TRUE;
7.                   addPCEdge(e, M, ST.top);
8.              ELSE IF axis = AD
9.                   Satisfied = TRUE;
10.                 addADEdge(e, M, ST.top);
11.   STS = STS ST;        
12.      createMergedStackTree(STS); 
13.      return Satisfied;
14.END

∪

Figure 6: Pseudo Code of Merge Algorithm

LEMMA 1. Assume that for a given document elemente, the
stack treesST1, ST2, ..., andSTn are merged and a new root
stackSTn+1 is created. For any document elemente′ visited dur-
ing the rest of the post-order document traversal, it will beeither
an ancestor ofall ST1, ST2, ..., andSTn or noneof them.

Lemma 1 immediately follows that whilee′ may be pushed into
STn+1, denoting its AD relationships to allSTi, it will neverbe
pushed into anySTi(i = 1..n). In Example 1, any future element
must be either the ancestor ofbotha3 anda4 or none of them.

3.3 Bottom-up Twig Query Processing

3.3.1 Overview
In this section, we presentTwig2Stack algorithm for process-

ing GTP queries based on the hierarchical stack encoding scheme2.
Recall thatTwig2Stack algorithm visits the document elements in
post-order. This can be easily achieved even when the document el-
ements are indexed in document-order as in [4]. That is, we main-
tain a global stack for the document elements that are on the same
path. Given a document elemente visited in pre-order (with the
minimumLeftPos), we pop up all the elements in the stack that
are note′s ancestors. Then we pushe into the stack. The popped
document elements are in post-order (line 2,3,6 in Figure 7).

2As can be seen in Figure 4, for a given twig query, all the hierar-
chical stacks form a tree structure. At the same time, the internal of
a hierarchical stack also forms a tree structure. We thus name our
algorithmTwig2Stack.

The essential idea ofTwig2Stack is as follows. Given a docu-
ment elemente, we push it into a hierarchical stackHS[E] (with
the matching label, i.e., either the same label or wildcard ‘*’) iff it
satisfies the sub-twig query rooted at this query nodeE. Only E’s
child query nodesM need to be checked due to the fact that all
the elements inHS[M ] must have already satisfied the sub-twig
query rooted atM . Finally, the hierarchical stack structure (as in
Section 3.2) is maintained using themergealgorithm in Figure 6 ei-
therwhen checking one query stepor when pushing one document
element into the hierarchical stack.

Maintaining the hierarchical structure among stacks has a critical
impact on efficient processing of twig queries. It servesmultiple
purposes. First, it encodes the partial/complete twig results in order
to minimize the intermediate results as motivated in Section 3.1.
Second, it reduces the query processing cost as we will describe in
the next section. Third, it enables efficient result enumeration as
we will describe in Section 4.

3.3.2 Checking One Query Step
Given a document elemente, we push it intoHS[E] iff all the

query steps toE’s child nodesM have been satisfied. Due to
the nature of post-order traversal, alle’s descendant elements must
have already been visited and have been pushed intoHS[M ] if sat-
isfied. Hence, the checking of one query stepE →M for e can be
done through themergingof HS[M ].

Assume that there aren stack trees inHS[M ], namely,ST1,
..., STn. First, let us assume none of theSTi (i = 1..n) is e’s
descendant, since the entire sub-tree ofe is visited due to the post-
order traversal, we can safely conclude thate cannot satisfyE.

Next, let us assumeSTp,...,STn (1 ≤ p ≤ n) aree’s descen-
dants. We denoteSTi.top as the top element of the root stack of
stack treeSTi. Note thatSTi.top may be empty if the top stack
does not contain any element. In this case, (1) when the query
stepE → M is an AD relationship, then all the elements in stack
treesSTp,...,STn, satisfy this query step. We encode the results of
this query step by creating edges frome to STp.top,...,STn.top.
Such an edge implicitly means thatSTi.top and the elements in
the descendant stacks aree’s descendants. (2) When the query step
E → M is a PC relationship, obviously onlySTp.top,...,STn.top
might be child ofe. We then create edges to those top elements if
their Level equalse.Level + 1. By Lemma 1, we guarantee that
these edges encode all possible answers frome for this query step,
since no elements will ever be pushed belowSTp.top,...,STn.top
during the rest of the document traversal.

Finally, after this query step checking phase, we merge the stack
treesSTp,...,STn by creating a new root stack. The primary pur-
pose of this stack tree merging step is toreducethe future query
processing costs, since only this new root stack needs to be consid-
ered for the remaining document elements. The pseudo code for
checking one query step is in line 5-10 in Figure 6.

EXAMPLE 2. In Figure 4, when visitinga2, we merge the stack
trees inHS[B] while checking the PC axis (create one edge to
b2) 3. When visitinga1, we only need to check the top element in
HS[B] and conclude that its//A/B step is not satisfied.

3.3.3 Twig2Stack Algorithm and Analysis
Putting together, Figure 7 depicts the pseudo code ofTwig2Stack

algorithm. Given a document elemente visited in post-order, we
first check ife can be pushed into its corresponding hierarchical
stackHS[E], or in other words, if allE’s child axes have been
satisfied (line 3-4 inMatchOneNode) as described in Section 3.3.2.
3The edges shown in Figure 4 are conceptual for easy understand-
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Procedure Twig2Stack(docElement e)
Stack docPath; 
docElement currentElem;
1.  BEGIN
2.    WHILE docPath not empty AND docPath.top is not e’s ancestor 
3.         currentElem = docPath.pop();
4.         FOR each query node E with matching label of currentElem
5.              MatchOneNode(currentElem, HS[E]);
6.     docPath.push(e); 
7.  END

Procedure MatchOneNode (docElement e, HierarchicalStack HS[E])
Boolean Satisfied;
1. BEGIN
2.      Satisfied = TRUE; 
3.      FOR each child query node M of E & Satisfied
4.           Satisfied = merge(HS[M], e, axis(E→M)); 
5.      IF Satisfied
6.           merge(HS[E], e, ""); 
7.           push (HS[E], e);  
8. END

Figure 7: Pseudo Code of Twig2Stack Algorithm

Oncee satisfies all the axes requirements for query nodeE, we
pushe into the hierarchical stackHS[E]. Meanwhile, we also need
to maintain the hierarchical structure of the elements inHS[E]. To
achieve this, we also merge the stack trees inHS[E] based one
(line 6 inMatchOneNode) and pushe to the top of the merged stack
(line 7). When there is no existing stack tree that is the descendant
of e, a new stack will be created to holde.

Finally, we show how easily the optional axis (Section 2.1) can
be supported. We push an element into the stackiff all its manda-
tory axes are satisfied, while we create edges for both mandatory
and optional children. This avoids a potentially expensiveleft-
outer-join operation as required in prior work [8]. AND/OR twig
query [14] can also be easily supported. Figure 4 depicts a running
example of theTwig2Stack algorithm.

THEOREM 1. For any document elemente, it is pushed into
HS[E] iff it satisfies the sub-twig query rooted atE.

PROOF. 1) “→”: The proof is straightforward based on the dy-
namic programming nature of theTwig2Stack algorithm.

2) “←”: If E is a leaf query node, then any document element
e with matching labels satisfies this query node and will be pushed
into HS[E]. The theorem is trivially true. For a non-leaf query
nodeE, we prove the theorem by contradiction.

Assume one elemente satisfiesE but is not inHS[E]. Then at
least one query stepE → M failed when mergingHS[M ]. Since
e satisfiesE, there must exist one elementm which satisfiesM and
the structural relationship betweene andm satisfies the query step
E → M . There can be two reasons why the merging ofHS[M ]
failed. They are either (i)m in HS[M ] however the structural
relationship betweene andm is not captured through merging to
satisfy the query step. Clearly,m must reside in one stack tree in
HS[M ] ande must be able to find this stack tree as its descendant -
AD relationship is thus satisfied. Ifm is the child ofe, thenm must
be at the top of one stack tree - PC relationship is thus satisfied.
Hence, case (i) is not possible. (ii)m is not inHS[M ], or in other
words,m does not satisfyM . By applying the same reasoning, we
can conclude that there must exist onep element that satisfies query
nodeP (P is M ’s child query node) but not inHS[P ]. Eventually
when reaching the leaf query node, as stated before, all the ele-

ing. In implementation, we create multiple edges as in Figure 6.

ments are satisfied and must be in the corresponding hierarchical
stack. Hence, case (ii) is also not possible.

3.4 Space Complexity, Memory Requirement
Theorem 2 provides the worst case space and time complexity

of Twig2Stack. Most existing work on twig processing requires
enumerating the root-to-leaf path matches [4, 14, 16]. The number
of path matches in the worst case is exponential in terms of the size
of queryO(|D||Q|). In Twig2Stack, all path matches are always
encoded (until the result enumeration phase− in fact, some path
matches need not ever be enumerated for GTP queries).

THEOREM 2. For a given twig queryQ and an XML docu-
mentD, both the space and time complexity ofTwig2Stack al-
gorithm in Figure 7 areO(|D||B|), where|B| is the maximum of
1) B1 =max(number of query nodes with the same label inQ )
and 2)B2 = max(total number of children of query nodes with the
same labels inQ). Obviously,|B| ≤ |Q|.

PROOF. Sketch. We show the case when the query have distinct
labels. There are two costs inTwig2Stack, namely, the cost for
merging stacks and the cost for checking all branches of one query
node. For the merge cost, assume that there aren elements in one
hierarchical stack. It is easy to show that the merge cost isO(n),
since once the stack trees are merged, they need not be considered
for merging again. When all query nodes have distinct labels, ob-
viously the total merge cost isO(|D|). The branch checking cost is
bounded by the maximum fan-out of the query nodes.

Note that the memory requirement ofTwig2Stack is higher than
TwigStack. In TwigStack, the memory requirement is just pro-
portional to the document depth. In comparison,Twig2Stack may
keep the entire document in the memory in the worst case.

However, we claim that the worst case will not practically hap-
pen unlike the traditional main memory XML database that always
stores the entire DOM tree in the memory before processing [1].
Twig2Stack only stores document elements that satisfy some part
of the twig query atruntime. More specifically, there are the fol-
lowing constraints on the data to be stored. First, only the elements
that have labels matching with the query need to be stored. The
XMark [11] dataset, for example, has 77 distinct labels. It is un-
likely that a single query is interested in all these labels4. Second,
when the selectivity of a twig is high, only small portion of ele-
ments will be pushed in the hierarchical stacks. Third, whenvalue
predicates are in the query, evaluation of them during the traver-
sal will also contribute decreasing the number of elements pushed.
Hence, it is unlikely to keep the entire document in the memory
in practice. In Section 4.4, we will further describe a mechanism,
called early result enumeration, that can significantly reduce the
memory requirement for most practical queries.

3.5 Optimization for Non-Return Node
When there are non-return nodes in a GTP query, which is very

common in XPath or XQuery, we can further optimize the space
and computation costs. Here we call a query nodeN is anexistence-
checkingnodeiff 1) N is not a return node and 2) there is no return
node belowN . When a query nodeN is an existence-checking
node, onlythe root stackandits top elementof each stack tree need
to be retained. The reason is that, at any time, the parent query
node only needs to check the top element (or root stack) and the
existence of such a top element (or root stack) suffices. Hence,
4A wildcard in the query can potentially match any labels.
Nonetheless, the other two constraints and the early resultenumer-
ation mechanism still apply.
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once the stack trees are merged, they are no longer useful. Also we
can avoid creating any edges to anexistence-checkingnode.

Figure 8 depicts this optimization based on the XML document
and query in Figure 4.B is the only return node. In this case,
bothC andD areexistence-checkingnodes.A is not anexistence-
checkingnode although it is a non-return node. The reason is that
we cannot simply throw the elements inHS[A] away since they
serve asbridgesto the return nodeB for result enumeration (Sec-
tion 4). Forexistence-checkingnodes, such asC andD, any de-
scendant stacks or non-top elements can be safely removed asthe
shaded rectangles shown in the figure. For PC relationship, such as
C, the child elements can be discarded after visiting their parents.
We need not create any edges toC, D as well.
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b1 b3
b2

HS[A]

a3 a4
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A

D
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d1 d3
d2[7,8]

[14,17]
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Figure 8: Optimization for Existence-Checking Query Nodes

4. ENUMERATION OF GTP RESULTS
In the previous section, we describeTwig2Stack algorithm for

bottom-up twig query processing and partial/complete twigresults
encoding. In this section, we propose an efficient solution to enu-
merate the query results for a GTP query that areduplicate freeand
preservedocument orderfrom the encodings. We first assume that
we do not enumerate the query results until the entire document
has been processed by theTwig2Stack algorithm. In Section 4.4,
we describe how to enumerate the results earlier and the memory
consumed by the hierarchical stacks can also be freed up.

Before we proceed, we define two functions, namely,pointAD(e,
HS[M ]) andpointPC(e,HS[M ]), wheree is a match ofE and
M is one child node ofE. pointPC(e, HS[M ]) returns all the el-
ements inHS[M ] that satisfy the PC relationship withe, while
pointAD(e, HS[M ]) returns all the elements inHS[M ] that sat-
isfy the AD relationship withe. Clearly,pointPCis the same as the
edges created by themergealgorithm in Figure 6.pointAD is com-
puted byexpandingthese edges. Such expansion simply returns
all the descendant elements with respect to one edge. In Figure 4,
we havepointPC(a2, HS[B]) ={b2}, pointPC(a3, HS[B]) ={b1},
pointAD(b1, HS[D]) ={d1} andpointAD(b2, HS[D]) ={d2,d3}.

4.1 Source of Duplicates and Out-of-Orderness
When dealing with a GTP which may containnon-returnnodes,

duplicate and out-of-order results may occur. Such phenomena can
be easily explained under our hierarchical stack encoding scheme.

EXAMPLE 3. In Figure 4, first we assume that onlyD is a re-
turn node. We have pointAD(b2, HS[D]) = {d2,d3} and pointAD(b3,
HS[D]) = {d2,d3}. The latter generates only duplicates. In this
case, b3 is descendants of b2.

Second, we assume that onlyB is a return node. We have pointPC(
a2, HS[B]) = {b2}, pointPC(a3, HS[B]) ={b1} and pointPC(a4,
HS[B]) = {b3}, while the correct return order should be{b1, b2,
b3}. This output order is no longer consistent with the order of
their parents. In this case, b2 is an ancestor of a4 and is thusan
ancestor of any elements in pointPC(a4, HS[B]).

The above example shows that the duplicate problem occurs when
the two elements with AD relationship point to the same descen-
dant element, while the out-of-order problem occurs when the two
elements with AD relationship point to their respective child ele-
ments that no longer preserve order. This observation suggests that
if we maintain the elements returned bypointPCandpointADin an
ordered sequence of trees (in pre-order)(SOT) structure, i.e., main-
tain their structural relationships, we may solve the duplicate and
out-of-order problems. Such SOT structure is already preserved in
the hierarchical stack and can be easily produced.

4.2 Computing Total Effects for Non-return
Nodes

As described above, the duplicate and out-of-order problems may
occur when handling non-return nodes. We formulate this as the
problem of computing thetotal effectsfor a non-return node below.

Problem statement: Assume a non-return query nodeE and its
child query nodeM . For a given set of elementseSOT in HS[E]
maintained insequence of trees(SOT) format, we want to compute
its total effectson the query nodeM , namely, a set of elements
resultSOT in HS[M ] maintained also in SOT format, with each
element inresultSOT having at least one element ineSOT that
satisfies the query stepE →M .

When the query stepE →M is an AD relationship, clearly only
theroot element of each tree ineSOT needs to be considered. The
final resultSOT is simply a union of allpointAD(root, HS[M ]).
All other elements ineSOT areguaranteedto only generate du-
plicates as shown in the first case in Example 3.

When the query stepE → M is a PC relationship, a naı̈ve way
to handle the order problem is to sort all the elements inpointPC(e,
HS[M ]) for all e in eSOT . In fact, sorting is not necessary since
all the elementse in eSOT and their child elements inpointPC(e,
HS[M ]) already preserved their respective document order by the
Twig2Stack algorithm.

e1

e

… en

m1 mp…
2

1 3

…m’1 m’q… e’ …

Figure 9: Intuition of Computing Total Effects under PC Axis

Figure 9 provides basic intuition regarding how this order prob-
lem can be resolved. Assume that one elemente with children
e1,...,en in an SOT tree andpointPC(e, HS[M ]) equalsm1,...,mp.
Both e1,...,en andm1,...,mq are in document order. Starting from
e1 andm1, there are three possible positions form1. (1) m1 is
on theleft side ofe1. In this case, we should addm1 into result-
SOTsince there will be no other result element that appears before
m1 in the document order or is a descendant ofm1. (2) m1 is
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an ancestorof e1
5. In this case,m1 must also be an ancestor for

all pointPC(e1, HS[M ]) and allpointPC(e′, HS[M ]), wheree′ is
any descendant ofe1 in eSOT . Assume that we recursively com-
pute thetotal effectsof e1 and all its descendant elementse′ as
SOT1. A new SOT tree will be created withm1 being the root and
SOT1 being its children. (3)m1 is on theright side ofe1. In this
case, we should add thetotal effectsof e1 and all its descendant
elementse′ into resultSOT. Finally, since both lists are ordered, we
need to scan them only once. Figure 10 depicts the details of this
algorithm. tree(m, subSOT)in line 14 is to create a new tree with
m being the root and all the trees insubSOTbeing its children.
The time complexity ofComputeTotalEffectalgorithm in Figure 10
is O(n), wheren =

P

pointAD(root, HS[M ]) when the query
step is AD andn =

P

pointPC(e,HS[M ]) when it is PC.

SOT computeTotalEffects(SOT eSOT, Axis axis, HierarchicalStack HS[M])
SOT resultSOT = mSOT= subSOT=empty;
docElement childElements[], e, m; 
1.  BEGIN
2. FOR each tree t[i] in eSOT//Assume eSOT contains a sequence of trees t[1..p]
3.       IF Axis = AD
4.            resultSOT = resultSOTUNION pointAD(t[i].root, HS[M]);//root element only
5.       ELSE //Axis = PC
6.            mSOT = pointPC(t[i].root, HS[M]);//child elements m that t[i].root points to
7. childElements = t[i].root.children();//t[i].root’s children in tree t[i]
8.            WHILE m = mSOT.next();
9. WHILE e = childElements.next() and e.RightPos < m.LeftPos
10.                    resultSOT = resultSOTUNION computeTotalEffects(e, axis, HS[M]);
11.                subSOT = empty; 
12.                WHILE e = childElements.next() and 

m.LeftPos < e.LeftPos and m.RightPos > e.RightPos
13.                    subSOT = subSOTUNION computeTotalEffects(e,axis, HS[M]);
14.                resultSOT = resultSOTUNION tree(m, subSOT);
15.          WHILE e = childElements.next()
16.                resultSOT = resultSOTUNION computeTotalEffects(e,axis, HS[M]); 
17.   RETURN resultSOT; 
18.END

Figure 10: Pseudo Code for Computing Total Effects

EXAMPLE 4. Assume thatA is a non-return node in Figure 4.
The SOT for HS[A] contains one tree with a2 being the root and a3,
a4 being its children. The total effects of these three elements on
B contains two trees, namely, (b1) and (b2, b3) with b2 being b3’s
parent (since b2 is ancestor of a4 and pointPC(a4, HS[B])=b3).
The total effects of (b2,b3) onD contains one tree (d2, d3). In this
case, onlypointAD(b2, HS[D]) needs to be considered.

4.3 Complete Enumeration Algorithm
We now present the complete algorithmEnumTwig2Stack (Fig-

ure 11) to enumerate the results for a given GTP query, which may
contain return nodes, group return nodes and non-return nodes. In
this paper, we return the GTP results in a tuple format (similar to
[15]). That is, each column corresponds to one return node and
stores the matching document element ID. When a query node isa
group return node, then a list of matching elements’ ID is stored.
When a query node is optional, the column value may benull. It
is also easy to return the GTP results in tree format or to include
value, attribute information.

Similar toPathStack [4], the results are enumerated in the re-
verse order in contrast to the computation. ForTwig2Stack, we
enumerate the resultstop-downso to only visit these elements that
are in the final results. Initially, the stack trees in the query root
node represent an SOT structure and serve as a starting pointof the
enumeration algorithm. Note that when the query starts with“/”,
only the top element of the SOT tree with Level=1 can be in the
final answer. For example, the SOT for the root query nodeA in
Figure 4 is the tree ofa2, a3, a4.
5A special case,m1 = e1, can be handled similarly.

When traversing down the query nodes, if current query node
E is a return node, then we need torepetitivelytraverse down the
query nodes for each element in the SOT (line 6). The reason is
that each of these elements will lead to some distinct answers. If
this query node is also a branch node, we simply do aCartesian
product of all the sub-twig results from different branches(line 9).
HeresetColumn(e,BranchResult)in line 10 is to set theE column
ase for all the tuples inBranchResult. When current query nodeE
is a non-return node, we compute thetotal effectsof these elements
on E’snon-existence-checkingchild nodeM as in Section 4.26.

Finally, when we reach the leaf node, we convert the resulting
SOT into tuples (line 3). In particular, if it is a return node, then
we create one tuple for each element in SOT by visiting each tree
in pre-order. If it is a group return node, then we just createone
tuple with the column value being a list of all the elements inSOT.
This way our enumeration solution achieves anautomaticgrouping
in the sense that all the elements that belong to the same group
already stay together in SOT. An explicit grouping operatorover
path matches [8] can thus be avoided.

GTPResult EnumTwig2Stack (queryNode E, SOT eSOT)
GTPResult totalResult = branchResult = empty; 
SOT mSOT;
1. BEGIN
2.      IF no return node below E
3.           return convert2Tuple(eSOT); //No need to further traverse down
4.      ELSE //there is return node below E, need to traverse down
5.           IF E is return node
6.                FOR each element e in eSOT//Visit each tree in eSOT in pre-order
7. branchResult = empty;
8.                    FOR each E’s child non-existence-checking query node M
9.                         mSOT = computeTotalEffects(e, axis(E→M), HS[M]);
10.                       branchResult = branchResult× EnumTwig2Stack(M, mSOT);
11.                  totalResult = totalResultUNION setColumn(e, branchResult); 
12.              return totalResult;
13.         ELSE // E is non-return node
14.              mSOT = computeTotalEffects(eSOT, axis(E→M), HS[M]);
15.              return EnumTwig2Stack(M, mSOT);
16. END

Figure 11: Pseudo Code of EnumTwig2Stack Algorithm

EXAMPLE 5. Assume thatA, B andD are the return nodes in
Figure 4. For each of the elementsa2, a3 anda4 (in that order),
we need to traverse down the query nodes.

Now assume thatD is the only return node. First, sinceA is
not a return node, we compute the total effects ofA’s SOT tree
(a2,a3,a4) onB as b1 and (b2,b3). Next, sinceB is also not a
return node and the axis betweenB andD is an AD relationship,
only the top elements ofB’s SOT trees need to be considered, i.e.,
b1 and b2. Finally, the result tuples are (d1), (d2) and (d3).Clearly,
this is much better than first enumerating 9 path matches and then
merge-joining (or semi merge-joining) these path matches and fi-
nally applying duplicate elimination / sort operation.

THEOREM 3. EnumTwig2Stack algorithm in Figure 11 correctly
return the results for a given GTP query. The total time complex-
ity for processing a GTP query, including both Twig2Stack and
EnumTwig2Stack isO(|D||B|) + O(|subTwigResults|).

Here thesubTwigResultsare the results of a sub-twig query, which
is a minimal sub-twig in the original twig query that contains all the
return nodes. For instance, ifA andD are return nodes in Figure 4,
then|subTwigResult| is the number of matches whenA, B and
D are all return nodes in the twig query.
6A non-return query nodeE can have at most one non-existence-
checking child query nodeM in either XPath or XQuery.

289



4.4 Early Result Enumeration
Twig2Stack algorithm described in Section 3 employs a pure

bottom-up approach. Note that ahybrid approach is possible that
integrates both top-down and bottom-up methods. In particular,
we usePathStack [4] (briefly introduced in Section 3.1) for top-
down computation and useTwig2Stack for bottom-up computa-
tion. More specifically, for any elemente, it is pushed into the
hierarchical stackHS[E] iff it satisfies thesub-twigquery rooted
atE as well as theprefixpath query from root toE.

To implement the above idea, each query nodeE is associated
with two stacks, one forPathStack, S[E], one forTwig2Stack,
HS[E], respectively. A document elemente visited in pre-order
is first pushed into the top-down stackS[E] based onPathStack
algorithm. Oncee is popped out from the top-down stackS[E]
(post-order), we push it into the hierarchical stackHS[E]. Note
thatPathStack is a quite efficient algorithm, i.e.,O(1) for push-
ing or popping an element. Hence, the extra cost is small while
the benefit can be significant since the condition for pushingele-
ments into hierarchical stacks become more stringent. Another key
advantage for this hybrid approach is that we can enumerate the
query results earlier and all the data in the hierarchical stacks can
be cleaned up. This will greatly reduce the memory requirement as
discussed in Section 3.4.

Assume that thetop branch nodein a GTP query isE. Whenever
the elements inS[E], i.e., the top-down stack, are all popped out,
we can start to enumerate the query results and then clean up all the
hierarchical stacks. The following example in Figure 12 illustrates
the main idea of this early result enumeration mechanism.
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Figure 12: Running Example for Early Result Enumeration

We re-use the query and the data in Figure 4. The top branch
node for this query isB. In hybrid query processing mode, when
b1 is popped out of the top-down stackS[B] and pushed into the hi-
erarchical stackHS[B] (the leftmost portion of Figure 12), we can
start to enumerate the query results. Here the solid edge denotes the
edge used forPathStack, while the dotted edge denotes the edge
used forTwig2Stack. The result enumeration algorithm is also
a hybrid ofPathStack andTwig2Stack enumeration algorithms,
which is quite straightforward. After the result enumeration, the
data in the hierarchical stacks can be removed. Intuitively, this is
due to the fact that the sub-tree ofb1 will not appear in any future
results. There might exist a potential blocking issue whether the
enumerated results can be output immediately. Here whenA is not
return node, then we can output the enumerated results rightaway.
WhenA is return node, however, thea3 results need to be kept
in the temporary space (disk) until alla1 (and thena2) results are
enumerated out. Similar issue exists forPathStack and can be
resolved without sorting [4].

The middle portion of Figure 12 depicts the status whenb2 is
popped out from the top-down stackS[B]. In this case, althougha4
has been popped earlier and we know that there are some matches
to the entire twig query, we cannot clean up hierarchical stacks, be-

cause these data may lead to new matches forb2. We can only clean
up the hierarchical stacks whenb2 is popped out. The rightmost
portion shows the status whenb4 is popped out from the top-down
stack. Clearly, this early result enumeration mechanism can greatly
reduce the memory requirement.

DBLP

Inproceedings

Title Author

DBLP

Inproceedings Article

Figure 13: Two Real Examples for Early Result Enumeration

Figure 13 depicts two real queries in order to gain some more in-
sights on the usefulness of this early result enumeration technique
in practice. The twig query on the left side is a common one to
find the title and authors for each proceeding. The top branchnode
for this query isinproceedings. By early result enumeration, we
can output the twig results per proceeding and the memory require-
ment is also just one proceeding. This is independent of how many
proceedings in the XML file are, i.e., how large is the XML file.
The top branch node for the query on the right side of Figure 13is
the document root. In this case, early result enumeration does not
work because the root element is popped at the end of the docu-
ment. Now assume there are 100000 inproceedings and 100000 ar-
ticles. This twig query will give a1000002 number of distinct twig
results. Such a full Cartesian product provides little extra informa-
tion and is not very useful in practice. Hence such worst caseis
unlikely to occur in practice. Also we note that in the case ofwhen
the top branch node is the document root, there is a simple solu-
tion. That is, we can process each branch sub-twig query of the root
separately, i.e.,/dblp/inproceedings... and/dblp/article..., and
perform a Cartesian product at the end. This way the early result
numeration technique remains effective when processing individ-
ual branches. A more in-depth study for resolving such worstcase
memory requirement problem remains our future work.

5. EXPERIMENTAL EVALUATIONS

5.1 Experimental Setup
We implemented ourTwig2Stack algorithm using Java 1.4.2

and performed experiments on a PC with a Pentium M-2GHz pro-
cessor and 2GB of main memory. We set the Java virtual machine
memory size to 500M. We comparedTwig2Stack with two other
twig join algorithms:TwigStack [4] andTJFast [16] 7. TJFast
has the best performance in terms of I/O cost and CPU time among
the existing twig join algorithms, whileTwigStack is the classical
holistic twig join algorithm.

Datasets. A set of synthetic and real datasets are used for the
experimental evaluation, which represent a wide range of XML
datasets (Figure 14). In particular, the synthetic datasetincludes
XMark [11]. The scaling factors of 1 to 5 were selected to gener-
ate a set of XMark synthetic datasets for scalability analysis. The
two real datasets included are DBLP and TreeBank from [20]. The
DBLP dataset is a wide and shallow document, while the TreeBank
dataset is a deep recursive document.

Metrics. We compared the three twig join algorithms in terms
of thequery processing timeand thetotal execution time.

7The implementation of these two algorithms in Java were kindly
provided by Jiaheng Lu from the National University of Singapore.
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• query processing time: the time spent on performing the struc-
tural matching. ForTwig2Stack, it is the time to perform
the merging of hierarchical stacks and the result enumera-
tion. ForTwigStack, it is the time to perform computing
and enumerating path matches, and finally merge-joining the
path matches [4]. ForTJFast, it is the time to perform anal-
ysis of the extended dewey ID of the leaf element to infer
its ancestors’ label, enumerating path matches, and finally
merge-joining the path matches [16].

• total execution time: query processing timeplusthe scanning
cost of the document elements. The scanning cost is basically
IO cost. For bothTwigStack andTwig2Stack, their scan-
ning costs are the same, namely, for accessing the document
elements corresponding to all query nodes. ForTJFast, the
scanning cost is for accessing the document elements cor-
responding toonly those query leaf nodes. Hence,TJFast
accesses fewer number of document elements, while the size
per element may be larger since extended dewey ID for leaf
elements typically is larger than region encoding.

Dataset Size (MB)

Nodes (Million)

Max/Avg Depth

127 82

5

113 226 340 454 568

6/2.9 36/7.9 12/5.5

3.3 2.4 1.7 3.3 5 6.7 8.3

DBLP TreeBank XMark
1 2 3 4*

Figure 14: Statistics of XML Data Sets

DBLP-Q1

Query Name Dataset Twig Query

DBLP �����������	
������������������	�
DBLP-Q2 DBLP �����������
�������	������������������
DBLP-Q3 DBLP ������	
�����������	���������������		������
XMark-Q1 XMark �����	������
��	���������������	�������������
XMark-Q2 XMark ����	��������	��������������
	������	��������
���	�
XMark-Q3 XMark ��������	
���	�����
�����	�������	��

TreeBank-Q1 TreeBank �������������� ���! ��" 
TreeBank-Q2 TreeBank ����������" �� ���! 
TreeBank-Q3 TreeBank �����#$����%��#&''(%�

Figure 15: Twig Queries used for the Experimental Evaluation

Twig Queries. Figure 15 shows all the twig queries used for the
experiments. For each data set, three twig queries are selected,
which have different combinations of parent-child and ancestor-
descendant relations and different selectivities over thedatasets.

5.2 Full Twig Query Processing
We first compareTwig2Stack with TwigStack andTJFast for

processing the full twig query (all query nodes are return nodes).

5.2.1 Performance Results
Figure 16 depicts the performance results based on the queries

in Figure 15 on DBLP, XMark (scale 1) and Treebank datasets in
Figure 14. For each twig query, we record thequery processing
time, total execution timeandIO timefor all three algorithms.

DBLP Dataset: Figure 16.(a) reports thequery processing time,
(b) reports thetotal execution timeand (c) reports theIO time.
Twig2Stack achieves one order of magnitude performance gain
over TwigStack, and is two to three times faster thanTJFast
in terms of thequery processing time. Our detailed cost break-
down shows that this is primarily due to the fact thatTwig2Stack

avoids generating any path matches. Actually, the enumeration

of path matches is non-trivial, even when all the generated path
matches are in the final results. The reason is that enumerating path
matches requires either traversing thePathStack for TwigStack
[4] or analyzing the extended dewey ID using the DTD transducer
for TJFast [16]. The same element may also exist in many path
matches, resulting in duplicated efforts.

In comparison, althoughTwig2Stack may also push a docu-
ment elemente into HS[E] with e potentially not being in the final
results, the cost of mergingHS[E] and all its child hierarchical
stacks isnot wasted. The reason is that they reduce the query pro-
cessing cost, i.e., merging cost, for the remaining elements.

The total execution timeof Twig2Stack andTJFast is closer
as depicted in Figure 16.(b). The reason can be explained in Fig-
ure 16.(c), i.e.,TJFast saves more IO cost since it only needs to
access the elements corresponding to the leaf query nodes8. Note
that, ourTwig2Stack algorithm developed in this paper is dedi-
cated for optimizing the twig query processing cost. It is possible
to extendTwig2Stack to further reduce the IO cost. A viable ap-
proach is to create a variant ofB+ tree index on the document
elements so thatTwig2Stack can skip scanning the elements that
cannot satisfy the query steps. A similar approach, called XB-tree,
is developed in [4] and has been shown to be quite effective. This
is certainly a promising future direction to explore.

XMark Dataset: Figure 16.(d), (e) and (f) depicts the results on
the XMark dataset with scale factor 1. For the query processing
time of this data set,Twig2Stack again shows consistent order of
magnitude performance gain overTwigStack and is several times
faster thanTJFast. Our detailed cost breakdown shows the same
reason, i.e., path enumeration. For the total execution cost of this
dataset,TJFast actually introduces larger IO cost for Q3. Q3 con-
tains three leaf query nodes with only one non-leaf node. Hence,
the saving on scanning the elements corresponding to one non-leaf
query node is smaller than the cost paid for having a larger extended
dewey ID per element.

TreeBank Dataset: Figure 16.(g), (h) and (i) depicts the re-
sults. For the query processing time,Twig2Stack again signif-
icantly outperformsTwigStack, and is two to three times faster
thanTJFast for Q1. For Q2 and Q3, since the selectivity of path
matches is very high, only total 300 and 5 matches, respectively,
the query processing time forTwig2Stack andTJFast becomes
closer. The saving on IO cost forTJFast is bigger for this dataset.
The reason is that the twig queries, especially Q2 has many dis-
tinct non-leaf query nodes. Meanwhile, since TreeBank is a narrow
dataset, this means that the number of occurrences for even higher
level elements is high, resulting in a large index size.

5.2.2 Experiments on Scalability
We now report the scalability expermental results ofTwig2Stack

algorithm in terms of the size of the XML document in Figure 17.
We vary the XMark scale factor from 1 to 5. As can be seen,
all three algorithms grow linearly in terms of the document size.
Twig2Stack again has much betterquery processing time.

5.3 GTP Query Processing
In this section, we will study the performance ofTwig2Stack

algorithm for processing GTP queries. Since neitherTwigStack
nor TJFast is fine tuned for processing GTP queries, we will not
include them in the experiments as it will be unfair if we simply
apply a post-processing on top of these two algorithms. On the
other hand, it is non-trivial to derive an efficient mechanism for

8Accessing only the leaf elements however is not always sufficient,
e.g., when the query includes the values or attributes of thenon-leaf
query nodes.
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Figure 16: Full Twig Query Processing on DBLP, XMark and TreeBank Datasets
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Figure 17: Scalability for Full Twig Query Processing

processing GTP queries based on path-joins. The reason is that
efficient path-joins require all the path matches be sorted in root-
to-leaf order in order to use the cheapmerge join. This root-to-leaf
order however may not always correspond to the order of return
nodes. Hence a post-sort becomes unavoidable. Alternatively, if
we can produce the path matches in the order of return nodes, then
the path join cannot use the efficient merge join method.

5.3.1 GTP Queries over DBLP Dataset
We use DBLP-Q1 in Figure 15 as the baseline twig query and

then arbitrarily set some query node as non-return node or group
return node. Figure 18 depicts different GTPs and their query pro-
cessing cost. Note that the IO cost is the same for all GTPs.

Figure 18.(a) is the baseline twig query with every node being a
return node. (b) is a GTP query withtitle being a non-return node.
In this case, the query processing cost for this GTP reduced com-
pared to that for (a). The reason is that nodetitle is anexistence-
checkingnode. In this case, we can avoid maintaining the hier-
archical structure inHS[title] and avoid creating any edges from
inproceedingselement totitle element (Section 3.4). The result
enumeration also need not accessHS[title]. (c) is a GTP query
with author being a non-return node. In this case, the saving is
even bigger since there are several authors per inproceedings while
there is only one title per inproceedings in the DBLP dataset. Fi-
nally, (d) is a GTP query withauthor being a group return node.
Compared to (b), where the only difference is the way howauthor
is returned, (d) results in a much cheaper cost. The reason isthat
for (d), we group multiple authors to a list and create a single tuple,

while for (b), we have to create one tuple per author. Most exist-
ing works [8, 10] first generate path matches as (b) and then apply
grouping. This approach obviously is less efficient than ours.

5.3.2 GTP Queries over XMark Dataset
We now use XMark-Q1 in Figure 15 as the baseline twig query

and then arbitrarily set non-return nodes and optional axes. Fig-
ure 19 depicts different GTPs and their query processing cost.

Figure 19.(a) is the baseline twig query. (b) is a GTP query
with addressandzipcodebeing non-return nodes. In this case, the
query processing cost is reduced compared to that for (a), sincead-
dressandzipcodebecome existence-checking nodes. (c) is a GTP
query with onlyeducationbeing the return node. Compared to (b),
although we still have to maintainHS[people] andHS[person]
since they have return node below, the final result size is reduced
and so does the result enumeration cost. (d) is a GTP query with
the axis betweenpersonandaddressbeing optional, while (e) is a
GTP query in addition has the axis betweenprofile andeducation
being optional. In both cases, the number of twig matches is several
times larger than that of (a), while the increase of query processing
time is small. In contrast, optional semantics is often supported by
usingOuter-Joinof path matches [8], while outer-join is known to
be in general more expensive than inner-join.

5.4 Runtime Memory Usage
In this section, we report the memory usage for processing the

above twig queries and how our early result enumeration technique
helps to reduce the memory usage. Table 1 depicts the memory
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usage for processing the twig queries in Figure 16, with or without
early result enumeration (ERM) enabled (Section 4.4).

First, let us consider DBLP dataset. The total memory con-
sumptions for all three queries are quite high. This is due tothe
low selectivity of these queries. Basically, all theinproceedings
(articles) are selected by those queries (selectivity can be much
higher if value predicates are present). Note that the memory us-
age is even bigger than the file size (127M) due to those pointers,
a situation that has already been observed in main memory XML
database [17]. Note that when the early result enumeration tech-
nique is employed, the runtime memory usage is significantlyre-
duced to less than 1Kbytes! The reason is that as soon as onein-
proceedings(article) has been visited, we can output the results and
free up the memory. The memory requirement is thus bounded to
the matches perinproceedings(article). Note that such matches are
typically just related to the type of the document (e.g., from DTD)
and is independent of the size of the document.

Next, let us consider TreeBank (TB) dataset. TreeBank is a
dataset with many distinct labels and with quite irregular structures.
The selectivity is thus very high, which consequently results in low
total memory usage even without early result enumeration enabled
(compared to 82M document size). Nonetheless, early resultenu-
meration reduces the runtime memory usage to just several Kbytes.

Finally, let us consider XMark (XM) dataset. Two scale fac-
tors, s=1 (100MBytes) and s=10 (1GBytes) are used to generate the
document. The total memory usage (without early result enumera-
tion) grows as the scale factor increases for all three queries. Note
that the early result enumeration becomes ineffective forQ1. From
the query itself, we find that its top branch node isopenauctions.
In XMark dataset, there is only oneopenauctionselement which
contains a huge number ofopenauctionelements. This is almost
equivalent to the second case in Figure 13 (Section 4.4), where the
root dblp has a huge fan-out. This hints us that a promising way
to address this worst case memory problem is to find those query
nodes which have a huge fan-out (subtree) in the document, and
then effectively decompose the processing of individual branches
(i.e., hybrid query plan). Next, our early result enumeration tech-
nique is very effective for handlingQ2 andQ3, i.e., the runtime
memory usage is independent of the document file size. Here the

top branch nodes forQ2 andQ3 arepersonanditem, respectively.
Since the information contained in eachpersonand in eachitem
can typically be considered as constantly small, the runtime mem-
ory usage remains stably low. As a final remark, we study the sam-
ple queries in XMark [11]. Among the total 20 queries, the top
branch nodes areopenauction, closeauction, personand item 9,
all of which are small trees. Hence, our early result enumeration
technique likely would be useful for most practical queries.

6. RELATED WORK
Tree pattern queries over XML documents have been extensively

studied recently. Most existing techniques rely on the region en-
codings [19] to capture the structural relationship between docu-
ment elements. Early work decomposes the tree pattern queries
into a set of binary components. Then the matches of each indi-
vidual component are stitched together to get the final results [3].
The main drawback of the decomposition method is the large in-
termediate results. Hence, in [4], the first holistic twig join algo-
rithm, calledTwigStack, was proposed. However,TwigStack
achieves optimality for twig queries with AD relations only. For
twig queries with PC relations, useless path matches cannotbe
completely avoided. Chen et al. proposediTwigJoin [6] that ex-
ploits different data partition strategies to further boost the holism.
More recently, Lu et al. [16] proposedTJFast to access only leaf
elements by exploiting extended Dewey IDs. Unfortunately,use-
less path matches cannot be avoided in all cases as shown theo-
retically in [9]. Aghili et al. [2] incorporates a binary labeling al-
gorithm (based on the notion of nearest common ancestors) asa
pre-processing filtration step to reduce the search space and com-
putes the twig matches in a bottom-up fashion. However, their
technique is mostly effective for the scenarios where the search
involves selective keywords at the leaf nodes of twig queries. In
this paper, we show that enumerating path matches isnotnecessary
for processing twig queries and hence do not have such optimal-
ity problem. Furthermore, most these existing works do not con-
sider how to efficiently process the more powerful GTP queries.

9An exception isQ7, where the top branch node is the document
root. This can be easily handled by decomposing the twig queries
at the root node and performing a final Cartesian product.
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DBLP - ERM DBLP + ERM TB - ERM TB + ERM XM (100M / 1G) - ERM XM (100M / 1G) + ERM

Q1 150M 0.7K 9M 15K 9M / 87M 9M / 87M
Q2 105M 0.9K 1.5M 10K 7M / 82M 2.2K / 2.6K
Q3 170M 0.8K 6K 3K 10M / 118M 0.9K / 1K

Table 1: Memory Usage for Twig Queries in Figure 16

Processing GTP queries generally calls for costly post-processing
[8]. Chen et al. proposed a stack-based matching algorithm for
graph input data [5]. A hybrid of top-down and bottom-up com-
putation paradigm is employed (similar to ours). However, they
do not maintain the hierarchical structure of a single stacksince
Lemma 1 does not hold for graph data.

Bottom-up tree pattern matching has been extensively studied in
the area of classic tree pattern matching [12]. Note that these early
work however do not consider AD relationship, which is common
for XML queries. Recently, a bottom-up tree homomorphism al-
gorithm for XPath containment checking is proposed in [18].Only
the existence of such a match is returned, which is enough forcon-
tainment checking. In this paper, we show how to return the full
matches for GTP queries under this computation paradigm.

7. CONCLUSIONS
In this paper, we proposed a novel hierarchical stack encoding

scheme to compactly represent the twig results and introduced a
bottom-up twig processing algorithm. Then we showed how to ef-
ficiently enumerate the GTP results from the encodings.

There are many promising future directions. For example, tree
pattern matching has also been extensively studied in XML stream
environment [7, 15]. Most existing techniques on holistic twig pro-
cessing, such as those in [4, 16], cannot be applied to XML streams.
The reason is that they need to look up other node indexes to see if
this path will participate in the final twig matches. Suchlook-ahead
feature is not available in XML stream environment, since the doc-
ument is sequentially scanned. In comparison, ourTwig2Stack
algorithm can bedirectly applied. That is, in XML stream envi-
ronment, thestart-tagsfollows pre-order, while theend-tagsfol-
lows post-order! As a quick comparison, state-of-the-art nested
XPath (one return node) matching solutionTwigM [7] has complex-
ity O(|D||Q|(|Q| + RC)) (whereR is the document depth,C is
candidate solution with|C| ≤ |D|), while Twig2Stack has com-
plexity as low asO(|D||B|) (from Theorem 3) and is capable of
processing the more complex GTP queries. It is interesting future
work to conduct the actual performance comparison to various ex-
isting XML stream solutions [7, 15]. Other interesting future works
include how to handle worst case memory issues by using hybrid
query plans, how to exploit the index, how to support other axes,
and how to handle multiple GTP queries over XML streams.
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