Twig 2Stack: Bottom-up Processing of
Generalized-Tree-Pattern Queries over XML Documents

Songting Chen!, Hua-Gang Liz" , Junichi Tatemura!
Wang-Pin Hsiung*, Divyakant Agrawal*, K. Selgcuk Candan*

'NEC Laboratories America, 10080 North Wolfe Road, Suite SW3-350, Cupertino, CA 95014
2Department of Computer Science, University of California, Santa Barbara, CA 93106
(songting,tatemura,whsiung,agrawal,candan)@sv.nec-labs.com, huagang@cs.ucsh.edu

ABSTRACT structural queriesover the XML data. Due to their significance to
many practical applications, efficient processing of suoictural
queries has received significant attentions from both anadand
industrial communities [3, 4, 16, 23]. One of the most common
structural queries is thieee (twig) patternquery. A sample tree
pattern query is shown on the right side of Figure 1. Here aidoc
ment element: can be a match to query nodewhen it has path
matches foboth //A/B//D and//A/B/C *.

Efficient matching of tree pattern queries over XML data is on
of the most fundamental challenges for processing XQuesy. [1
Most existing works on processing twig queries decompose th
twig queries into paths and then join the path matches [3, 3
approach may introduce very large intermediate resultssider
the sample XML document tree and a tree pattern query in Eigur
For instance, the path matéfl, b4, d4) for path//A/B//D does
not lead to any final result since there is no clilcthode undeb4.

Tree pattern matching is one of the most fundamental tasks fo
XML query processing. Holistic twig query processing teigioies
[4, 16] have been developed to minimize the intermediateltes
namely, those root-to-leaf path matches that are not in tied fi
twig results. However, useless path matches cannot be etehpl
avoided, especially when there is a parent-child relakigmi the
twig query. Furthermore, existing approaches do not cengite
fact that in practice, in order to process XPath or XQueryesta
ments, a more powerful form of twig queries, namely, Gerezdt
Tree-Pattern (GTP) [8] queries, is required. Most existingks on
processing GTP queries generally calls for costly postgssing
for eliminating redundant data and/or grouping of the miatgie-
sults.

In this paper, we first propose a noveérarchical stack encod-
ing scheme to compactly represent the twig results. We inteduc : . .)
Twi g2St ack, a bottom-up algorithm for processing twig queries To solve this proplemhollstlc t.W.'g _pattern_matchlng4, 16] _has
based on this encoding scheme. Then we show how to efficiently P&€n developed in order to minimize the intermediate resii.,
enumerate the query results from the encodings for a giveR GT qnly to gnumerate those root-to-leaf path.matches thab‘f’""“ the
query. To our knowledge, this is the first GTP matching solu- final twig results. However, when the twig query containsepar

tion that avoidsany post path-join, sort, duplicate elimination and child relationship, these solutiong may still gengratgéerrumbers
grouping operations. Extensive performance studies oipugr ~ ©f US€less matches [4, 16]. In this paper, we will show thaietkr

data sets and queries show that the propdséd2st ack algo- plicit jpin of individual root-to-leaf path matches or evére enu-
rithm not only has better twig query processing performahes m(_eranon_of these path matches et necessary for processing
state-of-the-art algorithms, but is also capable of effittyepro- twig queries.
cessing the more complex GTP queries.

1. INTRODUCTION

The rich content and the flexible semi-structure of XML doc-
uments demand efficient support for complex declarativeigsie
XML documents can be viewed as ordered tree structures where
each tree node corresponds to docun\eEVENTS (ATTRI BUTES)
and edges represent parent-child (elemesiib-element) relation-
ships. Figure 1 depicts one sample XML document tree. Common
XML query languages, such as XPath [21] and XQuery [22],dssu

*The work has been done during the author’s internship at NEC

Laboratories America. Figure 1: A Sample XML Document Tree and A Twig Query

Permission to copy without fee all or part of this materigranted provided Yetanother challenge for processing XQuery is that thergltrea
that the copies are not made or distributed for direct coriamleadvantage, multiple path expressions in the FOR, LET, WHERE and RETURN

the VLDB copyright notice and the title of the publicatiortkts date appear, clauses, all withdifferentsemantics. Existing work shows that it

and notice is given that copying is by permission of the Veayde Data is better to consider the matching of these expressions d®ew
Base Endowment. To copy otherwise, or to republish, to postesvers in terms of ageneralized tree patter(GTP) [8] in order to avoid

or to redistribute to lists, requires a fee and/or speciahpgsion from the) - . .
publisher, ACM. In this paper, we assume the document elements with labels in
VLDB ‘06, September 12-15, 2006, Seoul, Korea. lower-case letter match the query nodes with labels in thieeeo
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09. sponding upper-case letter. For instanceanda3 match nodeA.

283

repetitive work. Figure 2 depicts two sample XQuery stateime We now give a brief review of GTP. As shown in Figure 2, GTP
and their respective GTPs. IMQuery:, D is not a return node, query may have solid and dotted edges, representing mamdato
i.e., only its existence is of interest. In XQueryodeC is optional and optional structural relationships, respectively. His tpaper,

(in general, any expression in the LET or RETURN clauses is op we consider parent-child (PC) and ancestor-descendanj (&D
tional) in the sense that B element can be a match even without lationships. The mandatory semantics corresponds to thate

any descendan®’ elements. Any matching' elements, however, expressions in the FOR or WHERE clauses. The optional seman-
must begroupedtogether under their commas ancestor element. tics corresponds to those path expressions in the LET or FRETU

Most existing works on holistic twig query processing foonsy clauses. For a given GTP, not all nodes are return nodes.hEor t
on returning the entire twig results [4, 14, 16]. In practibew- path expressions in the FOR clause, only the last node isther
ever, returning the entire twig results is seldom necedsamither node. One example is thB node of GT P, in Figure 2. For the

XPath or XQuery and may consequently cause duplicate edimin path expression in LET or RETURN clause, we may need to group
tion or ordering problems (Section 2). Moreover, many XQuer the matching elements under their common ancestor ele®aet.
statements in practice require grouping the results [8]phfipg example is the&” node of GT P, in Figure 2. Please refer to [8] for
post-duplicate elimination, sorting and grouping operatito ad- detailed definition of GTP and how to translate XQuery intoRGT
dress these problems has already been shown to be expemsive i These rich semantics introduce new challenges for hanttieg

many existing works [8, 10]. duplicatesand ordering issues We now briefly review how the
query results are generated when there are non-return nottes
() Return Node GT/F;l GTF;; GTP query through the following three examples. Consider th
A document tree in Figure 1. (i) For path quefyB//D, let us
D Grouped Return Node ﬂ »‘ first assumeB and D are both return nodes.e/r'zl{lhe/ 4ina| matches
/ // Mandatory Axis () are(bl,d1), (b2,d2), (b2,d3), (b3, d2), (b3, d3) and(b4, d4). (ii)
7 # optional Axis D C_ . Now let us assum® is the only return node. In this case, the re-
XQuery,: XQuery; sults should bed1), (d2), (d3) and (d4). Clearly, if we were to
FOR $b in //A/BICII/D] FOR $bin //B, generate the distinct path matches first as in the first cagsgi-d
RETURN $b LET :g:'::g/’/’g cate elimination becomes unavoidable. (iii) Lastly, letossider
RETURN $b, $d, § path query//A/B where B is the only return node. The results
are(bl), (b2), (b3) and (b4). This order is different from the or-
Figure 2: Generalized Tree Pattern and XQuery der for the entire path matches, namelyl, b4),(a2, b2),(a3, b1)

and(a4, b3). If we were to generate these entire path matches first,
In this paper, we provide a comprehensive solution to taitide sorting theseB elements becomes unavoidable.
above challenges. In summary, the main contributions are: In this paper, we use the region encoding for the XML docu-
ment, which is widely used in XML query processing [4, 19,.23]
Region encoding associates each XML document element \8ith a
tuple[LeftPos, RightPos], LeveHereLevelis the depth of the ele-
ment in the document treéeftPosandRightPosare both integers.

e \We propose a novdiierarchical stack encodingcheme to
compactly represent the twig results. This scheme also re-
duces the complexity for twig query processing.

e Based on this encoding scheme, we prophsieg?St ack, a Given any two document elements,andes, e is e2's ancestoiff
bottom-up query processing algorithm for a givgeneral- er.LeftPos < ea.LeftPos andes.Right Pos < e1.Right Pos.
ized tree pattern (GTFB], which is a fundamental building ~ Furthermore, ife;.Level = ez.Level — 1, thene; is e2’s par-
block for XQuery processing. ent. This encoding allows efficient structural checkingn®sn two

o document elements. Figure 1 also includes the region engsdi
e Then we show how to efficiently enumerate the GTP query

results from the encodings. To our knowledge, this is thé firs 3. EFFICIENT GTP PROCESSING

GTP matching solution that is free of any post path-joint,sor) i i -)

duplicate elimination, and grouping operations. In .thIS section, we propose thm g*st ack algorithm for pro-
cessing a GTP query. We start with an in-depth study of thetiaxj

e We propose an early result enumeration mechanism by using Pat hSt ack [4] algorithm. OurTwi g2St ack algorithm is inspired
a hybrid of top-down and bottom-up computation method to by the similar principles.
reduce the runtime memory usage. i i
3.1 Motivation

Bruno et.al [4] proposed a novel path matching algorithrieda
Pat hSt ack, for processing linear path expressions. Consider the
path query//A/B//D and the data pattil, a2, b2, a4, b3, d2, d3
in Figure 1. The entire path query is processed in a top-dash-f
ion by visiting the document elements in pre-order. Firsiche
query nodeE is associated with a stacl§[F]. The algorithm

2. DATAMODEL AND QU ERY LANGUAGE pushes the document element into the siffdke relationship be-

e Extensive performance studies on various data sets anigguer
show that ourTwi g2St ack algorithm not only has better
performance for twig query processing than existing works,
such asiwi gSt ack [4] andTJFast [16], but is also capable
of efficiently processing the more complex GTP queries.

An XML document is modeled as a nested structurelefments tween this element and thep element in its parent stack satisfies
The scope of an element is defined by its start-tag and endAtag the axis requirement in the query. Once a document element is
example XML document tree is demonstrated in Figure 1. pushed into the leaf stackat hSt ack algorithm knows that there

The common query languages over XML are XPath [21] and must be some answers to this path query. Figure 3 shows hew thi
XQuery [22]. One fundamental task for processing XPath and query is processed given the above input. The result entioera

XQuery is to match twig patterns queries. The concegfesferal- is done in reverse, i.e., starting from the elements in takdaery
ized twig pattern (GTPis introduced in [8] to consider the evalua- nodes. For example]3 points tob3 and implicitly to b2 as well
tion of an XQuery as a whole to avoid repetitive work. since the axis is ADb3 andb2 point toa4 anda2, respectively. So

284

the path matches fat3 are(a2, b2, d3) and(a4, b3, d3).

a2l “[b3j---1d3
fal] b2 [d2]
S[A] S[B] S[D]

Figure 3: PathStack: Path-based Stack Encoding

The following main observation can be made from this algo-

rithm. That is, the partial/complete path results are eadooly
recording the AD relationships either 1) between the eléman
different query stacks by using explicit edges, or 2) betwte
elements in the same stack, which are implicitly recordestdan

S. For example, in Figure 47 S[A] contains one stack tree, while
H S[D] contains three stack trees.

Each stackS contains zero or more document elements. The AD
relationship between the document elements in a stackStrees
implicitly captured as followsone document element is an ances-
tor for all elements below in the same stack and is also ansioce
for all elements in its descendant stacKsdote that any two ele-
ments have no AD relationship if their corresponding stdwkee
no AD relationship. ConsideH S[A] in Figure 4,a2 is ancestor
for botha3 anda4, while a3 anda4 have no AD relationship.

In order to create the hierarchical structure among sta¢lenw
visiting the document elements in the post-order, we assoeiach
stackS with a region encoding, similar to that for a document ele-
ment. TheLeftPosfor a stackS is defined as the smalleséftPos

their positions in the stack. Note that this partial/congpleath re-
sult encoding scheme not ordyoids to generate large intermedi-
ate results but alsoreduces the query processing cofhe reason
is that only thetop element in the parent stack needs to be checked.
In Figure 3,d2 only needs to consider its relationshipbnot 2.
In [4], the authors further proposed thai gSt ack algorithm
for holistic processing of twig queries. The basic idea isutput
a matching path only when it contributes to the final twig tessu
This is done by checking the node indexes to make sure all the
branches are satisfied. However, this approach is shown nothe
optimal for twig queries with PC edges, i.e., the resultiagtto-
leaf path matches are not guaranteed to be in the final twidtses
Inspired by thePat hSt ack algorithm, our goal is to process twig
queries with similar principles, i.e., we need an effectimech-
anism to encode partial/complete twig results in order toimi

among all the elements in staskand all ofS’s descendant stacks.
TheRightPodor a stackS is defined as the largeRightPosamong
all the elements in stack and all of S’s descendant stacks. For
instance, in Figure 4, the top stack BfS[B] has region encod-
ing [4, 24] (Level is not used for stacks), whedeis the smallest
LeftPos and 24 is the largestRight Pos among its descendant
elements. The region encodings for other stacks are shothrein
figure. Next, the region encoding for a stack t&E is the same as
the encoding ofST"s root stack. Finally, for a given hierarchical
stackH S[N], its stack trees are ordered based on tReirht Pos.
For a given stacl, its child stacks are also ordered based on their
RightPos.

[2.25]

mize the intermediate results and to reduce the query psoees A

R . I - N /AT S S -{a3 4
cost. In particular, we need to record the AD relationshigtsvieen B/ 1
the document elements in different query nodes as well asetho D/ \c

in the same query node in order to minimize the intermediate r
sults. While we can use explicit edges to record the AD refati
ships for the document elements in different query nodesilgsi

to Pat hSt ack), for the elements in the same query node, we find 5+
that they naturally form @ree structureas well. For example, in
Figure 1, bothu2, a3 anda4 satisfy the twig query nodédl. Here

a2 is an ancestor for both3 anda4, while a3 anda4 have no AD
relationship. Based on this observation, we propose taniwgahe
elements that match the same query nodehieearchicalstructure

to explicitly capture their AD relationships.

In this paper, we show that such a hierarchical structurebean
produced based on thpost-orderdocument traversal. Intuitively,
for any document element, when we visite during pre-order
traversal, we can only determinedfsatisfies grefix pathquery
from root to query node”. When we visite during post-order
traversal, we can determinedfsatisfies aub-twigquery rooted at
query nodeE. The latter is based on the fact that only when the
entire subtree ot is visited, can we determine & has required
descendant elements. Hence in order to encode the twiggeaul
post-order document traversal is required.

3.2 Hierarchical Stack Encoding

[15,16], 7

7.8 [27.28) “ R

[14.17)

HS[D]

[5.6] _ [18.19] [22.23]

HS[C]

Figure 4: Hierarchical Stack Encoding

3.2.2 Creating Hierarchical Stacks through Merging

Since the leaves are visited before the root in post-order do
ument traversal, the hierarchical structure is built in &dya-up
manner. We now introduceraergeoperation for creating the hier-
archy among stacks. The merge operation is leveraged toinemb
multiple stack trees into a single one. Intuitively, thisanse that
the entiresub-treeof e has been visited. Figure 5 shows how the

321 Notations and Data Structures stack trees if{ S[A] in Figure 4 are created.

In this section, we introducetaerarchical stack encodingcheme
to capture the AD relationships for the elements in the sanegyq
node as motivated in the previous section.

For each query nod#& of a twig query@, we associate it with
ahierarchical stackH S[N]. Each hierarchical stack S[N] con-
sists of an ordered sequence (the sequence order will balpgsc
shortly) ofstack treesST'. A stack treeST is an ordered tree (the
tree order will be described shortly), where each tree nedstack

after

[3,21]

[310] [12.21]

HS[A]

before

Visiting a2 [2,25]

HS[A]

Figure 5: Example of Merge Operation

285

EXAMPLE 1. During the post-order traversal of the XML doc-
ument in Figure 1, we visit a3, a4 and then a2. The hierardhica
stackH S[A] before visiting a2 in Figure 5 is on the left side. When
visiting a2, we find that a2 is an ancestor of both stacks (we ex
tend the notion of AD relationship between document eleasht
stack trees based on their encodings). Hence, a new mergekl st
is created. [

Figure 6 depicts the pseudo code of thergealgorithm. Here
createMergedStackTreline 12) creates a new stack and lets all
stack trees ir5T'S (if more than one) be its children. Line 5-10
is to process one query step, which will be described in the ne
section. The newly created or merged stack tree must alvayes h
the largesRightPos Hence, their order is naturally maintained.

Boolean merge (HierarchicalStack HS[M], docElement e, Axis ag)
Boolean Satisfied = FALSE;
StackTreeSet STS = empty;
1. BEGIN
2. FOR each stack tree ST of HS[M]
/IVisit in descending order of ST.RightPos

3. IF ST.RightPos < e.LeftPos

4. breakiNo need to keep visiting more stack trees;
5. IF axis = PCAND ST.top.Level = e.Level+1
6. Satisfied = TRUE;

7. addPCEdge(e, M, ST.top);

8. ELSE IF axis = AD

9. Satisfied = TRUE;

10. addADEdge(e, M, ST.top);

11. STS=ST$l ST;

12. createMergedStackTree(STS);

13. return Satisfied;

14.END

Figure 6: Pseudo Code of Merge Algorithm

LEMMA 1. Assume that for a given document elemgnthe
stack treesSTi, STz, ..., and ST, are merged and a new root
stackST,+1 is created. For any document elemehtisited dur-
ing the rest of the post-order document traversal, it willdither
an ancestor oéll STy, ST», ..., andST,, or noneof them.

Lemma 1 immediately follows that whil€ may be pushed into
ST,+1, denoting its AD relationships to ali'T;, it will neverbe
pushed into anys7; (i = 1..n). In Example 1, any future element
must be either the ancestorlwfth a3 anda4 or none of them.

3.3 Bottom-up Twig Query Processing

3.3.1 Overview

In this section, we presemi g2St ack algorithm for process-
ing GTP queries based on the hierarchical stack encodireeeh
Recall thattwi g2st ack algorithm visits the document elements in
post-order. This can be easily achieved even when the dottiehe
ements are indexed in document-order as in [4]. That is, wie-ma
tain a global stack for the document elements that are onatine s
path. Given a document elementvisited in pre-order (with the
minimum Le ft Pos), we pop up all the elements in the stack that
are note’s ancestors. Then we pusthinto the stack. The popped
document elements are in post-order (line 2,3,6 in Figure 7)

2As can be seen in Figure 4, for a given twig query, all the Iniera
chical stacks form a tree structure. At the same time, tlegmai of

a hierarchical stack also forms a tree structure. We thuermam
algorithmTwi g2St ack.

286

The essential idea dafwi g2st ack is as follows. Given a docu-
ment elemeng, we push it into a hierarchical stadk.S[E] (with
the matching label, i.e., either the same label or wildc&)diff it
satisfies the sub-twig query rooted at this query nBdenly E’s
child query nodes\V/ need to be checked due to the fact that all
the elements ifH S[M] must have already satisfied the sub-twig
query rooted ai\/. Finally, the hierarchical stack structure (as in
Section 3.2) is maintained using theergealgorithm in Figure 6 ei-
therwhen checking one query stepwhen pushing one document
element into the hierarchical stack

Maintaining the hierarchical structure among stacks hasieat
impact on efficient processing of twig queries. It seraadgtiple
purposes. First, it encodes the partial/complete twigltesuorder
to minimize the intermediate results as motivated in Sac8d.
Second, it reduces the query processing cost as we willidesar
the next section. Third, it enables efficient result enutiemaas
we will describe in Section 4.

3.3.2 Checking One Query Step

Given a document element we push it intoH S[F] iff all the
query steps taE’s child nodesM have been satisfied. Due to
the nature of post-order traversal, & descendant elements must
have already been visited and have been pushedistp\/] if sat-
isfied. Hence, the checking of one query step~ M for e can be
done through thenergingof H S[M].

Assume that there are stack trees ini{ S[M], namely, ST,

.oy ST,,. First, let us assume none of e (: = 1..n) ise’s
descendant, since the entire sub-tree fvisited due to the post-
order traversal, we can safely conclude thatinnot satisfyf.

Next, let us assumsT,,....ST, (1 < p < n) aree’s descen-
dants. We denot&T;.top as the top element of the root stack of
stack treeST;. Note thatST;.top may be empty if the top stack
does not contain any element. In this case, (1) when the query
stepEl — M is an AD relationship, then all the elements in stack
treesST,,...,.ST,, satisfy this query step. We encode the results of
this query step by creating edges frento ST, .top,...,5Tn.top.
Such an edge implicitly means thaf;.top and the elements in
the descendant stacks afe descendants. (2) When the query step
E — M is a PC relationship, obviously on§T,.top,...,.ST,.top
might be child ofe. We then create edges to those top elements if
their Level equalse.Level + 1. By Lemma 1, we guarantee that
these edges encode all possible answers fréon this query step,
since no elements will ever be pushed bel8W,.top,...,ST, .top
during the rest of the document traversal.

Finally, after this query step checking phase, we mergettuks
treesSTy,...,ST,, by creating a new root stack. The primary pur-
pose of this stack tree merging step isr¢ducethe future query
processing costs, since only this new root stack needs torissds
ered for the remaining document elements. The pseudo cade fo
checking one query step is in line 5-10 in Figure 6.

EXAMPLE 2. In Figure 4, when visitingi2, we merge the stack
trees in HS[B] while checking the PC axis (create one edge to
b2) 3. When visitingz1, we only need to check the top element in
H S[B] and conclude that itg/A/ B step is not satisfied.]

3.3.3 TwigStack Algorithm and Analysis

Putting together, Figure 7 depicts the pseudo codeif?St ack
algorithm. Given a document elementisited in post-order, we
first check ife can be pushed into its corresponding hierarchical
stack HS[E], or in other words, if allE’s child axes have been
satisfied (line 3-4 ilMatchOneNodgas described in Section 3.3.2.

3The edges shown in Figure 4 are conceptual for easy unddrstan

Procedure Twig?Stack(docElement e)
Stack docPath;
docElement currentElem;
1. BEGIN
WHILE docPath not empty AND docPath.top is not e’s ancest
currentElem = docPath.pop();
FOR each query node E with matching label of currentElem
MatchOneNode(currentElem, HS[E]);
docPath.push(e);
END

n

3
4
5.
6
7.

Procedure MatchOneNode (docElement e, HierarchicalStack HS[E
Boolean Satisfied;
1. BEGIN
Satisfied = TRUE;
FOR each child query node M of E & Satisfied
Satisfied = merge(HS[M], e, axis¢i));
IF Satisfied
merge(HS[E], e, ");
push (HSI[E], e);
END

©ONo kWD

Figure 7: Pseudo Code of TwigStack Algorithm

Oncee satisfies all the axes requirements for query nédeve
pushe into the hierarchical stack S[E]. Meanwhile, we also need
to maintain the hierarchical structure of the elementd i £]. To
achieve this, we also merge the stack tree&fifi| E] based ore
(line 6 inMatchOneNodgand puste to the top of the merged stack
(line 7). When there is no existing stack tree that is the eledant
of e, a new stack will be created to hatd

Finally, we show how easily the optional axis (Section 24dn ¢
be supported. We push an element into the sificMl its manda-
tory axes are satisfied, while we create edges for both marydat
and optional children. This avoids a potentially expendafe-
outer-join operation as required in prior work [8]. AND/OR twig
query [14] can also be easily supported. Figure 4 depictsimg
example of thawi g2st ack algorithm.

THEOREM 1. For any document elemest it is pushed into
H S[E] iff it satisfies the sub-twig query rooted A&t

PROOF 1) “—": The proof is straightforward based on the dy-
namic programming nature of thewi g2St ack algorithm.

2) “«". If Eis aleaf query node, then any document element
e with matching labels satisfies this query node and will béhpds
into HS[E]. The theorem is trivially true. For a non-leaf query
nodeFE, we prove the theorem by contradiction.

Assume one elemeatatisfiesE but is not inH S[E]. Then at
least one query stef — M failed when mergindZ S[M]. Since
e satisfiesty, there must exist one elementwhich satisfies\/ and
the structural relationship betweerandm satisfies the query step
E — M. There can be two reasons why the mergingZ#[M]
failed. They are either (i)n in HS[M] however the structural
relationship between and m is not captured through merging to
satisfy the query step. Clearly; must reside in one stack tree in
H S[M] ande must be able to find this stack tree as its descendant -
AD relationship is thus satisfied. #f is the child ofe, thenm must
be at the top of one stack tree - PC relationship is thus satisfi
Hence, case (i) is not possible. (it) is not in H S[M], or in other
words,m does not satisfy/. By applying the same reasoning, we
can conclude that there must exist gnelement that satisfies query
nodeP (P is M’s child query node) but not i/ S[P]. Eventually
when reaching the leaf query node, as stated before, all ke e

ing. In implementation, we create multiple edges as in Edur

287

ments are satisfied and must be in the corresponding hieiGath
stack. Hence, case (ii) is also not possible[]

3.4 Space Complexity, Memory Requirement

Theorem 2 provides the worst case space and time complexity
of Twi g2St ack. Most existing work on twig processing requires
enumerating the root-to-leaf path matches [4, 14, 16]. Tumber
of path matches in the worst case is exponential in termsedditte
of queryO(|D|'®!). In Twi g2St ack, all path matches are always
encoded (until the result enumeration phasé fact, some path
matches need not ever be enumerated for GTP queries).

THEOREM 2. For a given twig query@ and an XML docu-
ment D, both the space and time complexityTod g2St ack al-
gorithm in Figure 7 areO(|D||B|), where|B| is the maximum of
1) B1 =max(number of query nodes with the same labeDii
and 2) B, = max(total number of children of query nodes with the
same labels i). Obviously,|B| < |Q)|.

PrROOF Sketch. We show the case when the query have distinct
labels. There are two costs iwi g2St ack, namely, the cost for
merging stacks and the cost for checking all branches of oleeyq
node. For the merge cost, assume that thereragdements in one
hierarchical stack. It is easy to show that the merge co§2(s),
since once the stack trees are merged, they need not be emtsid
for merging again. When all query nodes have distinct Ighats
viously the total merge cost3(|D|). The branch checking cost is
bounded by the maximum fan-out of the query nodges.

Note that the memory requirement®fi g2St ack is higher than
Twi gSt ack. In Twi gSt ack, the memory requirement is just pro-
portional to the document depth. In comparisow, g2St ack may
keep the entire document in the memory in the worst case.

However, we claim that the worst case will not practicallypha
pen unlike the traditional main memory XML database thabgisv
stores the entire DOM tree in the memory before processihg [1
Twi g2St ack only stores document elements that satisfy some part
of the twig query aruntime More specifically, there are the fol-
lowing constraints on the data to be stored. First, only tements
that have labels matching with the query need to be store& Th
XMark [11] dataset, for example, has 77 distinct labels.slumn-
likely that a single query is interested in all these lalfelSecond,
when the selectivity of a twig is high, only small portion dée
ments will be pushed in the hierarchical stacks. Third, wedne
predicates are in the query, evaluation of them during theetr
sal will also contribute decreasing the number of elemeunshied.
Hence, it is unlikely to keep the entire document in the mgmor
in practice. In Section 4.4, we will further describe a mettia,
called early result enumeratignthat can significantly reduce the
memory requirement for most practical queries.

3.5 Optimization for Non-Return Node

When there are non-return nodes in a GTP query, which is very
common in XPath or XQuery, we can further optimize the space
and computation costs. Here we call a query niyde anexistence-
checkingnodeiff 1) N is not a return node and 2) there is no return
node belowN. When a query nodéV is anexistence-checking
node, onlythe root stackandits top elementf each stack tree need
to be retained. The reason is that, at any time, the paremy que
node only needs to check the top element (or root stack) and th
existence of such a top element (or root stack) suffices. é&fenc

4A wildcard in the query can potentially match any labels.
Nonetheless, the other two constraints and the early resulner-
ation mechanism still apply.

once the stack trees are merged, they are no longer usefd wd
can avoid creating any edges toexistence-checkingode.

Figure 8 depicts this optimization based on the XML document
and query in Figure 4.B is the only return node. In this case,
both C' and D areexistence-checkingodes.A is not anexistence-

checkingnode although it is a non-return node. The reason is that

we cannot simply throw the elements ihS[A] away since they
serve adridgesto the return node3 for result enumeration (Sec-
tion 4). Forexistence-checkingodes, such a§€' and D, any de-
scendant stacks or non-top elements can be safely removéd as
shaded rectangles shown in the figure. For PC relationsiip, &s
C, the child elements can be discarded after visiting theiemis.
We need not create any edgesipD as well.

//

[2,25]

ralen

[3.10] [[12,21]

HSIA]

[18,23]

[14,17) 5.6 (1819 (2223 |

[7.8] [27,28]

H H
]

HSID] HS[C]

Figure 8: Optimization for Existence-Checking Query Nodes

4. ENUMERATION OF GTP RESULTS

In the previous section, we descriibai g2St ack algorithm for
bottom-up twig query processing and partial/complete tegplts
encoding. In this section, we propose an efficient soluttaru-
merate the query results for a GTP query thattanglicate freeand
preservedocument ordefrom the encodings. We first assume that
we do not enumerate the query results until the entire dontime
has been processed by the g2St ack algorithm. In Section 4.4,
we describe how to enumerate the results earlier and the mpemo
consumed by the hierarchical stacks can also be freed up.

Before we proceed, we define two functions, nameiyntAD(e,
HS[M]) andpointPQe, HS[M]), wheree is a match ofFE and
M is one child node oF. pointPQle, HS[M]) returns all the el-
ements inH S[M] that satisfy the PC relationship with while
pointAD(e, HS[M]) returns all the elements iH S[M] that sat-
isfy the AD relationship witre. Clearly,pointPCis the same as the
edges created by theergealgorithm in Figure 6pointADis com-
puted byexpandingthese edges. Such expansion simply returns
all the descendant elements with respect to one edge. Ime~gu
we havepointPC(a2, HS[B]) ={b2}, pointPC(a3, HS[B]) ={b1},
pointAD(b1, HS[D]) ={d1} andpointAD(b2, HS[D]) ={d2,d3}.

4.1 Source of Duplicates and Out-of-Orderness

When dealing with a GTP which may contaion-returnnodes,
duplicate and out-of-order results may occur. Such phenarnan
be easily explained under our hierarchical stack encodihgrae.

288

EXAMPLE 3. In Figure 4, first we assume that only is a re-
turn node. We have pointABX, HS[D]) = {d2,d3} and pointAD(b3,
HS[D]) = {d2,d3}. The latter generates only duplicates. In this
case, b3 is descendants of b2.

Second, we assume that oiityis a return node. We have pointPC(
a2, HS[B]) = {b2}, pointPC(a3, HS[B]) ={b1} and pointPC(a4,
HS[B]) = {b3}, while the correct return order should Bé1, b2,
b3}. This output order is no longer consistent with the order of
their parents. In this case, b2 is an ancestor of a4 and is s
ancestor of any elements in pointPC(a4, HS[B])L]

The above example shows that the duplicate problem occles wh
the two elements with AD relationship point to the same desce
dant element, while the out-of-order problem occurs whertto
elements with AD relationship point to their respectiveldtdle-
ments that no longer preserve order. This observation stgtfeat
if we maintain the elements returned jpgintPCandpointADin an
ordered sequence of trees (in pre-ordg)OT) structure, i.e., main-
tain their structural relationships, we may solve the digié and
out-of-order problems. Such SOT structure is already pvesen
the hierarchical stack and can be easily produced.

4.2 Computing Total Effects for Non-return
Nodes

As described above, the duplicate and out-of-order probleay
occur when handling non-return nodes. We formulate thidas t
problem of computing theotal effectdor a non-return node below.

Problem statement: Assume a non-return query nbdand its
child query nodel/. For a given set of elemen¢sSOT in HS[E]
maintained irsequence of tre¢SOT) format, we want to compute
its total effectson the query nodé/, namely, a set of elements
resultSOT in HS[M] maintained also in SOT format, with each
element inresult SOT having at least one element #6OT that
satisfies the query step — M.

When the query stef — M is an AD relationship, clearly only
theroot element of each tree ilSOT needs to be considered. The
final resultSOT is simply a union of alpointAD(root, HS[M]).

All other elements ireSOT areguaranteedo only generate du-
plicates as shown in the first case in Example 3.

When the query stefy — M is a PC relationship, a naive way
to handle the order problem is to sort all the elementintPQe,
HS[M]) for all e in eSOT'. In fact, sorting is not necessary since
all the elements in eSOT and their child elements ipvint PC (e,

H S[M]) already preserved their respective document order by the
Twi g2St ack algorithm.

€ oo >m,..m
S
e,. B . e,
/A -
my, m,
Log

Figure 9: Intuition of Computing Total Effects under PC Axis

Figure 9 provides basic intuition regarding how this ordetyp
lem can be resolved. Assume that one elementith children
€1,...en inan SOT tree andointPQe, H S[M]) equalsmy,...mp.
Bothey,...e, andma,...,n, are in document order. Starting from
e1 andmg, there are three possible positions far. (1) m; is
on theleft side ofe;. In this case, we should add; into result-
SOTsince there will be no other result element that appearg®efo
m1 in the document order or is a descendantof. (2) m; is

anancestorof e;,°. In this caseyn; must also be an ancestor for
all pointPQle1, HS[M]) and allpointPQe’, HS[M]), wheree’ is
any descendant ef; in eSOT. Assume that we recursively com-
pute thetotal effectsof e; and all its descendant elementsas
SOT:. A new SOT tree will be created withv, being the root and
SOT; being its children. (3)n; is on theright side ofe;. In this
case, we should add thetal effectsof e¢; and all its descendant
elements’ into resultSOT Finally, since both lists are ordered, we
need to scan them only once. Figure 10 depicts the detailiof t
algorithm. tree(m, subSOTip line 14 is to create a new tree with
m being the root and all the trees subSOTbeing its children.
The time complexity oComputeTotalEffeatlgorithm in Figure 10
is O(n), wheren = > point AD(root, HS[M]) when the query
step is AD anth = > point PC'(e, HS[M]) when it is PC.

SOT computeTotalEffects(SOT eSOT, Axis axis, HieratticalStack HS[M])
SOT resultSOT = mSOT= subSOdmpty;

docElement childElements][], e, m;

1. BEGIN

2. FOR each tree t[i] in eSOTAssume eSOT contains a sequence of trees t[1..
3 IF Axis = AD

4. resultSOT = resultSQINION pointAD(t[i].root, HS[M]);//root element onl
5. ELSE //Axis = PC

6 mSOT = pointPC(t[i].root, HS[MJj¢child elements m that t[i].root points tc
7 childElements = t[i].root.children(}t[i].root’s children in tree t[i]

8 WHILE m = mSOT.next();

9 WHILE e = childElements.next() and e.RightPos < m.LeftPos

resultSOT = resultSONION computeTotalEffects(e, axis, HS[M])
11. subSOT = empty;
12. WHILE e = childElements.next() and
m.LeftPos < e.LeftPos and m.RightPos > e.RightPos
13. subSOT = subSONION computeTotalEffects(e,axis, HS[M]);
14. resultSOT = resultS@NION tree(m, subSOT);
15. WHILE e = childElements.next()

resultSOT = resultS@NION computeTotalEffects(e,axis, HS[M]);
17. RETURN resultSOT;
18END

Figure 10: Pseudo Code for Computing Total Effects

EXAMPLE 4. Assume thatl is a non-return node in Figure 4.
The SOT for HS[A] contains one tree with a2 being the root a8\d a
a4 being its children. The total effects of these three ehtsnen
B contains two trees, namely, (b1) and (b2, b3) with b2 beirig b3
parent (since b2 is ancestor of a4 and pointPC(a4, HS[B])xb3
The total effects of (b2,b3) ab contains one tree (d2, d3). In this
case, onlypoint AD(b2, HS[D]) needs to be considered[]

4.3 Complete Enumeration Algorithm

We now present the complete algoritt@Emunirwi g2st ack (Fig-
ure 11) to enumerate the results for a given GTP query, whij m
contain return nodes, group return nodes and non-returasadd
this paper, we return the GTP results in a tuple format (sinti
[15]). That is, each column corresponds to one return node an
stores the matching document element ID. When a query nae is
group return node, then a list of matching elements’ ID isesto
When a query node is optional, the column value maytié It
is also easy to return the GTP results in tree format or taidel
value, attribute information.

Similar toPat hSt ack [4], the results are enumerated in the re-
verse order in contrast to the computation. Fai g2St ack, we
enumerate the resultsp-downso to only visit these elements that
are in the final results. Initially, the stack trees in the rgu®ot
node represent an SOT structure and serve as a startingopiet
enumeration algorithm. Note that when the query starts With
only the top element of the SOT tree with Level=1 can be in the
final answer. For example, the SOT for the root query ndde
Figure 4 is the tree ai2, a3, a4.

5A special casemni = eq, can be handled similarly.

289

When traversing down the query nodes, if current query node
E is a return node, then we needrapetitivelytraverse down the
query nodes for each element in the SOT (line 6). The reason is
that each of these elements will lead to some distinct arswér
this query node is also a branch node, we simply doagtesian
product of all the sub-twig results from different branckiese 9).
HeresetColumn(e,BranchResuit) line 10 is to set théZ column
ase for all the tuples irBranchResultWhen current query nodg
is a non-return node, we compute théal effectof these elements
on E’snon-existence-checkirahild nodeM as in Section 4.2.

Finally, when we reach the leaf node, we convert the regultin
SOT into tuples (line 3). In particular, if it is a return nodhen
we create one tuple for each element in SOT by visiting eash tr
in pre-order. If it is a group return node, then we just create
tuple with the column value being a list of all the elementS®IT.
This way our enumeration solution achievesaatomaticgrouping
in the sense that all the elements that belong to the same grou
already stay together in SOT. An explicit grouping operatesr
path matches [8] can thus be avoided.

GTPResult EnumTwig?Stack (queryNode E, SOT eSOT)
GTPResult totalResult = branchResukmpty

SOT mSOT;

1. BEGIN

2 IF no return node below E

3 return convert2Tuple(eSOWNo need to further traverse down

4 ELSE //there is return node below E, need to traverse down

5. IF E is return node

6 FOR each element e in eS@/Visit each tree in eSOT in pre-orc
7 branchResult = empty;

8 FOR each E’s child non-existence-checking query node M
9 mSOT = computeTotalEffectafes(E—->M), HS[M]);

branchResult = branchRes@ihumTwigStack(M, mSOT)
11. totalResult = totalResUNION setColumn(e, branchResult);
12. return totalResult;
13. ELSE // E is non-return node
14. mSOT = computeTotalEffects(eSOT, axisk, HS[M]);
15. return EnumTwigStack(M, mSOT);
16. END

Figure 11: Pseudo Code of EnumTwigStack Algorithm

EXAMPLE 5. Assume thatl, B and D are the return nodes in
Figure 4. For each of the elemeni®, a3 and a4 (in that order),
we need to traverse down the query nodes.

Now assume thabD is the only return node. First, sincd is
not a return node, we compute the total effectsAsf SOT tree
(a2,a3,a4) onB as bl and (b2,b3). Next, sindg is also not a
return node and the axis betweéhand D is an AD relationship,
only the top elements @'s SOT trees need to be considered, i.e.,
bl and b2. Finally, the result tuples are (d1), (d2) and (d3Jearly,
this is much better than first enumerating 9 path matches hed t
merge-joining (or semi merge-joining) these path matches fa
nally applying duplicate elimination / sort operation[]

THEOREM 3. EnumTwig Stack algorithm in Figure 11 correctly
return the results for a given GTP query. The total time caxypl
ity for processing a GTP query, including both T@&iack and
EnumTwig Stack isO(| D||B|) + O(|subTwigResults|). O

Here thesubTwigResultare the results of a sub-twig query, which
is a minimal sub-twig in the original twig query that contsiall the
return nodes. For instance,AfandD are return nodes in Figure 4,
then|subT'wig Result| is the number of matches whety B and
D are all return nodes in the twig query.

A non-return query nod& can have at most one non-existence-
checking child query nodé1 in either XPath or XQuery.

4.4 Early Result Enumeration

Twi g2St ack algorithm described in Section 3 employs a pure
bottom-up approach. Note thathgbrid approach is possible that
integrates both top-down and bottom-up methods. In pdaticu
we usePat hSt ack [4] (briefly introduced in Section 3.1) for top-
down computation and usen g2St ack for bottom-up computa-
tion. More specifically, for any element it is pushed into the
hierarchical stack{ S[F] iff it satisfies thesub-twigquery rooted
at F as well as therefixpath query from root t@.

To implement the above idea, each query nétes associated
with two stacks, one foPat hSt ack, S[FE], one forTwi g2st ack,
HS|[FE], respectively. A document elementvisited in pre-order
is first pushed into the top-down staSkE| based orPat hSt ack
algorithm. Oncee is popped out from the top-down stacKE]
(post-order), we push it into the hierarchical std€l§[E]. Note
thatPat hSt ack is a quite efficient algorithm, i.eQ(1) for push-
ing or popping an element. Hence, the extra cost is smallewhil
the benefit can be significant since the condition for pusleileg
ments into hierarchical stacks become more stringent. Handtey
advantage for this hybrid approach is that we can enumehate t
query results earlier and all the data in the hierarchicatkst can
be cleaned up. This will greatly reduce the memory requirdgras
discussed in Section 3.4.

Assume that theop branch nodén a GTP query i£. Whenever
the elements irb[E], i.e., the top-down stack, are all popped out,
we can start to enumerate the query results and then cledhthp a
hierarchical stacks. The following example in Figure l@stlates
the main idea of this early result enumeration mechanism.

u Popping b4

SIAl

S[B]

LI

S[D] s[C]

HS[A]

L]

HS[B]

HSID]

¢ TS,

S[D] s[C]

HS[C]

HS[D]

HSICT

Figure 12: Running Example for Early Result Enumeration

cause these data may lead to new matchegfdie can only clean
up the hierarchical stacks whég is popped out. The rightmost
portion shows the status whéd is popped out from the top-down
stack. Clearly, this early result enumeration mechanismgceatly
reduce the memory requirement.

DBLP DBLP
| /N

Inproceedings Inproceedings Article

Title Author

Figure 13: Two Real Examples for Early Result Enumeration

Figure 13 depicts two real queries in order to gain some nmore i
sights on the usefulness of this early result enumeraticmigque
in practice. The twig query on the left side is a common one to
find the title and authors for each proceeding. The top braode
for this query isinproceedings. By early result enumeration, we
can output the twig results per proceeding and the memonjineq
ment is also just one proceeding. This is independent of hamym
proceedings in the XML file are, i.e., how large is the XML file.
The top branch node for the query on the right side of Figuress13
the document root. In this case, early result enumeraties dot
work because the root element is popped at the end of the docu-
ment. Now assume there are 100000 inproceedings and 106000 a
ticles. This twig query will give 400000% number of distinct twig
results. Such a full Cartesian product provides little @xtforma-
tion and is not very useful in practice. Hence such worst tase
unlikely to occur in practice. Also we note that in the casebén
the top branch node is the document root, there is a simple sol
tion. Thatis, we can process each branch sub-twig queryeobibt
separately, i.e/dblp/inproceedings... and/dblp/article..., and
perform a Cartesian product at the end. This way the earlyitres
numeration technique remains effective when processidiyid:
ual branches. A more in-depth study for resolving such wease
memory requirement problem remains our future work.

5. EXPERIMENTAL EVALUATIONS
5.1 Experimental Setup

We re-use the query and the data in Figure 4. The top branch We implemented oulrwi g2St ack algorithm using Java 1.4.2

node for this query iB. In hybrid query processing mode, when
b1 is popped out of the top-down staskB] and pushed into the hi-
erarchical stack? S[B] (the leftmost portion of Figure 12), we can
start to enumerate the query results. Here the solid edgeetethe
edge used foPat hSt ack, while the dotted edge denotes the edge
used forTwi g2St ack. The result enumeration algorithm is also
a hybrid ofPat hSt ack andTwi g2St ack enumeration algorithms,
which is quite straightforward. After the result enumeratithe
data in the hierarchical stacks can be removed. Intuitivbig is
due to the fact that the sub-treeidf will not appear in any future
results. There might exist a potential blocking issue wéethe
enumerated results can be output immediately. Here whismot
return node, then we can output the enumerated resultsavgdy.
When A is return node, however, the3 results need to be kept
in the temporary space (disk) until all (and thenz2) results are
enumerated out. Similar issue exists fat hSt ack and can be
resolved without sorting [4].

The middle portion of Figure 12 depicts the status wh2ns
popped out from the top-down staskB]. In this case, althougid

and performed experiments on a PC with a Pentium M-2GHz pro-
cessor and 2GB of main memory. We set the Java virtual machine
memory size to 500M. We comparadi g2St ack with two other

twig join algorithms:Twi gSt ack [4] and TJFast [16] 7. TIFast

has the best performance in terms of /O cost and CPU time @mon
the existing twig join algorithms, whil&wi gSt ack is the classical
holistic twig join algorithm.

Datasets A set of synthetic and real datasets are used for the
experimental evaluation, which represent a wide range ofLXM
datasets (Figure 14). In particular, the synthetic datesstides
XMark [11]. The scaling factors of 1 to 5 were selected to gene
ate a set of XMark synthetic datasets for scalability anslyEhe
two real datasets included are DBLP and TreeBank from [26& T
DBLP dataset is a wide and shallow document, while the TrakBa
dataset is a deep recursive document.

Metrics. We compared the three twig join algorithms in terms
of thequery processing timand thetotal execution time

has been popped earlier and we know that there are some atche’The implementation of these two algorithms in Java wereligind

to the entire twig query, we cannot clean up hierarchicalkstzbe-

290

provided by Jiaheng Lu from the National University of Sipgee.

e query processing timehe time spent on performing the struc-
tural matching. Fofmwi g2St ack, it is the time to perform

of path matches is non-trivial, even when all the generatt p
matches are in the final results. The reason is that enumezdth

the merging of hierarchical stacks and the result enumera- matches requires either traversing fz hSt ack for Twi gSt ack

tion. ForTwi gSt ack, it is the time to perform computing

[4] or analyzing the extended dewey ID using the DTD transduc

and enumerating path matches, and finally merge-joining the for TIJFast [16]. The same element may also exist in many path

path matches [4]. FOrJFast , itis the time to perform anal-
ysis of the extended dewey ID of the leaf element to infer

matches, resulting in duplicated efforts.
In comparison, althoughwi g2St ack may also push a docu-

its ancestors’ label, enumerating path matches, and finally ment element into H S[E] with e potentially not being in the final

merge-joining the path matches [16].

o total execution timequery processing timglusthe scanning
cost of the document elementhe scanning cost is basically
10 cost. For bothrwi gSt ack andTwi g2St ack, their scan-

results, the cost of merging/ S[E] and all its child hierarchical

stacks isnotwasted. The reason is that they reduce the query pro-

cessing cost, i.e., merging cost, for the remaining element
Thetotal execution timef Twi g2St ack and TJFast is closer

as depicted in Figure 16.(b). The reason can be explainedjin F

ning costs are the same, namely, for accessing the document, e 16 (c), i.e.TIFast saves more IO cost since it only needs to

elements corresponding to all query nodes. Fotast , the

access the elements corresponding to the leaf query fodéste

scanning cost is for accessing the document elements COMthat, ourTwi g2St ack algorithm developed in this paper is dedi-

responding tanly those query leaf nodes. HendeFast

cated for optimizing the twig query processing cost. It isgible

accesses fewer number of document elements, while the sizet0 extendTwi g2St ack to further reduce the 10 cost. A viable ap-
per element may be larger since extended dewey ID for leaf .5ach s to create a variant @+ tree index on the document

elements typically is larger than region encoding.

[XMark |

|DBLP|TreeBank| T2 13] 45|

Dataset Size (MB)| 127 82 113 | 226 340| 454| 568

Nodes (Million) 3.3 2.4 1.7|33| 5 |6.7(|83
Max/Avg Depth 6/2.9 36/7.9 12/5.5

Figure 14: Statistics of XML Data Sets

Query Name | Dataset | Twig Query

DBLP-Q1 DBLP | //dblp/inproceedings[title]/author
DBLP-Q2 DBLP | //dblp/article[author][.//title]//year
DBLP-Q3 DBLP | //inproceedings[author][.//title]//booktitle
XMark-Q1 XMark | /site/open_auctions[.//bidder/personref]//reserve
XMark-Q2 XMark | //people//person[.//address/zipcode]/profile/education
XMark-Q3 XMark | //item[location]/description//keyword

TreeBank-Q1 | TreeBank | //S/VP//PP[.//NP/VBN]/IN

TreeBank-Q2 | TreeBank |//S/VP/PP[IN]/NP/VBN

TreeBank-Q3 | TreeBank | //VP[DT]//PRP_DOLLAR_

Figure 15: Twig Queries used for the Experimental Evaluatio

Twig Queries. Figure 15 shows all the twig queries used for the
experiments. For each data set, three twig queries aretesghlec
which have different combinations of parent-child and atme
descendant relations and different selectivities ovedttasets.

5.2 Full Twig Query Processing

We first compar&wi g2St ack with Twi gSt ack andTJFast for
processing the full twig query (all query nodes are returdes).

5.2.1 Performance Results

Figure 16 depicts the performance results based on theegueri
in Figure 15 on DBLP, XMark (scale 1) and Treebank datasets in
Figure 14. For each twig query, we record tipeery processing
time total execution timandlO timefor all three algorithms.

DBLP Dataset: Figure 16.(a) reports thguery processing time
(b) reports thetotal execution timeand (c) reports théO time
Twi g2St ack achieves one order of magnitude performance gain
over Twi gSt ack, and is two to three times faster thauFast
in terms of thequery processing time Our detailed cost break-
down shows that this is primarily due to the fact that g2St ack
avoids generating any path matches. Actually, the enuiarat

291

elements so thatwi g2st ack can skip scanning the elements that
cannot satisfy the query steps. A similar approach, callBetiée,

is developed in [4] and has been shown to be quite effectiiés T
is certainly a promising future direction to explore.

XMark Dataset: Figure 16.(d), (e) and (f) depicts the results on
the XMark dataset with scale factor 1. For the query proogssi
time of this data seffwi g2St ack again shows consistent order of
magnitude performance gain ovesi gSt ack and is several times
faster thanrJFast . Our detailed cost breakdown shows the same
reason, i.e., path enumeration. For the total executionafais
datasetTJFast actually introduces larger 10 cost for Q3. Q3 con-
tains three leaf query nodes with only one non-leaf node.cklen
the saving on scanning the elements corresponding to onéeabn
query node is smaller than the cost paid for having a largenebed
dewey ID per element.

TreeBank Dataset: Figure 16.(g), (h) and (i) depicts the re-
sults. For the query processing tinTei g2St ack again signif-
icantly outperformsTwi gSt ack, and is two to three times faster
thanTJFast for Q1. For Q2 and Q3, since the selectivity of path
matches is very high, only total 300 and 5 matches, resmbgtiv
the query processing time fawi g2St ack andTJFast becomes
closer. The saving on IO cost fogFast is bigger for this dataset.
The reason is that the twig queries, especially Q2 has masy di
tinct non-leaf query nodes. Meanwhile, since TreeBank igreomv
dataset, this means that the number of occurrences for égkarh
level elements is high, resulting in a large index size.

5.2.2 Experiments on Scalability

We now report the scalability expermental resultwfg2st ack
algorithm in terms of the size of the XML document in Figure 17
We vary the XMark scale factor from 1 to 5. As can be seen,
all three algorithms grow linearly in terms of the documees
Twi g2St ack again has much bettguery processing time

5.3 GTP Query Processing

In this section, we will study the performance fi g2St ack
algorithm for processing GTP queries. Since neithérgSt ack
nor TJFast is fine tuned for processing GTP queries, we will not
include them in the experiments as it will be unfair if we slynp
apply a post-processing on top of these two algorithms. @n th
other hand, it is non-trivial to derive an efficient mechamifor

8Accessing only the leaf elements however is not always serfiic
e.g., when the query includes the values or attributes aidheleaf
query nodes.

M TwigStack ETJFast Orwig “Stack

9

80

% au

DBLP-Q1 DBLP-Q2 DBLP-Q3 DBLP-QL

Query Processing Time (s)
Enesag
58835883
Total Execution Time (s)
Enesag
58835883

DBLP-Q2

70
7 60
2 50
£ 40
9 30

20 1

0

DBLP-Q1 DBLP-Q2 DBLP-Q3

DBLP-Q3 (c)

crMOsE OO N®oO

crMOsE OO N®O

Query Processing Time (s)
Total Execution Time (s)

XMark-QL XMark-Q2 XMark-Q3

s
S

1/0 Time ()
chRrNORGON®O

XMark-QL ~ XMark-Q2 XMark-Q3 ®

e Ml

XMark-QL XMark-Q2 XMark-Q3

onronBREEEERE

1O Time (s)
Y
onvronBREEEER

Total Execution Time ()

Query Processing Time (s)

ST
orvwasno~moBER

L.

TreeBank-Q1 TreeBank-Q2 TreeBank-Q3 || (h)

e

TreeBank-QL TreeBank-Q2 TreeBank-Q3 || (i)

=

TreeBank-Q1 TreeBank-Q2 TreeBank-Q3

= =

Figure 16: Full Twig Query Processing on DBLP, XMark and TreeBank Datasets

[W TwigStack WTJFast Drwig “Stack

5

&

Query Processing Time (s)

I T 24

| E 21
s 18

T S 15q
£ 12

~100MB ~200MB ~300MB ~400MB ~500M8 | | (b)

o w o ©

B

Total Execution Time
N
owo o 5
%-.
1O Time (s)
chrMwAGOG N

~100MB ~200MB ~300MB ~400MB ~500MB

©

~100MB ~200MB ~300MB ~400MB -500MB

Figure 17: Scalability for Full Twig Query Processing

processing GTP queries based on path-joins. The reasoatis th
efficient path-joins require all the path matches be sonedt-
to-leaf order in order to use the cheaerge join This root-to-leaf
order however may not always correspond to the order ofmetur
nodes. Hence a post-sort becomes unavoidable. Alterhatife
we can produce the path matches in the order of return nduss, t
the path join cannot use the efficient merge join method.

5.3.1 GTP Queries over DBLP Dataset

We use DBLP-Q1 in Figure 15 as the baseline twig query and
then arbitrarily set some query node as non-return nodeampgr
return node. Figure 18 depicts different GTPs and theirypes-
cessing cost. Note that the 10 cost is the same for all GTPs.

Figure 18.(a) is the baseline twig query with every node ¢pain
return node. (b) is a GTP query witile being a non-return node.

In this case, the query processing cost for this GTP reduced ¢
pared to that for (a). The reason is that ndidde is anexistence-
checkingnode. In this case, we can avoid maintaining the hier-
archical structure irH S|[title] and avoid creating any edges from
inproceedingselement totitle element (Section 3.4). The result
enumeration also need not accéés|title]. (c)is a GTP query
with author being a non-return node. In this case, the saving is
even bigger since there are several authors per inproagedinile
there is only one title per inproceedings in the DBLP dataBét
nally, (d) is a GTP query witlauthor being a group return node.
Compared to (b), where the only difference is the way laothor

is returned, (d) results in a much cheaper cost. The reagbatis
for (d), we group multiple authors to a list and create a sitgple,

292

while for (b), we have to create one tuple per author. Mosstexi
ing works [8, 10] first generate path matches as (b) and thply ap
grouping This approach obviously is less efficient than ours.

5.3.2 GTP Queries over XMark Dataset

We now use XMark-Q1 in Figure 15 as the baseline twig query
and then arbitrarily set non-return nodes and optional .akég-
ure 19 depicts different GTPs and their query processing cos

Figure 19.(a) is the baseline twig query. (b) is a GTP query
with addressandzipcodebeing non-return nodes. In this case, the
query processing cost is reduced compared to that for (@ead-
dressandzipcodebecome existence-checking nodes. (c) isa GTP
query with onlyeducationbeing the return node. Compared to (b),
although we still have to maintaifl S[people] and H S[person|
since they have return node below, the final result size isced
and so does the result enumeration cost. (d) is a GTP quehy wit
the axis betweepersonandaddressbeing optional, while (e) is a
GTP query in addition has the axis betwganfile andeducation
being optional. In both cases, the number of twig matchesvisral
times larger than that of (a), while the increase of querggssing
time is small. In contrast, optional semantics is often suggal by
usingOuter-Joinof path matches [8], while outer-join is known to
be in general more expensive than inner-join.

5.4 Runtime Memory Usage

In this section, we report the memory usage for processiag th
above twig queries and how our early result enumeratiomigale
helps to reduce the memory usage. Table 1 depicts the memory

GTP Query

(d)

inproceedings

title

Query Processing
Time (s)

1.362 2.445

(b) ©

GTP Query

address address

zipcode

address

zipcode

zipcode education

education

=

(e)

people

person

profile

Query Processing

Time (ms) 130

80

60 150 180

Figure 19: GTP Query Proce

usage for processing the twig queries in Figure 16, with ohoit
early result enumeration (ERM) enabled (Section 4.4).

First, let us consider DBLP dataset. The total memory con-
sumptions for all three queries are quite high. This is duthéo
low selectivity of these queries. Basically, all thgroceedings
(articleg) are selected by those queries (selectivity can be much
higher if value predicates are present). Note that the megmer
age is even bigger than the file size (127M) due to those psinte
a situation that has already been observed in main memory XML
database [17]. Note that when the early result enumeragicim- t
nigue is employed, the runtime memory usage is significamety
duced to less than 1Kbytes! The reason is that as soon aig-one
proceedinggarticle) has been visited, we can output the results and
free up the memory. The memory requirement is thus bounded to
the matches penproceedinggarticle). Note that such matches are
typically just related to the type of the document (e.g.nfidTD)
and is independent of the size of the document.

Next, let us consider TreeBank (TB) dataset. TreeBank is a
dataset with many distinct labels and with quite irreguterctures.
The selectivity is thus very high, which consequently ressinl low
total memory usage even without early result enumeratiaibled
(compared to 82M document size). Nonetheless, early resukt
meration reduces the runtime memory usage to just sevesaéKb

Finally, let us consider XMark (XM) dataset. Two scale fac-
tors, s=1 (100MBytes) and s=10 (1GBytes) are used to gentrat
document. The total memory usage (without early result emmam
tion) grows as the scale factor increases for all three gaeiilote
that the early result enumeration becomes ineffectivé)fbrFrom
the query itself, we find that its top branch nodepenauctions
In XMark dataset, there is only or@penauctionselement which
contains a huge number openauctionelements. This is almost
equivalent to the second case in Figure 13 (Section 4.4)enthe
root dblp has a huge fan-out. This hints us that a promising way
to address this worst case memory problem is to find thoseyquer
nodes which have a huge fan-out (subtree) in the documedt, an
then effectively decompose the processing of individuahbhes
(i.e., hybrid query plan). Next, our early result enumenatiech-
nique is very effective for handlin@2 and @3, i.e., the runtime
memory usage is independent of the document file size. Here th

293

ssing on XMark Dataset

top branch nodes fap2 and@3 arepersonanditem respectively.
Since the information contained in eaphrsonand in eachitem
can typically be considered as constantly small, the rumtimem-
ory usage remains stably low. As a final remark, we study the sa
ple queries in XMark [11]. Among the total 20 queries, the top
branch nodes arepenauction closeauction personanditem 9

all of which are small trees. Hence, our early result enutiemra
technique likely would be useful for most practical queries

6. RELATED WORK

Tree pattern queries over XML documents have been exténsive
studied recently. Most existing techniques rely on theaegn-
codings [19] to capture the structural relationship betwedecu-
ment elements. Early work decomposes the tree patternegueri
into a set of binary components. Then the matches of each indi
vidual component are stitched together to get the final r2$8].
The main drawback of the decomposition method is the large in
termediate results. Hence, in [4], the first holistic twignjalgo-
rithm, calledTwi gSt ack, was proposed. HoweveTw gSt ack
achieves optimality for twig queries with AD relations onlifor
twig queries with PC relations, useless path matches cammot
completely avoided. Chen et al. proposeithi gJoi n [6] that ex-
ploits different data partition strategies to further abe holism.
More recently, Lu et al. [16] proposédFast to access only leaf
elements by exploiting extended Dewey IDs. Unfortunatesg-
less path matches cannot be avoided in all cases as shown theo
retically in [9]. Aghili et al. [2] incorporates a binary labng al-
gorithm (based on the notion of nearest common ancestora) as
pre-processing filtration step to reduce the search spatean-
putes the twig matches in a bottom-up fashion. Howevery thei
technique is mostly effective for the scenarios where trarche
involves selective keywords at the leaf nodes of twig querim
this paper, we show that enumerating path matchestisecessary
for processing twig queries and hence do not have such dptima
ity problem. Furthermore, most these existing works do ook ¢
sider how to efficiently process the more powerful GTP querie

9An exception isQ7, where the top branch node is the document
root. This can be easily handled by decomposing the twigigsier
at the root node and performing a final Cartesian product.

| [DBLP-ERM [DBLP +ERM [TB-ERM

[TB+ERM]| XM (100M/1G) - ERM | XM (100M/1G) + ERM |

Q1 150M 0.7K oM 15K 9M/87M 9M /87M
Q2 105M 0.9K 1.5M 10K 7™M/ 82M 2.2K/2.6K
Q3 170M 0.8K 6K 3K 10M/118M 0.9K/ 1K

Table 1:

Processing GTP queries generally calls for costly postgssing
[8]. Chen et al. proposed a stack-based matching algorithm f
graph input data [5]. A hybrid of top-down and bottom-up com-
putation paradigm is employed (similar to ours). Howevkeyt
do not maintain the hierarchical structure of a single stsioke
Lemma 1 does not hold for graph data.

Bottom-up tree pattern matching has been extensivelyestidi
the area of classic tree pattern matching [12]. Note thaglearly
work however do not consider AD relationship, which is cormmo
for XML queries. Recently, a bottom-up tree homomorphism al
gorithm for XPath containment checking is proposed in [T3jly
the existence of such a match is returned, which is enougtofor
tainment checking. In this paper, we show how to return ttie fu
matches for GTP queries under this computation paradigm.

7. CONCLUSIONS

In this paper, we proposed a novel hierarchical stack engodi
scheme to compactly represent the twig results and intextiac
bottom-up twig processing algorithm. Then we showed howfto e
ficiently enumerate the GTP results from the encodings.

There are many promising future directions. For exampés tr
pattern matching has also been extensively studied in Xiviast
environment [7, 15]. Most existing techniques on holistigtpro-
cessing, such as those in[4, 16], cannot be applied to XMiasts.
The reason is that they need to look up other node indexe®ti se
this path will participate in the final twig matches. Suicbk-ahead
feature is not available in XML stream environment, sinadbc-
ument is sequentially scanned. In comparison, Tirg2St ack
algorithm can balirectly applied. That is, in XML stream envi-
ronment, thestart-tagsfollows pre-order, while theend-tagsfol-
lows post-order! As a quick comparison, state-of-the-asted
XPath (one return node) matching solutibm gM[7] has complex-
ity O(|D||Q|(|Q| + RC)) (whereR is the document deptlt; is
candidate solution withC'| < |D|), while Twi g2St ack has com-
plexity as low asO(|D||B|) (from Theorem 3) and is capable of
processing the more complex GTP queries. It is interestitgré
work to conduct the actual performance comparison to vareu
isting XML stream solutions [7, 15]. Other interesting frtgwvorks
include how to handle worst case memory issues by using dhybri
query plans, how to exploit the index, how to support othersax
and how to handle multiple GTP queries over XML streams.

8. REFERENCES

[1] Galax: An implementation of xquery.
http://db.bell-labs.com/galax/optimization/.

[2] A. Aghili, H. Li, D. Agrawal, and A. E. Abbadi. TWIX:
Twig Structure and Content Matching of Selective Queries
using Binary Labeling. INNFOSCALE 2006.

[3] S. Al-Khalifa, H.V.Jagadish, J.M.Patel, Y. Wu, N.Kowgla

and D.Srivastava. Structural Joins: A Primitive for Effitie

XML Query Pattern Matching. IProceedings of ICDE

pages 141-152, 2002.

N. Bruno, N. Koudas, and D. Srivastava. Holistic Twigrigi

Optimal XML Pattern Matching. IProceedings of

SIGMOD pages 310-321, 2002.

[4]

294

Memory Usage for Twig Queries in Figure 16

[5] L. Chen, A. Gupta, and M. E. Kurul. Stack-based Algorithm
for Pattern Matching on DAGs. IRroceedings of VLDB
pages 493-504, 2005.

[6] T.Chen, J. Lu, and T. W. Ling. On Boosting Holism in XML
Twig Pattern Matching. IfProceedings of SIGMO[pages
455-466, 2005.

[7] Y. Chen, S. Davidson, and Y. Zheng. An Efficient XPath
Query Processor for XML Streams. Rroceedings of ICDE
2006. To appear.

[8] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and

S. Paparizos. From Tree Patterns to Generalized Tree

Patterns: On Efficient Evaluation of XQuery.Rmoceedings

of VLDB, pages 237-248, 2003.

B. Choi, M. Mahoui, and D. Wood. On the Optimality of

Holistic Algorithms for Twig Queries. IfProceedings of

DEXA pages 28-37, 2003.

Y. Diao and M. Franklin. Query Processing for High-Viola

XML Message Brokering. IfProceedings of VLDBpages

235-244, 2003.

A.R. S. et al. The XML Benchmark Project. Technical

Report, INS-R0103, CWI, 2003.

C. M. Hoffmann and M. J. O’'Donnell. Pattern Matching in

Trees.Journal of the ACM29(1):68-95, 1982.

H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and

K. Thompson. TAX: A Tree Algebra for XML. In

Proceedings of DBPLpages 149-164, 2001.

H. Jiang, H. Lu, and W. Wang. Efficient processing of twig

queries with or-predicates. Proceedings of SIGMOD

pages 59-70, 2004.

[15] V. Josifovski, M. Fontoura, and A. Barta. Query XML
StreamsVLDB Journa) 14(2):197-210, 2005.

[16] J. Lu, T. W. Ling, C. Y. Chan, and T. Chen. From Region
Encoding To Extended Dewey: On Efficient Processing of
XML Twig Pattern Matching. IrProceedings of VLDB
pages 193-204, 2005.

[17] A.Marian and J. Simeon. Projecting XML Documents. In

Proceedings of VLDBpages 213-224, 2003.

G. Miklau and D. Suciu. Containment and Equivalence of a

Fragment of XPathJournal of the ACM51(1):2-45, 2004.

M.P.Consens and T.Milo. Optimizing Queries on Files. |

Proceedings of SIGMOpages 301-312, 1994.

U. of Washington XML Repository.

http://www.cs.washington.edu/research/xmldatasets/.

[21] W3C. XML Path Language (XPath) Version 1.0. W3C
Recommendation. http://www.w3.0org/TR/xpath.html, 1999

[22] W3C. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/, 2005.

C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman.

On Supporting Containment Queries in Relational Database

Management Systems. Rroceedings of SIGMOpages

425-436, 2001.

9]

[10]

[11]
[12]

[13]

[14]

(18]
[19]

[20]

(23]

