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ABSTRACT
Indexing large XML databases is crucial for efficient eval-
uation of XML twig queries. In this paper, we propose a
feature-based indexing technique, called FIX, based on spec-
tral graph theory. The basic idea is that for each twig pat-
tern in a collection of XML documents, we calculate a vector
of features based on its structural properties. These features
are used as keys for the patterns and stored in a B+ tree.
Given an XPath query, its feature vector is first calculated
and looked up in the index. Then a further refinement phase
is performed to fetch the final results. We experimentally
study the indexing technique over both synthetic and real
data sets. Our experiments show that FIX provides great
pruning power and could gain an order of magnitude per-
formance improvement for many XPath queries over existing
evaluation techniques.

1. INTRODUCTION
Management of XML data, especially the processing of

XPath queries, has been the focus of considerable research
and development activity over the past few years. Indexing
techniques are crucial for efficiently answering queries in a
large database consisting of collections of XML documents.
Given a query specified by a path expression, a query proces-
sor needs to find the instances of the documents or substruc-
tures thereof that satisfy the value and structural constraints
specified in the query. Appropriate indexing techniques can
significantly improve the performance of this matching op-
eration.

A large body of XML indexing research focuses on struc-
tural indexes [18, 15, 14, 24]. These techniques cluster XML
element nodes based on their structural similarity, with the
objective of obtaining better locality and hence better query
performance. Depending on different definitions of struc-
tural similarity, the types of queries that these indexes can
answer varies.

In this paper, we propose a novel indexing technique, FIX,
that can answer a large subset of twig queries. We show that
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FIX is superior to previous techniques in answering these
queries, especially on structure-rich XML documents. In
addition to the element nodes that are usually handled by
structural indexes, FIX treats values (or PCDATA) in the
XML documents as special tree nodes after certain manipu-
lation. Hence, FIX is a unified technique that handles both
the values and the tree structures.

1.1 Motivation
Most of the recently proposed structural indexes are based

on the idea of clustering similar XML nodes. While struc-
tural clustering is effective for data sets that conform to
a regular schema (e.g., an order always has an order id

and ship date), the index could grow remarkably large for
structure-rich data sets. The index lookup operator, whose
performance is largely dependent on the size of the index, is
therefore inefficient on these indexes. To illustrate the prob-
lem, Figure 1 shows a bibliography XML document and its
clustering index—F&B bisimulation graph. In this data set,
all types of publications (article, book, etc.) have a child
element author, which may have any combination of subele-
ments address, email, phone, and affiliation. Since each
author element has a different parent or set of children, the
author elements are incompressible in the F&B bisimulation
graph. For a structure-rich data set such as Treebank [1],
the F&B bisimulation graph has more than 3× 105 vertices
and 2 × 106 edges. Although particular storage structures
are developed to materialize F&B bisimulation graphs on
disk (see, e.g., [24]), updating as well as searching in such
a large graph could be very expensive. This issue is not
specific to the F&B index that structure-rich data generate
large graphs, but common to all structural clustering tech-
niques.

The key insight of our proposed index structure, FIX, is
to break a large document into small pieces of substructures
(which we call twig patterns) to achieve high pruning power
without searching the whole graph. Our approach is to enu-
merate all twig patterns in the document and map each of
them into a vector of features (or structural characteristics).
The feature vector is a signature of a twig pattern and serves
as a key to record the twig pattern in a mature index such
as B+ tree. In the query phase, the features of the query are
computed and candidate twig patterns that conform to these
features can be quickly retrieved from the index without ex-
ploring the whole search space. A following refinement step
may be required to obtain the final results.

Using this approach, answering a twig query amounts to
looking up a vector key in the B+ tree. However, two chal-
lenges arise: (1) what is the appropriate features of the twig
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Figure 1: An bibliography document and its F&B
bisimulation graph

patterns, and (2) how to deal with the fact that the num-
ber of twig patterns is exponential to the size of the graph?
These two questions are correlated in that if the number of
patterns is small, we can index all of them and use their
string representations1 (or the hash codes thereof) as the
keys. However, in the general case, when the number of
patterns is large, we have to choose a subset of them to in-
dex. In this general case, the string representation of a twig
pattern is no longer a valid key, since when index lookup for
a query pattern fails, we do not know whether the pattern is
in fact not in the database, or it is just missed in the index.
Accordingly, the pivot of this approach relies on finding the
desired features.

We propose a set of features based on spectral graph the-
ory, and prove that they satisfy the no-false-negative re-
quirement: by examining only the query and the keys in the
index, we are able to fix a complete set of candidate twig
patterns that may produce results. We do not require no-
false-positives, i.e., all candidates produce results, since this
can be handled by a further refinement step. Therefore, FIX
is a pruning index that can be built on top of an existing
XPath query processor to achieve better query performance.

1.2 Contributions
In summary, our contributions are as follows:

• We propose a framework based on a novel feature-
based index to evaluate a subset of path expressions
(defined in Section 2.1). In such a framework, the fea-
tures are first extracted from the query and they are
used as keys to look up candidates in the index. A re-
finement step is then applied to the candidates to find

1It is well known that a tree can always be trans-
lated into a parenthesized string representation (e.g.,
(author(phone)(email))) and vice versa.

the final results.
• We propose an index construction algorithm that effi-

ciently enumerates a subset of the twig patterns in an
XML tree. The enumerated subset is complete in that
if the query pattern is not a subpattern of any of the
index patterns, it is not a subpattern of the original
XML tree either.

• We propose a novel set of features for twig patterns,
which are used as keys for the enumerated indexed
patterns and query patterns. We show that this set
of features are appropriate to be used to prune the in-
dex, and they do not introduce false-negatives. To the
best of our knowledge, FIX is the first XML indexing
technique using feature-based pruning.

• We propose a natural and effective way to index val-
ues in FIX. Integrating values into the structural index
eliminates the need for two index look-up operations
and intersection of the temporary results.

• We experimentally show that in many cases FIX can
improve the performance of twig queries by orders of
magnitude against the state-of-the-art twig query eval-
uation operators.

The rest of the paper is organized as follows: in Section 2
we provide the general background of the paper. In Sec-
tion 3, we introduce how to translate a twig pattern into
a matrix and prove certain properties of the eigenvalues of
the matrix. In Sections 4 and 5, we present the index con-
struction algorithm and index query algorithm, respectively.
In Section 6, we present an experimental study of FIX. We
present related work in Section 7 and conclude in Section 8.

2. BACKGROUND
We assume that readers have a basic knowledge of XML

data model and XPath path expressions. Chamberlin [7]
provides a concise yet comprehensive introduction.

2.1 Twig Queries and Matches
FIX can handle a subset of path expressions called twig

queries. The term “twig query” is defined slightly differently
in different papers in the literature. Our use of the term
conforms to the following definition.

Definition 1. A twig query is a path expression whose
axes could only be /, except for the first axis which could
be //. Moreover, there is no KindTest in the expression and
no value-based comparisons inside the predicates. A twig
query with value relaxes the restriction by allowing equality
conditions between attribute or element names and atomic
values in the branching predicates.

We will focus on the indexing technique for the twig queries
first and then extend it to handle twig queries with values in
Section 4.6. Section 5 gives the direction on how to extend
FIX index to handle //-axes in the middle of the query. De-
tailed study and experimental evaluation of this extension
is a subject of our future work.

A twig query can be thought of as a tree2 in which each
step corresponds to a node in the tree, and the first step is
connected to a special root node. The axes are translated
into edges in the tree. Based on the tree representation, we
now define the notion of existential match (or simply match)
between a twig query and an XML tree.
2We denote the label of node x as label(x).
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.

Definition 2. A twig query Q matches an XML tree X if
there exists a mapping f from the NameTests of Q to the
nodes in X such that the following hold:

• the root of the twig query always matches the docu-
ment node (parent of the root node in the document).

• for any NameTest q ∈ Q, label(q) = label(f(q)).
• if two NameTests u and u′ are connected by an axis

α ∈ {“/”, “//”}, then f(u) is a parent (or ancestor) of
f(u′) if α =“/” (or “//”).

Match does not specify which XML nodes should be re-
turned, therefore it is used for existential testing.

2.2 Bisimulation Graph
Given an XML tree, there is a unique (subject to graph

isomorphism) minimum bisimulation graph that captures all
structural constraints in the tree. The bisimulation graph
defined in this paper is based on the bisimilarity3 notion
defined by Henzinger et al. [12].

Definition 3. Given an XML tree T (Vt, Et) and a labeled
graph G(Vg, Eg), an XML tree node u ∈ Vt is bisimilar to
a vertex v ∈ Vg (u ∼= v) if and only if all the following
conditions hold:

• u and v have the same label.
• if there is an edge (u, u′) in Et, then there is an edge

(v, v′) in Eg such that u′ ∼= v′.
• if there is an edge (v, v′) in Eg, then there is an edge

(u, u′) in Et such that v′ ∼= u′.

Graph G is a bisimulation graph of T if and only if G is the
smallest graph such that every vertex in G is bisimilar to a
vertex in T .

It is easy to see that the bisimulation graph of a tree is a
directed acyclic graph (DAG). Otherwise, if the bisimulation
contains a cycle, the tree must also contain a cycle based on
the definition.

The bisimulation graph of the XML tree in Figure 1(a)
is shown in Figure 2. The difference between the bisimu-
lation graph and the F&B bisimulation graph is that the
former requires that two nodes in the XML tree belong to
the same equivalence class if their subtrees are structurally
equivalent. The bisimulation graph does not require that
the two indexing vertices have similar ancestors, but the
F&B bisimulation graph does. Consequently, the bisimula-
tion graph clusters the two author vertices from book and
inproceedings into one equivalence class.

3We use bisimilarity to denote the relation between XML
nodes and index vertices; and use bisimulation graph to de-
note the resulting index graph after the bisimilarity map-
pings.

The tree representation of a twig query can always be
translated into a bisimulation graph. We call this bisim-
ulation graph the twig pattern. Similar to the twig query,
we can also define matching twig patterns on a bisimulation
graph of an XML tree.

2.3 Matrices and Eigenvalues
An undirected unlabeled graph G with n vertices can al-

ways be represented as an n × n matrix (e.g., adjacency
matrix or Laplacian matrix). Given an n × n matrix M,
there exist a column n-vector v such that

M · v = λv

〈v,v〉 = 1

where λ is a scalar, and 〈v,v〉 is the inner product of two
vectors, which is defined as 〈v,v〉 = vTv = n

i=1 vi ∗ vi,
for v ∈ R

n×1; or n
i=1 vi ∗ vi for v ∈ C

n×1, where vi is the
complex conjugate operator. The v and λ are called the nor-
malized eigenvector (or simply eigenvector) and eigenvalue
of M, respectively. The eigenvectors need to be normalized
since otherwise there is an infinite number of eigenvalues
that are obtained by scaling the eigenvectors. For an n × n
matrix, there are a total of n such eigenvector and eigen-
value pairs, but they may not be distinct. The eigenvalues
are usually denoted by λ1, . . . , λn ordered by their magni-
tude in descending order. Throughout the rest of the paper,
we denote the maximum and minimum eigenvalues as λmax

and λmin, and denote λ(G) of graph G as the eigenvalue of
the matrix representation of G whenever there is no possi-
bility of confusion.

There is a well-know property about two graphs and their
eigenvalues [5], and it is the basis for our structural feature
selection.

Theorem 1. Let G and H be two undirected unlabeled
graphs, and MG and MH be their adjacency matrices.
If H is an induced subgraph of G, then λmin(MG) ≤
λmin(MH) ≤ λmax(MH) ≤ λmax(MG).

We will prove in Section 3.3 that a similar theorem also
holds for labeled directed graphs after a certain translation
from the graph to matrix.

3. FEATURES AND THEIR PROPERTIES
Given a twig pattern (represented as labeled directed

graph), we want to identify the distinctive characteristics
of the structures contained in it. We call these characteris-
tics features of the pattern. Features can be used as a key
to index and retrieve those instances that match a pattern.
In FIX, the features are based on a subset of eigenvalues of
the matrix representation of a pattern. Eigenvalues have
the desired property that they allow us to prune the index
search space without losing any results.

Before introducing how to obtain features, we first set
down the foundations of using bisimulation graph as a tool
to test the existence (match) of a pattern. This is necessary
because bisimulation graphs are the input to calculating the
features — eigenvalues. That is, we first prove that the
match of a twig pattern on a bisimulation graph is equivalent
to the match of its twig query on the XML tree. This means
that the bisimulation graph preserves all the structural in-
formation required for existential matching. The reason we
use twig patterns and bisimulation graphs rather than their
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corresponding tree structures is that the trees contain many
structural repetitions and are too large to extract features
(eigenvalues) from.

In the following subsections, we introduce the translation
from a labeled directed graph to a matrix and prove that a
similar result to Theorem 1 also holds for the matrix repre-
sentation, which means that λmin and λmax could be used
as a valid tool for pruning. Finally, we will introduce other
features that give us additional pruning power.

3.1 Structure Preservation
We first prove that the bisimulation graph preserves all

structural information needed for matching, through the fol-
lowing structural preservation theorem.

Theorem 2. A twig query Q matches an XML tree X
if and only if the twig pattern Q′ matches the bisimulation
graph X ′.

The proof is quite straightforward after realizing that match-
ing and bisimilarity are homomorphisms on the edge rela-
tion. We leave the full proof to the full version of the pa-
per [30] due to space limitations.

This theorem seems contradictory to the fact that the
F&B bisimulation graph is the smallest covering index for
twig queries [14] and bisimulation graph is smaller than
the F&B bisimulation graph. The reason is that here the
“structural preservation” is defined for testing pattern ex-
istence (the notion of match) and the “covering” in F&B
bisimulation is defined in terms of query answering (which
needs more information than existential testing). In fact,
the bisimulation graph shown in Figure 2 can not answer
the query //inproceedings[author] since two authors from
inproceedings and book are grouped into one equivalence
class. But this graph is sufficient to answer the existence of
authors under inproceedings.

Having the structural preserving property, we can now
use the twig pattern and bisimulation graph of an XML
document as the subject of querying and indexing instead
of twig query and XML tree.

3.2 Anti-symmetric Matrices for Twig Pat-
terns

Given a labeled directed graph (twig pattern), we want
to translate it into a matrix such that the matrix preserves
as much structural information of the graph as possible. By
structural information, we mean the labels of the vertices
and the edge relations (here the orientations of the edges
are important). Ignoring either of them makes the matrix
unrepresentative, and, therefore, reduces the pruning power
of any method based on this matrix representation.

To record the vertex label information in the matrix, we
assign a distinctive weight to each edge according to the la-
bels of the two incident vertices. This is a one-to-one map-
ping, therefore it is always possible to translate the weighted
directed graph back to the original labeled directed graph.

To preserve the direction information, we represent the di-
rected weighted graph as an anti-symmetric matrix (a.k.a.
skew-symmetric matrix) as follows: we number each vertex
v arbitrarily from 1 to n and map it to a dimension in the
n × n matrix M. The reason that we can assign arbitrary
numbers (dimensions) to vertices is that any assignment can
be permuted to some other assignment (and the permutation

results in an isomorphic graph), which is equivalent to per-
mutation of the matrix. It is well known that the eigenvalues
of a matrix remain invariant under matrix permutation [10].

If an edge (vi, vj) has weight wi,j after the above edge-
label-to-integer translation, we assign M[i, j] = wi,j and
M[j, i] = −wi,j . If (vi, vj) is not an edge, M[i, j] = M[j, i] =
0. In this anti-symmetric matrix, the diagonal elements
M[i, i] are always 0 for an acyclic graph. The reason that
we put the negative weight at M[j, i] is that triangle ma-
trices with all M[i, i] = 0 have the same set of eigenvalues
[0, 0, . . . , 0] (matrices having the same eigenvalues are called
isospectral). A non-zero anti-symmetric matrix is guaran-
teed to have at least one non-zero eigenvalue [10].

Two anti-symmetric matrices are isospectral, if one can
be transformed to the other by a non-singular transforma-
tion, that is one anti-symmetric matrix can be obtained
by multiplying the other anti-symmetric matrix with a
non-singular matrix (a matrix that has an inverse). If it
is common that two anti-symmetric matrices are isospec-
tral but non-isomorphic, the pruning power will be small.
Given that the number of distinct edge label encodings is
small in most XML databases and given the requirement of
M[i, j] = −M[j, i] for anti-symmetric matrices, the proba-
bility of two anti-symmetric matrices being isospectral but
non-isomorphic is expected to be very small.

As an example, the bisimulation graph in Figure 2 is trans-
lated into the following 15×15 matrix (because there are 15
vertices in the graph), where the edges (bib, article) and
(article, author) are mapped to 2 and 12, respectively:

M =

0 2 . . . 0
−2 0 . . . 12
...

...
...

...
0 −12 . . . 0

3.3 Eigenvalue Containment Property
Given the pairs of λmin and λmax of two anti-symmetric

matrices, we prove a similar result to Theorem 1.

Theorem 3. Let G and H be two DAGs, and MG and
MH be the anti-symmetric matrix representations of G and
H respectively. If H is an induced subgraph of G (which
means H is isomorphic to a subgraph of G with the isomor-
phic mapping f and for every edge (u, v) in H, there is an
edge (f(u), f(v)) in G such that their weights are the same),
then λmin(G) ≤ λmin(H) ≤ λmax(H) ≤ λmax(G).

Proof. Due to space limitations, we only sketch the
proof here and give the full proof in [30].

Since a similar theorem holds for a symmetric matrix (ad-
jacency matrix for undirected graphs), the idea of our proof
is to convert the anti-symmetric matrix to a (somewhat)
symmetric matrix and use the same proof idea for sym-
metric matrix in the anti-symmetric case. The rationale of
the conversion is based on the fact that the anti-symmetric
matrix has some degree of “symmetry” in that M [i, j] and
M [j, i] only differ by a negation. In fact, if we multiply the
imaginary unit i =

√−1 with the matrix, we get a Hermi-
tian matrix iM, which is a symmetric matrix equivalent in
the complex domain C

n×n. What remains is to prove: (1)
λ(M) = −iλ(iM); and (2) eigenvalue containment property
holds for the Hermitian matrix. The first is straightforward
by definition of eigenvalues, and the second is very similar
to the proof of Theorem 1.
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This eigenvalue containment property allows us to choose
λmin and λmax as two features to index. Testing for pos-
sible matching amounts to checking eigenvalue containment.

Computational Cost: Eigenvalue computation for Her-
mitian matrix is O(n3), where n is the number of vertices
in the bisimulation graph [19]. Since the twig patterns
are usually very small and we break the large bisimulation
graph for XML tree into small ones in the index construction
step, the real-world computation cost is very efficient—sub-
millisecond for a dense 10 × 10 matrix and sub-second for
a dense 300 × 300 matrix on a PC with Pentium IV 3GHz.
Eigenvalue calculation for sparse matrices (which are gen-
erated by most bisimulation graphs) should be even more
efficient.

3.4 Other Features
In addition to eigenvalues of patterns, there are other pos-

sible features that can further increase the pruning power.
For example, the root label of the twig pattern or bisimula-
tion graph. It can easily be included in the key to be indexed
in the B+ tree. Any bisimulation graph in the index that
satisfies the eigenvalue range containment requirement but
whose labels do not match with the twig pattern will also
be pruned.

Other features may qualify as well, but in this paper we
use the set of {λmin, λmax, root label} as features, and they
are the keys of the B+ tree index described in the next sec-
tion. The pruning criteria is that the indexed eigenvalue
range does not contain the query eigenvalue range, or the
root labels do not match.

4. INDEX CONSTRUCTION
The overall architecture of constructing and querying the

index is depicted in Figure 3. In this section, we concentrate
on the construction of FIX and leave the query processing
discussion to the next section.

First we give two alternative index types: clustered and
unclustered. Then we show their construction algorithm.

4.1 Types of Indexes
As in the relational case, we can build a clustered or un-

clustered index. Unlike relational databases, the clustered
index for FIX incurs storage overhead due to the redundant
storage of subelements as explained later. In both cases,
the keys of the B+ tree are the features but the “values” are
different. In the unclustered index, the values are the refer-
ences/pointers to the primary data storage (see Figure 4).
The advantage of unclustered index is that the primary stor-
age does not need to be changed, and there is very small

Copy of Primary XML Data Storage with Redundancy

    Index

    Index
Unclustered

Primary XML Data Storage

Clustered

Figure 4: Clustered and Unclustered FIX Indexes

overhead for building the B+ tree with pointers as the data
entries. However, query processing may suffer from the fact
that it needs to follow many pointers to perform the query
refinement phase, which usually incurs random I/Os.

On the other hand, we can build a clustered index by
copying the contents in the primary storage pointed by the
pointers and store them sequentially according to their fea-
ture keys (see Figure 4). This is different from the relational
case since we cannot reorder data units in place. The reason
is that the data units in the XML case are subtrees and one
may contain another as a descendant. Therefore, in order
to make the value sorted in the same order as the keys, the
clustered index has to copy each subtree to another storage,
which may incur large space overhead. Therefore, there is a
tradeoff between the storage overhead and performance in
the query refinement step.

Unclustered indexes are easier to build and they are the
only choice if data has to be ordered on other criteria. They
may be useful when the selectivity of the typical queries is
high so that few pointers are produced as candidates. On
the other hand, clustered index could provide better per-
formance because the I/O are essentially sequential. In the
case where the database consists of a large collection of rel-
atively small documents and each of them are inserted into
the database as an entry, the clustered index may be the
right choice because we can reorder the documents so that
their order coincides with the order of their feature keys.
Furthermore, there is no redundancy in the storage since
every document is treated as a unit. Therefore, the clus-
tered index does not need to keep a copy of the primary
storage and incurs no space overhead.

4.2 Index Construction for Collections of Doc-
uments

The index construction algorithm takes a collection of
XML documents as input, and inserts them into a B+ tree
index. The algorithm works in two phases: in the first phase,
it generates indexable units that are small enough to effi-
ciently extract features from. An indexable unit could be
a small document in the collection, or a substructure of a
large document. In the second phase, the features of the
indexable units are computed and inserted into the B+ tree.

The index construction procedure is codified as the method
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Construct-Index in Algorithm 1, where input C is a col-
lection of XML documents (possibly singleton), L is the
depth limit, and I is a B+ tree that holds the index en-
tries. The depth limit is a parameter for a document being
qualified as an indexable unit. In the following subsection,
we first introduce how to index an indexable unit, and we
introduce how to handle large document in the subsequent
subsection.

4.3 Construction of an Index Entry for a Small
Document

Each small document whose depth is no larger than the
depth limit (an application-dependent threshold) is treated
as a unit and converted into a bisimulation graph, which,
in turn, is translated into an anti-symmetric matrix. For
each of these matrices, we calculate the eigenvalues and use
the λmax and λmin together with the root label of the doc-
ument as the key to be inserted into the B+ tree. The entry
inserted into the B+ tree is the document itself if we want
to build a clustered index, or the pointer to the primary
storage for an unclustered index. This process is codified
in the Construct-Entries method in Algorithm 1. The
third parameter of the methods has to be set to 0 indicating
that the document does not need to be partitioned.

In the input to the Construct-Entries method, X is the
input event stream, and H is a B+ tree index. Parameter
L is the pattern depth limit and is set to 0 in this case.
The variable G (line 1) is of type BisimGraph, which is a
data structure that contains two substructures: the root
of the bisimulation graph and a mapping from a signature
to a vertex in the bisimulation graph. It also maintains the
maximum depth of the bisimulation graph. The signature is
a data structure that uniquely identifies a vertex. It consists
of the vertex label and a set of child vertices. Two XML
nodes are in the same equivalence class (bisimulation vertex)
if and only if their signatures, namely, labels and children
are the same by the definition of bisimilarity.

Construct-Entries works in a SAX-like event-driven
paradigm: Whenever an open event (corresponding to en-
countering an open tag when parsing the XML document)
is received, a new signature is created and initialized with
its label and an empty set of child vertices (line 5). The
pair of signature and pointer to the primary storage cor-
responding to the event is pushed onto a stack PathStack
(line 6). This pair is popped whenever the corresponding
closing event (corresponding to a closing tag) is received
(line 8). Since at this time, all children (and their descen-
dants) corresponding to the current event have been visited
and their corresponding bisimulation vertices are recorded
in the signature that is popped from the stack (line 17), we
need to look up the mapping maintained in G to see if the
signature already exists (line 9). If it is not in the map-
ping, then we need to create a new bisimulation vertex u
and insert all bisimulation vertices maintained in the signa-
ture into u’s children list, and then record the new mapping
from the signature to u in G (lines 11–13). If the signature
is already in the bisimulation graph, we only have to release
the memory acquired for the signature. If the PathStack
is not yet empty (which means the whole tree has not been
traversed), we need to update the children list of u’s par-
ent in the PathStack (lines 16–17); otherwise, we set u as
the root of graph G and call BTree-Insert to update the
database. G.dep is the maximum depth of the bisimulation

Algorithm 1 Constructing FIX for a Collection of Docu-
ments

Construct-Index(C : Collection, L : int, I : BTree)

1 for each XML document d ∈ C
2 do if the depth of d ≤ L then
3 Construct-Entries(I, d, 0);
4 else Construct-Entries(I, d, L);

Construct-Entries(H : BTree, X : EventStream, L : int)

1 G ← empty graph; � G is of type BisimGraph
2 PathStack ← empty stack;
3 while X generates more event x
4 do if x is an open event then
5 sig ← 〈x.label, ∅〉; � c set initialized to ∅
6 PathStack.push(〈sig, x.start ptr〉);
7 elseif x is a closing event then
8 〈sig, start ptr〉 ← PathStack.pop();
9 u ← lookup sig in G;

10 if sig is not in G then
11 create vertex u with label x.label;
12 create edge (u, vi) for each vi ∈ sig.c set;
13 create mapping sig ⇒ u in G;
14 else release sig;
15 if PathStack is not empty then
16 p sig ← PathStack.top().first;
17 p sig.c set ← p sig.c set ∪ {u}
18 else G.root ← u;
19 if L = 0 then
20 BTree-Insert(H, u, G.dep, start ptr);
21 if L > 0 then
22 Gen-Subpattern(H, v, L, start ptr);

BTree-Insert(H : BTree, u : BisimVertex, L : int, ptr :
StoragePointer)

1 if u.eigs is not set then
2 convert u into matrix M up to depth L;
3 〈λmax, λmin〉 ← Eig-Pair(M);
4 u.eigs ← 〈λmax, λmin〉;
5 k ← 〈u.eigs, u.label〉;
6 if H is a clustered index then
7 v ← pattern instance from the primary storage

following ptr;
8 insert v in H with key k;
9 else insert ptr in H with key k;

Gen-Subpattern(H : BTree, v : BisimVertex, L : int, ptr :
StoragePointer)

1 if v.eigs is set then
2 BTree-Insert(H, v, 0, ptr);
3 else Tr ← Bisim-Traveler(v, L, ptr);
4 Construct-Entries(H, Tr, 0);

graph, which indicates that the whole graph should be in-
dexed.

The BTree-Insert method is fairly straightforward: it
first checks whether or not the bisimulation vertex is as-
sociated with a pair 〈λmax, λmin〉. If not, it converts the
graph into an anti-symmetric matrix under the depth limi-
tation, calculates the eigenvalue thereof, and associates the
〈λmax, λmin〉 pair with u (lines 2–4). Then it uses the pair
and the root label as a key and inserts the pointer in the B+

tree for the unclustered index. If the index is a clustered
index, we need to retrieve the XML documents from the
primary storage and store them as values of the B+ tree.
Complexity: Construct-Entries is a single-pass algo-
rithm that reads each incoming event once. For each clos-
ing event, the algorithm searches the bisimulation graph for
signature, which could be O(1) using an efficient hashing
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method. Therefore, the CPU cost of the construction algo-
rithm is O(n+m), where n is the number of events generated
from the input event stream (in case of XML SAX-event
stream, it is the number of XML elements in the whole col-
lection), and m is the number of vertices in the bisimulation
graph.

The major cost of Algorithm 1 is the I/O cost, which
depends on the number of B+ tree insertions and number
of reads from the primary storage. In the unclustered case,
the number of B+ tree insertions is the same as the number
of documents in the collection since we generate only one
bisimulation graph for each document. In the clustered case,
the B+ tree I/O is the same as the unclustered case but
there is additional I/O cost for retrieving documents from
the primary storage, which is proportional to the number of
documents in the collection as well. In summary, the I/O
cost is O(N) where N is the number of documents in the
collection.

4.4 Construct Entries for a Large Document
The bisimulation graph of a large document could be very

large. Furthermore, no substructures in the large document
can be pruned if it is indexed as one entry. Therefore, we
need to enumerate subpatterns inside the document tree and
populate the instances into the B+ tree. If the database
consists of multiple large documents, we need to enumerate
subpatterns for each of them.

First, we need to restrict the subpattern size before enu-
merating its instances in the XML tree. Based on the
same idea of local similarity in prior works [15, 8], we limit
the depth of subpatterns to a small number k (k-patterns).
With this construct, however, the index loses some expres-
sive power: it can only answer a twig pattern up to depth
k. The tradeoff between expressive power and efficiency is
common [15] and does not invalidate the benefit of building
the index. It is easy for the query optimizer to test whether
a twig query is covered by an index.

The method for index construction with limited pat-
tern depth is the Construct-Entries method in Algo-
rithm 1, with a positive argument L as the depth limit.
The Construct-Entries needs to call Gen-SubPattern

to enumerate subpatterns given the root of the subpattern
and depth L. The Gen-Subpattern method is based on
the idea that we can create a bisimulation graph “traveler”
(Bisim-Traveler) that traverses the bisimulation graph
in depth-first order within the depth limit L. During the
traversal, it generates an open event when traversing to an-
other vertex, or a closing event when it finishes traversing
the subtree of the node or when it traverses to a depth
of L. This stream of events can, in turn, be fed to the
Construct-Entries method. The depth limit in the call
to Construct-Entries is set to 0 whenever we need to in-
dex the whole subpattern. The method will generate a new
bisimulation graph that is a subgraph of the original one,
and store it into the B+ tree as described in Section 4.3. To
guarantee that the subpattern enumeration process is per-
formed only once for each bisimulation vertex, we also asso-
ciate the bisimulation vertex with the 〈λmax, λmin〉 pair of
the subpattern, indicating that this vertex has already been
enumerated and the eigenvalues are calculated (line 1).

The reason that we need to go all the way to define a
traveler and call Construct-Entries again instead of us-
ing the subgraph beginning at the current vertex v is that

the subgraph itself usually is not a bisimulation graph. The
limit on the depth causes the subgraph to contain some rep-
etitions such that the subgraph is no longer a bisimulation
graph. For example, in Figure 2, the subgraph of depth 2
rooted at bib is not a bisimulation graph since article is
repeated twice.

We use the following theorem to derive the cost of the
enumeration algorithm and to prove the completeness of the
index. Detailed proof is left to the full version [30].

Theorem 4. For an index with positive depth limit, the
number of subpattern instances that are enumerated by the
function Construct-Index in Algorithm 1 is exactly the
same as the number of elements in the document.

Complexity: The CPU cost of building the index with
positive depth limit is the same as the cost for building the
index on the collection of small documents, except that there
is the additional cost for enumerating subpatterns. For each
vertex in the bisimulation graph, the subpattern rooted at
this vertex is enumerated once, therefore the additional CPU
cost is the same as the number of vertices in the bisimulation
graph. Therefore, the CPU cost is O(n + m) where n is the
number of XML elements and m is the number of vertices
in the bisimulation graph.

The I/O cost is dependent on the number of pattern in-
stances generated, i.e., number of elements in the XML doc-
ument. For each pattern instance, there is a B+ tree inser-
tion operation, and for clustered index, there is an additional
read operation in primary storage. Therefore, the I/O cost
is O(n), where n is the number of XML elements.

4.5 Completeness of Index Construction
We show that the index constructed in the previous sub-

sections is complete for any k-pattern query, if the depth
limit of the index is at least k.

Theorem 5. If the index is built with depth limit at least
k (in the case where depth limit is 0 for collection of small
documents, k is the maximum depth of the all documents
in the collection), a k-pattern is not contained in the XML
document, if it is not contained in the index.

The proof is quite straightforward and given in the full ver-
sion [30].

4.6 Supporting Value Equality Predicates
FIX supports value-based equality predicates such as the

query //article[author = "John Smith"]/title. We note
that the PCDATA in the XML documents, as well as the
atomic value “John Smith” in the query, can be thought of
as “labels” of the text nodes, which are children of element
nodes. However, we cannot directly use the values in the
same way as we use the element node labels in indexing and
querying. The reason is that the bisimulation graph is con-
verted to a matrix by mapping an edge (identified by the
labels of the two incident vertices) to an integer. If the do-
main of one of the vertex labels is infinite, the edge will be
mapped to an infinite domain as well, making the matrix
computation impractical.

To solve this problem, we map/hash the PCDATA or
atomic value to an integer in a small range (α, α + β] that
does not overlap with the alphabet of element names Σ,
where α > σ (∀σ ∈ Σ), and β is a small integer parameter.
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After the mapping, we treat the hashed integer as the la-
bel of a value node, then the FIX index can be constructed
based on the new document tree with value nodes. It is
straightforward to see that after the value-to-label mapping,
all the properties (including the completeness) still holds for
the index with value nodes. Therefore, FIX index uniformly
supports structure and value matching.

It may be necessary to carefully choose the β value to
tradeoff between query processing time and size of the index.
With a large β, the values can be mapped to a large domain,
and the bisimulation graph is large. Since the substructures
are enumerated for each vertex in the bisimulation graph,
there will be many substructures enumerated and inserted
into the B+ tree. This will result in a much larger B+ tree
compared to the B+ tree containing only structures. On the
other hand, with a small β, the B+ tree will be small, but
many different values will be hashed into the same label.
This will introduce more false-positives because of the colli-
sions in hashing. How to choose a proper β for a given data
set is an interesting problem left for future work.

5. QUERY PROCESSING AND OPTIMIZA-
TION USING FIX

Using FIX for query processing has two steps: the prun-
ing phase prunes the input and produces candidate results,
and the refinement phase takes the candidate results and
validates them using a query processor.

Given a twig query of depth k, it is relatively straightfor-
ward to process a query using FIX (Algorithm 2): we need to
first check whether the index covers the twig query by com-
paring the depth limit of the index and the depth of the twig
query. If it does, the query tree is converted into a bisim-
ulation graph (twig pattern), then the pattern is converted
into an anti-symmetric matrix, and the λmax and λmin are
computed. This pair of eigenvalues and the root label of the
twig pattern are used as a key to perform range query in
the index. For each candidate returned by the range query,
the refinement query processor is invoked to get the final
results. Before the query processor takes over, we need to
replace the leading //-axis with /-axis. This is because any
descendants of the root of an indexed pattern instance are
also indexed. They will be visited eventually if they are re-
turned by the index as candidates. For value predicates, it
is straightforward to see that they can be answered without
false-negatives.

For a general path expression that contains //-axes in the

Algorithm 2 Index Query Processing

Index-Processor(Q : TwigQuery, Idx : FIX)

1 check the Idx depth limit is no shorter than Q’s depth;
2 Q′ ← Convert-to-Bisim-Graph(Q);
3 M ← Convert-to-Matrix(Q′);
4 〈λmax, λmin〉 ← Eig-Pair(M);
5 k ← 〈λmax, λmin, root label of Q′〉;
6 C ← Idx.search(k);
7 if Idx has non-zero depth limit
8 replace the leading //-axis with /-axis from Q;
9 for each c ∈ C

10 do if Idx is clustered then
11 run refinement query processor with Q on c;
12 else run refinement query processor with Q

following the pointer c;

middle, we can decompose the query tree into multiple twig
queries that are connected by //-edges. For example, the
query //open auction[.//bidder[name][email]]/price can
be decomposed into two sub-queries: //open auction/price

and //bidder[name][email]. If the database consists of
small documents and the depth limit is set to unlimited, the
document whose [λmin, λmax] range contains the [λmin, λmax]
ranges of both twig queries should be returned as candidates.
If the index is built with a non-zero depth limit on large doc-
uments, only pattern instances that contain the top sub-twig
query (//open auction/price in the above example) are re-
turned as candidates, otherwise even if the candidate may
match the bottom sub-twig query (//bidder[name][email]
in the above example), the top sub-twig query will not be
matched thus the whole query is not matched. In this case,
the bottom sub-twig query does not provide any pruning.

The cost of FIX index processing consists of three parts:
CPU cost of converting a twig query into its bisimulation
graph, converting the graph into a matrix, and computing
the eigenvalues of the matrix. The cost of the first two
components is O(m) each, where m is the size of the query,
and the eigenvalue computation is O(m′3), where m′ is the
size of the bisimulation graph and m′ ≤ m. For a reasonable
sized query, these costs are negligible. The I/O cost includes
searching the B+ tree and retrieving the document from B+

tree (for the clustered index) or from the primary storage
(for the unclustered index). The cost of searching the B+

tree is well studied and the missing part in cost estimation
is the number of candidate results. This can be estimated if
we have further knowledge (e.g., histograms on λmax, λmin,
and root labels of pattern instances). A good practice is to
build a histogram on the primary sorting key (e.g., λmax)
in the B+ tree. The rest of the cost is that of refinement of
the candidate results. Although the number of candidates
may be the same, clustered and unclustered index may have
much different cost due to the difference between sequential
and random I/O.

6. EXPERIMENTAL EVALUATION
In this section, we first evaluate the performance of struc-

tural FIX index according to three implementation indepen-
dent metrics, as well as the actual run-time speedup against
the state-of-the-art evaluation techniques. Then we evalu-
ate the integrated value and structural index. While the wall
clock time speedup is the “net effect” of the benefit of us-
ing FIX index over a specific algorithm implementation, im-
plementation independent metrics reveal more insights into
the design decisions of the FIX index and provide a gen-
eral guideline of how much improvement the FIX index can
achieve for any implementation.

The FIX index is implemented in C++ and uses Berkeley
DB for the B+ tree implementation. We choose the NoK
processor [29] to perform the refinement step. The NoK
processor is an efficient navigational operator that evaluates
a path expressions that only contains child and following-
sibling axes. To compare with the unclustered FIX index,
we extend the implementation of NoK operator with sup-
port for //-axes. To compare with the clustered FIX index,
we choose the disk-based F&B index [24], whose implemen-
tation is obtained from the authors. The disk-based F&B
index has been reported to have superior performance over
a number of other indexes, so we select it as a representative
state-of-the-art clustering index. All the tests are conducted
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data sets size # elements ICT |UIdx| |CIdx|
TCMD 27.9 MB 115306 17.8 sec 0.2 MB 6.1 MB
DBLP 169 MB 4022548 32.5 sec. 2 MB 77.9 MB
XMark 116 MB 1666315 86 sec. 5.6 MB 143.3 MB

Treebank 86 MB 2437666 375 sec. 37.3 MB 310.6 MB

Table 1: Characteristics of experimental data sets,
the total construction times for both unclustered
and clustered indexes (ICT), and the sizes of the un-
clustered index (UIdx) and clustered index (CIdx)

on a PC with Pentium IV 3GHz CPU and 1GB memory
running Windows XP.

6.1 Test Data Sets and Index Construction
We tested both synthetic and real data sets. For the

category of large collection of small documents, we use
XBench [27] TCMD (text-centric multi-document) data set,
which models the real world text-centric XML data sets such
Reuters news corpus and the Springer digital library. This
data set contains 2,607 documents with various sizes from
1KB to 130KB. The document structures have small vari-
ations, e.g., an article element may or may not have a
keywords subelement. Since all documents in the collec-
tion are small, we do not enumerate substructures in each
document when constructing the index, i.e., the depth limit
parameter in Algorithm 1 is set to zero.

We also tested FIX with non-zero depth limit on large
XML documents such as DBLP [16], XMark [21] with scale
factor 1, and Treebank [1]. They are chosen because of their
different structural characteristics. The structure in DBLP
is very regular and the tree is shallow, so the same structure
is repeated many times, making each structural pattern less
selective. The XMark data set is structure-rich, fairly deep
and very flat (fan-out of the bisimulation graph is large),
therefore, the structures are less repetitive. The Treebank
data set represents highly recursive documents. It is deeper
but less flat than XMark; the structures are very selective.

The basic statistics, index construction time, and index
sizes for these data sets are listed in Table 1. The index
we constructed for XBench TCMD data has no depth limit,
and the indexes for the other data sets are constructed by
enumerating subpatterns of depth limit 6. The construc-
tion times for indexes with smaller depth limits are slightly
faster. This depth limit is chosen so that the index can cover
fairly complex twig queries. Depending on the complexity
of bisimulation graph of the document and the depth limit,
the enumerated subpattern could be too large for calculat-
ing eigenvalues (e.g., number of edges is larger than 3000).
In this case, we do not calculate the eigenvalues but use
an artificial [λmin, λmax] range of [0,∞] to guarantee that
the instances of this subpattern will always be returned as
a candidate result. This may lose pruning power, but fortu-
nately, there are very few such cases in all the test data sets
for reasonable depth limit of 6 (1 for DBLP, 11 for XMark,
and 1 for Treebank). As seen from Table 1, the indexes
for the data sets can be constructed very efficiently except
perhaps for the Treebank data set. Nevertheless, consider-
ing the complexity of Treebank and comparing to the F&B
index [24], whose construction time is several hours on the
same data set, the FIX construction time is quite reasonable.
In all the data sets, the unclustered index is smaller than

query sel pp fpr
TCMD_hi 79.31% 26.12% 71.99%
TCMD_md 49.23% 5.62% 46.21%
TCMD_lo 16.85% 0.35% 16.29%
DBLP_hi 99.97% 99.79% 84.91%
DBLP_md 72.59% 70.85% 5.91%
DBLP_lo 47.36% 47.35% 0.002%
XMark_hi 99.96% 99.87% 75.13%
XMark_md 99.10% 98.71% 30.14%
XMark_lo 98.89% 98.43% 30.01%
TrBnk_hi 99.97% 95.37% 99.45%
TrBnk_md 99.81% 85.97% 98.67%
TrBnk_lo 97.48% 95.36% 45.79%

Table 2: Implementation-independent metrics for
representative queries for each data sets in each cat-
egory

the F&B index but the clustered index is larger.

6.2 Performance Evaluation Based on
Implementation-independent Metrics

We define three metrics to evaluate the effectiveness of
FIX: pruning power pp = 1 − cdt / ent , selectivity sel =
1 − rst / ent , and false-positive ratio fpr = 1 − rst / cdt ,
where cdt is the number of entries returned by the index as
candidate results, ent is number of all entries in the index,
and rst is the number of entries that actually produce at
least one final result. For the index with depth limit 0 on a
large collection of small documents, pp is the ratio of number
of documents pruned by the index over the total number
of documents in the collection. For the index with non-
zero depth limit k, since each element corresponds to an
entry in the index (the subtree of depth k starting from
that element), pp is the ratio of remaining elements as the
result of pruning over the total number of elements.

In order to evaluate the real effectiveness of the index, the
pruning power metric should be combined with the selectiv-
ity of the query. The low pruning power of a query does not
mean that the index is ineffective if the selectivity is also
low (i.e., the query is not selective). The only bad case is
when the selectivity is high but the pruning power is low.

The metric fpr is another indicator of the effectiveness of
the pruning of the FIX index against the “perfect” index,
which produces no false-positives.

For each data set, we randomly generate 1000 test queries
and select representative queries based on their selectivi-
ties: low, medium, and high. However, depending on the
characteristics of the data sets (i.e., the distribution of the
substructures), these queries may not cover all 3 selectivity
criteria. For example, since each document in the XBench
TCMD have very similar structure, the queries are more
likely to fall into the category of low selectivity. On the
other hand, XMark and Treebank data sets are structure-
rich, thus almost all queries fall into the high selectivity cat-
egory. For these cases, we select the representative queries
given below with relatively high or low selectivity4.

TCMD_hi : /article/epilog[acknowledgements]/references/a_id
TCMD_md : /article/prolog[keywords]/authors/author/contact[phone]
TCMD_lo : /article[epilog]/prolog/authors/author
DBLP_hi : //proceedings[booktitle]/title[sup][i]
DBLP_md : //article[number]/author

4We eliminated queries that have selectivity 0 and 1 since
they do not give us much information about the index.
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Figure 6: Runtime comparisons on XMark, Treebank, and DBLP
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Figure 5: Average selectivity, pruning power, and
false-positive ratio of 1000 random queries on dif-
ferent data sets

DBLP_lo : //inproceedings[url]/title
XMark_hi: //category/description[parlist]/parlist/listitem/text
XMark_md: //closed_auction/annotation/description/text
XMark_lo: //open_auction[seller]/annotation/description/text
TrBnk_hi: //EMPTY/S/NP[PP]/NP
TrBnk_md: //S[VP]/NP/NP/PP/NP
TrBnk_lo: //EMPTY/S[VP]/NP

The selectivity, pruning power, and false-positive ratios
for these queries are listed in Table 2. For low selectivity
queries (e.g., TCMD_lo), FIX does not show strong pruning
power. However, since only about 16% of the returned can-
didates are false positives, the index still performs well in
that most of the remaining candidates produce final results.
On the other hand, for highly selective queries, such as (al-
most) all XMark and Treebank queries, FIX prunes very
well, very close to the selectivity. This means that the fea-
tures used in FIX reflect the intrinsic structural character-
istics of the patterns. However, the false-positive ratios for
queries in this category could also be high (e.g., TrBnk_hi
and TrBnk_md). This suggests that there may be other fea-
tures that are unique in this data set that are missed in
our index, which will be considered in our future work. For
the queries in the medium category, the effectiveness of FIX
varies. The pruning powers of FIX on some queries (e.g.,
DBLP_md and XMark_md) are very close to their selectivities,
and the false-positive ratios are reasonable. On the other
hand, some queries have poor pruning power (e.g., TCMD_md)
or the false-positive ratio is high (e.g., TrBnk_lo). This case
represents the grey area that is hard to estimate the cost.

The average of the three metrics over the random 1000
queries for each data set is shown in Figure 5. As seen
from this figure, the average pruning power is very close to
the selectivity for XMark and Treebank, but there are about
32% and 14% differences for TCMD and DBLP, respectively.
One of the reasons for this is that, as indicated earlier, un-
like XMark and Treebank, XBench TCMD and DBLP are
not structure-rich. Structural indexes that cluster based on
structures are not likely to be effective anyway. In the Sec-
tion 6.4, we shall show that the integrated structural and
value index can improve the pruning power as well as the
query processing time.

6.3 Run-time Performance Evaluation
We tested the running time speedup for using FIX indexes.

Although clustered index (such as F&B index and clustered
FIX index) are more efficient in query processing, they are
less efficient in result subtree construction (due to the loss
of document order). Furthermore, clustering criteria may
conflict with other sorting criteria, making the unclustered
FIX index or the original storage preserving document or-
der (such as the one in [29]) preferable. To compare similar
techniques based on the same criteria, we focus on the run-
time performance of unclustered FIX index with the NoK
navigational operator without index support, and compare
the clustered FIX index with clustered F&B index that has
been shown to perform better than other indexes [24].

To be able to benchmark different types of queries, we look
at both simple path (sp) and branching path (bp) queries.
Together with the selectivity dimension, low (lo) and high
(hi) selectivity, there are four test queries for each data sets:
{hi, lo} × {sp, bp}. The test queries are listed as follows:

XMark_hi_sp: //item/mailbox/mail/text/emph/keyword
XMark_lo_sp: //description/parlist/listitem
XMark_hi_bp: //item[name]/mailbox/mail[to]/text[bold]/emph/bold
XMark_lo_bp: //item[payment][quantity][shipping][mailbox/mail

/text]/description/parlist
Trbnk_hi_sp: //EMPTY/S/NP/NP/PP
Trbnk_lo_sp: //EMPTY/S/VP
Trbnk_hi_bp: //EMPTY/S/NP[PP]/NP
Trbnk_lo_bp: //EMPTY/S[VP]/NP
DBLP_hi_sp : //inproceedings/title/i
DBLP_lo_sp : //dblp/inproceedings/author
DBLP_hi_bp : //inproceedings[url]/title[sub][i]
DBLP_lo_bp : //article[number]/author

Figure 6 depicts the speedup of the FIX indexes to the
existing techniques in logarithmic scale. As shown in Fig-
ures 6(a) and 6(b), FIX unclustered and clustered indexes
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Figure 7: DBLP with values

performs considerably better than the NoK or F&B indexes,
respectively. However, on the more regular and simple data
set DBLP (Figure 6(c)), although FIX unclustered index still
outperforms NoK, F&B index outperforms FIX clustered in-
dex, particularly in the cases of queries with high selectivity.
The reason is that the structure of DBLP data set is very
regular and shallow. The whole F&B index for DBLP is
only 180 KB, and could easily fit into main memory due
to the caching mechanism of F&B index implementation.
We conjecture, however, that queries on simple data sets
usually involve value constraints. For such a general path
expression, the majority of processing time is spent on the
value-predicate evaluation. Therefore, we also test the index
performance with value constraints.

6.4 Performance of Value Indexes
We choose β = 3 when building the value index to bal-

ance the query performance and the space overhead. Since
DBLP is the only real data set (the PCDATA in other data
sets are all randomly generated), and since queries with
value-predicates are all branching paths, we only tested the
branching paths with high selectivity and low selectivity on
the DBLP data set. The test queries are listed as follows:

DBLP_vl_hi: //proceedings[publisher="Springer"][title]
DBLP_vl_hi: //inproceedings[year="1998"][title]/author

Figure 7(a) shows the implementation-independent met-
rics. For low selective queries, the FIX index with values
performs comparable to the FIX index with no values as far
as the implementation-independent metrics are concerned.
For high selective queries, however, FIX index with values
demonstrates a significant improvement over the pure struc-
tural index, with the selectivity and pruning power almost
identical, and false-positive ratio (fpr) around 1.7%. Fig-
ure 7(b) shows the runtime speedups compared to F&B in-
dex. The FIX index with values outperforms F&B index
on both queries by more than a factor of 2. However, FIX
index with values does not come for free, the construction
time and memory requirement are much higher than the
pure structural index (around a factor of 30 and 10 with
β = 10, respectively). We believe, with careful tuning of
the β value, one can achieve the balance between the cost
associated with the index construction and the savings for
the query processing.

7. RELATED WORK
A wide variety of join-based, navigational, and hybrid

XPath processing techniques have been proposed [28, 3, 6,

11, 29, 17]. Much research has focused on indexing tech-
niques to improve these existing query processors. Among
these techniques, TJFast [17] proposes extended Dewey ID
to encode input elements for the holistic twig join; and XB-
tree [6], XR-tree [13], iTwigStack [9], and ToXin [4] are
proposed to prune the input lists to the holistic twig join
operator. FIX also follows the pruning approach, but it is
not designed to work for a particular operator, and can be
coupled with any path processing operator that can perform
query refinement.

A parallel line of research focuses on the clustering in-
dex [18, 15, 14, 24]. The common theme of these clustering
techniques is that they are all based on some variant of sim-
ulation/bisimulation graph of the XML data tree. Depend-
ing on different definition of the (bi)simulation, the compu-
tational complexity, space complexity and type of queries
that can be answered are different. For example, if the
bisimulation graph is defined using the similarity or bisim-
ilarity relation [12], only simple linear path queries can be
answered without looking at the original data and perform-
ing refinement; while indexes constructed using the forward
and backward (F&B) bisimilarity relation [2] can answer all
twig (branching) path queries, thus bearing the name of cov-
ering index. For a non-covering index, a further refinement
step may be required to search for the final results from the
candidate results. FIX uses the bisimulation graph as the ba-
sis for representing structural information in the XML tree
that is good enough to answer existential match. FIX does
not use the bisimulation graph itself is as an index, but uses
the structural information extracted from the bisimulation
graph. By separating a large bisimulation graph into smaller
ones, we can quickly find a substructure as the candidate of
a pattern without traversing the whole graph.

ViST [23] and PRIX [20] are two other XML indexing
techniques that fall into one category: they both break the
XML document into structure-encoded strings and store
them into a conventional index such as B+ tree. These
strings can also be considered as features. However, unlike
FIX, these indexes need special operators for refinement.

Eigenvalues and spectral graph theory have many applica-
tions in other areas of computer science. Our initial idea was
inspired by the work in Computer Vision, where spectra of
shock graphs are used to index visual objects [22]. The shock
graph is a unlabeled directed graph to represent the abstract
of objects. They use the full set of eigenvalues as features
to approximate query processing, but did not make use or
prove the [λmin, λmax] property to for substructure queries
(thus did not prove the property). There are also related
work in the area of data mining, in which a large collection
of graphs are indexed by identifying “features” — frequent
substructures [25, 26]. Their features are combinatorial in
that features are compared by subgraph isomorphism.

8. CONCLUSION
As more and more document are stored in XML databases,

an index is needed to quickly retrieve a subset of candidates
to do further refinement. Depending on the characteristics
of the data sets, a value-based index or a structural index
or both are appropriate for certain queries. In this paper,
we have proposed the feature-based index FIX for indexing
substructures as well as values in a document or collection of
documents. Our approach, to the best of our knowledge, is
the first XML indexing technique to take the substructures
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and values as a whole object and compute its distinctive fea-
tures. Unlike many other indexing techniques, FIX can be
combined with an XPath query processor with litter or no
change in its implementation. We have successfully applied
FIX as a pruning index for an existing highly optimized nav-
igational operator, resulting in orders of magnitude speedup
in running time.

In addition to the navigational operator, we plan to ap-
ply FIX to other query operators and evaluate the perfor-
mance of other ways of incorporating values into the index.
We also plan to investigate the use of R-tree or other high-
dimensional indexing trees to gain further pruning power.
Finally, we are also interested in finding more features to
use in index and finding out what features are most effec-
tive for a particular type of data sets.
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