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ABSTRACT
Top-k query asks for k tuples ordered according to a spe-
cific ranking function that combines the values from multi-
ple participating attributes. The combined score function is
usually linear. To efficiently answer top-k queries, prepro-
cessing and indexing the data have been used to speed up
the run time performance. Many indexing methods allow
the online query algorithms progressively retrieve the data
and stop at a certain point. However, in many cases, the
number of data accesses is sensitive to the query parameters
(i.e., linear weights in the score functions).

In this paper, we study the sequentially layered indexing
problem where tuples are put into multiple consecutive lay-
ers and any top-k query can be answered by at most k layers
of tuples. We propose a new criterion for building the lay-
ered index. A layered index is robust if for any k, the number
of tuples in the top k layers is minimal in comparison with
all the other alternatives. The robust index guarantees the
worst case performance for arbitrary query parameters. We
derive a necessary and sufficient condition for robust index.
The problem is shown solvable within O(nd log n) (where d
is the number of dimensions, and n is the number of tuples).
To reduce the high complexity of the exact solution, we de-
velop an approximate approach, which has time complexity
O(2dn(log n)r(d)−1), where r(d) = � d
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�. Our exper-

imental results show that our proposed method outperforms
the best known previous methods.

1. INTRODUCTION
Rank-aware query processing is important in database sys-
tems. The answer to a top-k query returns k tuples or-
dered according to a specific score function that combines
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the values from participating attributes. In many cases, the
combined score function is linear, while the weights in the
linear ranking functions may vary dramatically with differ-
ent users. One example is college ranking [1]. Every year
US News and World Report ranks school performance by a
linear weighting of different factors such as research qual-
ity assessment, tuition and fee, graduate employment rate,
etc.. To search for the best schools with respect to each indi-
vidual preference, students will generate their own ranking
by assigning different weights. For example, students with
budget concern may put a high weight on “tuition and fee”,
while students looking for good future employment will put
a high weight on “graduate employment rate”. For another
example, consider a database containing houses available for
sale [6]. Each house has several attributes, such as price, dis-
tance to the school nearby, floor area, etc.. Different users
may also come up with different weighting strategies.

Database system should be able to process the ranked queries
efficiently with respect to ad hoc linear weights. Since
users usually have fixed positive (or negative) preferences
on the attributes, we further assume that the linear weight-
ing function is monotone (i.e., all weights are non-negative).
The extension to non-monotone functions will be addressed
later in this paper. Without loss of generality, we assume
that minimization queries are issued in this paper. A näıve
method to answer such a top-k query is to first calculate
the score of each tuple, and then output the top-k tuples
from them. This approach is undesirable for querying a rel-
atively small value of k from a large data set. Pre-processing
and indexing the data have been used to speed up run time
performance. Particularly, we are interested in sequential
indexing approach for the following two reasons. First, it
can be easily integrated into a database system without so-
phisticated data structures or query algorithms; and sec-
ond, it enables sequential access of data which may reduce
database I/Os. The sequential indexing approach projects
multi-dimensional data points onto a one-dimensional index.
The index can be either layered or not layered.

Recent successful work in non-layered approaches includes
the PREFER1 system [13], where tuples are sorted by a
pre-computed linear weighting configuration. Queries with
different weights will be first mapped to the pre-computed
order and then answered by determining the lower bound
value on that order. When the query weights are close to

1The original PREFER system is based on views, here we
borrow the idea to build the index.
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the pre-computed weights, the query can be answered ex-
tremely fast. Unfortunately, this method is very sensitive to
weighting parameters. A reasonable derivation of the query
weights (from the pre-computed weights) may severely de-
teriorate the query performance (as shown in example 1).
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Figure 1: Rank mapping in PREFER

Example 1. Fig. 1 shows 8 tuples: t1, t2, . . . , t8 in a tiny
database. Each tuple has two attribute x and y. Suppose the
pre-computed ranking order is built by the ranking function
x + y. The order of each tuple in the index is determined
by its projection onto the line y = x, which is orthogonal to
x + y = 0. Similarly, a query with ranking function 3x + y
corresponds to the line y = 3x. Suppose the query asks for
top-2, and the results are t2 and t1. However, t1 is ranked
last with respect to x+y. That is, the system has to retrieve
all tuples in the database to answer the query.

The layered indexing methods are less sensitive to the query
weights. Generally, they organize data tuples into consecu-
tive layers according to the geometry layout, such that any
top-k queries can be answered by up to k layers of tuples.
Thus the worst case performance of any top-k query can be
bounded by the number of tuples in the top k layers. The
representative work in this category is the Onion technique
[5], which greedily computes convex hulls on the data points,
from outside to inside. Each tuple belongs to one layer. The
query processing algorithm is able to leverage the domina-
tion relationships between consecutive layers and may stop
earlier than the kth layer is touched. For example, if the best
rank of tuples in the cth layer is no less than k among all
tuples in the top-c layers (c ≤ k), then all the tuples behind
the cth layer need not to be touched because they cannot
rank before k. However, in order to exploit this domination
relation between the consecutive layers, each layer is con-
structed conservatively and some tuples are unnecessarily
to be put in top layers (as demonstrated in example 2) 2.

Example 2. Using the same sample database in Exam-
ple 1, the constructed convex shells are shown in Fig. 2 (a).
There are two layers constructed on the 8 tuples and for any
top-2 query, all 8 tuples will be retrieved. In fact, we can
exploit more layer opportunities in this example. Fig. 2 (b)

2Since we assume all query weights are non-negative, we can
improve the onion technique by constructing convex shells,
instead of convex hulls for each layer. A convex shell is a
partial convex hull where only those surfaces which can be
seen by the origin (0, 0, . . . , 0) are kept (assume all tuples
have non-negative values). Those tuples which are in the
unseen surfaces will participate to build the next layers.
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(a) Indexing by Convex Shells (b) More Layer Opportunities
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Figure 2: Multi-Layered Index

shows an alternative layer construction which has four lay-
ers: {t1, t2, t3, t4, t5}, {t7},{t8} and {t6} (solid lines). Tuple
t6 can be put in the 4th layer because for any linear query
with non-negative weights, t3 must rank before t6, one of the
tuples in {t2, t4} must rank before t6 and one of the tuples in
{t1, t7} must rank before t6 (dashed lines). These claims can
be verified by linear algebra and we will discuss the details
later in this paper. For the same reason, t8 can be put in
3rd layer. Any top-2 query on this layered index will only
retrieve 6 tuples.

A key observation is that it may be beneficial to push a tuple
as deeply as possible so that it has less chance to be touched
in query execution. Motivated by this, we propose a new
criterion for sequentially layered indexing: for any k, the
number of tuples in top k layers is minimal in comparison
with all the other layered alternatives. Since any top-k query
can be answered by at most k layers, our proposal aims at
minimizing the worst case performance on any top-k queries.
Hence the proposed index is robust. Table 1 shows the min-
imal, maximal and average number of tuples retrieved from
the databases to answer top-50 queries on a real data set
and a synthetic data set using PREFER, Onion (with con-
vex shell) and our proposed method (robust index)3. While
both PREFER and Onion are sensitive to the query weights,
our method, though not optimal in some cases, has the best
expected performance.

Index Real Data Synthetic Data
Methods Min Max Avg Min Max Avg

PREFER 89 2133 609.5 99 2468 1434.8
Onion 542 728 660.6 524 724 626.3
Robust 375 375 375 510 510 510

Table 1: Number of tuples retrieved to answer top-50

queries

Another appealing advantage of our proposal is that the top-
k query processing can be seamlessly integrated into current
commercial databases. Both Onion and PREFER methods
require the advanced query execution algorithms, which are
not supported by many database query engines so far. Our
proposal transfers most computational efforts into the in-
dex building step. As soon as the tuples are sorted by the
3The real data set is a fragment of Forest Covertype data [3]
with 3 selected dimensions: Elevation, HDTR and HDTFP.
The synthetics data has 3 dimension with uniform distri-
bution. Both data has 10k tuples. We issue 10 queries by
randomly choosing the weights w1, w2, w3 from {1, 2, 3, 4}.
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computed layers in the database, any top-k query can be
answered by simply issuing an SQL-like statement:

select top k ∗ from D

where layer <= k

order by frank

The main contributions of this paper are summarized as
follows.

1. We derive a necessary and sufficient condition for robust
index : A tuple t can be put in the deepest layer l if and
only if (a) for any possible linear queries, d is not in top
l − 1 results; and (b) there exists one query such that d
belongs to top l results.

2. We show that there is an O(nd log n) algorithm to com-
pute the deepest layer for all tuples, where n is the size
of the database and d is number of dimensions.

3. To reduce the high complexity of the exact solution, we
propose an approximate method to compute the robust
index. The approximate approach has time complexity
O(2dn(log n)r(d)−1), where r(d) = � d

2
� + � d

2
�� d

2
�.

The rest of the paper is organized as follows. We first discuss
the related work in Section 2. Section 3 gives the problem
statement. The optimal solution is presented in Section 4
and the approximate alternative is described in Section 5.
Our experimental results are shown in Section 6. We discuss
the possible extensions in Section 7 and conclude our work
in Section 8.

2. RELATED WORK
Previous work on rank-aware indexing can be classified into
three categories: the distributive indexing (i.e. sort-merge)
[8, 9, 10], the spatial indexing [12], and the sequential index-
ing [5, 13]. Our work falls in the class of sequential indexing.
Here we briefly discuss the other two approaches. The dis-
tributive indexing approach sorts individual attributes sep-
arately, and during query execution, attributes from differ-
ent lists are merged and evaluated by the ranking function.
The algorithm assumes that the query function is monotone.
A threshold algorithm is developed to determine the early
stop condition. One important distinction between this ap-
proach and other indexing methods is that distributive in-
dexing does not exploit attribute correlation. This penalizes
query performance. The spatial indexing approach applies
spatial data structure such as R-tree or k-d-B tree. Data
points are stored in R-tree. At query time, the algorithm
does not seek top-k results directly, instead, the query is
processed by retrieving all the tuples that are greater than
some threshold. Retrieved tuples are evaluated and sorted
for final top-k results. The main difficulty of this approach
lies in determining the threshold to prune the search space.
A loose (tight) threshold may lead too much (few) returns.
It also does not have the progressive property. Adjusting
to new threshold causes the whole procedure to start from
scratch.

The layered indexing methods for linear constraint queries
have been studied in the computational geometry commu-
nity. An example work is [2], where the authors proposed to
minimize the number of disk blocks used to store the points

and the number of disk access needed to answer a half-space
range query. The major difference between this paper and
their work is that we focus on top-k query processing in
relational database and the data is accessed sequentially,
starting from the first layer. While in [2], one tuple can ap-
pear in multiple layers and the query processing algorithm
may access the same tuple multiple times.

Our proposal aims at exploiting domination relations be-
tween tuples. A closely related work is the skyline tuples [4,
7], where the one (tuple) to one (tuple) domination is stud-
ied. In this paper, we generalize the one to one domination
to many (tuples) to one (tuple) domination, and thus more
domination relations can be exploited. Moreover, research
work in skyline tuples only computes one layer of tuples,
while here we propose an efficient method to compute mul-
tiple layers for the entire database.

3. PROBLEM STATEMENT
We first define the notations in the context of linear ranked
query. The task of finding top-k tuples from a database
can be posed with either maximization or minimization cri-
terion. Since a maximal query can be turned into a mini-
mal one by switching the sign of objective function, in the
rest of the paper we assume minimization queries are is-
sued. Let R = (t1, t2, . . . , tn) be a relation with d attributes
(A1, A2, . . . , Ad) whose domains are real values, and let ti

refer to the value of attribute Ai in the tuple t ∈ R. For sim-
plicity, we assume that there are no duplicate values on any
attribute (Ties can be easily broken by comparing a unique
tid assigned to each tuple).

A ranked query q consists of an evaluation function f where
f(t) defines a numeric score for each tuple t ∈ R. The
output of query q is the ranked sequence [t′1, t

′
2, . . . , t

′
n] of

tuples in R (|R| = n) such that f(t′1) ≤ f(t′2) ≤ . . . ≤ f(t′n).
In this paper, we focus on queries using linear combination
function f(t) = d

i=1 witi, where w = (w1, w2, . . . , wd) is
a weighting vector. We further assume that the evaluation
function f is monotone [10] (i.e. f(a) = f(a1, a2, . . . , ad)
≤ f(b1, b2, . . . , bd) = f(b) whenever ai ≤ bi for every i ∈
{1, 2, . . . , d}). We will discuss the extension to non-monotone
queries in section 7. Without loss of generality, let each
value in the weighting vector be normalized in [0, 1] and

d
i=1 wi = 1. A top-k query is a ranked query which only

asks for top-k ranked results [t′1, t
′
2, . . . , t

′
k].

The sequentially layered index and robust index can be de-
fined as follows.

Definition 1. (Sequentially Layered Index) A sequen-
tially layered index L of a relation R partitions all tuples
in R into consecutive multiple layers L(R) = [l1, l2, . . . , lm]
such that: (1) li ∩ lj = φ (∀i �= j) and m

i=1 li = R; and (2)

any linear top-k query can be answered by Lk = k
i=1 li.

Definition 2. (Robust Index) A sequentially layered in-
dex L∗(R) = [l∗1 , l∗2 , . . . , l∗m∗ ] of a relation R is robust if for
any other sequentially layered index L(R) = [l1, l2, . . . , lm],
L∗

k ⊆ Lk, for any k > 0.
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Given a sequentially layered index L, let the layer which the
tuple t ∈ R belongs to be l(t, L). In the rest of the paper,
we refer L∗ the robust index and note l(t, L∗) as the robust
layer of t. The next theorem gives a necessary and sufficient
condition for robust index.

Theorem 1. A sequentially layered index L is robust if
and only if for each tuple t ∈ R, l(t, L) satisfies: (1) for any
possible linear queries, t does not rank in top l(t, L)−1; and
(2) there exists at least one linear query such that t ranks
top l(t, L).

Sketch of Proof. Let us call L the layered index which sat-
isfies the above two conditions and L′ an arbitrary sequen-
tially layered index. We show that Lk ⊆ L′

k (∀ k > 0). For
each t ∈ R, since there is at least one query q such that t
belongs to top l(t, L), we have l(t, L′) ≤ l(t, L). Otherwise,
L′ is not able to give top-l(t, L) results for query q. We
conclude Lk ⊆ L′

k for any k > 0 and thus L is robust.

The two conditions stated in Theorem 1 are equivalent to
that l(t, L∗) is the minimal ranking of t over all possible
queries. Our problem of robust indexing is defined as below.

Definition 3. (Robust Indexing) Given a relation R,
compute the robust index L∗ for all t ∈ R such that l(t, L∗)
is the minimal ranking of t over all linear queries.

4. EXACT SOLUTION
This section discusses the exact solution for the robust index-
ing problem. For any t ∈ R, our goal is to find the minimal
ranking of t over all linear queries (i.e., robust layer of t).

Consider the case where the number of dimension d = 1.
We can sort tuples in R completely and each tuple occupies
a layer. This takes O(n log n). Suppose d = 2, for an ar-
bitrary tuple t ∈ R, as shown in Figure 3, A1 and A2 are
two attributes, and tj(j = 1, 2, . . . , 6) are all other tuples
in R. We need to compute the minimal ranking of t over
all possible linear queries q. Suppose the query weighting
vector is w = (w1, w2) (w1, w2 ∈ [0, 1] and w1 +w2 = 1) and
W is the set of all valid assignments of w. A näıve way is to
enumerate all possible assignment of w ∈ W and compute
the minimum ranking for t. This is not possible because the
number of possible linear queries (i.e., |W |) is infinite.

l2

t

t1

t3

t2

t6

t5

A2

IV

A1

l3

IIIII

I l

t4 l4
l5l6

l1

Figure 3: Exact Solution for d = 2

On the other hand, one can create the one-to-one correspon-
dence between any weighting vector w and a line l which
crosses the tuple t. The ranking of t with respect to w is
determined by the number of tuples at the left-bottom side

of the line l. For example, in Figure 3, the dashed line l cor-
responds to a weighting vector w and the ranking of t over
w is 5 (since there are four tuples t1, t2, t3 and t4 at the left-
bottom side). Moreover, the constraints of w1, w2 ∈ [0, 1]
further restrict that the line must cross the regions I and
III (as shown in Figure 3).

With the one-to-one correspondence, we can partition W
into finite intervals such that in each interval Wi, all the
weighting vectors w ∈ Wi generate the same ranking results
for t. Using the example in Figure 3, we can partition W
into 5 intervals and the boundaries are l1, l2, l3, l4, l5 and l6.
More specifically, the boundary lines are computed by the
horizontal line l1, vertical line l6 and lines linking t and other
tuples in the subregions I and III. Clearly, the weighting
vectors within each interval generate the same ranking re-
sults for t. To compute the minimum ranking of t, we only
need to check the ranking results on those boundaries. One
can sort the boundary lines by their angles to l1, and then
traverse the lines in the order to obtain the exact value of the
minimum ranking of t. This step takes time O(n log n). We
conclude that computing minimum rankings for all tuples in
R takes O(n2 log n) time.

Generally, for d > 2, we have the following theorem.

Theorem 2. Given a relation R, the robust indexing prob-
lem can be solved within O(nd log n) time complexity, where
n = |R| is the number of tuples, and d is the number of
dimensions.

Proof. See Appendix.

The O(nd log n) complexity makes the exact solution unattrac-
tive in real applications. In the next section, we discuss
an alternative approach which approximates the minimum
ranking of each tuple in R. To ensure that any top-k queries
can be answered by the top k layers of tuples without false
positives, the approximate layer l(t, L̂) for any tuple t should

satisfy l(t, L̂) ≤ l(t, L∗), where L̂, L∗ are the approximate
and exact robust index, respectively.

5. APPROXIMATE SOLUTION
This section presents the method to compute the approxi-
mate (i.e., lower bound) robust layer for each tuple t ∈ R.
Given a tuple t, the exact solution will first sort other tuples
and find the interval boundaries. This step is quite expen-
sive, especially when the number of dimensions is large. In-
stead of computing those exact boundaries, the approximate
algorithm creates the boundaries by evenly partitioning the
interesting regions (i.e., region I and III in Figure 4).

Using the 2-dimensional example in Figure 4, we outline the
major steps of the approximate algorithm as follows:

Partition the region I and III evenly into B sub-regions
(e.g., I1, I2, . . . , IB and III1, III2, . . . , IIIB).
Count the number of tuples in region II and sub-regions
I1, I2, . . . , IB and III1, III2, . . . , IIIB .
Match the number of tuples in sub-regions and compute
the lower bound of the robust layer for each tuple.
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Figure 4: Approximate By Partitioning

Particularly, the partitioning and matching steps are asso-
ciated with each other (e.g., the match strategy determines
how the regions are partitioned). In the rest of this section,
we first present our partitioning and matching strategy, fol-
lowed by an efficient algorithm for counting step. Finally,
we present the complete algorithm.

5.1 Partitioning and Matching
We first introduce a new concept: domination set, and then
show that the robust layer of a tuple t can be lower bounded
by the number of exclusive domination sets of t. The main
ideas are demonstrated with d = 2 and the generalization
to d ≥ 3 is discussed in the end of this subsection.

5.1.1 Domination Set
We first define the domination and domination set.

Definition 4. (Domination) A tuple t ∈ R dominates
another tuple s ∈ R if ti ≤ si for all 1 ≤ i ≤ d, where d is
the number of dimensions of R.

If a tuple t dominates another tuple s, then for any monotone
linear query q with evaluation function f , we have f(t) ≤
f(s).

Definition 5. (Domination Set) A set of tuples DS =
{t1, t2, . . . , tp} is a domination set of tuple t if there ex-
ists linear weights {v1, v2, . . . , vp}, where vi ∈ [0, 1] and

p
i=1 vi = 1, such that t′ = p

i=1 viti dominates t. A dom-
ination set DS is minimal if any subset of DS is NOT a
dominating set of t.

A domination set DS = {t1, t2, . . . , tp} is also noted as p-
domination set. Given a relation R with d dimensions, one
can derive the following conclusion from the theorem of lin-
ear independence: if a p-dominating set is minimal, then
p ≤ d. In the rest of the paper, we assume all referred dom-
ination sets are minimal. We say two domination sets DSi

and DSj are exclusive if DSi ∩ DSj = φ. An example of
domination set is shown as follows.

Example 3. In Fig. 5, suppose t is the tuple under study.
Tuple t3 dominates t since on both dimensions A1 and A2.
The values of t3 are less than those of t. Tuples t2 and t4
constitute a 2-domination set of t. Note that the valid linear
combinations of t2 and t4 (as defined in the domination set)
are the segment linking t2 and t4. A pair of tuples constitute
a 2-domination set of t if t is at the right-upper side of the

t

t1

t3

t2

t6

t5

A2

IV

A1

IIIII

I

t4

Figure 5: Domination Set

segment. Correspondingly, {t1, t5} is not a domination set
of t. Moreover, {t3, t4} is not a minimal domination set
since t3 only can dominate t. One can further verify that
t6 (as well as all other tuples in region IV ) is not in any
domination set of t.

The following lemma demonstrates a property of domination
set.

Lemma 1. Let DS = {t1, t2, . . . , tp} be a p-domination
set of tuple t, then l(t, L∗) > minp

i=1 l(ti, L
∗), where L∗ is

the robust index.

Proof. It is equivalent to show that for any linear query q
with evaluation function f , there exists a tuple t′ ∈ DS such
that f(t′) ≤ f(t).

Assume there is a query q such that for all t′ ∈ DS, f(t′) >
f(t). Then for any linear weights {v1, v2, . . . , vp}, such that
vi ∈ [0, 1] and p

i=1 vi = 1, we have p
i=1 vif(t′) > f(t).

On the other hand, since f is linear, we have p
i=1 vif(t′) =

f( p
i=1 vit

′). According to the definition of domination
set, there exists a linear weight {u1, u2, . . . , up} such that
f( p

i=1 uit
′) ≤ f(t). We thus have p

i=1 uif(t′) ≤ f(t).
This contradicts with the assumption.

Suppose d = 2, for any tuple t ∈ R, every other tuple in re-
gion II (i.e., the left-bottom corner in Figure 5) consists of a
1-domination set. Tuples in region IV are not in any domi-
nation sets. Tuples in region I and region III can be paired
to constitute 2-domination sets. Generally, let DS1(t) be the
set of all 1-domination sets of t, and DS2(t) be the set of
all 2-domination sets of t. Assume EDS2(t) ⊆ DS2(t) is the
largest subset of DS2(t) such that all 2-domination sets in
EDS2(t) are mutually exclusive. The following lemma shows
that the robust layer of a tuple t can be lower bounded by
the number of domination sets.

Lemma 2. Given a relation R, for any tuple t ∈ R, the
robust layer l(t, L∗) > |DS1(t)|+ |EDS2(t)|, where L∗ is the
robust index.

Proof. Given any linear query q with evaluation function f ,
by the definition of domination set, we know any tuple in the
1-dominating set ranks before t. According to Lemma 1, at
least one tuple in a 2-dominating set ranks before t. Since all
tuples in DS1(t) do not appear in EDS2(t) (otherwise, the
corresponding 2-domination set is not minimal) and tuples
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in EDS2(t) are mutually exclusive, we conclude that there
are at least |DS1(t)|+ |EDS2(t)| tuples ranked before t, thus
l(t, L∗) > |DS1(t)| + |EDS2(t)|.

Involving p-domination sets (p ≥ 3) gives better approxima-
tion, but increases computational complexity as well. In this
paper, we use up to 2-domination set to lower bound l(t, L∗).
Using Lemma 2, we can lower bound the value of l(t, L∗) by
|DS1(t)| and |EDS2(t)|. |DS1(t)| is simply the number of
tuples in region I. However, computing |EDS2(t)| is not
an easy task. Generally, the problem of finding EDS2(t) is
similar to the maximal matching problem [15] in a bipartite
graph where the computational complexity is O(n3). In-
stead of computing the exact value of |EDS2(t)|, we present
a simple matching method to compute the lower bound the
value of |EDS2(t)|.

5.1.2 Matching
We first demonstrate our method with d = 2, and then
generalize it to d ≥ 3.

Consider the case where d = 2, for each tuple t, we use
B−1 lines to evenly partition regions I and III into B sub-
regions (as shown in Figure 4) such that every tuple in Ii

(IIIi) can be paired with any tuple in III1, III2, . . . , IIIB−i

(I1, I2, . . . , IB−i) to form a 2-dominating set (since the seg-
ments between the paired tuples lie at the left-bottom side
of t). We have the following lemma.

Lemma 3. Given a relation R with d = 2, for each tuple
t, |EDS2(t)| ≥ min( B−1

i=1 |Ii|, |III1|+ B−2
i=1 |Ii|, 2

i=1 |IIIi|
+ B−3

i=1 |Ii|, . . . , B−1
i=1 |IIIi|).

Proof. We show the case B−1
i=1 |Ii| = min( B−1

i=1 |Ii|, |III1|+
B−2
i=1 |Ii|, 2

i=1 |IIIi| + B−3
i=1 |Ii|, . . . , B−1

i=1 |Ii|), the

proof for other cases are similar. From B−1
i=1 |Ii| ≤ |III1|+

B−2
i=1 |Ii|, we have |IB−1| ≤ |III1|. Using the same ar-

gument in Lemma 2, all tuples in |IB−1| can find a differ-
ent tuple in |III1| to form mutually exclusive 2-domination
sets. Since |IB−1| ≤ |III1|, there are tuples left in III1 af-
ter pairing with those in IB−1. Let the set of rest tuples be
III ′

1. Similarly, from B−1
i=1 |Ii| ≤ 2

i=1 |IIIi| + B−3
i=1 |Ii|,

we have

|IB−2| + |IB−1| ≤ |III1| + |III2|
⇒|IB−2| ≤ |III1| + |III2| − |IB−1| = |III2| + |III ′

1|.
We conclude that all tuples in IB−2 can find a different tuple
in III ′

1∪III2 to form mutually exclusive 2-domination sets.
Continuing with this procedure, for each tuple t ∈ B−1

i=1 Ii,
we can find a different tuple in region III to form a mutually
exclusive 2-domination set. Hence, |EDS2(t)| ≥ B−1

i=1 |Ii|.

Based on Lemmas 2 and 3, we can lower bound the value of
l(t, L∗) by aggregating |DS1(t)| and the lower bound value of
|EDS2(t)|. Suppose the approximate method construct an

index L̂ and the layer of t is l(t, L̂). The following theorem
states the quality of the approximation method.

Theorem 3. Given a relation R with d = 2, suppose the
data forms a uniform distribution and regions I and III are

partitioned evenly into B subregions. For each tuple t, we
have

E[
l(t, L̂)

l(t, L∗)
] ≥ 1 − 1

B

where E[ l(t,L̂)
l(t,L∗)

] is the expected approximation quality.

Proof. See Appendix.

5.1.3 Three or Higher Dimensions
We now discuss how to extend Lemma 3 to cases where
d ≥ 3. Given a tuple t = (t1, t2, . . . , td) with d ≥ 3, we have
2d subspaces characterized by their relationship to t. The
first subspace is 000 . . . 0 (d bits), such that for each tuple
t′ in this subspace, t′i ≤ ti (i = 1, 2, . . . , d). for any other
subspaces a, if the ith bit is set as 1, then for each tuple
t′ ∈ a , t′i > ti. Generally, a 0-bit corresponds to a dom-
inating dimension and a 1-bit corresponds to a dominated
dimension.

Subspace 0 contains all the tuples dominating t (thus forms
the 1-domination sets), while subspace 2d−1 contains all the
tuples dominated by t (thus has no use for computing t’s ro-
bust layer). We group all the other subspaces into 2d−1 − 1
pairs, and the ith subspace is paired with (2d − 1 − i)th

subspace. For each paired subspace (a, b), the set of domi-
nating dimensions of a is identical to the set of dominated
dimensions of b, and vice versa. Let the set of dominating
dimensions of a be {i1, i2, . . . , il}, and the set of dominated
dimensions of a is {j1, j2, . . . , jg} (l+g = d). In order to get
a similar lower bounding method as stated in Lemma 3, we
first create Eqn. (1) and Eqn. (2) to construct partitions in
subspaces a and b.

ap-partition:

t′j ≥ tj j ∈ {j1, . . . , jg}
γpt′i + t′j ≤ γpti + tj i ∈ {i1, . . . , il}, j ∈ {j1, . . . , jg}

(1)
bp-partition:

t′i ≥ ti i ∈ {i1, . . . , il}
γpt′i + t′j ≤ γpti + tj i ∈ {i1, . . . , il}, j ∈ {j1, . . . , jg}

(2)
where γp (p = 1, 2, . . . , B − 1) satisfies γ1 < γ2 < . . . < γp.
The partitioning equations can be understood as follows: (1)
the t′j ≥ tj or t′i ≥ ti equations are simply the boundary
constraints of subspaces a and b; and (2) the γpt′i + t′j ≤
γpti + tj equations are a set of hyperplanes which evenly
partition the subspaces. One can futher verify that a1 ⊆
a2 ⊆ . . . aB−1 ⊆ a and bB−1 ⊆ bB−2 ⊆ . . . b1 ⊆ b.

Let Ii = ai − ai−1(aB = a, a0 = φ), and IIIi = bB−i −
bB+1−i(bB = φ, b0 = b), i = 1, 2, . . . , B. We have the follow-
ing lemma.

Lemma 4. Given a pair of d-dimensional subspaces (a, b)
w.r.t. t ∈ R, Ii (IIIi) (i = 1, 2, . . . , B) partition a (b)
into B un-overlapping subregions such that every tuple in Ii

(IIIi) can be paired with any tuple in III1, III2, . . . , IIIB−i

(I1, I2, . . . , IB−i) to form a 2-domination set of t.

Proof. See Appendix.

     240



Using Lemma 4, one can apply the same matching method in
Lemma 3 on three or higher dimensions. Eqn. (1) consists of
g+ lg inequalities and Eqn. (2) consists of l+ lg inequalities.
Since l + g = d, by simple calculation, one can verify that
both of them are upper bounded by � d

2
�+ � d

2
�� d

2
� (referred

as r(d)).

5.2 Counting
To compute the approximate result, we need to know the
number of tuples in region II (for the value of |DS1(t)|)
and the number of tuples in subregions Ii and IIIi (for ap-
proximating the value of |EDS2(t)|). The first observation
is that both problems share the same property and can be
solved by a single algorithm. We first give a formal definition
for the counting problem.

Definition 6. (Domination Factor) Given a relation
R with d dimensions, for each tuple t ∈ R, the domination
factor of t is DF (t) = |S|, where S is the set of tuples which
dominate t.

Note although domination factor directly corresponds to 1-
domination set, it can also be used to compute the lower
bound of |EDS2(t)| where the values of |Ii| (|IIIi|) can be
seen as values of DF (t) in the linearly transformed spaces,
as demonstrated in the following example.

Example 4. In Figure 4, the sub-region I1 can be de-
scribed as {t′|t′1 ≥ t1 and w1t

′1 + w2t
′2 ≤ w1t

1 + w2t
2},

where (w1, w2) corresponds to the boundary line between I1

and I2. After transforming the original space (A1, A2) to
(A′

1 = −A1, A
′
2 = w1A1 + w2A2), the value of |I1| is exactly

the value of DF (t) in the transformed space.

The näıve solution for the domination factor problem is for
each tuple t, to scan the database and count the number of
tuples dominating t. This takes O(n2). Here we present an
improved algorithm. The input of domination factor prob-
lem is the transformed space where the number of dimen-
sions is up bounded by r(d) (see section 5.1.3). For simplic-
ity, we still use d to refer to the number of dimensions in the
transformed space. We first discuss a warm-up algorithm
for d = 2, then present a divide and conquer approach for
d ≥ 3.

5.2.1 Two Dimension Case
Consider the case where d = 2, the conditions for t′ domi-
nating t are t′1 ≤ t1, t′2 ≤ t2. We sort all tuples in R with
respect to the values in attribute A1 (ascending order), and
then progressively retrieve tuples t from R and maintain the
values in attribute A2 (i.e., t2) using a binary tree T . More
specifically, whenever we get a new t, before we insert t2 into
T , we first query t2 in T to find the number of tuples whose
A2 value is no larger than t2. Since tuples are sorted by A1

values, this number is exactly the domination factor of t.

The algorithm needs a binary tree which can return the
number of records whose values are no larger than a query
value in O(log n) time. To achieve this, we modify the tradi-
tional AVL-tree [11] by adding a new field Left to each node

N . The Left value indicates the number of records (includ-
ing N) in N ’s left subtree. The modifications on insertion
and rotation with respect to Left are straightforward [11].
At query time, when a binary traversal reaches a node N
whose value is no larger than the query value, we can ac-
cumulate N.Left to the final answer without going to the
left sub-tree of N . The complexities of insertion and query
on the modified AVL-tree are kept same as O(log n). The
algorithm is described as in Algorithm 1. The complexity
of the algorithm is O(n log n).

Algorithm 1 Domination Factor: d = 2

Input: A Relation R with d = 2
Output: For each t ∈ R, compute DF (t)

1: Sort R on attribute A1 (value ascending order);
2: Initialize a modified AV L-tree, T ;
3: for each t ∈ R (retrieved sequentially)
4: Query T , and let DF (t) be the number of

tuples whose values are no larger than t2;
5: Insert t2 into T ;
6: return;

5.2.2 Divide and Conquer
Here we introduce a divide and conquer approach for d ≥ 3.
The algorithm is described in Algorithm 2. The two main
procedures are partition and merge. The algorithm starts
from the first attribute, and recursively partition the follow-
ing attributes (in lines 16-18). In the partitioning step, the
input tuples set P is divided into two subsets P1 and P2 ac-
cording to attribute As. In the merging step, the algorithm
updates the domination factor of tuples in P2 by merging
P1.

We discuss three different cases in the merging step: (1)
P1 (or P2) contains only one tuple: We can simply do a
linear scan over P2 (or P1) and update domination factors
for tuples in P2. (2) s = d− 1: At that time, there are only
two attributes Ad−1 and Ad on which the relations between
t1 ∈ P1 and t2 ∈ P2 have not been exploited (on attributes
Ai, i < s, we already have ti

1 ≤ ti
2). In this case, we can use

a similar approach to Algorithm 1. We first merge tuples
from P1 and P2, and sort them by the attribute value Ad−1;
then use a modified AVL-tree T to maintain values of Ad.
The difference from algorithm 1 is that we only want to
compute domination factors of P2 tuples from P1. For this
purpose, in the merged tuple list, when we get a P1 tuple,
we only insert it into T without query; and when we get a P2

tuple, we only query on T without inserting. The complexity
of the whole procedure is O((|P1| + |P2|) log(|P1| + |P2|)).
And (3) otherwise, we partition P1 and P2 using the median
tuple tm ∈ P2 (note P2 is pre-sorted by dimension s). P21

and P22 are two sub-partitions (of P2) divided by tm. All
tuples (in P1) whose value on dimension s is no larger than
tm go to P11, and the rest form P12. Since for any t12 ∈
P12 and t21 ∈ P21, we have ts

12 > ts
21, thus P12 has no

domination effect on P21. Hence, we only need to recursively
merge (P11, P21), (P12, P22), and (P11, P22). Furthermore,
for (P11, P22), since for all tuples t1 ∈ P11 and t2 ∈ P22, we
have ts

1 ≤ ts
2 on dimension s, we can skip dimension s and

go to next dimension s + 1 for the next merging step.

     241



Algorithm 2 Domination Factor: divide and conquer

Input: Relation R with d ≥ 3
Output: For each t ∈ R, compute DF (t)

1: Sort R on attribute A1 (value ascending order);
2: Call Partition(1, R);
3: return;

Procedure Partition(s,P) //P is sorted by As

4: if (|P | == 1) return;
5: P1 = {t1, t2, . . . , t|P |/2};
6: P2 = {t|P |/2+1, t|P |/2+2, . . . , t|P ||};
7: Call Partition(s, P1) and Partition(s, P2);
8: Sort P2 on attribute As+1;
9: Call Merge(s + 1, P1, P2);
10: return;

Procedure Merge(s,P1,P2) // P2 is sorted by As

11: else if (|P1| == 1|||P2| == 1)
12: Linear scan P1 or P2;
13: else if (s == d − 1)
14: Binary search P1, P2;
15: else
16: P21 = {t1, · · · , t|P2|/2}, P22 = {t|P2|/2+1, · · · , t|P2|};
17: P11 = {t|ts ≤ ts

|P2|/2, t ∈ P1};
18: P12 = {t|ts > ts

|P2|/2, t ∈ P1};
19: Call Merge(s, P11, P21) and Merge(s, P12, P22);
20: Sort P22 on Attribute As+1;
21: Call Merge(d + 1, P11, P22);
22: return;

This is a typical divide and conquer algorithm and the com-
plexity analysis can be found in many previous work (i.e.,
[14]). We state the following theorem without proof.

Theorem 4. For d ≥ 3, the complexity of the algorithm
2 is O(n(log n)d−1).

5.3 The Complete Algorithm
We present the complete algorithm as a summary of the
approximate approach. The algorithm assumes the data re-
trieved from disk fits in main memory.

The algorithm first computes the |DS1(t)| value for each
t ∈ R by calling the couting procedure: DF ; and then ap-
proximates the |EDS2(t)| value by looking at the 2d−1 − 1
subspace pairs. Each subspace is partitioned into B sub-
regions and the number of tuples in every sub-region is
also computed by the DF procedure. Lemma 3 is used
to lower bound the value of |EDS2

p(t)| for subspace pair
p. The main computational step is the DF procedure,
and it is called O(2dB) times. The overall complexity is

O(2dBn(log n)r(d)−1), where r(d) = � d
2
� + � d

2
�� d

2
�.

6. EXPERIMENTAL RESULTS
Here we report the experimental results of the approximate
solution for robust index (referred as AppRI). We compare
the performance with the Onion [5] and PREFER [13] ap-
proaches. In the following subsections, we first introduce the

Algorithm 3 The Approximate Algorithm

Input: Relation R, Number of Partitions B

Output: For each t ∈ R, the approximate layer l(t, L̂) .

1: Call DF (R), let l(t, L̂) = |DS1(t)| (∀t ∈ R);
2: for 2d−1 − 1 pair of subspace p = (a, b)
3: for i = 1 to B;
4: Transform R to R′ using Eqn. (1) and Eqn. (2);
5: Call DF (R′), and compute |Ii| and |IIIi|;
6: Compute |EDS2

p(t)| using Lemma 3;

7: l(t, L̂) = l(t, L̂) + |EDS2
p(t)| (∀t ∈ R);

8: return;

experiment settings, and then present the results with re-
spect to the index building cost and the query performance.

We notice that PREFER is originally proposed to use multi-
views (or, multiple indices) to answer top-k queries. Our
method can be easily adapted to exploit the benefit of using
multiple ranked views. We will also address this issue later
in this section.

6.1 Experimental Setting
Both our method and Onion are implemented using C++.
The PREFER system is obtained from the authors. All ex-
periments are carried out on an Intel Pentium-4 3.2GHz sys-
tem with 1G of RAM running Windows Server 2003. We use
both synthetic and real data sets for the experiments. The
real data sets we consider are abalone3D and Cover3D. The
abalone3D data [3] has 4, 177 tuples with 3 selected dimen-
sions of length, weight, and shucked weight. The cover3D
is a fragment of Cover Forest Data [3], and it has 10, 000
tuples with 3 selected dimensions on Elevation, Horizon-
tal Distance To Roadways, and Horizontal Distance To Fi-
re Points. We also generate a number of synthetic data sets
for our experiments using a modified data generator pro-
vided by [4].

We compare the three methods according to two criteria:
the cost to build the index ; and the number of tuples re-
trieved in answering top-k queries. We expect that AppRI
performs better in the comparison of running time, because
both Onion and PREFER need to do additional compu-
tation to determine the stop condition, while AppRI only
needs to retrieve tuples.

We assume queries are monotone. This assumption is also
made by PREFER. The original proposal of Onion builds
hulls on tuples, and thus it is able to answer all linear
queries, including both monotone ones and non-monotone
ones. To make a fair comparison, we compare with a vari-
ant version of onion: convex shell. That is, for each original
convex hull, only those surfaces which can be seen by ori-
gin (0, 0, . . . , 0) are kept as a layer, and the other tuples on
unseen surfaces will participate in the construction of shells
in next layers. In this way, there are less tuples in each
layer. The variant method makes a significant improvement
on query performance over the original Onion approach. We
refer it as Shell thereafter.
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6.2 Cost of Building Index
We compare the index building costs of Onion, Shell, PRE-
FER and AppRI. Since our method needs to specify the
number of partitions B, we first study the sensitivity of our
proposed approach with respect to B. We run a set of exper-
iments on a synthetic data with uniform distribution. The
data has 3 dimensions and 10k tuples. The value of B is
varied from 2 to 20. Figure 6 shows the numbers of tu-
ples in top-50 layers, and Figure 7 shows the corresponding
contruction time. We observe that the curve of number of
tuples w.r.t. to B is close to the function 1− 1

B
(as discussed

in Theorem 3). Generally, the number of tuples decreases
when B increases, which indicates that less number of tuples
will be retrieved using a larger B. When B > 10, the benefit
by increasing B is limited. The construction time, as ana-
lyzed in time complexity, is linear with B. In the following
experiemnts, we set B = 10.

We further compare the cost of index building by AppRI,
Onion, and Shell. All of these three methods build layers on
tuples. PREFER needs to compute a linear weight to build
the ranked view (i.e., index in this paper). The criterion is
that the selected weight has generally good coverage over all
the other weighs (see [13] for detail). We do not combine
the results of PREFER here because the PREFER system is
implemented with JAVA and the computation time depends
on the system parameters. However, we observe that using
the system default parameters, it takes more than 1, 200
seconds to pre-process a synthetic data set (with 50k tuples),
where AppRI uses less than 400 seconds to build the index.
We generate 5 data sets with increasing size (from 10k to
50k). All the data sets have 3 dimensions. The computation
time for Onion, Shell and AppRI is reported in Figure 8.
We observe that AppRI is much more efficient comparing
with Onion and Shell. The computation of convex hull is
expensive and the Onion and Shell need to compute multiple
hulls iteratively. The Shell uses more time since it generates
more layers than those in the Onion.

6.3 Query Performance
The second set of experiments tests query performance. We
compare AppRI with Onion, Shell and PREFER. For each
experiment, we report the number of tuples retrieved from
the indexed database to answer top-k queries. We vary
the value of k and for each top-k value, we issue 10 linear
queries by randomly choosing the weights w1, w2 and w3

from {1, 2, 3, 4}, and report the average number of tuples
over all queries.

The first experiment is run on a synthetic data with uniform
distribution. The data has 10k tuples and 3 dimensions.
The average number of tuples retrieved is shown in Figure
9. We observe that AppRI performs best among all the al-
ternatives. As we explained earlier, Shell is much better
than Onion since it takes advantage of monotone assump-
tion. In the following experiments, we only show the results
of Shell. PREFER is very sensitive to the query weighting.
For example, in top-10 queries, the minimum number of tu-
ples retrieved is 11, while the maximum number of tuples
retrieved is 1, 950. Shell is less sensitive. For top-10 queries,
the minimum number is 147 and the maximum number is
220. AppRI retrieves the same number of tuples (180) for
all top-10 queries.

The above data set bears uniform distribution. As we dis-
cussed in Section 2, an important motivation for building
sequential index is to exploit the data correlations. Our sec-
ond experiment studies the query performance with respect
to the data correlations. The correlation is controlled by
a parameter c ( c = 0 corresponds to uniform distribution
and increasing c means more correlation are introduced in
the data generation). All the data sets have 10k tuples and 3
dimensions. The average number of tuples to answer top-50
queries is shown in Figure 10. We observe that all methods
perform better when correlation increases. AppRI gets more
benefits because there are more domination relations in the
data and tuples can be pushed to deeper levels. PREFER is
better because on correlated data, it is less sensitive to the
query weights. For example, in the data set where c = 1,
the minimum number of tuples retrieved by PREFER is 51
and the maximum number of tuples retrieved is 356. The
gain of Shell on the correlated data is quite limited because
its conservative layer construction criterion.

Our last experiment with the synthetic data is to study the
query performance with respect to the data size. We gen-
erate a group of data sets with different sizes (from 10k to
50k). Each data has 3 dimensions and the correlation pa-
rameter is 0.5. The number of tuples retrieved for top-50
query is shown in Figure 11. It is interesting to see that
the number of tuples retrieved by Shell is not monotonically
increasing with the data size. This may be caused by the
query algorithm used by Shell. With a larger data set, al-
though the number of tuples in each layer increase, the Shell
query algorithm may decide to stop at an earlier layer. The
number of tuples retrieved by AppRI increases slightly with
the data size.

Finally, we examine the query performances on the two real
data sets: abalone3D and Cover3D (Section 6.1). The av-
erage number of tuples retrieved w.r.t. different top-k are
shown in Figure 12 and Figure 13. We observe that in both
real data sets, AppRI performs the best.

6.4 Multiple Views
In the final set of experiments, we explore the opportunities
to use multiple views to support top-k queries. The origi-
nal proposal of PREFER constructs multiple views, and at
query time, the system picks the view whose weights are
closest to the query weights to answer the query. This idea
can also be applied to AppRI, such that we can use the pro-
posed method to build multiple ranked views. We demon-
strate our approach by showing how to build 3 ranked views.

Suppose the number of dimension is 3 (A1,A2 and A3), and
the weights associating with each dimension are w1, w2 and
w3. we can classify all query weights into 3 categories: (1)
w1 is the minimum weight (min(w1, w2, w3) = w1); (2) w2

is the minimum weight (min(w1, w2, w3) = w2) and (3) w3

is the minimum weight min(w1, w2, w3) = w3. Each query
will fall into one and only one category. For those queries in
the first case, we can rewrite the weights as

(w1, w2 − w1, w3 − w1) (3)

and all weights are still non-negative. If the ranked view is
built on the transformed data (A1 + A2 + A3, A2, A3) (i.e.,
aggregate the values on dimensions A2 and A3 to A1 for
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each tuple), one can verify that the querying the rewrit-
ten weights on the transformed data can exactly answer the
original query. Generally, we can conduct 3 transformation
on the original data: (A1 + A2 + A3, A2, A3),(A1, A1 + A2 +
A3, A3) and (A1, A2, A1 + A2 + A3), corresponding to the
3 different cases of the query weights classified above. For
each transformed data, we use AppRI to build a ranked view.
During query processing, we will first classify the query into
the corresponding category (i.e., whether w1, w2 or w3 is
minimal), then rewrite the query (i.e., similar to Eqn. (3))
and use the associated ranked view to answer the query.

The idea can be generalized to m views. All possible query
weights consists a multi-dimensional space, which can be
divided into m subspaces. Each subspace corresponds to a
linear transformation from the original space. The reversed
linear transformation will be applied to the database to build
a transformed data. We omit the detailed exploration in this
paper.

We compare the query performance of AppRI and PREFER
with 3 views, using the same data set in Figure 9. The
PREFER system uses its own method to generate 3 views
(i.e., by ranking coverage). The average number of tuples
is shown in Figure 14. Using 3 views, both AppRI and
PREFER improve the query performance. With AppRI, we
observe that the top k layers contain less number of tuples
on the transformed data. This is because by aggregating A2

and A3 to A1, the tuples are projected to a smaller subspace
where A1 must be larger than A2 and A3. As a result, more
domination relations can be discovered.

7. DISCUSSION
We discuss the possible extensions of the proposed method.

7.1 Partial Indices
In many top-k queries, the value of k is relative small com-
paring with the data size. It is unnecessary to compute a
full index which includes all layers. Instead, the top k layers
are sufficient to correctly answer the queries. In the case
where multiple views are used, building partial index can
significantly reduce the space requirement. For example, in
the synthetic data with 50k tuples, the number of tuples
in the top-100 layers of AppRI is 1, 377. In a multi-view
system, AppRI can build approximately 36 partial views to
guarantee any top-100 queries, while the consumed space is
equivalent to a single complete view. We expect the system
with multi-views will have significant improvement over that
with a single view, as shown in Section 6.4. This additional
benefit is very limited for Shell because the number of tuples
in the top k layers constructed by Shell is much larger than
that by AppRI. For example, with the same data discussed
above, the top-100 layers in Shell have 28, 854 tuples. Using
the same space, Shell is only able to build at most 2 views
for top-100 queries.

7.2 Non-Monotone Queries
Throughout the paper, we assume linear queries are mono-
tone (i.e., all weights wi ≥ 0). Generally, this assump-
tion holds because people have preference on each attribute.
However, sometimes different users may have different pref-
erences (i.e., user may issue either positive or negative weigh-
ts). This situation can be handled by the same idea of

multiple views discussed in Section 6.4. More specifically,
for a d dimensional database, we have at most 2d different
cases on query weights (i.e., either positive or negative) and
we can build multiple indices for each case. Since a nega-
tive preference is the same as a positive preference on the
negated values, the AppRI algorithm can be used without
modification. For example, in a relation with d = 3, if the
user have non-determined preference on attribute A1. We
will build indices for both (A1, A2, A3) (original data) and
(−A1, A2, A3) (transformed data).

7.3 Index Maintenance
Different from query processing, index maintenance (i.e., in-
serting and deleting) on robust index is fairly complex. Up-
dating is not discussed here because it can be seen as a
deletion followed by an insertion. Because of the expensive
computation, it may be advisable in practice to perform
index maintenance in batches. We suggest two temporal so-
lutions for online maintenance. For deletion, the tuple can
be marked as deleted, but is not really removed from the
database. At query time, if a marked tuple appears in top-
k, the system needs to retrieve one more layer. For insertion,
one can count the number of tuples which dominate the new
tuple (this can be accomplished by issuing an SQL query).
Suppose the count is n, the new tuple can be inserted into
the (n + 1)th layer. The index can be rebuilt periodically.

7.4 High Dimensional Data
In our experiments, we mainly compare different methods
with 3 dimensions. Basically, all methods suffer from high
dimensionality. Both AppRI and Shell will include more tu-
ples in each layer since tuples are harder to dominate each
other in higher dimensions. PREFER is also weakened be-
cause the space of possible query weights increases and the
pre-computed index is more difficult to cover the queries.
For high dimensional data, a unified index structure over all
attributes may not be practical. A possible alternative is
to combine the methods in distributive index [10]. We can
construct low dimensional ranked views and answer high di-
mensional queries by merging some existing low dimensional
views. There are several interesting issues in this direction:
first, how to partition the dimensions to build the low di-
mensional views; and second, how to optimize a merge plan
for high dimensional query using the existing views. We will
further explore this direction as a future work.

8. CONCLUSIONS
To efficiently answer top-k queries, we proposed a new in-
dexing criterion: robust index. We discussed the necessary
and sufficient conditions for robust index and developed a
practical method to approximate the exact solutions. Our
experimental results show that the proposed approach out-
performs the previous studies.

9. APPENDIX
Sketch of Proof for Theorem 2.
When d > 2, consider an arbitrary tuple t ∈ R, we first
pick any other d − 2 tuples t′1, t

′
2, . . . , t

′
d−2 and let S =

{t, t′1, t′2, . . . , t′d−2}. For any tuple v ∈ R − S, {v} ∪ S con-
struct a hyperplane (a line when d = 2). Similarly, we can
sort v ∈ R − S and compute the minimum ranking value
for S. This procedure takes O(n log n) time . Since there
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are n−1
d−2

different S’s in total, the time complexity to com-

pute minimum ranking for all t ∈ R is O(n n−1
d−2

n log n) =

O(nd log n).

Sketch of Proof for Theorem 3.
We first derive an upper bound for l(t, L∗). In Figure 4, each
partitioning line corresponds to a linear query (as shown
in Example 1). Consider the line between I1 and I2. Let
the corresponding query be q1. The rank of t with respect
to q1 is the number of tuples in region II (i.e., |DS1(t)|)
and subregions I1,III1,III2, . . . , IIIB−1. According to the
definition of robust index, we have:

l(t, L∗) ≤ |DS1(t)| + |I1| +
B−1

i=1

|IIIi|

By considering all partitioning lines, we can derive:

l(t, L∗) ≤ |DS1(t)| + min(|I1| +
B−1

i=1

|IIIi|, |I1| + |I2|

+

B−2

i=1

|IIIi|, . . . ,
B−1

i=1

|Ii| + |III1|)

≤ |DS1(t)| + min(|I1| +
B−2

i=1

|IIIi|, . . . ,
B−2

i=1

|Ii| + |III1|)

+ max(|I1|, . . . , |IB−1|, |III1|, |IIIB−1)

= l(t, (̂L)) + max(|I1|, . . . , |IB−1|, |III1|, |IIIB−1)

Let m = max(|I1|, . . . , |IB−1|, |III1|, |IIIB−1) and n = min

(|I1| + B−2
i=1 |IIIi|, . . . , B−2

i=1 |Ii| + |III1|). If the data is
uniformly distributed, we have

E[
m

l(t, L̂)
] ≤ E[

m

n
] =

1

B − 1

We conclude E[ l(t,L̂)
l(t,L∗ ] ≥ 1 − 1

B
.

Sketch of Proof for Lemma 4.
Since i

j=1 Ij = ai and B−i
j=1 IIIj = bi, it is equivalent to

show that any tuple ta ∈ ai can be paired with any tuple
tb ∈ bi to form a 2-dominating set of t. That is, we need
to show ∃v ∈ [0, 1] such that vta + (1 − v)tb dominates t.
Let vi(i = i1, i2, . . . , il) be the weights such that vit

i
a + (1−

vi)t
i
b = ti. We select a vi∗ such that i∗ = arg max

il
i=1 vi.

Since i1, i2, . . . , il are dominating (dominated) dimensions
of subspace a (b), we have ti

a ≤ ti ≤ ti
b, i = i1, i2, . . . , il.

Thus,

vi∗ti
a + (1 − vi∗)ti

b ≤ ti, i = i1, i2, . . . , il

The next step is to show that for each j = j1, j2, . . . , jg,

vi∗tj
a + (1 − vi∗)tj

b ≤ tj

This can be done by a simple calculation from two inequal-
ities:

γpti∗
a + tj

a ≤ γpti∗ + tj

γpti∗
b + tj

b ≤ γpti∗ + tj .

Multiply vi∗ to both sides of the first equation, and multiply
(1−vi∗) to those of the second equation, then sum them up.

We have

vi∗γpti∗
a + vi∗tj

a + (1 − vi∗)γpti∗
b + (1 − vi∗)tj

b

≤vi∗γpti∗ + vi∗tj + (1 − vi∗)γpti∗ + (1 − vi∗)tj

⇒vi∗tj
a + (1 − vi∗)tj

b ≤ tj
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