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ABSTRACT
Database users can be frustrated by having an empty an-
swer to a query. In this paper, we propose a framework to
systematically relax queries involving joins and selections.
When considering relaxing a query condition, intuitively one
seeks the ’minimal’ amount of relaxation that yields an an-
swer. We first characterize the types of answers that we
return to relaxed queries. We then propose a lattice based
framework in order to aid query relaxation. Nodes in the
lattice correspond to different ways to relax queries. We
characterize the properties of relaxation at each node and
present algorithms to compute the corresponding answer.
We then discuss how to traverse this lattice in a way that
a non-empty query answer is obtained with the minimum
amount of query condition relaxation. We implemented this
framework and we present our results of a thorough perfor-
mance evaluation using real and synthetic data. Our results
indicate the practical utility of our framework.

1. INTRODUCTION
Issuing complex queries against large databases is a rela-

tively simple task provided one has knowledge of the suitable
query conditions and constants to use. Commonly however,
although one might have a clear idea about the parameters,
the resulting query may return an empty answer. In such
cases, users often find themselves in a position having to try
different parameters hoping to get an answer. Essentially
query formulation becomes a trial-and-error process. One
has to adjust the parameters until an answer is obtained
with which one is relatively comfortable. The process of pa-
rameter adjustment is not at all trivial. The more complex
a query is, in terms of predicates, the more choices one has
to conduct such an adjustment. A similar situation arises
when one is unclear about the right parameters to use, so
trying parameters in speculation seems a natural option.
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As an example, consider a recruitment company that has
a database with two tables. The table Jobs has records of
job postings, with information such as job ID (JID), category
(Category), company name (Company), zip code (Zipcode),
and annual salary (Salary). The table Candidates has
records of applicants, with information such as candidate ID
(CID), zip code (Zipcode), expected salary (ExpSalary), and
number of years of working experience (WorkYear). Some
sample data of the relations is shown in Tables 1 and 2.

A user issues the following query:

SELECT *

FROM Jobs J, Candidates C

WHERE J.Salary <= 95

AND J.Zipcode = C.Zipcode

AND C.WorkYear >= 5;

The query seeks for job-candidate pairs, such that the job
and the candidate are in the same area (same zip code), the
job’s annual salary is at most 95K, and the candidate has at
least 5 years of working experience. Suppose the answer to
the query turns out to be empty for the database instance.
As we can see from the tables, each record in one relation
can join with a record in the other relation. However, no
such pair of records satisfy both selection conditions. In
this situation, one way to get results is to be more flexible
about the jobs, in terms of job’s annual salary. Moreover, we
can also be more flexible about the candidates, in terms of
years of experience. By relaxing both selection conditions
on Salary and WorkYear, we can get a nonempty answer.
We can also compute an nonempty answer by relaxing the
join condition, i.e., by allowing a job and a candidate to
have similar but not necessarily identical zip codes. There
are other ways to relax the conditions as well.

From this example, two observations are in order. First,
there are different ways to relax the conditions. The number
of choices for adjusting the conditions is large (exponential
to the number of the conditions). Second, how much to
adjust each condition is not obvious. For instance, for a
condition Salary <= 95, we could relax it to Salary <= 100

or Salary <= 120. The former has a smaller adjustment
than the latter, but the new query may still return an empty
answer. Although the space of possible choices is very large,
it is natural to expect that a user would be interested in
the smallest amount of adjustment to the parameters in the
query in order to compute a nonempty answer. Clearly the
semantics of such adjustments have to be precisely defined.
In our running example, would a larger adjustment to the
join condition be favored over two smaller adjustments to
the two selection conditions?
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JID Category Company Zipcode Salary

r1 Sales Broadcom 92047 80
r2 Hardware Engineer Intel 93652 95
r3 Software Engineer Microsoft 82632 120
r4 Project Manager IBM 90391 130
. . . . . . . . . . . . . . .

Table 1: Relation R: Jobs

CID Zipcode ExpSalary WorkYear

s1 93652 120 3
s2 92612 130 6
s3 82632 100 5
s4 90931 150 1
. . . . . . . . . . . .

Table 2: Relation S: Candidates

In this paper we put such questions into perspective and
formally reason about the process of adjusting the conditions
in a query that returns an empty answer, in order to obtain
nonempty query results. We refer to this process and query
relaxation. We make the following contributions:
• We formally define the semantics of the query relaxation

problem for queries involving numeric conditions in se-
lection and join predicates.

• We propose a lattice-based framework to aid query re-
laxation while respecting relaxation semantics that aims
to identify the relaxed version of the query that provides
a nonempty answer, while being “close” to the original
query formulated by the user.

• We propose algorithms for various versions of this prob-
lem that conduct query evaluation at each node of our
lattice framework aiming to minimize query response
time while obtaining an answer.

• We present the results of a thorough experimental evalu-
ation, depicting the practical utility of our methodology.

This paper is organized as follows. Section 2 presents our
overall framework. Section 3 presents our algorithms for re-
laxing selection conditions in equi-join queries. In Section 4
we study how to relax all conditions in a query. In Section 5
we show how to adapt our algorithms to variants of query re-
laxation. Section 6 contains the results of our experimental
evaluation. Section 7 concludes the paper.

1.1 Related Work
A study related to our work presented herein is the work

of Muslea et al. [23, 24]. In these papers they discuss how to
obtain alternate forms of conjunctive expressions in a way
that answers can be obtained. Their study however deals
primarily with expressibility issues without paying attention
to the data management issues involved. Another related
piece of work is [1], where a method for automated ranking
of query results is presented.

Efficient algorithms for computing skylines have been in
the center of research attention for years. The basic idea
of skyline queries came from some old research topics like
contour problem [22], maximum vectors [20] and convex
hull [28]. Recently there are studies on efficient algorithms
for computing skylines, e.g., [4, 8, 31, 19, 25, 12, 26, 32, 27].
Unlike these works which aim to support answers of prefer-
ence queries, our focus is on relaxing queries with selection
conditions and join conditions. Consequently, unlike these
studies which assume the attributes and ordering of the val-
ues are already pre-determined in a single table, our work
require us to compute skyline dynamically for a set of ta-
bles which are to be joined and whose attribute values (i.e.,
the amount of relaxation) must also be determined on the
fly. We are not aware of any work utilizing such structures
for query relaxation, especially join-query relaxations.

Several papers have been devoted to the problem of an-
swering top-k queries efficiently [21, 5, 6]. These work focus

on finding k tuples in the database that are ranked the high-
est based on a scoring function. Users can assign weights
to various attributes in the database so as to express their
preference in the scoring function. Our study involves find-
ing the skyline of relaxations for select and join conditions
such that each set of relaxations is guaranteed to return at
least 1 tuple in the result set. Both the selection and join
conditions must be considered for relaxation in order for this
to take place, unlike top-k queries which focus on only the
selection conditions.

Some of our algorithms are related to similarity search in
multiple-dimensional data, such as R-trees and multidimen-
sional indexing structures [13, 29, 3], and nearest neigh-
bor search and all pair nearest search [15, 30]. Several
approaches have been proposed in the literature to relax
queries. For example, Gaasterland [11] studied how to con-
trol relaxation using a set of heuristics based on seman-
tic query-optimization techniques. Kadlag et al. [16] pre-
sented a query-relaxation algorithm that, given a user’s ini-
tial range query and a desired cardinality for the answer
set, produces a relaxed query that is expected to contain
the required number of answers based on multi-dimensional
histograms for query-size estimation. Finally, our work is
also related to the work on preference queries [18, 7, 9, 17]

2. QUERY-RELAXATION FRAMEWORK
In this section, we define our framework of relaxing queries

with joins and selections. For simplicity, we focus on the case
in which a query joins two relations; our results are easily
extendable to the case of multiple joins. Let R and S be two
relations. We consider join queries that are associated with
a set of selection conditions on R and S, and a set of join
conditions. Each selection condition is a range condition on
an attribute. A typical form of a range condition is “A θ v”,
where A is an attribute, v is a constant value, and θ is a
comparison operator such as =, <, >, ≤, or ≥. Examples are
Salary <= 95, WorkYear >= 5, and Age = 30. Each join
condition is in the form of “R.A θ S.B”, where A is an
attribute of R, and B is an attribute of S.

2.1 Relaxing Conditions
We focus on relaxing conditions on numeric attributes,

whose relaxations can be quantified as value differences.
Consider a query Q and a pair of records 〈r, s〉 in the two
relations. For each selection condition

C : R.A θ v

in R, the relaxation of r with respect to this condition is:

RELAX(r, C) =



0; if r satisfies C;
|r.A − v|; otherwise.

Similarly, we can define the relaxation of record s with
respect to a selection condition on S. The relaxation of the
pair with respect to a join condition J : R.A θ S.B is:
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RELAX(r, s, J) =



0; if r, s satisfy J ;
|r.A − s.B|; otherwise.

For instance, consider the query in our running exam-
ple. Let CR be the selection condition J.Salary <= 95. We
have RELAX(r1, CR) = 0, since r1 satisfies this selection
condition. In addition, RELAX(r3, R) = 25, since record r3
does not satisfy the condition. Let J be the join condition,
J.Zipcode = C.Zipcode. We have RELAX(r2, s1, J) = 0,
since the records r2 and s1 satisfy the join condition, while
RELAX(r2, s2, J) = 1040, since the records r2 and s2 do not
satisfy this join condition.

Let the set of selection conditions for R in query Q be
CQ,R, for S be CQ,S, and the set of join conditions be
CQ,J . Intuitively, every tuple r ∈ R and every tuple s ∈ S

can produce an answer with respect to the query Q for
some sufficiently large relaxation on the set of conditions
CQ,R ∪ CQ,S ∪ CQ,J . We denote this set of relaxations on
different conditions as RELAX(r, s, Q). To separate out the
relaxations for CQ,R, CQ,S, and CQ,J , we will denote the
relaxations for them as RELAX(r,CQ,R), RELAX(s,CQ,S),
and RELAX(r, s,CQ,J ), respectively.

2.2 Relaxation Skyline
Obviously, RELAX(r, s, Q) is different for different pairs

of 〈r, s〉. Given two tuple pairs 〈r1, s1〉 and 〈r2, s2〉, it is
possible that the first pair is “better” than the second in
terms of their relaxations. To formulate such a relationship,
we make use of the concept of “skyline” [4] to define a partial
order among the relaxations for different tuple pairs.

Definition 1. (Dominate) We say RELAX(r1, s1, Q)
dominates RELAX(r2, s2, Q) if the relaxations in
RELAX(r1, s1, Q) are equal or smaller than the correspond-
ing relaxations in RELAX(r2, s2, Q) for all the conditions and
smaller in at least one condition.

Definition 2. (Relaxation Skyline) The relaxation
skyline of a query Q on two relations R and S, denoted
by SKYLINE(R,S, Q), is the set of all the tuple pairs, 〈r, s〉,
r ∈ R, s ∈ S, each of which has its relaxations with respect
to Q not dominated by any other tuple pair 〈r′s′〉, r′ ∈ R,
s′ ∈ S.

Computing the relaxation skyline for all the conditions
of a query can ensure at least one relaxed answer being re-
turned, it can sometimes return too many incomparable an-
swers with large processing overhead due to the need to relax
all the conditions.1 Returning many results is not useful for
users who just want a small set of answers. In addition,
depending on the semantics of the query, often a user does
not want to relax some conditions. For instance, in the job
example, the user might not want to relax the join condition.

Therefore, we also consider the case where we do relax-
ations on a subset of the conditions, and compute the corre-
sponding relaxation skyline with respect to these conditions.
The tuple pairs on this relaxation skyline have to satisfy the
conditions that cannot be relaxed. Interestingly, the various
combinations of the options to relax these conditions form a
lattice structure. For instance, consider the three conditions
in our running example. Fig. 1 shows the lattice structure
of these different combinations. In the lattice, for each node

1Technically a query has a final projection to return the
values for some attributes. We assume that the main com-
putational cost is to compute those pairs.

n, the conditions being relaxed at its descendants, are a su-
perset of those being relaxed at this node. In such a case, it
is natural that the set of tuple pairs in the relaxation sky-
line corresponding to this node n is a subset of those in the
corresponding relaxation skyline for each descendant of n.
By analyzing various factors that will result in an empty an-
swer, we can try to identify the highest nodes in the lattice
that can bring a user specified number of answers.

{}

R J S

RJ RS SJ

RSJ

Figure 1: Lattice structure of various combinations
of relaxations in the query in the jobs example. “R”,
“S”, and “J” stand for relaxing the selection condi-
tion in jobs, the selection condition in candidates,
and the join condition, respectively.

In our framework, a user can also assign a weight to each
of the conditions in a query, and a value k. Then the system
computes the k best answers using these weights. That is,
for all the pairs in the relaxation skyline of the query, we
return the k pairs that have the k smallest weighted sum-
mation of the relaxations on the conditions. In this way,
the user can specify preference towards different ways to
relax the conditions. In addition, computing the final an-
swers could be more efficient. In Section 5.1 we show how
to extend our algorithms for this variant.

3. ALGORITHMS FOR RELAXING SELEC-
TION CONDITIONS

We study how to compute the relaxation skyline of a query
with equi-join conditions, when we do not want to relax its
join conditions, i.e., we only relax (possibly a subset of)
its selection conditions. The motivation is that, many join
conditions are specified on identifier attributes, such as em-
ployee ID, project ID, and movie ID. This case happens es-
pecially when we have a join between a foreign-key attribute
and its referenced key attribute. Semantically it might not
be meaningful to relax such a join attribute.

For instance, in our running example, we are allowed to
relax the selection conditions CR (Salary <= 95) and CS

(WorkYear >= 5), but we do not relax the join condition CJ

(Jobs.Zipcode = Candidates.Zipcode). That is, each pair
of records 〈r, s〉 of R and S in the relaxation skyline with
respect to these two selection conditions should satisfy:

• RELAX(r, s, CJ) = 0, i.e., r.Zipcode=s.Zipcode.

• This pair cannot be dominated by any other joinable
pair, i.e., there does not exist another pair 〈r′, s′〉 of
records such that:

– r’.Zipcode=s’.Zipcode;

– RELAX(r′, CR) ≤ RELAX(r,CR);

– RELAX(s′, CS) ≤ RELAX(s, CS).

One of the two inequalities should be strict.
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The job-candidate pair 〈r1, s1〉 is not in the relaxation
skyline since its join relaxation is not 0. The pair 〈r4, s4〉 is
not in the answer since it is dominated by the pair 〈r2, s1〉.
The relaxation skyline with respect to the two selection con-
ditions should include two pairs 〈r2, s1〉 and 〈r3, s3〉. Both
pairs respect the join condition, and neither of them is dom-
inated by the other pairs. The first pair has the smallest
relaxation on condition CR, while the second has the small-
est relaxation on condition CS. In this section we develop
algorithms for computing a relaxation skyline efficiently. In
Section 4 we will study the general case where we want to
relax join conditions as well.

3.1 Pitfalls
Let Q be a query with selection conditions and join condi-

tions on relations R and S, and the query returns an empty
answer set. To compute the relaxation skyline with respect
to the selection conditions, one might be tempted to develop
the following simple (but incorrect) algorithm. Compute the
set KR (resp. KS) of the relaxation skyline points with re-
spect to the selection conditions for relation R (resp. S).
Then join the two sets KR and KS . For instance, in our
running example, this algorithm computes the relaxation
skyline of the relation Jobs with respect to the selection con-
dition CR: J.Salary <= 95. The result includes the jobs r1
and r2, whose salary values satisfy the selection condition
CR. Similarly, it also computes the relaxation skyline of rela-
tion Candidates with respect to the selection condition CS :
C.WorkYear >= 5, and the result has two records, s2 and s3,
which satisfy the selection condition CS. It then joins the
points on the two relaxation skylines, and returns an empty
answer.2 The example shows the reason why this naive ap-
proach fails. Intuitively, the algorithm relaxes the selection
conditions of each relation locally. However, our goal is to
compute the pairs of tuples that are not dominated by any
other pair of tuples with respect to both of the selection con-
ditions, not just one selection condition of a relation. Trying
to compute the dominating points in each relation and then
joining them will lead to missing some points that might
form tuples that would not be dominated.

3.2 Algorithm: JoinFirst (JF)

This algorithm, called JoinFirst, starts by computing a join
of the two relations without using the selection conditions.
It then computes a skyline of these resulting tuple pairs
with respect to the relaxations on the selection conditions.
Algorithm 1 describes the pseudo code of this algorithm.

Figure 1 JoinFirst

1: Compute tuple pairs respecting the join conditions, without
considering the selection conditions;

2: Compute the skyline of these tuple pairs with respect to re-
laxations on the selection conditions;

3: Return the pairs in the skyline (with necessary projection).

In our running example, the first step of the algorithm will
compute the join of two relations with respect to the join
condition J.zip=C.zip. In the second step, it computes the
job-candidate pairs in this result that cannot be dominated
by other pairs with respect to the relaxation on the CR

2There are examples showing that, even if this approach
returns a nonempty answer set, the result is still not the
corresponding relaxation skyline.

and CS conditions. There are different ways to implement
each step in the algorithm. In the join step, we can do a
nested-loop join, a hash-based join, a sort-based join, or an
index-based join. In the second step, we can use one of
the skyline-computing algorithms in the literature, such as
the block-nested-loops algorithm in [4]. One advantage of
this algorithm is that it can use those existing algorithms
(e.g., a hash-join operator inside a DBMS) as a black box
without any modification. However, the algorithm may not
be efficient if the join step returns a large number of pairs.

3.3 Algorithm: PruningJoin (PJ)

This algorithm tries to reduce the size of the results after
the join step in the JoinFirst algorithm by computing the re-
laxation skyline during the join step. Algorithm 2 describes
the pseudo code of this algorithm, assuming we are doing
an index-based join using an index structure on the join at-
tributes of S. The algorithm goes through all the records in
relation R. For each one of them (say r), it uses an index
structure on the join attribute of S to find those S records
that can join with this record (say s). For each such record
s, the algorithm calls a procedure “Update” by passing the
pair 〈r, s〉 and the current skyline. This procedure checks
if this pair is already dominated by a pair in the current
relaxation skyline K. This dominance checking is based on
Definition 1, assuming we can compute the relaxation of this
record pair for each condition in the query.3 We discard this
pair if it is already dominated. Otherwise, we discard those
pairs in K that are dominated by this new pair, before in-
serting this pair to K. The algorithm terminates when we
have processed all the records in R.

Figure 2 PruningJoin (Index based)

1: Relaxation skyline K = empty;
2: for each tuple r in R do

3: I = index-scan(S, r); // joinable records in S
4: Call Update(〈r, s〉, K) for each tuple s in I;
5: end for

6: return K;
7: procedure Update(element e, skyline K)
8: if e is dominated by an element in K then

9: discard e;
10: else

11: discard K’s elements dominated by e;
12: add e to K;
13: end if

14: end procedure

The description can be easily modified for other possi-
ble physical implementations of the join. For instance, if
we want to do a hash-based join, we first bucketize both
relations. For each pair of buckets from the two relations,
we consider each pair of records from these two buckets,
and check if this tuple pair can be inserted into the current
relaxation skyline, and potentially eliminate some existing
record pairs. The algorithm terminates when all the pairs
of buckets are processed. Extensions to other types of join
methods (e.g., nested-loop or sort-based) are similar.

3Technically the dominance checking in the “Update” pro-
cedure relies on a set of query conditions. For simplicity,
we assume the skyline K already includes these query con-
ditions and the corresponding method to do the dominance
checking, so that this procedure can be called by other al-
gorithms.
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One advantage of this algorithm (compared to the Join-
First algorithm) is that it can reduce the number of pair
records after the join (which might be stored in memory),
since this algorithm conducts dominance checking on the fly.
One disadvantage is that it needs to modify the implemen-
tations of different join methods.

3.4 Algorithm: PruningJoin+ (PJ+)

The algorithm modifies the PruningJoin algorithm by com-
puting a “local relaxation skyline” for a set of records in one
relation that join with a specific record in the other relation,
and doing dominance checking within this local skyline. Al-
gorithm 3 describes the algorithm, and it is based on an
index-scan-based join implementation. For each record r in
R, after computing the records in S that can join with r

(stored in I in the description), the algorithm goes through
these records to compute a local relaxation skyline L with
respect to the selection conditions on S. Those locally dom-
inated S records do not need to be considered in the com-
putation of the global relaxation skyline. If both records
s1 and s2 of S can join with record r, and s1 dominates
s2 with respect to the selection conditions on S, then pair
〈r, s1〉 also dominates 〈r, s2〉 with respect to all the selection
conditions in the query. Therefore the second pair cannot be
in the global relaxation skyline. Extensions of the algorithm
to other join implementation methods are straightforward.

Figure 3 PruningJoin+ (Index based)

1: Relaxation skyline K = empty;
2: for each tuple r in R do

3: I = index-scan(S, r); // joinable records in S
4: Local relaxation skyline L = empty;
5: Call Update(s, L) for each tuple s in I;
6: Call Update(〈r, s〉, K) for each tuple s in L;
7: end for

8: return K;

Example 3.1. Consider the following query on two rela-
tions R(A, B, C) and S(C, D, E).

SELECT *

FROM R, S

WHERE R.A = 10 AND R.B = 30

AND R.C = S.C

AND S.D = 70 AND S.E = 90;

Fig. 2 shows an example. Currently there are two record
pairs (p1 and p2) in the global relaxation skyline. For the
given record r of relation R, 〈13, 34, 55〉, there are four S

records that join with record r. Among these four, record
s2 is locally dominated by record s1, since the relaxations of
s2 on the two local selection conditions are both larger than
those of record s1. The local relaxation skyline of this record
r will contain three records, s1, s3, and s4. Among the three
corresponding tuple pairs, 〈r, s1〉 is dominated by the existing
pair p2. The two remaining pairs, 〈r, s3〉 and 〈r, s4〉, will be
inserted into the global relaxation skyline.

Notice that this algorithm does the local pruning using
those local relaxation skylines, hoping that it can eliminate
some S records locally. This local pruning is not always
beneficial to performance, especially when the local pruning
does not eliminate many S records. As our experiments have
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Figure 2: Example of algorithm PruningJoin+.

verified, whether the overhead of this local pruning is worth
the performance gains depends on several factors, such as
the number of conditions.

3.5 Algorithm: SortedAccessJoin (SAJ)

This algorithm adopts the main idea in Fagin’s algorithm,
originally proposed to compute answers to top-k queries [10].
As shown in Algorithm 4, the algorithm first constructs a
sorted list of tuple IDs for each selection condition in the
given query Q, based on the relaxation of each record on that
selection condition. Such a list can be obtained efficiently,
e.g., when the corresponding table has an indexing structure
such as B-tree. The algorithm goes through the lists in a
round-robin fashion. For each of them Li, it retrieves the
next tuple ID (in an ascending order) and the corresponding
tuple p. It then uses an available index structure on the
other table to find records that can join with this record p,
and stores them in I . For each such joinable tuple q, we
form a tuple pair 〈p, q〉. We insert this pair into the set of
candidate pairs P , if it is not in the set. The algorithm calls
a function “CheckStopCondition()” to check if we can stop
searching for tuple pairs. If so, we process all the candidate
pairs in P to compute a relaxation skyline.

Figure 4 SortedAccessJoin

1: Let C1, . . . , . . . , Cn be the selection conditions on R, and
Cn+1, . . . , Cn+m be the selection conditions on S;

2: Let Li (i = 1, . . . , n + m) be a sorted list of record IDs based
on their relaxation on the selection condition Ci (ascending
order);

3: set of candidate pairs P = empty;
4: StopSearching = false;
5: // produce a set of candidate pairs
6: while not StopSearching do

7: Attribute j = round-robin(1, . . . , n + m);
8: Retrieve the next tuple ID k from list Lj ;
9: Retrieve the corresponding tuple p using k;
10: I = index-scan(the other relation, p);
11: for each-tuple q in I do
12: if (〈p, q〉 not in P )
13: insert 〈p, q〉 in P ;
14: StopSearching = CheckStopCondition();
15: end for
16: end while

17: // compute Skyline
18: Relaxation skyline K = empty;
19: for each-tuple-pair 〈r, s〉 in P do

20: Update(〈r, s〉), K);
21: end for

22: return K;

In the “CheckStopCondition()” function, we check if the
current tuple pair 〈p, q〉 has a smaller relaxation than each
of the current records on the lists, except the current list
Li. That is, the function returns true only if for each list Lj

(j 6= i), the relaxation of this tuple pair on the condition Cj

203



is smaller than the relaxation of the current record on list
Lj on this condition Cj . The stopping condition is based on
the following observation. If a pair of records has a smaller
relaxation than the current record on every of the sorted
lists, than it is guaranteed that this pair will dominate all
the pair of records formed by records starting on or bellow
the current value on each of the lists. A similar approach
was used for computing a skyline in a single relation [2].

Example 3.2. To understand the stopping condition for
algorithm SAJ, consider again the query in Example 3.1.
Fig. 3 shows the four sorted access lists C1, . . . , C4 for the
four selection conditions. The algorithm first starts process-
ing record r1 with its r1.A = 13 based on the round robin. By
performing the index scan at Line 10, it inserts four pairs,
〈r1, s1〉, 〈r1, s2〉, 〈r1, s3〉, and 〈r1, s4〉, into the result set I.
These four joined tuple pairs are then subsequently inserted
into the candidate set P at Line 13. The pointer for C1 is
then moved to the second record “r2.A = 6” on the list. The
round robin algorithm will next process record r2.B = 34 on
the second list. The process is repeated for s4.D = 70 and
s4.E = 92 with all the relevant pointers being moved to the
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Figure 3: Example of algorithm SAJ.

When processing r2.A = 6 (in bold), joined tuple pairs
〈r2, s1〉, 〈r2, s2〉, 〈r2, s3〉, and 〈r2, s4〉 are in I, and subse-
quently checked against the stopping condition at line 14.
When checking the stopping condition, we see that the joined
tuples 〈r2, s4〉 is found to have a smaller relaxation than all
the tuples being pointed to in C2 (r1.E=93), C3 (s3.D=71),
and C4 (r1.B=36). Since the stopping condition is satisfied,
the while loop terminates. The skyline is then computed over
all the tuples in P to produce the final result.

4. RELAXING ALL CONDITIONS
In the previous section we studied how to relax selection

conditions in a equi-join query without relaxing its join con-
ditions. There are cases where a join condition (not nec-
essarily equi-join) can be relaxed to return meaningful an-
swers. In our running example, the user may want to relax
the join condition jobs.zipcode = candidates.zipcode,
hoping to find candidates who are close to the job locations,
even though their zip codes might not be identical. Develop-
ing algorithms for relaxing all the conditions, especially the
join conditions, is more challenging, since record pairs that
could be on the relaxation skyline may not agree on their
join conditions. As a consequence, it is not straightforward
to identify these tuple pairs.

In this section we present an algorithm for computing a
relaxation skyline for a join query of two relations R and
S, assuming we can allow the join conditions, and possi-
bly other selection conditions to be relaxed. The algorithm

assumes there is a multi-dimensional indexing structure on
the selection attribute(s) and join attribute(s) of each rela-
tion. A typical structure is an R-tree [13]. We explain the
algorithm assuming two R-trees on the two relations; the
algorithm is extendable to other tree-based structures. We
describe the algorithm for the case where we want to relax
the selection conditions CR on relation R, the selection con-
ditions CS on the relation S, and the join conditions CJ .
The algorithm can be easily adapted to cover each variant
of query relaxation (e.g., see Fig. 1).

4.1 Algorithm: MIDIR

The algorithm is called “MultI-Dimensional-Index-based
Relaxation” (MIDIR). It uses the two R-trees and computes
the relaxation skyline of the points (records). The algorithm
traverses the two R-trees top-down, and constructs pairs
of R-tree nodes or points that could potentially be in the
relaxation skyline. During the traversal, the algorithm uses
a queue to store the candidate pairs. It uses a list K to keep
track of the skyline points seen so far during the traversal.
At the beginning, the pair of the two roots is pushed to the
queue. In each iteration, the algorithm pops a pair p from
the queue. There are four cases about this pair: an object-
object pair, an object-MBR (minimum bounding box) pair,
an MBR-object pair, or an MBR-MBR pair. For the first
case, the algorithm calls the function “Update” (defined in
the PJ algorithm) to see if this pair can be inserted into
skyline K, and eventually eliminate some pairs in K. For
each of the other three cases, the algorithm considers the
corresponding child pairs accordingly. The algorithm inserts
each new pair to the queue only if no pair in the skyline can
dominate this pair p.

4.2 Dominance Checking with MBRs
The algorithm needs to check the dominance from a pair

p′ in the skyline to the given pair p. Notice that these pairs
could be object-MBR, MBR-object, or MBR-MBR pairs.
In order to do the dominance checking for the relaxation of
such a pair with respect to a condition, we need to compute
a lower bound and an upper bound on this relaxation. For
a pair t and a condition Ci, let RELAXMIN (t, Ci) be a lower
bound of its relaxation on this condition. That is, for every
pair of tuples inside the MBR(s) mentioned in t, its relax-
ation with respect to this condition is no smaller than this
lower bound. Similarly, let RELAXMAX (t,Ci) be an upper
bound of its relaxation on this condition. Clearly these two
bounds can become the same when we have a pair of objects
(tuples). We say the pair p′ dominates the pair p if for each
condition Ci in the query, we have

RELAXMAX(p′
, Ci) ≤ RELAXMIN (p′

, Ci),

and the inequality is strict for at least one condition.
Now let us see how to compute a lower bound

RELAXMIN (t,Ci) and an upper bound RELAXMAX(t, Ci)
for a pair t with respect to a condition Ci. We focus on
computing the lower bound, and the upper bound can be
computed similarly. The main idea is to convert the problem
to computing the minimum distance between two intervals of
the attribute in the condition. If Ci is a selection condition,
we convert it to an interval I(Ci) = [vlow, vhigh], which is the
range of the values that can satisfy this condition. Here are a
few examples of selection conditions and their corresponding
intervals. Notice that for generality of this discussion, we
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can represent a point as an interval.

Condition C Corresponding Interval I(C)

Salary <= 95 [0, 95]
WorkYear >=5 [5, +∞)
age = 28 [28, 28]

Let B be an MBR or a tuple, A be an attribute used
in B. Let I(B,A) denote the interval of this attribute
in this MBR. We consider the following cases to compute
RELAXMIN (t,Ci):
• Ci is a selection condition. Let B be the MBR or tu-

ple in t in which the attribute Ai of Ci appears. Then
RELAXMIN (t, Ci) = MINDIST(I(Ci), I(B,Ai)), i.e., the
minimum distance between the two intervals.

• Ci is a join condition. Let BR be the MBR or tuple t (in
relation R), in which the attribute Ai of Ci appears. Let
BS be the one for relation S. Then RELAXMIN (t, Ci) =
MINDIST(I(BR, Ai), I(BS, Ai)).

The minimum distance between two intervals Ia = [alow,

ahigh] and Ib = [blow, bhigh], represented as MINDIST(Ia, Ib),
can be computed as follows. If alow ∈ [blow, bhigh] or ahigh ∈
[blow, bhigh], then the minimum distance is 0. Otherwise, it
is min(|ahigh − blow|, |alow − bhigh|).

Fig. 4(a) shows an example of computing minimum re-
laxations and maximum relaxations on two selections on a
relation R. The figure shows two selection conditions X <=

x0 and Y <= y0 on two attributes X and Y . It does not
show the attributes for the join conditions. It shows the
minimum relaxation and maximum relaxation for the box
MBR1 with respect to these two conditions. In addition, in
Fig. 4(b), the point (x1, y1) is an R record r in one pair of
records in the current skyline computed so far. (Again, the
values of the join attributes are not shown.) Consider the
three MBRs for relation R. MBR1 is dominated by record
r w.r.t. the selection conditions because its minimum relax-
ations on both attributes are larger than those of record r.
MBR2 is not dominated by record r, since although its min-
imum relaxation on attribute Y is larger than that of record
r, its minimum relaxation on attribute X is smaller than
that of r. Similarly, MBR3 is not dominated by record r ei-
ther, since its minimum relaxation on attribute Y is smaller
than that of record r.

4.3 Extension to Other Relaxation Combina-
tions

We can modify the MIDIR algorithm slightly to compute
a relaxation skyline if the user does not want to relax some
of the conditions in the query. Consider each condition Ci

that the user does not want to relax. We make two changes
to the algorithm.
• In each dominance checking, we do not consider relax-

ation on this condition Ci.
• Before inserting each pair into the queue, we verify if

this pair could potentially satisfy this condition Ci, and
discard those pairs that cannot satisfy Ci. This verifi-
cation can be easily done for a pair of records. In the
case where the pair has an MBR, we can also check if
the records in this MBR could satisfy the condition Ci.

For instance, consider our running example. Suppose the
user wants to relax the selection condition J.Salary <= 95

and the join condition J.zipcode = C.zipcode, but not the
selection condition C.WordYear >= 5. In this case, when we

Attribute Y

Attribute X

Selection conditions: 

X <= x0 & Y <= y0

(x0,y0)

RELAXMAX(y<=y0)

RELAXMIN(y<=y0)

RELAXMIN(x<=x0)

RELAXMAX(x<=x0)

MBR1

(a) Minimum and maximum relaxations

Attribute Y

Attribute X

Selection conditions: 

X <= x0 & Y <= y0

(x0,y0)

MBR1

(x1,y1) MBR3

MBR2

(b) Dominance checking

Figure 4: Pruning using minimum and maximum
relaxations.

insert a pair of records into the queue, if the candidates

record in the pair cannot satisfy this condition, we do not
need to do the insertion. The same checking is done when
inserting a pair with an MBR.

5. VARIANTS OF QUERY RELAXATION
In this section we show that our earlier algorithms can be

extended to other variants of query relaxation.

5.1 Computing Top-k Answers on Relaxation
Skylines

The algorithms we have developed so far treat the re-
laxations on different conditions in a query independently,
assuming that they are equally important. Very often a user
has different weights on these relaxations. In this case, one
may want the k best answers on the relaxation skyline based
on these weights, where k is a number specified by the user.
That is, for all the points on the skyline, we return the k

points that have the smallest weighted summations (scores)
of the relaxations on those relaxable conditions. Comput-
ing top-k answers on the skyline is based on the following
two assumptions. (1) The weight of a condition defines the
importance of relaxing this condition; and (2) the user does
not want to see answers that are already dominated by other
answers. Other approaches to computing best answers also
exist, e.g., the approach based on computing top-k answers
(not necessarily on the skyline) [6].

Let Q be a join query of two relations R and S with selec-
tion conditions and join conditions. One specifies a weight
Wi for each condition Ci in the query. For each pair 〈r, s〉
of records in the two relations, the overall relaxation with
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respect to query Q is:

RELAX(r, s, Q) =
X

i

wi × RELAX(r, s, Ci).

For an integer k, the top-k pairs are the k pairs on the
relaxation skyline that have the k smallest overall scores.
Notice that this definition is different from a traditional def-
inition of top-k pairs, which might not be on the skyline.
The following example shows the difference. For instance,
in the running example in Section 1, consider the query and
the two pairs: 〈r2, s1〉 and 〈r4, s4〉. In a traditional top-k
case, both of them could end up being in the top-2 pairs. In
the case of top-k over skyline, the second pair will never be
in the result set, since it is dominated by the first one.

All our algorithms can be extended to compute top-k sky-
line answers efficiently. The main idea is, instead of keeping
a relaxation skyline in each algorithm, we keep a buffer to
store the k best skyline answers. Every time we have a new
candidate pair, in order to decide whether it is in the top-
k, we have to compare this pair with those in the buffer.
We add this new pair into the buffer only if its weighted
relaxation is smaller than the k-th answer in the buffer (as a
consequence, it cannot be dominated by other answers in the
buffer). We can implement this change, e.g., by modifying
the function “Update()” defined in the PJ algorithm.

We can further improve the MIDIR algorithm by imple-
menting its queue as a priority queue, sorted based on the
weighted summation of the relaxations of its pairs in an as-
cending order. If an MBR is in a pair, we do not know all
its records. However, for each attribute of the MBR, we can
still compute a lower bound and an upper bound for the
relaxation for its condition (Section 4.2). We then use the
weights to compute a lower bound and an upper bound on
the total relaxation for this pair. We sort all the pairs in
the queue based on their lower bounds on each attribute.
The algorithm can terminate when the queue has produced
k pairs of tuples (not MBRs). Due to the order of the queue,
we can guarantee that these k pairs are top-k answers on the
relaxation skyline. To see the reason, if there was another
pair of records that had a smaller overall relaxation than
these k reported pairs, then the lower bound of the overall
relaxation for the pairs of MBRs (or its variants) of the lat-
ter pair should also be smaller than the overall relaxations
of these k pairs. Then this pair should been popped earlier.

5.2 Queries with Multiple Joins
All our algorithms can be easily extended to the case

where we want to relax a query with multiple joins (not nec-
essarily joining two relations). For instance, if the user does
not want to relax the join conditions in such a query, we can
modify algorithm JF that computes the join result without
using the selection conditions, then compute a skyline us-
ing the join result. Similarly, extending the SAJ algorithm,
we can first obtain a sorted list of records for each selec-
tion condition based on the relaxation of each record on the
corresponding condition. When we access the records along
the list, we use available indexing structures to access other
records that can join with the current record. Since the
query could have multiple joins, we need to access multi-
ple index structures to access other records that could join
with earlier joinable records. The rest of the algorithm is
the same as before. For the MIDIR algorithm, we can also
traverse the available R-trees on multiple relations, and use

a queue to maintain possible “vectors” of records or MBRs
when searching for skyline answers.

5.3 Relaxing Conditions on Nonnumeric At-
tributes

Often queries have conditions on nonnumeric attributes,
whose relaxations cannot be quantified as value differences,
as assumed in Section 2.1. The main reason is that the con-
cept of “relaxation” of a condition depends on the semantics
of the attribute. For instance, if a user is looking for cars
with a Gold color, we could relax this condition to find cars
with a Beige color. Our developed algorithms assume we
can check the dominance between two records with respect
to a condition (selection condition). Consider a “blackbox”
function RELAX(r,C) that can do the following. Given a
record (or a record pair, depending on the condition) r and
a condition C, this function can return a value to quantify
the minimum amount of relaxation for the condition so that
r can satisfy the condition. Our algorithms can be modified
to deal with cases of relaxing such conditions, as long as such
functions are available for the conditions. If we want to use
the pruning step in the MIDIR algorithm, we need to have
a function that can compute a lower bound and an upper
bound between two pairs of “MBRs” for the attributes in
the conditions. The semantics of the MBRs should depend
on the attributes. To use the SAJ algorithm, we need to
have lists of records sorted based on relaxation of records on
each condition.

5.4 Lattice Traversal
Having developed algorithms for query relaxation on dif-

ferent combination of conditions, a natural question to ask
is how we can pick the “good” set of conditions to relax, if it
is not specified by the user. One requirement of such set of
conditions is that it should give the user at least one answer.
Take the lattice structure in Fig. 1 as an example. We wish
to do relaxation as high in the lattice as possible while en-
suring that the relaxation can return at least one result. For
the non-weighted case, this could be sufficient for the user,
while for the weighted relaxation, this tuple could be used
as a candidate answer to prune off searches for nodes at a
lower level. On the other hand, we also want to avoid start-
ing at a level that still would not return results. The crucial
question to ask here is what causes an empty result for the
initial query. This can be monitored during processing of
the queries and can be categorized into the following.

Case (1): There are tuples in both R and S that satisfy
conditions CR and CS , respectively, but CJ is too strict
and none of these tuples can be joined pairwise. A quick
way to get the answer is to perform a relaxation on CJ

using the tuples returned from R and S. Note that since
there can be multiple conditions in CJ , there can still be
different ways of relaxing the join conditions. To return at
least one result through the relaxation, the processing here is
sufficient. However, if there is a need to find top-k weighted
results, then CS and CR might still need to be relaxed if CJ

is assigned a very high weight. The results returned here
can then be used as candidates to prune off searches during
relaxation at lower levels of the nodes.

Case (2): Either CS or CR is too strict. Only one of
the relations has tuples that satisfy the selection conditions.
Since one relation does not return any result, the obvious
strategy is to first visit the lattice node that just relaxes
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the conditions for the problematic relation. This does not
guarantee to return results as CJ can still be too strict. Once
this is found to be true, then a lattice node which relaxes CJ

together with either CS and CR will be visited to guarantee
that there is at least one answer. For the weighted top-k
case, more relaxation with candidate pruning can follow.

Case (3): Both CS and CR are too strict. Tuples from
both relations do not satisfy their corresponding condition.
Since CR and CS are both too strict, visiting just the lattice
nodes S and R alone will not be useful at all. The first
node to visit in this case will be RS. Should the node fail to
return result, node J must be visited as it means that the
CJ conditions are too strict. If visiting node J still does not
return a nonempty result, node RSJ must be visited. Like
before, once a result is obtained in any of the relaxations, it
can be used as a candidate to prune off the search for the
weighted top-k case.

6. EXPERIMENTS
In this section we present our extensive experimental eval-

uation of the algorithms.

6.1 Experimental Setting
We used two real datasets and three synthetic datasets

with different distributions. The first real data set is from
the Internet Movie Database (IMDB).4 We used two con-
structed tables. The Movies table has 120,000 records with
the information about movies, including their ID, title, re-
lease year, runtime, IMDB rank, and number of votes. The
ActorsInMovies table has 1.2 million records with informa-
tion about actors and their movies, including date of birth
(day, month, year), movie ID, and position in the cast list
of the movie. The ActorsInMovies table has a foreign key
constraint on the ID attribute of the Movies table. The sec-
ond real data set is the Census-Income dataset from the UCI
KDD Archive.5 It contains 199,523 census records from two
cities for the years 1970, 1980, and 1990. We use three nu-
merical attributes: age, wage per hour, and dividends from
stocks.

In addition, we adopted the approach in [4] to generate
three datasets with different types of correlations, called “In-
dependent,” “Correlated,” and “Anti-correlated.” Because
we are dealing with queries with joins, we generated two ta-
bles for each type of correlation. We generated the tables
such that, the values respect the correlation property after
the join of the two tables. We chose the size of the synthetic
tables to be similar to those of the real datasets. We also
simulated a foreign key constraint from the first table to the
second table. The selection attributes have values in the
range [0, 1), and join attributes have integer values.

We implemented the algorithms in gnu C++. For algo-
rithms PJ, PJ+, and SAJ, we used a hash index on the sec-
ond table. For algorithm SAJ, we assumed that indexing
structures such as B-tree are available to produce sorted
relaxation lists. For the case where we relax all the condi-
tions, we used the R-tree implementation in Spatial Index
Library [14]. We also implemented the corresponding algo-
rithms to compute top-k answers on relaxation skyline. All
the experiments were run on a Linux system with an AMD
Opteron 240 processor and with 1GB RAM.

4http://www.imdb.com/interfaces#plain
5http://www.ics.uci.edu/∼kdd/

6.2 Relaxing Selection Conditions
We implemented the algorithms for the case where we

relax only selection conditions, namely JoinFirst (JF), Prun-
ingJoin (PJ), PruningJoin+ (PJ+), and SortedAccessJoin (SAJ).
We used the IMDB data set and the three synthetic datasets.
For IMDB, we considered queries that ask for movies and
actors that played in these movies, that is, the join con-
dition is (Movies.ID = ActorsInMovies.movieID). For the
Movies table, the selection conditions were defined on the
attributes of release year, runtime, IMDB rank, and number
of votes. For the ActorsInMovies table, the selection con-
ditions were on the attributes of date of birth (day, month,
year) and the position in the cast list of a movie. For the
synthetic datasets, we considered queries asking for values
that match on the join attribute and have a 0 value on all
the selection attributes. For the real dataset, we used from
one to four different values for each selection condition. We
used 16 to 18 queries in each run of the experiments. We ran
each query 10 times and report their average performance
values. We considered different factors that can affect the
performance of the algorithms: size of the dataset, cardinal-
ity of the join, and number of selection conditions.

6.2.1 Dataset Size
In this set of experiments, we show how the algorithms

are affected by the size of the data set. For each data set,
we kept the size of the second relation (“S”) to be about
1.2 million records. We varied the size of the first (smaller)
table (“R”) from 50,000 to 120,000 records. Fig. 5 shows
the results of the four algorithms on the four datasets. On
each query we used four selection conditions (two on each
dataset) and the cardinality of the join was 10, i.e., each
record in R joins with 10 S records on average.

For the IMDB dataset, the running time of the four algo-
rithms increased as the dataset size increased. The dataset
size did not affect the performance of algorithm SAJ very
much. This algorithm SAJ has the best performance for
the correlated dataset, with a running time less than 1ms.
The reason is that its stopping condition was satisfied very
early when traversing the sorted lists of the selection con-
ditions. On the other hand, algorithm PJ+ has the longest
running time, mainly because computing the local skyline on
the correlated dataset result in additional overhead without
pruning many tuples. For the anti-correlated and indepen-
dent datasets, the SAJ algorithm took more time to run than
in the case of the correlated dataset, because the stopping
condition is satisfied much later.

6.2.2 Join Cardinality
In this experiment we evaluated the running time of our

algorithms while changing the cardinality of the join condi-
tion in each query. We modified the second relation S in
each synthetic dataset, by changing the number of tuples
that join with a tuple from the first relation R. If a join
cardinality is n, then the number of S records that join with
an R record is uniformly distributed between 0 and 2n. By
changing this average join cardinality on the second rela-
tion, the size of the second relation changed too. We varied
the join cardinality between 4 and 20. The size of the first
relation was 130,000 records. The size of the second relation
varied between 520,000 and 2.6 million. On each query we
used two selection conditions on each relation.

Fig. 6 shows the running time for different join cardinali-
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Figure 6: Running time for different join cardinalities

ties on the three synthetic datasets. (The join cardinality of
the IMDB dataset could not be changed.) For the correlated
dataset, the algorithm SAJ performed very efficiently, and
its running time was less than 1ms. The reason is that the
algorithm stopped very early, and the join cardinality did
not significantly affect the performance of the algorithm. On
the other hand, the PJ+ algorithm is very much affected by
the join cardinality. The reason is that the size of the record
set on which it has to compute a local skyline increases as
the join cardinality increases. In this case, the local prun-
ing introduced additional computational overhead. For the
anti-correlated dataset and the independent dataset, the al-
gorithms took longer time than the case of the correlated
dataset, and they were all affected by the join cardinality.

6.2.3 Number of Selection Conditions
This set of experiments evaluate the performance of the

algorithms on different numbers of selection conditions. We
changed the total number of selection conditions on the two
relations. The number of selection conditions on the second
relation is either the same or one more than the number of
selection conditions of the first relation. Fig. 7 shows the
running time of the algorithms, for the IMDB dataset and
the three synthetic datasets. We varied the total number of
selection conditions between 2 and 6. The sizes of the two
relations were 45,000 and 1.1 million records, respectively.
The average join cardinality of the join was 10.

For the IMDB dataset, SAJ was very much affected by
the number of selection conditions. The reason is that, as
this number increases, this algorithm has to manage more
sorted lists, and a stopping condition becomes harder to
meet. The other three algorithms were also affected by this
number, but they running time grew more slowly.

On the correlated dataset case, SAJ became the fastest
algorithm, and its running time was always within 4ms.

PJ+ is the most expensive algorithm, again due to its local-
pruning overhead. For the anti-correlated and independent
datasets, the algorithms took much more time when we in-
creased the number of selection conditions. There is an im-
portant observation for the independent dataset: the PJ+

algorithm became the fastest of all the algorithms. It is be-
cause by increasing the number of selection conditions, the
local pruning in the algorithm becomes more beneficial.

Fig. 6(d) shows the number of answers on the relaxation
skyline, for different number of selection conditions. (This
number of answers is independent from the algorithms.) It
shows that the anti-correlated data set has the largest num-
ber of skyline answers. As the number of selection conditions
increased, the number of skyline answers also increased. The
independent dataset becomes the dataset with the second
largest number of skyline answers.

6.2.4 Top-k Relaxation Answers
We adapted the algorithms to compute top-k answers on

a relaxation skyline, as described in Section 5.1. For each
run we used an equi-join query with four selection condi-
tions (two selection conditions on each relation). The queries
asked for top-10 points on the skyline, based on the follow-
ing weights: 0.2 and 0.4 for the selection conditions on R,
and 0.3 and 0.1 for the selection conditions on S. We evalu-
ated the performance of the algorithms on the IMDB and the
three synthetic datasets, with different dataset sizes. Similar
to the setting of computing a relaxation skyline, we varied
the size of the R relation from 50,000 records to 120,000
records. The size of dataset S was 1.2 million records. The
average join cardinality was 10. Fig. 8 shows the running
time of these algorithms on the datasets with different sizes.
For the IMDB dataset, PJ was the best. At the beginning,
SAJ performed the worst. As the size of relation R increased,
the performance of PJ+ became the worst.
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Figure 7: Running time for different numbers of selection conditions
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Figure 8: Running time for different dataset sizes (Top-k)

6.3 Relaxing All Conditions
In this set of experiments, we evaluated our algorithms

for the case where we want to relax all the conditions in
a query, especially including the join condition. We used
the Census-Income dataset in these experiments. We imple-
mented the MIDIR algorithm described in Section 4, as well
as its corresponding algorithm to compute top-k answers on
the relaxation skyline.

We evaluated the algorithms with 3 queries (Q1, Q2, and
Q3). Each query had two selection conditions (on attributes
of wage per hour and dividends from stocks) and one join
condition (self join on the age attribute). Q1 used two fre-
quent values for both selection condition selections. Q2 we
used the same frequent value for the first condition, but an
infrequent value for the second condition. Q3 used two in-
frequent values for both conditions. For the top-k case, we
asked for top-10 best points on the skyline based on the fol-
lowing weights, 0.15 for the first selection attribute, 0.15 on
the second selection attribute, and 0.15 on the join attribute.
We experimented with three relaxation cases: relaxing only
the join condition (called “case RELAX(J)”), relaxing the se-
lection condition on R and the join condition (called ”case
RELAX(RJ)”), and relaxing the selection condition on S and
the join condition (called “case RELAX(SJ)”). We varied the
size of the dataset between 4,000 - 20,000 records.

Fig. 9 shows the running time for computing a relaxation
skyline and running time for computing top-10 answers on
the skyline, for various cases and queries. Take Fig. 9(a)
as an example, where we want to compute the relaxation
skylines for the three queries. As we increased the size of
the relation (the queries used self-joins), the algorithm took
more time for all three queries. Q3 was the most expensive
query, while Q2 was the most efficient one. Fig. 9(b) shows
the results of different relaxation cases for the same query
Q2. It shows that RELAX(RJ) is the most expensive case,
while RELAX(J) is fastest relaxation case.

Summary: We have the following observations from the
experiments.

JF and PJ: For the case where we relax only selection
conditions, these two algorithms have very similar running
times. The result is not surprising, since these two algo-
rithms have almost the same set of operations on the sky-
line, possibly in different orders. Their main difference is
that JF has to keep in memory the entire set of tuple pairs
after the join step, while PJ can do the pruning on the fly,
thus it can reduce the size of the intermediate result. Notice
that JF has the advantage of not modifying implementations
of existing join operators.

PJ and PJ+: In most cases the PJ algorithm performs
faster. This is because the computation of the local sky-
line does not prune many records, and it introduces addi-
tional overhead. The performance of the PJ algorithm is
very much affected by the join cardinality; the performance
will decrease as the cardinality increases. As the number
of conditions increases, the computation of local skyline im-
proves the running time of the algorithm. This is because
the size of the global skyline increases and so, checking for
dominance becomes expensive in the global skyline.

SAJ: This algorithm performs efficiently when the data
and query conditions are correlated.

Compared to relaxing selection conditions, it is computa-
tionally more expensive to relax join conditions. The main
reason is that we do not know how much we want to relax
the join conditions, thus we have to keep a large number of
candidate pairs.

7. CONCLUSIONS
In this paper we presented a framework for relaxing rela-

tional queries in order to compute nonempty answers. We
formally define the semantics of relaxing query conditions in
this framework. We developed algorithms for the case where
we can only relax selection conditions, and algorithms for
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Figure 9: Running time for different relaxation cases and dataset sizes (relaxing all conditions)

the general case where we can relax all conditions, includ-
ing join conditions. We also show that these algorithms are
extendable to variants of the problem. We presented results
from an experimental validation of our techniques demon-
strating their practical utility. Our future work in this area
will address extensions of our framework to other types of
attributes such as categorical attributes.
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