
Safety Guarantee of Continuous Join Queries over
Punctuated Data Streams

Hua-Gang Li1
∗

huagang@cs.ucsb.edu
Songting Chen2

songting@sv.nec-labs.com
Junichi Tatemura2

tatemura@sv.nec-labs.com

Divyakant Agrawal2

agrawal@sv.nec-labs.com
K. Selçuk Candan2

candan@sv.nec-labs.com
Wang-Pin Hsiung2

whsiung@sv.nec-labs.com

1Department of Computer Science 2NEC Laboratories America
University of California Santa Barbara 10080 North Wolfe Road, Suite SW3-350

Santa Barbara, CA 93106 Cupertino, CA 95014

ABSTRACT
Continuous join queries (CJQ) are needed for correlating data from
multiple streams. One fundamental problem for processing such
queries is that since the data streams are infinite, this would require
the join operator to store infinite states and eventually run out of
space. Punctuation semantics has been proposed to specifically ad-
dress this problem. In particular, punctuations explicitly mark the
end of a subset of data and, hence, enable purging of the stored
data which will not contribute to any new query results. Given a
set of available punctuation schemes, if one can identify that a CJQ
still requires unbounded storage, then this query can be flagged as
unsafe and can be prevented from running. Unfortunately, while
punctuation semantics is clearly useful, the mechanisms to identify
if and how a particular CJQ could benefit from a given set of punc-
tuation schemes are not yet known. In this paper, we provide suffi-
cient and necessary conditions for checking whether a CJQ can be
safely executed under a given set of punctuation schemes or not. In
particular, we introduce a novel punctuation graph to aid the analy-
sis of the safety for a given query. We show that the safety checking
problem can be done in polynomial time based on this punctuation
graph construct. In addition, various issues and challenges related
to the safety checking of CJQs are highlighted.

1. INTRODUCTION
Recent years have witnessed the growth of newly emerging on-

line applications in which data arrives in a streaming format and
at high speeds. For instance, financial applications process streams
of stock market or credit card transactions, telephone call moni-

∗The work has been done during the author’s internship at NEC
Laboratories America.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

toring applications process streams of call-detail records [4], net-
work traffic monitoring applications process streams of network
traffic data [5], and sensor network monitoring applications process
streams of environmental data gathered by sensors [9]. In such ap-
plications, inputs to processing modules take the form of continu-
ous (and potentially infinite) data streams, rather than finite stored
data sets. Also, it is quite often that applications require long-
running continuous queries as opposed to the traditional one-time
queries.

One fundamental problem for processing continuous queries is
that since data streams are potentially infinite, traditional relational
operators, which are well-defined based on finite data, are no longer
appropriate. For instance, two highly common operator types are
known to be inappropriate for processing infinite data streams: blo-
cking operators, such as groupby, and stateful operators, such as
join operators. A blocking operator may never emit a single result,
while a stateful operator may require infinite state and eventually
run out of memory.

To address these problems, stream punctuation semantics has
been introduced in the context of data streams [12]. A punctuation
is a “predicate” which denotes that no future stream tuples will sat-
isfy this predicate. Thus, based on a given punctuation, stateful and
blocking operators may be able to purge data that will no longer
contribute to any new results or emit the blocked results, respec-
tively. In short, punctuation semantics breaks the infinite semantics
in the streaming context to avoid infinite memory consumption and
indefinite blocking. To make the discussion concrete, we borrow
the online auction example in [12] as a running example.

EXAMPLE 1. Here, the item stream contains items posted by
sellers and an item tuple has four attributes, namely, (sellerid,
itemid, name, initialprice). The bid stream contains the bids
posted by buyers and a bid tuple contains three attributes, (bidder-
id, itemid, increase). An example query in this scenario would
be to “track the difference between the final price and the initial
price for each item”. This can be done by (a) joining the item

stream and bid stream on their respective itemids and then (b)
summing up the increase values for each item seen in the streams.

Figure 1 illustrates this example. Without any application knowl-
edge, throughout the auction, the system has to keep all incoming
tuples from both data streams, since any stored tuple may join with

 19

SUM

GROUPBY

JOIN

bid
bidderid itemid increase

blocking

0005
0004
0003
0007
0005
...
*
...

1
2
1
3
1
...
1
...

$10
$5
$14
$0.1
$2
...
*
...

item
sellerid itemid name initialprice
0001

0002
0001
...

1

2
3
...

NEC LitePad

Canon PowerShot G3
Lord of the Ring DVD
…

$800

$300
$5
...

no more tuples with itemid = 1

stateful

Data Stream
Management System

no more tuples with itemid = 1

Figure 1: A Punctuation Example from an Online Auction Sce-
nario

a future incoming tuple in the other stream. Thus the query will
require infinite join state storage (and the system will eventually
break down). Nevertheless, with appropriate punctuations, this in-
finite state problem can be resolved:

• First of all, if each itemid is unique in the item stream,
then each incoming bid tuple can join with only one single
item tuple. Thus, as soon as the corresponding item tuple
arrives, all the corresponding bid tuples can be purged from
the system.

• When the auction for one item with itemid = 1 is closed,
then no more bids for the item with itemid = 1 will be
inserted into the bid stream. As a consequence, if this infor-
mation is available (through a punctuation), the join opera-
tor can purge the item tuple with itemid = 1. Furthermore,
the groupby operator can now output the result for this item.

The above example shows the utility of punctuations on address-
ing the infinite state and blocking problems. Unfortunately, it is
impossible to guarantee that the punctuation with a specific value,
such as itemid = 1, will always be generated at runtime. The only
knowledge we can learn from the application semantics is that there
might be punctuations on itemid from bid stream, which we refer
to as punctuation schemes (discussed in more detail in Section 2.3).
With the knowledge of the available punctuation schemes, it is
possible to determine that some continuous queries may still re-
quire infinite space no matter what actual punctuations are gener-
ated. In the previous example, if the punctuation scheme shows
that there are only punctuations on bidderid from bid stream,
then the item stream in the above query can never be purged. In
other words, for some queries, the infinite state problem cannot be
solved no matter what actual punctuations may come. Such queries
are unsafe and should not be processed. Obviously, checking safety
of continuous queries should be the very first task for a Data Stream
Management System (DSMS) [2]. Unfortunately, to our knowl-
edge, there is yet no mechanism that can identify if and how a par-
ticular continuous query could benefit from the punctuations (or
more precisely, punctuation schemes) available in the system. Note
that although it is impossible to predict which actual punctuations
may come at runtime, the safety checking problem under a given
punctuation scheme set is very important due to the following rea-
sons:

• First, if the safety checking procedure shows that a query is
not safe under a given set of punctuation schemes, then this

query should not ever be allowed to be executed, since it can
never be purged by any actual punctuations. It is important to
make such decision at query compile time before such unsafe
query consumes all the resources.

• Second, note that there might exist many punctuation schemes
defined by the application semantics. It is thus important for
the query engine to identify those punctuations that are useful
to a particular query. In this way, we can avoid unnecessary
processing of the irrelevant punctuations.

The state-of-the-art on the streaming punctuation research mainly
addresses the following three issues: (i) semantic modeling of punc-
tuations in [12], in particular, adaptation of the relational opera-
tors into stream operators; (ii) generation of useful punctuations,
such as the heartbeats [11], to ensure correct support of continu-
ous queries on a time basis; and (iii) optimization of the execution
behavior in the presence of punctuations, such as the PJoin algo-
rithm [6] for optimizing binary joins using punctuations.

In this paper, we focus on the safety checking of the continuous
join queries (CJQs) given a set of available punctuation schemes. In
particular, we show that while the safety checking is quite straight-
forward for binary join queries (as shown in the above auction ex-
ample), it is non-trivial when join queries are defined over more
than two data streams (multi-way join) and when the punctuation
schemes are defined on more than one attribute. The underlying
challenges mainly originate from the following two aspects:

• The purge strategy for a multi-way join query is not imme-
diately evident in contrast to that for a binary join query.
Especially, it becomes more complicated when punctuation
schemes on multiple attributes are available.

• There exist many execution plans for a given multi-way join
query. For instance, a multi-way join query can be executed
by a single MJoin [13] operator, a tree of MJoin operators,
a tree of binary join operators, or a tree of mixed MJoin and
binary join operators. However, as we will show in this pa-
per, not all these execution plans are safe given the available
punctuation schemes. Hence, given a continuous join query,
we should be able to decide if this query can be safely ex-
ecuted without having to enumerate all possible execution
plans.

Contributions of this Paper. Our contributions in this paper are
summarized as follows:

• We formalize the problem of safety checking of continu-
ous join queries under punctuation semantics. This ensures
that there is no unlimited memory requirement during query
processing.

• We generalize the straightforward purge strategy for the bi-
nary join case to the multi-way join case. This generaliza-
tion, which we call chained purge strategy, also serves as the
basis for the safety checking of continuous join queries.

• A new graph representation, namely the punctuation graph,
is proposed to capture the relationship between the punctu-
ation schemes and the join conditions. Based on the punc-
tuation graph construction, we then propose and prove the
necessary and sufficient conditions for checking the safety of
continuous join queries.

• We generalize the concept of punctuation graph to capture
the case when the punctuation schemes involve more than

 20

network

Input Manager

Q
u

ery
P

ro
cesso

r

CJQ1 CJQ2 CJQM
. . .

join query plans

. . .

Query Register
[punctuation schemes]

Streams
[relational tuples, punctuations]CJQnew

DSMS

join results

safe: accept

unsafe
reject

Figure 2: Architecture for Continuous Join Query Processing

one attribute. Finally, a linear time safety checking proce-
dure for punctuation schemes on a single attribute, and a
polynomial time safety checking procedure for punctuation
schemes on multiple attributes are presented. Both avoid the
exponential enumeration of execution plans of a continuous
join query.

• Based on our proposed theoretical framework, we also pre-
liminarily discuss how to choose a safe execution plan for a
continuous join query by considering a variety of practical
issues.

The rest of the paper is organized as follows. Section 2 presents
the notations and problem formulation for safety checking of con-
tinuous join queries. Section 3 describes how to purge the join
states for both binary join and multi-way join operators. In Sec-
tion 4, safety checking procedure of continuous join queries is pro-
posed and the correctness proof is presented. We discuss some re-
lated issues for safety checking in Section 5. Section 6 reviews the
related work, followed by conclusions and future work in Section 7.

2. NOTATIONS AND PROBLEM FORMU-
LATION

In this section, we define the notations used throughout the pa-
per and formalize the safety checking problem of continuous join
queries under punctuation semantics.

2.1 System Architecture
Figure 2 depicts an overview of a general DSMS system archi-

tecture. The input manager accepts and buffers the stream data and
punctuations from the application environment. The query proces-
sor processes the stream data and punctuations for the registered
continuous join queries (CJQs). Of course, the system should allow
only those CJQs that can be safely executed to be registered in the
system. In particular, the query register records a set of punctuation
schemes (Section 2.3) which describe the types of punctuations that
may be generated for a particular data stream (this information is

typically derived from the application semantics). Before register-
ing a continuous join query, the query register checks if this query
is safe from the available punctuation schemes (this safety problem
will be formalized in Section 2.4). If it is safe, a safe query plan is
generated and continuously executed for the incoming stream data
(Section 5). Otherwise, the continuous join query is rejected.

2.2 Continuous Join Query and Safety
Continuous Join Query. Each data stream Si has a relational
schema (Ai

1, · · · , Ai
ni

), where each Ai
j is an attribute. A con-

tinuous join query CJQ(�, ℘) is defined over a set of data streams
� = {S1, · · · , Sn}, where ℘ represents a set of join predicates
among the data streams.

Each of the join predicates p ∈ ℘ is specified on two data streams
Si and Sj . In this work, we only consider the commonly used
equi-join predicate, i.e., Ai

x = Aj
y(1 ≤ x ≤ ni, 1 ≤ y ≤ nj). We

also only consider conjunctive join predicates between any two data
streams. To support other kinds of join predicates and disjunctive
join predicates remains as future work.

Due to the unbounded nature of data streams, only non-blocking
join algorithms are suitable. For instance, a symmetric binary hash
join algorithm [14] can be used in the case of binary join operators
and a generalized symmetric join algorithm [13] can be employed
for MJoin operators.

Join State. When executing a continuous join query, inputs of each
join operator need to be stored for producing future matches. We
refer to the space used for storing the inputs of each join operator as
the join states. In the case of a hash-based join algorithm, the join
states of a join operator refer to the hash tables where the streaming
data elements or the intermediate join results are hashed and stored.

We denote �n as a join operator with n(≥ 2) inputs (either a
binary join operator or an MJoin operator), and denote ΥSi (i =
1..n) as the join states of �n. Future inputs are denoted as ΔΥSi

(i = 1..n). Note that a tuple in ΥSi needs to be stored as long as it
can generate a result with any tuples in the future inputs.

DEFINITION 1. Purgeability. A join state ΥSi(i = 1..n)
is purgeable iff for any tuple t ∈ ΥSi , there exists a mechanism
to determine that t will not produce any join results with any new
tuples in ΔΥSj (j �= i). A join operator �n is purgeable iff all n
join states are purgeable.

Let an execution plan Γ(�, ℘) of a continuous join query CJQ
(�, ℘) contain m(≥ 1) join operators; i.e., �n1 , · · · , �nm .

DEFINITION 2. Safety of an Execution Plan. An execution
plan Γ(�, ℘) containing m join operators �n1 , · · · , �nm is safe
iff every join operator �ni (i = 1..m) is purgeable.

DEFINITION 3. Safety of a Continuous Join Query. A con-
tinuous join query CJQ(�, ℘) is safe iff there exists at least one
safe execution plan Γ(�, ℘).

Note that we need a specific mechanism to determine purgeabil-
ity defined above. When all the data streams are finite as in the
conventional database case, the join states can be purged once all
the streams are consumed. When we are dealing with sliding win-
dow type of continuous join queries [2], any tuples in the join states
that move out of the time window can be purged. However, when
neither of these are applicable, we need a new mechanism to en-
sure the safety of continuous join queries. Later in this section,
we introduce a mechanism to formalize the safety problem using
punctuations.

 21

2.3 Punctuation
Punctuation. A punctuation P is a predicate on stream elements
that must be evaluated to false for every element following the
punctuation [12]. There are many ways to represent punctuations.
We adopt the notations from [12] to represent punctuations as data
to allow their easy storage, searching and manipulation. A punc-
tuation for a data stream S(A1, · · · , An) is formally defined as a
set of patterns, one for each attribute Ai(1 ≤ i ≤ n). As in [12],
a pattern can be wildcard, denoted as “*”. This means that there
is no value constraint on a particular attribute for the future stream
data. A pattern can also be a constant value, which means that
there is an equal-value constraint on a particular attribute for the
future stream data. For instance, in the online auction example of
Section 1, the punctuation for the bid stream which states that no
more bids for the item with itemid = 1 will arrive can be repre-
sented as (∗, itemid = 1, ∗), or simply (∗, 1, ∗).

Punctuation Scheme. In this paper, we introduce the punctuation
scheme concept to model the application semantics in terms of the
formats of punctuations that a data stream S can have. For instance,
in the online auction example of Section 1, it only makes sense
to have punctuations with constant value patterns on the attribute
itemid rather than on the attribute increase for the bid stream.

Formally, a punctuation scheme P S on a data stream S(A1, · · · ,
An) is defined as (P S

1 , · · · , P S
n). If we may have puncutations

with constant value patterns on attribute Ai, then we denote P S
i =

“ + ”. In this case, we call attribute Ai punctuatable and the ac-
tual punctuation p an instantiation of its corresponding punctuation
scheme P S . If we can only have punctuations with wildcard pat-
terns on attribute Ai, then we denote P S

i = “ ” and attribute Ai

is not punctuatable. In the last auction example, we may have one
punctuation scheme on the bid stream (, +, ,), denoting that
we may have punctuations with constant value patterns only on at-
tribute itemid.

Note that a punctuation scheme over a data stream may have
more than one punctuatable attributes at the same time and the cor-
responding punctuations have to be instantiated by assigning con-
stant value patterns to all the punctuatable attributes. Moreover,
a data stream may have more than one punctuation scheme. The
query register in Figure 2 contains all the punctuation schemes
defined in the DSMS for checking the safety of continuous join
queries, referred to as punctuation scheme set, denoted by �.

2.4 Safety Problem Formulation
While punctuations are conceptually useful, as shown in the auc-

tion example in Section 1, it is not immediately clear if and how a
particular continuous join query could benefit from a given set of
available punctuations. In this section, we formalize the process
through which punctuations affect the safety of a CJQ. We first
rephrase Definition 1 in terms of punctuation schemes.

DEFINITION 4. Purgeability using Punctuations. A join state
ΥSi(i = 1..n) of a join operator �n is purgeable for a given punc-
tuation scheme set � iff for any tuple t ∈ ΥSi , there exists a finite
set of punctuations {P} (with each P being an instantiation of one
punctuation scheme in �) such that we can determine that t will
not produce any join results with any new tuples of the join states,
ΔΥSj (j �= i). A join operator �n is purgeable iff its all n join
states are purgeable. An execution plan is safe iff all its join oper-
ators are purgeable.

Definition 4 highlights the first problem we tackle in this paper:
“given a punctuation scheme set, how can we determine if the tu-
ples in the join states can be purged?”

DEFINITION 5. Safety of a CJQ using Punctuations. A con-
tinuous join query CJQ(�, ℘) is safe iff there exists at least one
safe execution plan Γ(�, ℘).

Definition 5 highlights the second problem we address in this
paper. That is, “given an arbitrary CJQ, how can we decide if
there exists a safe plan for executing this query or not?” As we
will show later in Section 4, given the same punctuation scheme
set and CJQ, some execution plans are safe while others are not.
The challenge is thus to determine the safety of a query without
enumerating all possible execution plans, which is obviously very
expensive.

Note that there are actually two choices for implementing the
purge strategy for continuous join queries. The first choice is a
natural one, which is to extend the join operator with purge func-
tionalities [6, 12]. In this case, the query purgeability depends on
the shape of the query execution plan. The alternative is to develop
a separate purge engine that is independent of any specific query
execution plan. In this case, the query purgeability depends only
on the query itself. In this work, while we assume using the first
model since it is a clear and easy extension to existing query engine,
our safety checking results can be applied to both scenarios.

Finally, since a given CJQ can be safely executed in a number of
ways under a given punctuation scheme set, we will discuss how to
choose a safe execution plan based on various possible objectives.

3. PURGING JOIN STATES USING PUNC-
TUATIONS

We first address the purgeability of the join states for a given
punctuation scheme set. We start with punctuation schemes having
only one punctuatable attribute and then we show how to evolve
our proposed techniques to handle arbitrary punctuation schemes.
Before we can answer if a join state can be purged for a given punc-
tuation scheme set, we first need to understand how to purge a join
state using punctuations. Such a purge strategy will serve as the ba-
sis for the safety checking procedure in Section 4. In this section,
we first study the simple binary join case and generalize the results
to the more general MJoin case.

3.1 Purging for Binary Join Operator
It is straightforward to determine the required punctuation sche-

mes for a binary join operator’s continuous and safe execution. The
process was roughly introduced using the online auction example
in Section 1. We now formally provide the purge strategy for a
binary join operator.

Assume that the two input data streams of a binary join opera-
tor �2 are S1(A

1
1, · · · , A1

n1) and S2(A
2
1, · · · , A2

n2), and the join
predicate is A1

i = A2
j . In order to purge a tuple t(a1, · · · , ai, · · · ,

an1) in the join state ΥS1 for S1, we need a punctuation of the
form (∗, · · · , A2

j = ai, · · · , ∗) from S2 such that for any new tu-
ples ΔΥS2 , t �� ΔΥS2 must evaluate to φ. More formally, in order
to purge any tuples in ΥS1 , we need a punctuation scheme P S2 on
S2 with P S

j = “ + ”. A similar situation holds for purging the
tuples in the join state ΥS2 .

Note that it is straightforward to support conjunctive join pred-
icates between two input streams. Now we assume that the join
predicates are A1

i1 = A2
j1 ∧ · · · ∧ A1

ip
= A2

jp
. A punctuation

scheme P S2 from S2 with at least one P S2
k = “ + ”(k = j1..jp)

suffices to purge the join state ΥS1 .

3.2 Purging for MJoin Operator
Prior work [6] on purge strategies of MJoin operators only con-

siders the cases where all input streams share the same join at-

 22

S1.B=S2.BS1
(A, B)

a1, b1

2 3

JOIN
STATE

FUTURE DATA

S2
(B, C)

S3
(C, A)

*

...

S2.C=S3.C

b1, -

b1, -

c1, -

cn, -

...

b1,

* c1,

* cn,
...

JOIN GRAPH

S1.B=S2.B, S2.C=S3.C

Tt[2] Tt[3]

Pt[S2]

Pt[S3]

t

1 2 3

Figure 3: A 3-Way CJQ Executed by an MJoin Operator

tributes in the join predicates. In contrast, in this section, we pro-
pose a chained purge strategy for the MJoin operator under any
arbitrary join predicates. We first introduce a notion of join graph
for a join operator.

DEFINITION 6. Join Graph. The join graph for a join opera-
tor �n is a connected, undirected, labeled graph JG(V, E). Each
vertex vi ∈ V represents one input stream Si for the join operator.
Each edge, eij ∈ E, between any two vertices vi and vj represents
that there exists a join predicate between Si and Sj .

EXAMPLE 2 (MOTIVATING EXAMPLE). Figure 3 shows an
example 3-way join operator with three inputs S1(A, B), S2(B, C),
S3(C, A) and two join predicates S1.B = S2.B, S2.C = S3.C.
Each vertex in the join graph corresponds to one input. There are
two edges, namely, one between S1 and S2 and one between S2

and S3, denoting the two join predicates.

Let us now use the above example to provide some intuitions for
how to purge the join states for an MJoin operator. Assume that the
join states for S1, S2 and S3 are ΥS1 , ΥS2 and ΥS3 respectively,
as shown in Figure 3. In order to purge a tuple t(a1, b1) from ΥS1 ,
we have to guarantee that it will not generate any new query results
with either ΔΥS2 or ΔΥS3 .

First, we consider how to ensure t � ΔΥS2 = φ. Clearly,
from the discussions in the last section, we know that we need a
punctuation from S2 as (b1, ∗) such that t � ΔΥS2 = φ always
holds. We define the joinable tuples in ΥS2 with respect to t as
Tt[ΥS2] = ΥS2�<t 1. We further refer to Pt[S2] as the required
punctuations from S2 for purging tuple t. In this case, Pt[S2] =
{(b1, ∗)}.

Next, we consider how to ensure t � (ΥS2+ΔΥS2) � ΔΥS3 =
φ. Since t � ΔΥS2 = φ must hold from previous step, we
only need to make sure that t � ΥS2 � ΔΥS3 = φ. Since
t � ΥS2 = t � (ΥS2�<t) = t � Tt[ΥS2], we only need to
guarantee that Tt[ΥS2] � ΔΥS3 = φ always holds. Assume that
δC(Tt[ΥS2]) = {c1, · · · , cn} 2. Again, from the discussion for
the binary join case, we need punctuations (c1, ∗),· · · ,(cn, ∗) to

1�< denotes semi-join.
2δC is to select distinct values of attribute C.

ensure that Tt[ΥS2] � ΔΥS3 = φ always holds. The required
punctuations are thus Pt[S3] = {(c1, ∗), · · · , (cn, ∗)}.

The above example shows that there is a chaining effect, which
results in that streams that are not directly connected with t (in
terms of join predicates) still have impact on the purgeability of t.

S

…S1

…S2

…

…

…

Tt[p]

S2 Sp…

t

1 2 p

…

JOIN
STATE

FUTURE DATA

S S1

Tt[1]
Tt[2]

Pt[S2]

Pt[Sp]

Pt[S1]

…

1 2 p

Figure 4: Chained Purge Strategy for MJoin Operator

3.2.1 Chained Purge Strategy
We use the above observation to develop a chained purge strat-

egy. First, consider an acyclic join graph. For any node S in the join
graph, we can obtain a spanning tree from the join graph rooted at
S as shown on the top of Figure 4. Now, consider any root-to-leaf
path S → S1, · · · ,→ Sp, with join predicates as S.A1 = S1.A1,
S1.A2 = S2.A2,· · · , Sp−1.Ap = Sp.Ap without loss of gener-
ality. In order to purge any tuple t in S, we need to ensure that
t cannot generate any new query results with ΔΥS1 , · · · , ΔΥSp .
We derive the required punctuations Pt[Si] for each Si in order to
purge t below.

Step 1: Obviously, we need punctuations Pt[S1] with a set of pred-
icates on S1.A1, whose values come from δA1(t). With Pt[S1], we
guarantee that t � ΔΥS1 = φ always holds. We then define the
joinable tuples in ΥS1 with respect to t as Tt[ΥS1] = ΥS1�<t for
the next step.

Step 2: We need punctuations Pt[S2] with a set of predicates on
S2.A2, whose values come from δA2(Tt[ΥS1]). With Pt[S2], we
guarantee that t � ΥS1 � ΔΥS2 = φ always holds. From previ-
ous step, we have t � ΔΥS1 = φ. Together, t � (ΥS1+ΔΥS1) �

ΔΥS2 = φ must hold. We can then define the joinable tuples in
ΥS2 with respect to t as Tt[ΥS2] = ΥS2�<Tt[ΥS1] for the next
step.

· · ·

Step i: We need punctuations Pt[Si] with a set of predicates on
Si.Ai, whose values come from δAi(Tt[ΥSi−1]). With Pt[Si], we
guarantee that t � ΥS1 � · · · � ΥSi−1 � ΔΥSi must evaluate to
φ. From all previous steps, we have:

 23

t � ΔΥS1 = φ,
t � (ΥS1 + ΔΥS1) � ΔΥS2 = φ,

· · ·
t � (ΥS1 +ΔΥS1) � · · · � (ΥSi−2 +ΔΥSi−2) � ΔΥSi−1 = φ.

Together, t � (ΥS1 + ΔΥS1) � · · · � (ΥSi−2 + ΔΥSi−2) �

(ΥSi−1 + ΔΥSi−1) � ΔΥSi = φ must hold. We then de-
fine the joinable tuples in ΥSi with respect to t as Tt[ΥSi] =
ΥSi�<Tt[ΥSi−1] for the next step.

· · ·

Based on the above chained purge strategy, the punctuation sche-
me P Si required for each Si must have P Si

i = “+”, i.e., there are
punctuations on Si.Ai.

Finally, note that when the join graph is cyclic, there exist multi-
ple ways to purge a join state. In Figure 3, if we have an additional
join predicate, S1.A = S3.A, then an alternative way to purge the
tuples in ΥS1 would be to first use the punctuations in S3 on A and
then use the punctuations in S2 on C. In the next section, we will
provide a sufficient and necessary condition to check when such a
chained purge strategy is applicable under a given set of punctua-
tion schemes for any arbitrary join graph.

4. SAFETY CHECKING PROCEDURE
Based on the chained purge strategy proposed in the last section,

we now present the theoretical results for the safety checking prob-
lems defined in Definition 4 and 5 in Section 2.4. We progressively
present them from the case of punctuation schemes with only one
punctuatable attribute to the case of arbitrary punctuation schemes.

4.1 Handling Simple Punctuation Schemes

4.1.1 Purgeability of a Join Operator

Our analysis of the first issue, namely, the purgeability of a join
state in Definition 4, is based on the following graph model, called
punctuation graph, which captures the relationship between join
predicates and the corresponding punctuation schemes.

DEFINITION 7. Punctuation Graph Assume that �n is a join
operator. The punctuation graph of �n under a given punctuation
scheme set � is a directed graph, denoted by PG�(�n). The ver-
tices in PG�(�n) are the n input streams for �n, namely, S1 to
Sn. For any join predicate Ai

x = Aj
y , if there exists a punctuation

scheme in � with P Si
x = “ + ”, then there is a directed edge from

Sj to Si.

S1.A, S1.B S2.B, S2.C

S3.A, S3.C

S1

S3

S2

+ +

+

Figure 5: An Example of Punctuation Graph

EXAMPLE 3. Figure 5 shows an example punctuation graph of
a 3-way join operator. The 3-way join operator has three input
data streams, namely, S1, S2 and S3. Three join predicates are
S1.B = S2.B, S2.C = S3.C and S3.A = S1.A, respectively.

There are also three available punctuation schemes, namely, (, +)
for S1, (, +) for S2 and (+,) for S3. The directed edges are
created by checking the relationship between the join predicates
and the punctuation schemes. For instance, for the join predicate
S1.B = S2.B, since there exists a punctuation scheme of (, +)
from S1, a directed edge is created from S2 to S1. Obviously, such
a punctuation graph can be constructed in linear time.

Based on the notion of punctuation graph, Theorem 1 provides
the theoretical result for the first problem in Definition 4.

THEOREM 1. The join state of an input data stream Si(i =
1..n) involved in a join operator �n is purgeable under a given
punctuation scheme set � iff there exists a path from Si to every
other node Sj in the punctuation graph PGn(�n).

Proof:

“=⇒”

We first prove the following by using contradiction: “If the join
state ΥSi for Si in a join operator �n is purgeable under a given
punctuation scheme set �, then there must exist a path from Si to
every other node Sj in the punctuation graph PGn(�n).”

Now assume that Si cannot reach all other nodes but is still
purgeable. There are two classes of nodes in PG�(�) in terms
of their relationships to Si. One class is the nodes that Si can
reach, denoted by R, and the other class is the nodes that Si can-
not reach, denoted by R̄. Figure 6 depicts such a classification. We
further assume that SX1 ,· · · ,SXp are the input streams in R that
have join predicates with the input streams SY1 ,· · · ,SYq in R̄. {S′}
are the rest input streams in R̄ whose join predicates involve only
those input streams in R̄, i.e., {S′} = R̄ − {SX1 , · · · , SXp}.

For a given tuple t in ΥSi , assume that it can generate some
query results and the joinable tuples (defined in Section 3) in the
join state for the input streams in R̄ are Tt[ΥSY1

], Tt[ΥSY2
], · · · ,

Tt[ΥSYq
] and Tt[ΥS′]. We now show that it is possible to have new

tuples in R̄ that are joinable with t and contribute to the new query
results. Or in other words, Si is not purgeable.

Assume that the input stream SYj has attributes (A
Yj

1 , A
Yj

2 , · · · ,

A
Yj
m , N), where A

Yj

1 , A
Yj

2 , · · · , A
Yj
m are the join attributes with

any of the input stream SXk in R, and N are the rest attributes that
may be joined with the input streams in R̄. We further assume one
tuple in Tt[ΥSYj

] as (a
Yj

1 , a
Yj

2 , · · · , a
Yj
m , n). Since there cannot be

punctuation schemes on any of the attributes (A
Yj

1 , A
Yj

2 , · · · , A
Yj
m)

3 and punctuation schemes are limited to one attribute only, it is
possible that the values (a

Yj

1 , a
Yj

2 , · · · , a
Yj
m) will come again.

We now construct a new tuple for SYj as (a
Yj

1 , a
Yj

2 , · · · , a
Yj
m ,

nnew), where nnew are the new values that do not appear in any
of the punctuations in R̄. Note that we must be able to find such
new values nnew, since a finite set of punctuations is allowed for
purging tuple t. Similar method is used to create new tuples for all
SY1 , · · · , SYq . For the input streams {S′}, we simply create a new
tuple with all its attributes being nnew.

It is straightforward to show that all these tuples created in R̄
are joinable with each other since they all have the same nnew

values (or already joinable in Tt[ΥYj]). The resulting tuple is also
joinable with the tuples in Tt[ΥSxk

] and subsequently joinable with

3Otherwise SYj will be reachable through any of the input stream
SXk and thus reachable from Si.

 24

t. A new result for t will be created. Hence, Si is not purgeable.
This is contradictory to our assumption that Si is purgeable. In
conclusion, Si must be able to reach every other node.

Si
...

Sx1

...

edges from join graph
directed edges from punctuation graph

...

set of nodes that Si can
reach in the punctuation graph

set of nodes that Si can NOT
reach in the punctuation graph

t
Sx2

Sxp

Sy1

Sy2

Syq

... ...

...

Tt[x1]

Tt[x2]

Tt[xp]

Tt[y1]

Tt[y2]

Tt[yq]

S’
...

...

Figure 6: Illustration for the Proof of Theorem 1.

“⇐=”

Next we prove the following: “If, for an input stream Si involved in
a join operator �n, there exists a path from Si to every other data
stream Sj in the punctuation graph of �n under a given punctua-
tion scheme set �, then the join state of Si is purgeable under �.”

Since Si can reach every other node Sj in the punctuation graph
PG�(�n), we can obtain a directed spanning tree T rooted at Si.
Note that there must exist an undirected spanning tree of the same
shape in the join graph of �n. We now prove this claim by applying
the chained purge strategy in Section 3.2.1.

Assume that one root-to-leaf path in this spanning tree is Si →
S1 → · · · → Sm, and the join predicates are Si.A1 = S1.A1, · · · ,
Sm−1.Am = Sm.Am, respectively for each edge. For any tuple
t in ΥSi , starting from S1, because the attribute S1.A1 must be
punctuatable (from the edge in punctuation graph), we need punc-
tuations δA1(t) to make sure that ΔΥS1 will not be joinable with
t. The joinable tuples Tt[ΥS1] in ΥS1 are ΥS1�<t. Clearly, by
iteratively applying the chained purge strategy in Section 3.2.1, we
can derive a finite set of punctuations for each Sj to purge tuple t.
Hence Si is purgeable.

From Theorem 1, we immediately get the following corollary
which states the necessary and sufficient condition for the purge-
ability of a join operator. Based on Corollary 1, we can see that the
3-way join operator in Figure 5 is purgeable.

COROLLARY 1. A join operator �n with S1, · · · , Sn as input
data streams is purgeable under a given punctuation scheme set �
iff its punctuation graph under �, PG�(�n), is a strongly con-
nected graph.

4.1.2 Safety Checking of a CJQ

So far, we only investigate the sufficient and necessary condition
to guarantee the safety of one join operator, i.e., either a binary
join or an MJoin operator. As discussed earlier in Section 2, a
continuous join query can be processed by an execution plan of
either a single MJoin operator, a tree of MJoin operators, a tree
of binary join operators, or a tree of mixed binary join and MJoin

operators.
The following example shows that even under the same available

punctuation schemes and for the same CJQ, some execution plans

may be safe while others may NOT. For instance, for the CJQ in
Figure 5, while the plan using a single 3-way join operator is safe,
none of the execution plans based on a tree of binary joins is safe.
A sample binary tree is shown in Figure 7: S1 is joined with S2

first and the results are then joined with S3. This execution plan is
not safe under the given punctuation scheme set. This is due to the
fact that there is no punctuation from S2 to purge the tuples from
S1 for the lower binary join operator.

X
S1

(A,B)
S2

(B,C)

S3
(A,C)

S’.C=S3.C,S’.A=S3.A

S1.B=S2.B

Intermediate
results

S’
(A,B,C)

Figure 7: No Safe Execution Plan with Binary Join Operators
for CJQ in Figure 5

Theorem 2 provides the theoretical result to the second issue in
Definition 5, i.e., if a safe plan exists for a given CJQ under the
available punctuation schemes. Here, the punctuation graph of a
CJQ is defined by assuming the entire query as an MJoin operator.

THEOREM 2. A continuous join query CJQ(�, ℘) where � =
{S1, · · · , Sn} can be safely executed under a given punctuation
scheme set � iff its punctuation graph under �, PG�(CJQ), is a
strongly connected graph.

Proof:

“=⇒”

We first prove the following: “If CJQ(�, ℘) can be safely executed
under a given punctuation schemes �, then its punctuation graph
PG�(CJQ) under � is a strongly connected graph.”

Before we show the correctness of this claim, we first prove the
following lemma.

LEMMA 1. Assume that a purgeable join operator �m has m
child nodes, OP1, · · · , OPm, OPi can be either another join oper-
ator or a data stream. We further assume that �m corresponds to a
continuous query CJQ, while OP1, · · · , OPm correspond to con-
tinuous queries CJQ1, · · · , CJQm. Now CJQ has a strongly
connected punctuation graph if all CJQ1, · · · , CJQm have a
strongly connected punctuation graph.

Proof of Lemma 1: Assume OP1 is defined on the raw data streams
(Si1

1 , · · · , Si1
p1), OP2 is defined on the raw data streams (Si2

1 , · · · ,

Si2
p2), · · · , OPm is defined on the raw data streams (Sim

1 , · · · , Sim
pm

).
Since the queries correspond to OP1,· · · ,OPm have strongly

connected punctuation graphs, this means that (Si1
1 , · · · , Si1

p1) are
strongly connected, (Si2

1 , · · · , Si2
p2) are strongly connected, · · · ,

(Sim
1 , · · · , Sim

pm
) are strongly connected. To prove CJQ has a

strongly connected punctuation graph, we further need to show that
all (Si1

1 , · · · , Si1
p1 , Si2

1 , · · · , Si2
p2 , · · · , Sim

1 , · · · , Sim
pm

) are strongly
connected.

Since �m is purgeable, by Corollary 1, the punctuation graph
for �m is strongly connected. In other words, OP1, · · · , OPm

are strongly connected. Assume that there is one edge from OPx

 25

to OPy . Based on Definition 7, this edge means that there exists
one join predicate, Six

r .A = S
iy
q .A, and the attribute S

iy
q .A is

punctuatable. Under this join predicate and punctuation scheme,
there must also exist an edge from Six

r to S
iy
q . Given the fact that

(Six
1 , · · · , Six

px
) and (S

iy

1 , · · · , S
iy
py) are respectively strongly con-

nected, and Six
r can connect to S

iy
q , all (Six

1 , · · · , Six
px

) thus can

connect to (S
iy

1 , · · · , S
iy
py). This result means that if OPx can con-

nect to OPy , then all OPx involved data streams can also connect
to all OPy involved data streams. By the transitivity property of
the edges, all OPx involved data streams can eventually connect to
all other data streams. Finally, since OP1, · · · , OPm are strongly
connected, the above is true for the data streams involved in any
OPi. Thus (Si1

1 , · · · , Si1
p1 , Si2

1 , · · · , Si2
p2 , · · · , Sim

1 , · · · , Sim
pm

) are
strongly connected - CJQ has a strongly connected punctuation
graph.

We now return to the proof for the sufficient condition of Theorem
2. Since CJQ(�, ℘) can be safely executed, according to Defin-
ition 3, there must exist at least one safe execution plan Γ(�, ℘)
for it. If Γ(�, ℘) is the one with an MJoin operator only, then we
can deduce the claim is correct based on Corollary 1. Assume that
the safe execution plan Γ(�, ℘) is a generic execution plan tree in
which the leaves represent the input streams of S1, · · · , Sn and the
internal nodes are join operators (either a binary join operator or
an MJoin operator). We now prove the claim using induction based
on Lemma 1.

1) First, all the leaf nodes, i.e., data stream nodes, are trivially
true. All the continuous queries correspond to the lowest non-leaf
operator nodes in Γ(�, ℘) must have a strongly-connected punctu-
ation graph, since these operators have only raw data stream input
(based on Corollary 1).

2) Now for any purgeable join operator �m, assume that all the
queries correspond to its m child nodes have a strongly-connected
punctuation graph, then the query corresponds to �m also has a
strongly-connected punctuation graph by Lemma 1.

This bottom-up induction based on the plan tree of Γ(�, ℘) will
eventually reach the root of the plan tree. Hence, the entire contin-
uous query has a strongly connected punctuation graph.

“⇐=”

Next we prove the following: “If the punctuation join graph PG�

(CJQ) for CJQ(�, ℘) under a given punctuation scheme set �
is a strongly connected graph, then CJQ(�, ℘) can be safely exe-
cuted under �.”

Based on Corollary 1, we know that the execution plan with a
single MJoin operator with all S1, · · · , Sn as input data streams
is safe. Hence, the claim is correct.

4.2 Handling Arbitrary Punctuation Schemes
So far, we only discuss the safety checking of CJQs with the case

of punctuation schemes having only one punctuatable attribute. In
this section, we show how to generalize the proposed technique to
handle the case of punctuation schemes with multiple punctuatable
attributes.

Let us still take a look at the 3-way join operator as shown in Fig-
ure 3 but with the available punctuation scheme set � as {S1(, +),
S2(+,), S2(, +), S3(+, +)}. The join graph and punctuation

graph of the 3-way join operator under � are shown in Figure 8(a)
and (b) respectively. According to Corollary 1, the 3-way join op-
erator is not purgeable since its punctuation graph is not strongly
connected. However, the 3-way join operator is actually purgeable
in that (i) the join state of S3 is purgeable according to Theorem 1;
(ii) the join state of S1 is purgeable as can be explained as follows.
Assume that t(a1, b1) is a tuple from S1. In order to make sure that
t is not joinable with new data coming into S2, we need a punctua-
tion (b1, ∗) from S2, which can be instantiated by the punctuation
scheme S2(+,). Furthermore, we assume that t’s joinable tuples
in S2 are (b1, c1), · · · , (b1, cm). Clearly, if we see punctuations
of (a1, c1), · · · , (a1, cm) in S3 instantiated from the punctuation
scheme S3(+, +), together with the punctuation (b1, ∗), we can
decide that t is not joinable with any new data coming into S2 and
S3; (iii) following the similar explanation for S1, the join state of
S2 is also purgeable.

S1
(A,B)

S2
(B,C)

S3
(A,C)

punctuation schemes

S1: (_,+) S2: (+,_),(_,+) S3: (+,+)

S1.B=S2.B S2.C=S3.C

S1
(A,B)

S2
(B,C)

S3
(A,C)

(a) join graph

(b) punctuation graph

S1.A=S3.A

Figure 8: A Motivating Example for Handling Arbitrary Punc-
tuation Schemes

Corollary 1 fails to capture the above case due to the fact that
the chained purge strategy does not take the punctuation schemes
with more than one punctuatable attribute into account. When we
develop the chained purge strategy in Section 3.2.1 for the case of
puncutation schemes with only one punctuatable attribute, in step
i, in order to make sure t � ΥS1 � · · · � ΥSi−1 � ΔΥSi = φ,
we only need to have the punctuations related to the joinable tuples
of t from the previous step. Nevertheless, when we have punctu-
ation schemes with multiple punctuatable attributes, the punctua-
tions related to some/all the join tuples of t from some/all of the
previous steps may also suffice to guarantee that t � ΥS1 � · · · �

ΥSi−1 � ΔΥSi = φ. More specifically, let us further take a look at
the path from S to Sp as shown in Figure 4. In step i, assume that
Si has m − 1 extra join predicates with m − 1 data streams along
the path from S to Si−1 in which the involved join attributes are
Ai1 , · · · , Aim−1 . To ensure that a tuple t from S is not joinable
with any new data from Si, a punctuation scheme from Si with the
punctuatable attributes (this set is referred to as PA) as a subset
of Ai, Ai1 , · · · , Aim−1 will suffice to generate a finite number of
punctuations of δPA(Tt[ΥSi]) to guarantee that, where Tt[ΥSi] is
redefined as ΥSi�< (ΥSi−1 � · · · � ΥS1 � t). This is to gener-
alize the chained purge strategy to handle the case of punctuation
schemes with multiple punctuatable attributes.

Before we proceed to generalize our techniques to handle arbi-
trary punctuation schemes, we introduce the following three nota-
tions: generalized punctuation graph (GPG), reachability in GPG,
and strong connection in GPG. The notations are defined in terms
of join operator and the companion notations for CJQ can be de-
fined in a similar way.

DEFINITION 8. Generalized Punctuation Graph Assume that
PG�(�n) is the punctuation graph of �n under a given punctua-

 26

tion scheme set �. The generalized punctuation graph of �n under
�, referred to as GPG� (�n), is obtained through a generaliza-
tion procedure on PG�(�n) as follows.

• Assume that a data stream Si involved in �n has a punctua-
tion scheme P with m punctuatable attributes, Ai1 , · · · , Aim ,
and they are involved as join attributes with data streams
Si1 , · · · , Sim respectively. We create a generalized node
which covers Si1 , · · · , Sim and a generalized directed edge
{Sij} → Si.

S1
(A,B)

S2
(B,C)

S3
(A,C)

G1,2
S3

(A,C)
S1

(A,B)
S2

(B,C)

directed edge

generalized
directed edge

generalized
node

Figure 9: A Generalized Punctuation Graph

EXAMPLE 4. Figure 9 shows the generalized punctuation graph
for the 3-way join operator as shown in Figure 8. Since the punc-
tuation scheme (+, +) from S3 has two punctuatable attributes A
and C, and they are involved as join attributes with S1 and S2 re-
spectively, we create a generalized node, G1,2 and a generalized
directed edge from G1,2 to S3 as shown in Figure 9.

DEFINITION 9. Reachability in GPG Assume that GPG�(�n)
is the generalized punctuation graph of �n under a given punc-
tuation scheme set �. The reachable node set of a node Si in
GPG�(�n), RSi , is defined as follows.

• Initially, RSi is set to contain all the nodes which can be
reached through the directed edges only.

• Repeatedly checking until RSi stops growing: if there exists
a generalized directed edge {Sj} → Sx and {Sj} ⊆ RSi ,
then RSi = RSi ∪ Sx.

DEFINITION 10. Strong Connection in GPG Assume that
GPG� (�n) is the generalized punctuation graph of �n under a
given punctuation scheme set �. For any pair of nodes Si and Sj

in GPG�(�n), if Si can reach Sj and vice versa, then GPG�

(�n) is strongly connected.

THEOREM 3. The join state of an input data stream Si involved
in a join operator �n is purgeable under a given punctuation sche-
me set � iff Si can reach every other node Sj in GPGn (�n).

Proof:

“=⇒”

We first prove the following by using contradiction: “If the join
state ΥSi for Si in a join operator �n is purgeable under a given
punctuation scheme set �, then Si can reach every other node Sj

in GPG�(�n).”

The proof for the necessary condition is similar to that for Theo-
rem 1 except that we need to point out that when constructing a new

tuple for SYj as (a
Yj

1 , a
Yj

2 , · · · , a
Yj
m , nnew), Definition 9 can guar-

antee that there are no punctuation schemes from SYj whose punc-

tuatable attributes are a subset of {AYj

1 , A
Yj

2 , · · · , A
Yj
m }.4 Thus we

can have such a tuple to reach a contradiction to our assumption.
Note that the proof for the necessary condition of Theorem 1 is not
complete when punctuation schemes with multiple punctuatable at-
tributes are available. This is mainly because there is no guarantee
that a punctuation scheme will not exist with multiple punctuatable
attributes as a subset of {AYj

1 , A
Yj

2 , · · · , A
Yj
m }, which then pre-

vents us from constructing such a tuple for SYj .

“⇐=”

Next we prove the following: “If an input stream Si involved in
a join operator �n can reach every other data stream Sj in the
generalized punctuation graph of �n under a given punctuation
scheme set �, then the join state of Si is purgeable under �.”

From the definition of reachability in GPG, the reachable node
set of Si, RSi , initially contains all the nodes which can be reached
through the directed edges only. According to the chained purge
strategy, we know that there exist a finite number of punctuations
in each of the stream (node) in RSi to determine that a tuple t
from Si will not be able to join with the new data coming into the
streams belonging to RSi . When RSi propagates to enclose more
reachable nodes through the generalized directed edges, accord-
ing to the generalized chained purge strategy, we know that there
also exist a finite number of punctuations in the newly incorporated
reachable node, which can determine that a tuple t in Si will not
be joinable with any new data coming into the streams belonging
to the new RSi . This iterative propagation together with the gener-
alized chained purging strategy will finally guarantee that a tuple t
from Si will not joinable with any new data coming into all other
data streams. Hence, Si is purgeable.

Likewise, from Theorem 3, we immediately get the following
corollary which states the necessary and sufficient condition for the
purgeability of a join operator when handling arbitrary punctuation
schemes.

COROLLARY 2. A join operator �n is purgeable under a given
punctuation scheme set � iff its generalized punctuation graph
GPG�(�n) is strongly connected.

Now we show the sufficient and necessary condition in Theo-
rem 4 to guarantee the safety of a continuous join query in the
presence of arbitrary punctuation schemes.

THEOREM 4. A continuous join query CJQ(�, ℘) where � =
{S1, · · · , Sn} can be safely executed under a given punctuation
scheme set � iff its generalized punctuation graph under �, GPG�

(CJQ), is strongly connected.

Proof:

“=⇒”

We first prove the following: “If CJQ(�, ℘) can be safely executed
under a given punctuation schemes �, then its generalized punctu-
ation graph GPG�(CJQ) under � is strongly connected.”

4Otherwise SYj will be reachable through any or some of the input
streams SXk and thus reachable from Si.

 27

Before we show the correctness of this claim, we first prove the
following lemma.

LEMMA 2. Assume that a purgeable join operator �m has m
child nodes, OP1, · · · , OPm, OPi can be either another join op-
erator or a data stream. We further assume that �m corresponds
to a continuous query CJQ, while OP1, · · · , OPm correspond to
continuous queries CJQ1, · · · , CJQm. CJQ has a strongly con-
nected GPG if all CJQ1, · · · , CJQm have a strongly connected
GPG.

The proof for this lemma is similar to that for Lemma 1. The only
difference is that when we prove the data streams Six

1 , · · · , Six
px

in

OPx can connect to all the data streams S
iy

1 , · · · , S
iy
py if OPx can

directly reach OPy , we should base upon Definition 8. Assume that
OPx can directly reach OPy . It means (i) there exists a data stream
in OPx which can directly connect to a data stream in OPy or (ii)
there exists a subset of data streams in OPx together with some
data streams from OPj(j �= x) which can connect to a data stream
in OPy through a generalized directed edge. Thus, for either case,
the data streams in OPx can connect to all the data streams in OPy

based on the reachability as defined in Definition 9. Then, based
on the transitive property, we can prove the GPG for CJQ is also
strongly connected. Note that the failure of Theorem 2 to capture
the case with arbitrary punctuation schemes in that the proof in
Lemma 1 only considers the directed edge between any two data
streams, which is restricted by Definition 7.

Based on Lemma 2, the necessary condition of Theorem 4 can be
proved similarly as for Theorem 2.

“⇐=”

Next we prove the following: “If the generalized punctuation join
graph GPG�(CJQ) for CJQ(�, ℘) under a given punctuation
scheme set � is strongly connected, then CJQ (�, ℘) can be safely
executed under �.”

Based on Corollary 2, we know that the execution plan with a
single MJoin operator with all S1, · · · , Sn as input data streams
is safe. Hence, the claim is correct.

4.3 Safety Checking Algorithm
The naı̈ve way to check if the GPG of a continuous join query

is strongly connected is to check the reachable node set for each
node based on Definition 9, which is obviously expensive in terms
of time complexity. Nevertheless, it is not immediately clear to de-
sign an efficient algorithm based on the characteristics of a general-
ized punctuation graph. Thus, we propose to use another practical
graph representation, transformed punctuation graph, to determine
if a continuous join query is safe or not under a given punctua-
tion scheme set. In the following, we will introduce a notation of
transformed punctuation graph and show how it is equivalent to
the generalized punctuation graph to guarantee the correctness of
safety checking procedure.

DEFINITION 11.Transformed Punctuation Graph Assume that
PG�(�n) is the punctuation graph of a join operator �n under a
punctuation scheme set �. The transformed punctuation graph of
PG�(�n), referred to as TPG� (�n) is obtained through the fol-
lowing transformation procedure, which is to iteratively repeat the
following steps:

• find the strongly connected components;

• virtual node construction: for each strongly connected com-
ponent with more than one node, merge them into one new
virtual node while keeping the structural relationship among
the nodes within the strongly connected component;

• virtual directed edge construction: for any pair of nodes S′
i

and S′
j with at least one of them as a virtual node, the join

predicate between them is the conjunction of the join predi-
cates, which correspond to the streams covered/represented
by S′

i and S′
j . (i) directed edge promotion: if there exists a

directed edge between their covered nodes, then this directed
edge is promoted to be as a virtual directed edge between
S′

i and S′
j . (ii) after the directed edge promotion, if there

is still no directed edge from S′
i to S′

j and S′
i is a virtual

node, and there exists a punctuation scheme P from one of
the streams covered by S′

j (virtual node) or the stream S′
j

itself whose punctuatable attributes are a subset of the join
attributes from S′

j , then add a new virtual directed edge from
S′

i to S′
j .

until the transformed punctuation graph becomes one single virtual
node or there does not exist any strongly connected component with
more than one node in the transformed punctuation graph.

EXAMPLE 5. Figure 10 shows the transformed punctuation gr-
aph for the PG of the 3-way join operator as shown in Figure 8.

S1
(A,B)

S2
(B,C)

S3
(A,C)

strongly connected component

V12

join predicate between V12 and S3 is S1.A=S3.A & S2.C=S3.C

S3
(A,C)

S1
(A,B)

S2
(B,C)

directed edge virtual directed edge

virtual node Promoted to be a virtual
directed edge

Figure 10: A Transformed Punctuation Graph

THEOREM 5. Assume that GPG�(CJQ) and TPG�(CJQ)
are the generalized punctuation graph and transformed punctua-
tion graph of a continuous join query CJQ(�, ℘) under a given
punctuation scheme set �. GPG�(CJQ) is strongly connected
iff TPG�(CJQ) has only one single virtual node.

Proof:

“=⇒”

We first prove the following by using contradiction: “If GPG�

(CJQ) is strongly connected, then TPG�(CJQ) has only one
single virtual node.”

Assume TPG�(CJQ) has m(> 1) (virtual) nodes in TPG�

(CJQ), N1, · · · , Nm and there is no existence of strongly con-
nected components. Since GPG� (CJQ) is strongly connected,
every data stream can be purged. Hence, according to the gen-
eralized chained purge strategy, every node in TPG�(CJQ) has

 28

to connect another node through a directed edge. Therefore, there
exist m directed edges for m nodes, which must lead to a cycle in
TPG�(CJQ). This is contradictory to our assumption. Hence,
we prove the above claim.

“⇐=”

Next we prove the following: “If TPG�(CJQ) has only one sin-
gle virtual node, then GPG�(CJQ) is strongly connected.”

Definition 11 together with the fact that TPGRe(CJQ) is strong-
ly connected implies that every node in GPG�(CJQ) can reach
any other node.

From Theorem 2, we can have a safety checking algorithm based
on the transform procedure in Definition 11. It takes linear time to
find the strongly connected components and the maximum number
of steps for the transformation procedure is n − 1 where n is the
number of data streams involved. Thus, the safety checking algo-
rithm takes polynomial time.

5. DISCUSSION
In this section, we discuss other issues related to the safety check-

ing of CJQs. In particular, we focus on the purgeability of the
punctuations themselves and on how to choose a safe execution
plan among alternatives.

5.1 Punctuation Purgeability
A punctuation helps not only purge the tuples from the current

join states, but also purge “future” tuples. Therefore, early removal
of the punctuations from the system is potentially hazardous. For
example, consider Figure 3: if the punctuation (b1, ∗) from the data
stream S2 is simply discarded after purging the tuple (a1, b1) in S1,
then any new tuples from S1 whose attribute B has value b1 can no
longer be purged. Of course, this is not acceptable. On the other
hand, storing all the punctuations indefinitely is also not acceptable,
as this may lead into infinite memory requirements. Thus, strictly
speaking, safety checking of a CJQ should involve two kinds of
purgeability: data purgeability and punctuation purgeability. We
have already discussed data purgeability in previous sections. In
the following, we discuss the punctuation purgeability issue from
both theoretical and practical points of view.

A punctuation can be treated as a special tuple and, similar to
the normal stream data, punctuations can also be purged by the
corresponding punctuations from other streams. For instance, let
us re-consider the example in Figure 3. In this example, the punc-
tuation (∗, b1) from S1 not only helps to remove the tuples in S2

whose attribute B has value b1, but also helps to remove the punc-
tuation (b1, ∗) from S2. The reason is that since there will be no
more tuples from S1 whose attribute B has value b1, (b1, ∗) from
S2 no longer needs to be kept.

However, theoretically, purging a normal stream tuple and purg-
ing a punctuation are not identical. A normal stream tuple can be
purged by punctuations on any of its join attributes, while a punctu-
ation can only be purged by the punctuations on its non-∗ attributes.
For instance, in Figure 5, a tuple (a1, b1) from S1 can be purged by
either a punctuation (b1, ∗) from S2 or a punctuation (∗, a1) from
S3, while the punctuation (∗, b1) from S1 can only be purged by the
punctuation (b1, ∗) from S2. Hence, intuitively, we also need punc-
tuations on non-∗ attributes, clearly rendering punctuation purging
very costly in terms of the number of punctuation schemes that
need to be supported. We plan to investigate punctuation purge-
ability optimization in our future work.

From a practical stand point, on the other hand, we can argue
that strict punctuation purgeability is not always necessary. First
of all, as was also pointed in [12], basic punctuation semantics
(which specifies) that a predicate will be false forever is too re-
strictive and impractical. For instance, such a forever semantics
would cause serious problems for the reusability of the ID space,
if IDs are punctuated. Hence, in order to be practical, punctuations
need to have lifespans. As a concrete example from network mon-
itoring applications, a punctuation on both sequence numbers and
source IP address may be generated denoting the end of one trans-
mission. According to the TCP RFC [8], the sequence number at a
TCP source will cycle approximately every 4.55 hours. This means
that such a punctuation has a lifespan for about 4.55 hours. After
that, the punctuation needs to expire and can be ignored (i.e., it is
implicitly purged). Note that, it may be possible that the same idea
of lifespan can be applied to purge other types of data as well.

Second, punctuations can also be missed due to the network
transmission problems or the application errors. Thus, a back-
ground clean-up mechanism is mandatory to remove the corre-
sponding non-purged data. Since cleaning missed non-purged data
is much cheaper than cleaning all the data, data purgeability alone
is sufficient in practice to guarantee the safety of continuous join
queries.

5.2 Choosing a Safe Execution Plan
A continuous join query CJQ(�, ℘) may be safely executed in

numerous ways under a given punctuation scheme set �. Among
all possible safe plans, it is of course desirable to pick one with
the minimum cost. In this section, we highlight the potential issues
involved in this process and the possible criteria for picking the best
execution plan. A full investigation of this optimization problem
remains our future work.

Naturally, similar to any traditional query optimization task, this
involves plan enumeration and cost estimation [10]. In this context,
plan enumeration means the enumeration of possible safe execu-
tion plans, while cost estimation refers to the estimation of the cost
for each individual plan.

Plan Enumeration: Given the available punctuation schemes, the
number of safe plans is typically much smaller than the number of
all possible plans. Thus, rather than first enumerating all possible
plans and then checking whether they are safe or not, it is more
desirable to generate only the safe plans in the first place.

From Section 4, we know that an execution plan is safe iff all of
its MJoin operators (including the binary join operators) are purge-
able. By Corollary 1 and 2, each individual MJoin operator is
purgeable iff its (generalized) punctuation graph is strongly con-
nected. Based on these results, we can conclude that any strongly
connected sub-graph in the punctuation graph for the query could
serve as a building block for constructing safe plans. A dynamic
programming approach which is similar to the classical system R
optimizer [10] can be used to construct the query plan from small
strongly connected sub-graphs.

Cost Estimation: Cost estimation when punctuations are consid-
ered needs careful consideration. Strictly speaking, punctuations
have both costs (in terms of punctuation generation and real-time
processing) and benefits (in terms of memory gains, reduced block-
ing). Therefore, when we talk about cost estimation, we actually
refer to a cost/benefit analysis. Since there are many (sometimes
conflicting) parameters, such as the data arrival rate, punctuation
arrival rate, and join selectivities, involved the goals of the op-
timization itself may be contradictory: for the simplest example,

 29

consider that one may optimize for memory usage and throughput;
but these are not always complementary.

Next, we provide two concrete plan parameter examples and
their cost benefit impacts. Consider an MJoin operator:

Plan Parameter I: which alternative punctuation (schemes) to use.
As two extreme cases, consider that we may (a) either choose to
use all punctuation schemes available to us, or (b) use only the
minimum number of punctuation schemes that will keep the punc-
tuation graph strongly connected. Option (a) is likely to reduce the
memory usage for data; but it will increase the memory usage (and
the processing cost) for punctuations. Option (b) on the other hand
will provide savings in terms of punctuations, but will increase the
memory usage for data.

Plan Parameter II: which runtime purge strategy to use. A runtime
purge strategy [6] can be either eager or lazy: eager purge strategy
processes the punctuations as soon as they arrive, while lazy purge
strategy handles punctuations in a batched fashion. As illustrated
in [6], different strategies have significantly different impacts on the
overall memory usage and system throughput. Therefore, based on
the optimization goals, different purge strategies may be applicable.

Adaptive Query Processing: Note that even when an accurate
cost model can be developed, the accuracy of the cost model may
quickly deteriorate as the system characteristics rapidly change.
Unfortunately, such rapid changes and fluctuations are common
in a streaming environment. Adaptive query processing has been
shown to provide stable performance against fluctuations in data
statistics [1, 3]. We believe, it is interesting future direction to
study (a) how the changes in the punctuations affect the query per-
formance, (b) how the changes in the data characteristics affect the
punctuation plans, and (c) how to implement appropriate adapta-
tion mechanisms.

6. RELATED WORK
Tucker et al. [12] first proposed the streaming punctuation se-

mantics to adapt stateful and blocking operators to the data stream
environment. In particular, semantic modeling of punctuations in
terms of three kinds of invariants were introduced to specify the
proper behavior of query operators in the presence of punctuation.
In [6], stream join optimization was discussed by exploiting the
punctuation semantics. A new binary join operator PJoin was
proposed for handling punctuations. In addition, different purge
strategies and punctuation propagation strategies were discussed.
In [11], a special kind of punctuation, heartbeats, is introduced in
a Data Stream Management System (DSMS) which relies on time
as a basis for windows on streams and for defining a consistent se-
mantics for multiple streams and updatable relations. Heartbeats
can support continuous query in an application-defined time do-
main instead of in a centralized one. None of the above work ad-
dresses the safety of continuous join queries under the punctuation
semantics.

Another way to limit the space consumption of continuous queries
over data streams is to use the window-based semantics, e.g., slid-
ing window. In [3, 7], window joins over data streams were dis-
cussed by extending traditional join semantics with stream window
semantics. Although window queries are safe in the sense there is
no infinite space requirement, exploiting punctuations that are typ-
ically available in the data streams can further reduce the memory
consumption at runtime.

7. CONCLUSION
In this paper we formalize the problem of safety checking of

CJQs under the punctuation semantics. An efficient algorithm for
determining the safety of a CJQ is proposed based on a new graph
construct, punctuation graph. Our proposed technique avoids the
exponential enumeration of execution plans when determining if
there exists a safe execution plan for a CJQ. Finally, various issues
and challenges related to the safety checking of CJQs are high-
lighted. Our future research work will involve the following as-
pects: (i) implementation and evaluation on our proposed frame-
work; (ii) supporting disjunctive join predicates for CJQs and ar-
bitrary kinds of punctuation schemes which has more than just
one punctuatable attribute; (iii) extend the current safety checking
framework or develop a new one for adapting other relational op-
erators to the streaming punctuation semantics; and (iv) supporting
the safety checking of an arbitrary SQL-style streaming query.

8. REFERENCES
[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously

adaptive query processing. In SIGMOD, pages 261–272,
2000.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In PODS, pages
1–16, 2002.

[3] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams - a new class of data management
applications. In VLDB, pages 215–226, 2002.

[4] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, and F. Smith.
Hancock: A language for extracting signatures from data
streams. In KDD, pages 9–17, 2000.

[5] C. D. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and
O. Spatscheck. Gigascope: High performance network
monitoring with an sql interface. In SIGMOD, page 623,
2002.

[6] L. Ding, N. Mehta, E. A. Rundensteiner, and G. T.
Heineman. Joining punctuated streams. In EDBT, pages
587–604, 2004.

[7] L. Golab and M. T. Özsu. Processing sliding window
multi-joins in continuous queries over data streams. In
VLDB, pages 500–511, 2003.

[8] Jon Postel, ed. RFC 791: Internet protocol: Darpa internet
program protocal specification. September 1981.

[9] S. Madden and M. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In ICDE,
pages 555–566, 2002.

[10] P. G. Selinger, M. M. Morton, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In SIGMOD, pages 23–34, 1979.

[11] U. Srivastava and J. Widom. Flexible time management in
data stream systems. In PODS, pages 263–274, 2004.

[12] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
punctuation semantics in continuous data streams. TKDE,
15(3):555–568, 2003.

[13] S. D. Viglas, J. F. Naughton, and J. Burger. Maximizing the
output rate of multi-way join queries over streaming
information sources. In VLDB, pages 285–296, 2003.

[14] A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment. In Int’l
Conf. on Databases, Parallel Architectures and Their
Applications, pages 68–77, 1991.

 30

