
Online Outlier Detection in Sensor Data Using
Non-Parametric Models

S. Subramaniam
UC Riverside
sharmi@cs.ucr.edu

T. Palpanas
IBM Research
themis@us.ibm.com

D. Papadopoulos, V. Kalogeraki, D. Gunopulos
University of California, Riverside

dimitris,vana,dg@cs.ucr.edu

ABSTRACT
Sensor networks have recently found many popular applica-
tions in a number of different settings. Sensors at different
locations can generate streaming data, which can be analyzed
in real-time to identify events of interest. In this paper, we
propose a framework that computes in a distributed fashion
an approximation of multi-dimensional data distributions in
order to enable complex applications in resource-constrained
sensor networks.

We motivate our technique in the context of the problem of
outlier detection. We demonstrate how our framework can be
extended in order to identify either distance- or density-based
outliers in a single pass over the data, and with limited mem-
ory requirements. Experiments with synthetic and real data
show that our method is efficient and accurate, and compares
favorably to other proposed techniques. We also demonstrate
the applicability of our technique to other related problems
in sensor networks.

1. INTRODUCTION
Advances in processor technologies and wireless communi-

cations have enabled the deployment of small, low cost and
power efficient sensor nodes in both civil and military set-
tings [43, 24]. In such settings, an important consideration is
how to monitor the physical environment and highlight the
events of interest. In fact, environmental monitoring is one of
the earliest applications of sensor networks. The context of
the sensor networks makes these problems more challenging:
First, sensors have limited resource capabilities, and second,
data coming from many different streams may need to be ex-
amined dynamically, and combined to solve the problem at
hand. In such an environment, it is important to process as
much of the data as possible in a decentralized fashion, so as
to avoid unnecessary communication and computation costs.
Another important goal is that the entire process has to be
self-managed, so that it can work in unattended environments
over extended periods of time and automatically adapt to the
changes in the environment of the sensor network.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06 , September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

Recently proposed techniques [16, 20], that operate on ap-
proximations of the sensor data distributions, show that this
general approach achieves substantial energy savings for the
network. The approximate mode of processing is extremely
useful for two reasons. First, it allows us to answer queries
fast and cheaply, since we do not need to visit all the nodes
of the network relevant to the query in order to get the an-
swer. Second, it enables the execution of queries that we
would otherwise not be able to answer without consuming a
lot more resources. These are queries for which the computa-
tion of the exact answer requires many more resources than
what are available in a sensor network. An example of such
a query is the identification of outliers, or deviations1 [28].

In this work, we propose a general and flexible data dis-
tribution approximation framework that does not require a
priori knowledge about the input distribution. Then, based
on this framework, we describe an efficient technique for dis-
tributed deviation detection in a sensor network. The goal is
to identify, among all the sensor readings in a sliding window,
those values that have very few near neighbors. Note that this
is a challenging problem, even for static datasets [28, 38, 10,
36]. This problem is especially important in the sensor net-
work setting because it can be used to identify faulty sensors,
and to filter spurious reports from different sensors. Even if
we are certain of the quality of measurements reported by
the sensors, the identification of outliers provides an efficient
way to focus on the interesting events in the sensor network.

To further motivate our work, we discuss the following ex-
ample that we believe has significant practical benefits from
our approach. Assume a machine that is fitted with sensors
that monitor its operation. These sensors measure quantities
such as temperature, pressure, and vibration amplitude for
the different parts of the machine. If there is some malfunc-
tion or any other abnormality, some of these readings will de-
viate significantly from the norm. Note that such deviations
may occur at different levels. For example, it may be the case
that a small part of the engine is overheated when compared
to the rest of the engine, or that the entire engine is over-
heated when compared to the rest of the machine. Finally,
in some cases we have to monitor two specific attributes to-
gether, such as operating frequency and vibration amplitude,
or otherwise we would miss interesting deviations. Therefore,
we would like to be able to identify multi-dimensional out-
liers. The engine system will greatly benefit from techniques
that can quickly identify such deviations and allow the engi-
neers to correct them during operation.

1For the rest of this paper we will use the terms outlier and
deviation interchangeably.

187

In this work we develop efficient online techniques for esti-
mating the data distribution of sensor readings, for a sliding
window. Our approach uses kernel density estimators [40] to
approximate the sensor data distribution. Once we have es-
timated the data distributions, we can compute the density
of the data space around each value, and therefore determine
which values are outliers. Our experimental results show that
the above technique is appropriate for the sensor network con-
text: it is effective, has relatively low resource requirements,
and its operation does not require any parameter settings.
The modifications we propose allow our technique to oper-
ate efficiently in an online fashion. We also demonstrate how
the necessary computations can be distributed in the sensor
network, and organized in a hierarchy to achieve scalability.
Below we summarize our main contributions:

• We propose online techniques for outlier detection in a
sensor network. Our techniques are based on the effi-
cient, in-network approximation of the input data distri-
butions (i.e., the sensor data), and can effectively extend
to more than one dimensions. These approximations can
also serve for other applications, such as online estimation
of range queries.

• We demonstrate the versatility of our framework by de-
scribing how it facilitates the implementation of two dif-
ferent methods for identifying outliers. The first uses a
fast, distance-based algorithm [28], while the second em-
ploys a more robust, local metrics based approach [36].

• Our techniques operate efficiently in an online fashion,
and their operation can be distributed across the nodes
of the sensor network, efficiently utilizing a hierarchical
organization of the network, and making the approach
scalable to a large number of sensors.

• Finally, we describe the prototype implementation of our
system, and through an extensive set of experiments using
both synthetic and real datasets we demonstrate that our
approach is efficient and accurate.

2. SENSOR NETWORK MODEL
We begin with a brief introduction of the sensor network

model. We assume an event-based sensor network that con-
sists of a set of sensors (each having a location on a 2-d plane)
used to monitor and report observed events. When we deal
with very large sensor networks, we have to take into account
the issue of scalability of the query processing technique with
respect to the size of the network. To that effect, we adopt
a hierarchical organization for the sensor network, similar to
the one used in [46]. The idea is to organize the network us-
ing overlapping virtual grids. We define several tiers for the
grid with different levels of granularity, ranging from small
local areas at the lowest tier, to the entire network area at
the highest tier (see Figure 1).

At each cell at the lowest tier of the grid, there is one
leader (or parent) node, that is responsible for processing the
measurements of all the sensors in the cell. Moving up the
hierarchy, the leader node of a cell collects values from the
leader nodes of all its sub-cells in the lower level. For example,
in Figure 1, node D2 corresponds to a leader node in the third
level of the hierarchy and processes the measurements from
leader nodes A1, B4, C5 and D5.

The hierarchical decomposition of the sensor network, as
well as the selection of the leaders for each level of the hier-
archy, can be achieved using any of the techniques proposed

D

A2

A4

B2

B1

D D1 3
CC2 3

D5

A3

A1

B3

A1

D5

B4

B4

C5

C1

CC4
5 D2

D4

2

Figure 1: Hierarchical organization of a sensor network.

in the literature [17, 33, 47]. These techniques ensure the
leadership role is rotated among the nodes of the network,
and describe protocols that achieve this in an energy efficient
manner.

3. DISCOVERING ABNORMAL BEHAVIOR
There exist several formal definitions of an outlier. In our

work, we follow two of the commonly-used definitions:
Distance-based outliers [28]: A point p in a dataset T
is a (D, r)-outlier if at most D of the points in T lie within
distance r from p. The approach to detect such outliers does
not require any prior knowledge of the underlying data dis-
tribution, but rather uses the intuitive explanation that an
outlier is an observation that is sufficiently far from most
other observations in the dataset. The usefulness and va-
lidity of distance-based outliers has been established in the
literature [6, 28, 38].
Local metrics-based outliers [36]: This method detects
outliers based on the metric Multi Granularity Deviation Fac-
tor (MDEF). For any given value p, MDEF is a measure of
how the neighborhood count of p (in its counting neighbor-
hood) compares with that of the values in its sampling neigh-
borhood. A value is flagged as outlier, if its MDEF is (statis-
tically) significantly different from that of the local averages.
The parameters r, the sampling neighborhood and αr, the
counting neighborhood, determine the range over which the
neighborhood counts are estimated. This method takes into
consideration the local density variations in the feature space,
and provides an automatic cut-off for the outliers, based on
the characteristics of the data. Similar approaches and their
applications can be found in [10, 39].

Distance based-outliers are very useful if the user is con-
fident that the threshold can be specified accurately. If this
is the case, the definition of distance-based outliers allows
very efficient outlier detection. However, there are situations
where the above definition of outliers may not be applicable.
For example, if the data points exhibit different densities in
different regions of the data space or across time, then us-
ing a single threshold value for identifying outliers may not
be appropriate. Therefore, we have to employ more robust
statistical techniques that compare the relative differences
between observed points. In such cases, the use of MDEF for
outlier detection can be expected to offer better results.

For the purposes of this study, we focus on identifying out-
liers in a data stream S, which represents a series of data
points drawn from an unknown d-dimensional data distribu-
tion. More specifically, we are interested in finding the out-
lying values within a sliding window W that holds the last
|W | (d-dimensional) values of S. We are also interested in
reporting outlying values in the union of the readings coming
from multiple sensors. This is an important process, because
it allows us to identify interesting values at different levels of

188

granularity and in larger network areas. Assume a number
l of nodes, n1, . . . , nl, called children, that read values from
l different streams, S1, . . . , Sl. Let another node, np, be the
parent of those l nodes. Then, np sees the combined values
from all l individual sliding windows, and we would like to
identify deviations in this set of values.

Note that in every case the goal is to identify outlying
values in a sliding window, with respect to the rest of the
data stream values in the window.

Example 1. Refer to Figure 1, where the sensor nodes reside
in the bottom level (the other two tiers are conceptual). The sen-
sors at the bottom level generate measurements, and they main-
tain a sliding window over the most recent measurements. At that
level, each sensor is identifying outliers in its own sliding window
(the outliers considered in this example are distance-based out-
liers). Let C5 identify some outliers with moderately high values
(denoted by the darker color of the node). Let D4 identify outliers
with the highest values among all the outliers identified by any
sensor in this level.

When we move up in the hierarchy, the aim is for each leader
node to detect outliers within a sliding window that encompasses
the measurements of all the sensors that belong to its cell. Thus,
node C5 in the second level of the hierarchy identifies outliers with
respect to the measurements of all the sensors in the front left
quarter of the network. The best candidates for being marked as
outliers by C5 are the high values coming from sensor C3, since
these values are different from the values of all the other sensors
in the same quarter of the grid. When we examine leader node
D5, the same is true for the high values coming from sensor D4.

In the third level of the hierarchy, the leader node D2 is re-

sponsible for detecting outliers with respect to the values of all the

sensors in the network. In this case, the values that are most

probable for being outliers are the high values coming from sensor

D4, since no other sensor in the network reports values in that

range. The same is not true for the values of sensor C3, because

the sensors D1, D2, D3, and D5 have similar readings.

As the previous example shows, we can choose to identify
outliers at any level of detail, as defined by the hierarchy of
the sensor network, and at various regions of the network. We
stress that our framework provides the flexibility of identify-
ing outliers at different levels of the hierarchy. The analyst
has to decide the extent to which she will exploit this feature.

4. ESTIMATING THE DATA DISTRIBUTION
In this section we present a general framework for estimat-

ing the underlying distribution of the sensor readings in a
sliding time window W . We note here that this problem is
more general than simply finding outliers among the values
of a given sensor, or even among many sensors in a given
region. However, as we show in the next section, the prob-
lem of finding outliers can be solved efficiently if an accurate
approximation of the data distribution can be found. In ad-
dition, the use of a data distribution approximation allows
us to combine the information from many sensors efficiently,
thus minimizing the communication costs required to find
outliers among the values of different sensors. Finally, we
also show that if we are able to compute an approximation of
the data distribution efficiently in-network, other queries can
be computed in the network as well, including finding spatial
regions where a given property holds.
Estimating the Probability Density Function: There
are several model estimation techniques that have been pro-
posed in the literature, such as histograms [25, 21], wavelets
[12, 18], kernel density estimators [40], and others. In our
framework, we choose to estimate the distribution of the val-

ues generated by the sensors using the kernel density estima-
tors, because of the following desirable properties: (i) they
are efficient to compute and maintain in a streaming environ-
ment, (ii) they can very effectively approximate an unknown
data distribution, (iii) they can easily be combined and (iv)
they scale well in multiple dimensions. In general, it is com-
putationally more expensive to apply the above operations in
histograms or wavelets. Even though sketches can be used
to approximate histograms and wavelets in an online setting
[18, 42, 13], previous studies have also shown that kernels are
as accurate as those two techniques [23, 8]. In Section 10, we
compare the results obtained using kernel density estimators
to histograms.

Kernel Estimators: The simplest statistical estimator
for estimating the probability density function is random
sampling. The kernel estimator [40, 8] is a generalized form
of sampling, whose basic step is to produce a uniform ran-
dom sample. As in random sampling, each sample point has
a weight of one. In kernel estimation however, each point dis-
tributes its weight in the space around it. A kernel function
describes the form of this weight distribution, generally dis-
tributing most of the weight in the area near the point. Sum-
ming up all the kernel functions we obtain a density function
for the dataset.

More formally, assume that we have a static relation, T ,
that stores the d-dimensional values t, t = (t1, . . . , td), whose
distribution we want to approximate. The recorded values
must fall in the interval [0, 1]d. This requirement is not re-
strictive, since we can map the domain of the input values
to the interval [0, 1]d. Let R be a random sample of T , and
k(x) a d-dimensional function of x = (x1, . . . , xd), such that
R

[0,1]
k(x)dx = 1, for all tuples in R. We call k(x) the kernel

function. We can now approximate the underlying distribu-
tion f(x), according to which the values in T were generated,
using the following function

f(x) =
1

|T |
X

ti∈R

k(x1 − ti1 , . . . , xd − tid
). (1)

The choice of the kernel function is not significant for the
results of the approximation [40]. Hence, we choose the
Epanechnikov kernel that is easy to integrate:

k(x) =

(

`

3
4

´d 1
B1...Bd

Q

1≤i≤d

“

1 − (xi

Bi
)2

”

, if ∀i, 1 ≤ i ≤ d, | xi

Bi
| < 1

(2)
where B = (B1, . . . , Bd) is the bandwidth of the kernel func-

tion. We use Scott’s rule to set B [40, 8]: Bi =
√

5σi|R|− 1
d+4 ,

where σi is the standard deviation of the values in T in di-
mension i.

5. ONLINE APPROXIMATION OF THE
DATA DISTRIBUTION IN A SLIDING
WINDOW

In the sensor network setting we require that each sensor
maintains a model for the distribution of values it generates.
Since we are not interested in the entire history of the values
produced by the sensors, it suffices to consider the values in
a sliding window W of size N . Then, T holds only the values
in this sliding window, i.e., the N most recent values.

At each point in time, we are interested in approximating
the distribution of the data values within the sliding win-
dow. This procedure is illustrated in Figure 2, for two time

189

instances (2-d data). Figure 2(a) shows the sliding window
and the distribution of the corresponding data. As time ad-
vances (Figure 2(b)), a different set of points falls inside the
sliding window. Our aim is to use the kernel estimators for
computing an approximation of the new data distribution at
each point in time. The first step for creating a kernel esti-
mator for a sliding window W is to maintain online a random
sample of the set T that contains the values in the most re-
cent window W . The other quantity we need for the kernel
estimator is the standard deviation σ of the values in the slid-
ing window W . Both of these operations can be efficiently
supported in a data streaming environment.

(a)

(b)

past future

past future

A1

A1

A2

A2

PDF

PDF

window

window

time

time

Figure 2: Estimation of the data distribution in the slid-

ing window for two time instances (2-d data).

We use the “chain-sample” algorithm for producing a uni-
form random sample of size |R|, of a sliding window. The
algorithm [4] starts with an initial random sample, and pro-
ceeds as follows. For each point in the sample, it picks at
random the next element from the data stream that will re-
place it. The only restriction is that the new value must
replace the old one, before the old one expires from the slid-
ing window (that is, they should not be more than N values
apart in the stream). The memory requirements are O(d|R|).

The estimate for the standard deviation of the sliding win-
dow is computed using a concise histogram along the time
axis [5]. The estimate of the standard deviation is derived by
combining the statistical information stored in all the buck-
ets of the histogram. The required memory is O(d

ε2
log|W |),

where ε is the maximum relative error we wish to tolerate in
the estimation, and |W | is the size of the sliding window.

Both the above algorithms are effective, computationally
efficient, and have a very small memory footprint. We should
also note that the above techniques allow our estimation
method to effectively model distributions that change over
time. This is true, because both the sample and the band-
width, are incrementally recomputed at every time step.

5.1 Distributed Computation of Estimators
Combining Multiple Estimator Models: Assume we
have a sensor network similar to the one shown in Figure 1.
For simplicity, we use an example of a parent node with only
two children nodes. The necessary extensions to multiple chil-
dren are straight-forward. In order to identify global outliers,
we need to build a model in the leader node that describes
the combined data distribution of its two children. Each sen-
sor node in the hierarchy can compute its own sample of the

values that are observed by the sensors that belong in the
subtree rooted at itself. Assume for example that a parent
has two children that are leaves (sensors) and observe values
at the same rate. The parent decides on an arbitrary order
between the children. This creates a sequential ordering of
the values observed by the two sensors, that interleaves the
values. Then the parent can apply the ”chain-sample” al-
gorithm to sample the values of the two children in a time
window. This scheme however is not flexible, as all sensors
must be active and observe values at a fixed rate. It is also
inefficient: although the actual sampling must be done at the
leaves, each sensor must sample separately for each node on
the path to the root. Since the samples of these nodes are
different, each of the sampled values contributes only to one
of the samples along the path to the root.

In our framework, we propose a more efficient mechanism
for model composition. This allows us to take the data dis-
tribution models of two different sensors in the network and
construct a single model that describes the behavior of the
data of both sensors. This combined model is the model of a
sensor at a higher level of the hierarchy.

In the case of kernel density estimators we have to combine
the sample set, R, and the bandwidth of the kernel function,
B (refer to Section 4). We combine the sample sets by taking
their union. We may reduce the size of the resulting set by
sampling from the two sets, using the techniques of [11]. In
order to combine the bandwidths of two kernel functions,
we only need to combine the standard deviations upon which
the bandwidths depend. This is accomplished using the same
techniques as the ones for computing the standard deviation
in a sliding window of streaming data [5]. More specifically,
we use the formula

V1,2 = V1 + V2 +
N1N2

N1,2
(µ1 − µ2)

2, (3)

where V is the variance (multiplied by N), N1,2 = N1 + N2,
and µ1,2 = µ1N1+µ2N2

N1,2
.

The above process gives to the high level sensors a coarse
view of the sensor network, where the details specific to dif-
ferent parts of the deployment area have been masked away.
If we wish to examine the individual values of the sensors we
have to query the low level sensors.
Propagating Estimator Updates in the Network Hi-

erarchy: An interesting question is how often a node should
send its model to the leader of the cell it belongs to. Ob-
viously, the answer depends on the data distribution of the
node, and how fast it is changing.

As we discussed earlier, the kernel density estimators can
successfully approximate a distribution that changes over time,
because they adapt their parameters (i.e., sample and band-
width) with every new value that comes in. However, the
same is not true for the leader nodes in each cell of the hier-
archy. The leader nodes do not see the sensor data values, but
rather rely on their children to inform them of any changes
in the input data distributions that they should incorporate
in their own models.

The simplest approach is to have the children transmit up-
dates to the parent as these updates take place in their own
estimators. Assume that the parent has l children, each hav-
ing a kernel estimator of size |R|, and that the kernel es-
timator of the parent has size |Rp|. Then, with probability

f =
|Rp|

l|R|
, when a child updates its kernel estimator by adding

a new kernel, it also propagates this update to its parent
(i.e., it transmits the new kernel and the new standard de-

190

viation(s)). This simple approach can be used to efficiently
maintain a sample with expected size |Rp| at the parent, and
this is what we use in our implementation.

The above scheme has the important advantage that the
parent’s distribution quickly adjusts to changes in the distri-
bution of the observed data, and as we show in the experi-
ments can be implemented efficiently, with a relatively small
number of messages. However, we can fine-tune this tech-
nique if we allow each sensor to monitor the distribution of
the data it observes. When there are small changes, a sensor
can reduce f , in effect reducing the update rate. When large
changes are observed, the sensor can set f close to 1, thus
essentially propagating its entire kernel estimator. Detect-
ing those distribution changes is a difficult task. We can use
elaborate techniques that are specifically designed to identify
changes in (unknown) distributions of streaming data [7], or
simple approaches, like monitoring the first moments of the
data distribution (i.e., mean, standard deviation, and skew).

5.2 Fault Tolerance
In our framework, fault tolerance can be achieved in a

straight-forward manner, with no need for special provisions.
When a leader node fails, we simply have to elect a new node
[33] to act as the leader for the particular cell in the hier-
archical grid. The new leader can recover the full state of
the old leader, by combining the models of its children, and
simply has to start consuming the information provided by
its children, from the point that the old leader left off. Note
that the above sequence of actions does not result in the loss
of any information.

5.3 Complexity Analysis
In this section, we analyze the storage complexity of the

kernel model at each sensor, and the time complexity for
processing a range query with a kernel estimator model. Since
sensors have limited memory and processing capabilities, it
is very important for us to ensure that the estimator model
has a small memory and computational requirements.

As described in Section 5, the sensors have to store the
following: sample of the current window of the input data
stream, which requires O(d|R|) memory, and some extra stor-
age for the computation of the standard deviation of the val-
ues in the sliding window, which is O(d

ε2
log|W |). The follow-

ing theorem summarizes the memory requirement.

Theorem 1. The memory requirement for a sensor to keep
an estimate of its distribution is O(d(|R|+ 1

ε2
log|W |)), where

d is the data dimensionality, |R| is the size of the sample,
ε is the maximum error for the estimation of the standard
deviation, and |W | is the size of the sliding window.

Theorem 2. Assuming the Epanechnikov kernel function,
the time complexity to answer a range query N(p, r) with
the kernel estimator model is O(d|R|), where d is the data
dimensionality, |R| is the sample size, and r is the range
specified by the query.

Proof. The number of measurements in the current win-
dow that are within a range r from a value p is given by

N(p, r) = P [p − r,p + r] × |W |. (4)

Let us denote the probability P [p−r,p+r] as P (p, r). Thus,
from Equation 1

P (p, r) =
1

|R|

Z

[p−r,p+r]

X

ti∈R

k(x − ti)dx. (5)

In order to estimate this, we have to access those points in
the random sample R that have a non-zero contribution to
the query range (p − r,p + r), and compute the integral of
their Epanechnikov function.

From the definition of the Epanechnikov kernel in Equa-
tion 2, we see that the measurements in the random sample
which have non-zero contribution are in the range (pi − r −
Bi, pi + r +Bi) for all dimensions i. Let R′ ⊆ R represent all
the above measurements. Also, the Epanechnikov kernel is a
quadratic function and its integral has a closed form. Thus,
the computation of the integral for one measurement requires
constant time. Then, the range query requires a search time
of O(d|R|), an additional time of O(d|R′|) to to compute the
integral of the measurements in R′.

In the 1-dimensional case (d = 1), we can answer the range
query in time O(log |R| + |R′|), by simply maintaining the
sampled values in sorted order (and using binary search).

6. COMPARING DISTRIBUTIONS
We now discuss a method for computing the difference be-

tween two distributions, which will be useful for the algo-
rithms we describe. Several methods have been proposed to
quantify the difference between probability density distribu-
tions [29]. One widely used measure is the Kullback-Liebler
divergence D(p ‖ q) [14], which is defined as

D(p ‖ q) =

Z

y

p(y)(log p(y) − log q(y)), (6)

where p(y) and q(y) are probability distribution functions
over y, and y is drawn from a finite set Y. However, the
measure is undefined when p(y) > 0 but q(y) = 0 for some
y ∈ Y. The KL − divergence is therefore not applicable to
the density distributions derived by kernel density estimation
method, because this method may assign probability of zero
for regions in the domain of the values. We use a variation
of the KL-divergence, called the Jensen-Shannon divergence
[30, 22] which is defined as follows

JS(p, q) =
1

2
[D(p ‖ avg(p, q)) + D(q ‖ avg(p, q))] (7)

where avg(p, q) is the average distribution (p(y) + q(y))/2.
We estimate the JS-distance between two kernel estimator

models p(x) and q(x) as follows. We approximate the es-
timated distribution with the values of the function with a
finite set of grid points b1,b2, . . . ,bk. Thus, we approximate
the term D(p ‖ avg(p, q)) in Equation 7 as

D(p ‖ avg(p, q)) =
X

i=1...k

Pp(bi, bs/2)×
h

log(Pp(bi, bs/2)) − log(
Pp(bi,bs/2)+Pq(bi,bs/2)

2
)
i

(8)

where bs is the grid interval and Pp and Pq are the probabili-
ties estimated with respect to the estimator models p(x) and
q(x) respectively. We approximate the term D(q ‖ avg(p, q))
in Equation 7 in a similar way, and estimate the JS-divergence
between the kernel estimator models. The time complexity
for the above procedure is O(dk|R|).

7. DISTRIBUTED DETECTION OF
DISTANCE-BASED OUTLIERS

In this section, we describe our technique for detecting dis-
tance based outliers in sensor networks, in a distributed man-
ner. Given a new observation p, the sensor can use its current

191

density distribution function f(x), to estimate the number of
values that are in the neighborhood of p. This allows us to
identify distance-based outliers [28]. Specifically, we estimate
the number of values, N(p, r), in T that fall in the interval
[p−r,p+r], using Equation 4. If this number is less than an
application-specific threshold t then p is flagged as an outlier.

We now turn our attention to the task of identifying out-
liers in the parent node. Remember that a parent node com-
bines in a single pool all the data that its children process.
Consequently, outliers are identified with respect to this new
pool of data. One might think that in order to successfully
report the outliers the parent node has to read in all the data
from its children’s input data streams, and for each data value
determine whether it is an outlier or not. Fortunately, this is
not true. It suffices for the parent node to examine only the
values that have been marked as outliers by its children. All
the other data values can be safely ignored, since they cannot
possibly be outliers.

Theorem 3. Assume nodes n1, . . . , nl children of node np,
data streams S1, . . . , Sl referring to the l children nodes, and
corresponding sliding windows W1, . . . , Wl. The sliding win-
dow of node np is defined as Wp =

Sl
i=1 Wi. Let, at some

point in time, O1, . . . , Ol be the sets of distance-based outliers
corresponding to the l sliding windows. Then, for the set Op

of outliers in Wp it holds that Op ⊆ Sl
i=1 Oi.

This theorem is important for two reasons. First, it re-
sults in significant computation savings for the parent node,
because it only needs to examine a very small subset of the
streaming values, i.e., the outliers identified by its children.
Second, it limits the necessary communication messages from
the children nodes to their parents. Both are desirable prop-
erties in a sensor network.

For detecting distance based outliers, we propose the D3
(Distributed Deviation Detection) algorithm. For the presen-
tation of the algorithm, we refer to all the leader nodes as
parent nodes, and to the rest as leaf nodes. The D3 algo-
rithm (Figure 4) starts by initializing the LeafProcess proce-
dure (lines 11-20) in each leaf node. These nodes compute
and maintain a kernel density estimation model, for approx-
imating the input data distribution. Based on this model,
they report any values that satisfy the criterion for being
an outlier. Each time an outlying value is identified, it is
transmitted to the corresponding parent node and is checked
against the model of that parent node, in order to determine
whether this value is also an outlier in that level of the hier-
archy. Along with the identified outliers, a sensor node may
also send to its parent its current sample (depending on f).

The time complexity of the D3 algorithm is dominated by
the IsOutlier() procedure (Figure 4, lines 32-36), the pro-
cedure that checks if a value p is an outlier by computing
N(p, r). As described in Section 5.3, the computation of
N(p, r) takes O(d|R|) (O(log |R| + |R′|) if d = 1) and the
memory requirement for each of the sensors is O(d(|R| +
1
ε2

log|W |)). Even if we set the parameters to “large” values,
that is, 20000 for |W |, 2000 for |R|, and 0.2 for ε, the total
memory usage for each sensor is less than 10KB. The resource
requirements of the approach we propose are well within the
capabilities of the state of the art sensors. There currently
exist sensors (e.g., Intel Mote [27], and MICA2DOT [1]) in
less than half the size of a matchbox, that run on 12MHz
processors, have more than 512KB of memory, and achieve
communication throughput rates in excess of 75KB per sec-
ond.

8. OUTLIER DETECTION USING MULTI-
GRANULAR LOCAL METRICS

We will now examine how local metrics-based outliers can
be detected in a sensor system. For a new observation p, a
sensor can use its density estimator model to determine if p

is an MDEF based outlier with respect to its data stream.
From the definition of the MDEF-based outliers (Section 3),

we can observe that they are non-decomposable. That is, an
observation detected as outlier in a parent sensor need not
have been an outlier in its children sensors. Therefore, The-
orem 3 is not true for MDEF-based outliers and we can not
follow a technique similar to that of D3 to detect outliers in
parent sensors. Due to this reason, only the leaf sensors de-
tect outliers. A leaf sensor can report outliers with respect to
the rest of the values it is observing, as well as with respect
to the values observed in an entire region in which it belongs.
This is achieved by having a leader node in the higher levels
of the hierarchy communicate its probability density function
estimate, which we will refer to as the global model, to the
leaf sensor.

In order to detect MDEF-based outliers in sensor networks,
we propose the MGDD (Multi Granular Deviation Detection)
algorithm (Figure 4). The sensor nodes at the lowest level
have a copy of the global probability density function, in addi-
tion to the local estimation model of their input data stream.
The MDEF-based outliers are estimated based on the global
estimation model. In Section 8.1, we discuss how the global
estimation model is updated in each of the leaf sensors.

The isMDEFOutlier() function mentioned in line 27 in Fig-
ure 4 is the aLOCI algorithm in [36], and hence we briefly
describe it here. To estimate if the observation is an out-
lier, two values are required to be computed based on the
density model (a) the αr-neighbors of the observation p and
(b) the number of observations in each of the 2αr interval of
the domain. We illustrate in Figure 3, how the above values
are computed from a kernel estimator model (for 1-d). From
these, we compute MDEF (p, r, α) i.e, the deviation factor
of the observation p and σMDEF (p, r, α) i.e., the normalized
standard deviation in the sampling neighborhood of p. The
new observation p is flagged as an outlier if

MDEF (p, r, α) > kσσMDEF (p, r, α), (9)

where kσ is the factor which determines what is a significant
deviation.

Theorem 4. The computational complexity to detect if a

new observation is an MDEF-based outlier is O(d|R|
2αr

) and the
memory usage is O(d|R|), where r is the sampling neighbor-
hood and αr is the counting neighborhood.

Proof. The sensors have to maintain a copy of the global
estimator model, in addition to the local estimator model, re-
quiring O(d|R|) memory. The algorithm to find MDEF-based
outliers requires computation of 1

2αr
range queries, one for

each of the intervals as shown in Figure 3. The complexity
for one range query is O(d|R|), and hence the overall com-

plexity is O(d|R|
2αr

). For 1-dimensional data, the running time

is O(log|R|+|R′|
2αr

), where R′ is the set of kernels that intersect
the query.

8.1 Updating the Global Estimator Model
The naive approach to maintaining an updated global esti-

mator model at every sensor at the leaf level, is to transmit

192

2αr

.p

2αr

2r

Figure 3: Estimating neighborhood count with a prob-

ability density function. For a new observation p, the

number of αr − neighbors is estimated with range query

N(p, αr). The domain of the observations is divided into

intervals of width 2αr, and the number of points in the ith

interval is estimated with a range query N(αr(2i − 1), αr).

all the measurements to the leader at the highest level (where
the leader computes the global estimator model, and trans-
mits it back to all the leaf sensors).

However, this approach is very expensive in terms of com-
munication overhead. Therefore, we propose the following
scheme, where the number of updates are significantly re-
duced. For every new observation that is added to the local
estimator model at the lowest level sensors, the sensors trans-
mit the observation to their leaders with probability f . The
leaders receive the observations and transmit them in-turn
to their parents with probability f . When a new observation
is added to the kernel sample maintained at the leader node
of the highest level, this update is communicated to the low-
est level sensor nodes via the intermediate leaders. Thus, for
every new observation a sensor at the lowest level sends, it
receives (fl)n updates to its global estimator, where n is the
number of levels in the hierarchy and l is the average number
of children per a parent node. The algorithm described in
Figure 4 follows this scheme.

Let us assume a centralized method, where all the obser-
vations from all the sensors are communicated to the leader
at the highest level, where the MDEF-based outliers are de-
tected. We observe that the above scheme of sending the
measurements with probability f can perform better than
the centralized approach, only if f is small.

The communication overhead can be further optimized if
we allow the leaders at each of the levels to update the
children only when their estimator model has significantly
changed. With this scheme, a parent sensor computes the
distance between the estimator model that was last sent to
the children, and its current estimator model. If the distance
is greater than a pre-specified value, it sends the current es-
timator model to the children. In this way, the sensors at
the leaf level receive fewer updates, particularly when the
distribution of the underlying measurements is stationary.

Since this technique for outlier detection is based on local
conditions, it is more accurate than the distance based out-
lier detection method. However, maintaining a copy of the
global distribution function at all the sensor nodes requires
frequent updates across the sensors and their parents. For
a system with update probability f , there will be O((fl)n)
messages communicated for every new observation, per sen-
sor. We compare the number of messages communicated for
this technique, with that of D3, in Section 10.3.

9. OTHER APPLICATIONS
An accurate online approximation of the probability den-

sity function allows us to solve a number of problems in a
sensor network.
Online Query Processing: One category of problems is to

Algorithm D3

1 let W w and W b be the sliding windows
of the leaf and parent nodes;

2 let Rw and Rb be the samples on W w and W b;

3 let σw and σb be the standard deviations on W w and W b;
4 let f be the fraction of the sample propagated from a child

to its parent;
5 procedure D3()
6 assign one leaf node to each one of the input streams;
7 configure all parent nodes in a hierarchy on top of

the leaf nodes;
8 initiate ParentProcess() for each parent node;
9 initiate LeafProcess() for each leaf node;
10 return;
11 procedure LeafProcess()
12 when a new value S(i) arrives
13 update Rw , σw;
14 if (S(i) included in Rw)
15 send S(i) to parent with probability f ;
16 IsOutlier(Rw ,σw ,S(i));
17 if (S(i) is an outlier)
18 report S(i) as an outlier;
19 send S(i) to parent;
20 return;
21 procedure ParentProcess()
22 when a new message from a child node arrives
23 if (message is new outlier P)

24 IsOutlier(Rb,σb,P);
25 if (P is an outlier)
26 report P as an outlier;
27 send P to parent;
28 if (message is new value from child l)

29 update σb and Rb

30 if (the new value is included in Rb)
send new value to parent with probability f ;

31 return;
32 procedure IsOutlier(sample R, stddev σ, point P)
33 use R and σ to estimate N(P, r);
34 if (N(P, r) < t)
35 mark P as an outlier;
36 return;

Algorithm MGDD

1 Let Rg and σg be the sample and standard
deviation at the leader of the highest level;
2 Rest of the notations are same as in algorithm D3

3 procedure MGDD()
4 assign one leaf node to each one of the input streams;
5 configure all parent nodes in a hierarchy on top of

the white nodes;
6 initiate ParentProcess() for each black node;
7 initiate LeafProcess() for each white node;
8 return;
9 procedure LeafProcess()
10 when a new value S(i) arrives from stream
11 update Rw, σw;
12 IsOutlier(Rg ,σg ,S(i));
13 if (S(i) is added to Rw)
14 send S(i) to parent with probability f ;
15 when a new update of Rg and σg is received
16 update Rg and σg

17 return;
18 procedure BlackProcess()
19 when a new message from a child node arrives

20 if (message is added to Rb)
21 send message to parent with probability f ;
22 if (leader at the highest level)

23 send updates of Rb and σb to all the children;
24 return;
25 procedure IsOutlier(sample R, stddev σ, point P)
26 use R and σ to estimate N(p, αr) and

N(αr(2j − 1), αr) for each interval j;
27 if (isMDEFOutlier())
28 mark P as an outlier;
29 return;

Figure 4: Outline of the algorithms.

193

Dataset Min Max Mean Median StdDev Skew

Engine 0.020 0.427 0.410 0.419 0.053 -6.844

Pressure 0.422 0.848 0.677 0.681 0.063 -0.399

Dew-point 0.113 0.282 0.213 0.212 0.027 -0.182

Figure 5: Statistical characteristics for the real datasets.

provide approximate answers to range queries with both spa-
tial and temporal constraints. These are queries of the follow-
ing form. “What is the average temperature in region (X, Y)
during the time interval [t1, t2]?”. In such cases, the sensors
can estimate the density model for the observations during
the specified time interval and answer the queries based on
the estimated model.
Finding Faulty Sensors: Another important application

is online detection of faulty sensors. Examples include queries
of the form: “Give a warning when the values of a given sen-
sor are significantly different from the values of its neighbors
over the most recent time window W”, or queries of the form:
“Give a warning if the number of outliers in a given region
exceeds a given threshold T over the most recent time win-
dow W”. Such queries can be very useful for monitoring the
network for signs of malfunctioning sensors or for signs of
possible intrusion. With our approach, a parent sensor can
compute the difference between the estimator models received
from its children, to determine if any of them is faulty.

In the interest of space, we defer further discussion of these
applications to the full version of this paper.

10. EXPERIMENTAL EVALUATION
Implementation. We built a simulator to evaluate our
framework, implemented on top of the TAG [32] simulator.
Specifically, we use the TAG simulator infrastructure in order
to define the topology of the network and the type of messages
exchanged, to disseminate queries, and to gather statistics.
We also made the necessary modifications to enable the hi-
erarchical organization of the nodes in the sensor network.
TAG, by default, builds a different spanning tree each time a
new query is injected into the network. Instead, our simula-
tor initiates a continuous query on every node. This enables
us to program the outlier detection algorithm in the whole
network. Then, we define the network hierarchy as described
in Section 2. The nodes run the algorithms on top of the hi-
erarchy imposed on them. More specifically, we implemented
the following components: (i) chain-sample, which maintains
a running sample of the sensor readings in the window, (ii)
variance estimator, which maintains a running estimate of
the standard deviation of those values, (iii) kernel density es-
timator, which is used to approximate the data distributions,
and also contains the required machinery for using these ap-
proximations to answer queries, (iv) distributed deviation de-
tection algorithm, to demonstrate the applicability of our first
approach. (v) MDEF-based deviation detection algorithm, to
demonstrate the applicability of our second approach.

Our implementation required 5, 000 lines of Java code. How-
ever, the code that implements our algorithm has very small
footprint. For instance, the kernel density estimation and
outlier detection modules (that is, the code that would have
to run on a sensor to implement our algorithm) required a
total of 150 lines of Java code.
Datasets. In our experiments we used a variety of synthetic
and real datasets. The synthetic datasets are time sequences
that are 35, 000 observations long each, and their values were

0 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264 12288

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

Dis
tan

ce

Leaf Sensor
Parent Sensor f=0.75
Parent Sensor f=0.50

Figure 6: Difference between real and the estimated data

distributions, at leaf and parent level.

0.25 0.5 0.75 1

10

20

30

40

50

60

70

80

90

100

P
r
e
c
i
s
i
o
n

Sample Fraction f

MGDD

0.25 0.5 0.75 1

10

20

30

40

50

60

70

80

90

100

R
e
c
a
l
l

Sample Fraction f

MGDD

(a) (b)

Figure 8: Performance of MGDD with varying sample

fraction f (1-d synthetic data, Kernel approach).

normalized to fit in the [0, 1] interval. Each dataset is a mix-
ture of three Gaussian distributions with uniform noise; the
mean is selected at random from (0.3, 0.35, 0.45), and the
standard deviation is selected as 0.03, so that it doesn’t cover
the entire space. Subsequently, we add 0.5% (of the dataset
size) noise values, uniformly at random in the interval [0.5, 1].

The first set of real datasets records the operation of an
engine reported every 5 minutes by 15 sensors. The measure-
ments span from June 1st 2002 to December 1st 2002, and
form time sequences of 50, 000 values.

The second set of real datasets represents measurements of
various natural phenomena, reported by a number of sensors
in the Pacific Northwest region [2]. The datasets include mea-
surements of atmospheric pressure, dew-point, temperature,
solar radiation, and others. They span a two year period,
and form time sequences of 35, 000 values. We report results
where the observations at the sensors are streams of pairs
(pressure, dew-point).

Note that in all the experiments we report, each sensor
sees a different set of data. The characteristics of the real
datasets are given in Figure 5.
Measures of Interest. We evaluate the accuracy of our
methods in detecting distance-based outliers [28, 38] and
MDEF-based outliers [36]. We use two measures, namely
precision and recall, defined as follows. Precision represents
the fraction of the values reported by our algorithm as out-
liers that are true outliers. Recall represents the fraction of
the true outliers that our algorithm identified correctly.
Comparisons. We use offline algorithms to compute the
true outliers for each instance of the sliding window. In or-
der to identify the true distance-based outliers, we use the
BruteForce-D algorithm. This algorithm accesses all |W |
points in the sliding window, and for each one of them, com-
putes its distance to all the other points, guaranteeing to

194

0.0125 0.025 0.05 0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

P
r
e
c
i
s
i
o
n

For Various |R| or |B| (as fractions of |W|)

Kernel Method Histogram Method

D3:

Level 1
Level 2
Level 3
Level 4

0.0125 0.025 0.05 0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

R
e
c
a
l
l

For Various |R| or |B| (as fractions of |W|)

Kernel Method Histogram Method

D3:

Level 1
Level 2
Level 3
Level 4

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

P
r
e
c
i
s
i
o
n

|R| or |B| (as fractions of |W|)

MGDD

MGDD−Kernel
MGDD−Histogram

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

R
e
c
a
l
l

|R| or |B| (as fractions of |W|)

MGDD

MGDD−Kernel
MGDD−Histogram

(a) (b) (c) (d)

Figure 7: Precision and recall for the 1-d synthetic data with Kernel and Histogram approaches, when varying the

memory of the representation (|R| or |B|).

find all the true outliers. The naive implementation2 of the
BruteForce-D algorithm has time complexity O(d|W |2), where
d is the dimensionality, and |W | is the size of the sliding win-
dow. To identify the true MDEF-based outliers, we use the
aLOCI (we will refer it as BruteForce-M) algorithm [36],
which approximates the average neighborhood count and the
standard deviation of neighborhood count based on an in-
terval count over the measurements in the sliding window.
We also compare the performance of our approach with his-
tograms, a common method for approximating distributions.
For the leaf level sensors, we compute equi-depth histograms
of |B| buckets by accessing all |W | values in the sliding win-
dow. At a higher level sensor s, we compute a histogram of
|B| buckets by accessing all the values in the sliding window
of all the leaf level sensors rooted at s. This approach favors
the histogram technique over the kernel method we propose,
in which higher level sensors only see a fraction of the sample
of their children (see Section 5.1). We set |B| = |R|, in order
to ensure comparable memory usage by our approach and the
histogram approach. We note that this brute-force approach
of computing histograms is prohibitive in terms of both the
communication and computation overhead. In addition, the
computation is not done in an online fashion. However, this
method gives an upper-bound for any dynamic version and
thus serves as a good measure for comparing the results of
the kernel based approach.

10.1 Accuracy of Data Distribution Estimation
In the first set of experiments, we evaluate the accuracy of

the kernel density estimators in our setting. More specifically,
we measure the distance between the true probability density
function of the streaming sensor data and our estimate of this
function. The window size is W = 10240 and the sample size
is |R| = 1024. We consider Gaussian distributions and vary
the underlying distribution after every 4096 measurements
(from µ = 0.3, σ = 0.05 to µ = 0.5, σ = 0.05) to measure
the latency with which the sensors adjust to the changes in
distribution. We also measure the distance between the true
probability density function and the estimated function at
a parent sensor, for various values of f . In all the experi-
ments, the distance is computed based on the JS-divergence
(Section 6), and the distance ranges from 0 to 1.

Figure 6 shows that our approximation is very close to the
real data distribution, with a maximum distance of 0.0037
when the distribution of the measurements remains stable.
The maximum distances at the parent sensor for f = 0.5

2There exist more efficient implementations [28] that have to
operate offline.

and f = 0.75 are 0.0051 and 0.004. When the distribution
changes, the estimate of the streaming data deviates consid-
erably from the true distribution. This is expected, because
most of the measurements in the current sliding window are
generated from the earlier distribution function. However,
with time, the distance reduces, and is within 0.1 with la-
tency of 2500 measurements. We observe that for the parent
sensor, the latency decreases with increasing f .

10.2 Accuracy of Outlier Detection Mechanism
In the following paragraphs we evaluate the accuracy with

which our algorithms detect outliers, under different parame-
ter settings. The setup of the experiments involves 48 nodes,
organized in a hierarchy with 3 levels. There are 32 nodes in
the lowest level, each producing a different stream of data,
and two levels of leaders above them. All the results we report
are averages over 12 runs of each experiment, and in all cases
the number of outliers was between 40 − 80. In our experi-
ments, we varied the size of the sample |R| used by the kernel
estimators, the fraction of the sample f that each node prop-
agates to its leader, and the size of the sliding window |W |.
Unless otherwise noted, the default values for the parame-
ters are |W | = 10, 000, |R| = 0.05|W |, and f = 0.5. For the
distance-based outliers, we are looking for (45, 0.01)-outliers
i.e., an observation is an outlier if the number of neighbors
within a radius of 0.01 is less than 45. For the MDEF-based
outliers, we set the sampling neighborhood r = 0.08 and the
counting neighborhood αr = 0.01. In all our experiments for
finding MDEF-based outliers, we consider kσ = 3.

In every case, we measured the precision and the recall, and
the results for the synthetic datasets are depicted in Figures 7
and 8 (1-d data), and 9 (2-d data). Overall, D3 algorithm
with kernel approach achieves around 94% precision and 92%
recall. With MGDD, where we only detect outliers in the
first level of the hierarchy, the precision and recall average
around 94% and 93%, respectively. For both methods, both
metrics are over 90% with the right choice of parameters, in-
dicating that they are very promising approaches. We note
that the set of outliers detected with D3 and MGDD are dif-
ferent, due to their definitions, and therefore, we should not
compare the accuracy of the methods against one another.

In Figure 7, we also depict the performance of D3 and
MGDD when using histograms instead of kernels. The re-
sults demonstrate that in all cases the kernels approach is as
good as histograms, and in many cases (for the precision met-
ric) kernels outperform histograms. This is true despite the
fact that, as we discussed earlier, in our implementation we
have favored the histogram approach. We expect that any

195

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

P
r
e
c
i
s
i
o
n

|R| (as fractions of |W|)

D3

Level 1
Level 2
Level 3
Level 4

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

R
e
c
a
l
l

|R| (as fractions of |W|)

D3

Level 1
Level 2
Level 3
Level 4

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

P
r
e
c
i
s
i
o
n

|R| (as fractions of |W|)

MGDD

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

R
e
c
a
l
l

|R| (as fractions of |W|)

MGDD

(a) (b) (c) (d)

Figure 9: Precision (a, c) and recall (b, d) when varying |R| (2-d synthetic data, Kernel approach).

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

P
r
e
c
i
s
i
o
n

|R| (as fractions of |W|)

D3

Level 1
Level 2
Level 3
Level 4

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

R
e
c
a
l
l

|R| (as fractions of |W|)

D3

Level 1
Level 2
Level 3
Level 4

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

P
r
e
c
i
s
i
o
n

|R| (as fractions of |W|)

MGDD

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

R
e
c
a
l
l

|R| (as fractions of |W|)

MGDD

(a) (b) (c) (d)

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

P
r
e
c
i
s
i
o
n

|R| (as fractions of |W|)

D3

Level 1
Level 2
Level 3
Level 4

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

R
e
c
a
l
l

|R| (as fractions of |W|)

D3

Level 1
Level 2
Level 3
Level 4

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100
P
r
e
c
i
s
i
o
n

|R| (as fractions of |W|)

MGDD

0.0125 0.025 0.05

10

20

30

40

50

60

70

80

90

100

R
e
c
a
l
l

|R| (as fractions of |W|)

MGDD

(e) (f) (g) (h)

Figure 10: Precision and recall when varying the sample size |R|, for the real datasets (Kernel approach): 1-d engine

dataset (upper graphs) and 2-d environmental phenomena dataset (lower graphs).

similar online techniques will perform at most as good. In
the next paragraphs we focus our discussion on the kernels
approach.

The experimental results indicate that the precision for D3
gets better as we go up in the network hierarchy, for both the
1-d (Figures 7(a)) and the 2-d data (Figure 9(a)). This does
not come as a surprise, because of the way the algorithm
works. Recall that the nodes in the lowest level of the hierar-
chy have to examine every single data measurement in order
to determine if it is an outlier or not. Then, they only trans-
mit to their leaders the values they have identified as outliers.
This means that the nodes in each subsequent, higher, level
has to examine fewer values. Moreover, these values have
a very high probability of being outliers (see Theorem 3).
Hence, the algorithm reports fewer false positives (i.e., preci-
sion increases) as we move up in the hierarchy.

The same observation is, in general, true for the recall, as
well (Figures 7(b) and 9(b)). This is due to the fact that the
number of outliers drops for the higher levels (a consequence
of Theorem 3). We also note that recall diminishes in some
cases for nodes in upper levels. This happens because these
nodes only examine the values that their children have al-
ready identified as outliers. However, the children nodes may
have missed some of the true outliers, which will consequently
cause the leader node to miss them.

When we increase the sample size, the performance of the
D3 algorithm improves slightly (Figures 7(a, b) and 9(a,b)).
The MGDD technique is less affected by the change of the
sample size (Figures 7(c,d) and 9(c,d)), but its performance
improves as the sample fraction f increases (Figure 8). This
is expected, because f determines the rate at which the ob-
servations are sent from the children nodes to their parent,
and thus influences the frequency with which the global esti-
mators at the leaf sensors are updated. The same behavior
when varying the sample fraction f is observed with D3 as
well, but we omit the relevant graphs for brevity.

We have also conducted experiments where we varied the
size of the sliding window |W | between 10, 000 and 20, 000
values. The results show that the performance of our tech-
niques remains relatively stable as we vary this parameter.
In the interest of space, we report these results in the full
version of the paper.

Figure 10 depicts the results we obtained with the real
datasets, engine (1-d data) and environmental phenomena
measurements (2-d data), with our kernel based approach.
With D3, we were looking for (100, 0.005)-outliers. For the
MGDD technique, we set r = 0.05 and αr = 0.003. The
graphs show that the trends for these datasets remain the
same as with the synthetic ones. Both algorithms averaged
around 99% precision, and 93% recall for the engine measure-

196

0 1000 2000 3000 4000 5000 6000
101

102

103

104

105

Number of Nodes

Nu
mb

er
of

Me
ss

ag
es

 pe
r S

ec
on

d (
log

 sc
ale

)

Centralized
MGDD
D3

Figure 11: Number of messages in network per second

(log-scale), while varying the number of sensors.

ments, which is better than the performance of the algorithms
on the synthetic datasets. This is due to the smooth nature
of the data set, except for the measurements observed from
October 28th to November 1st, where a major failure was
detected in the systems and they reported deviating values.
The results for the environmental 2-d dataset were compara-
ble to those obtained with the synthetic 2-d dataset.

10.3 Memory and Communication Costs
In order to verify the efficiency of our technique, we ran

experiments to measure the maximum amount of memory re-
quired by the D3 algorithm per node. There are two compo-
nents of our algorithm that affect the memory consumption:
sample maintenance and variance estimation. The memory
requirement of the former is upper-bounded by O(d|R|), and
of the latter by O(d

ε2
log|W |).

We ran experiments using the real datasets, and assuming
a 16-bit architecture, i.e., 2 bytes per number. We varied
the size of the sliding window |W | (10000-20000), as well as
the sample fraction f (0.25-5). The experiments showed
that in all cases the actual values of the maximum memory
consumption of the variance estimation procedure is around
55%-65% less than the theoretic upper bound.

We also ran experiments in order to quantify the number of
messages that are generated, by scaling up the number of the
nodes in our testbed. We compare our algorithms, D3 and
MGDD against the centralized approach. For our approach
we take into account the number of messages generated due to
the incremental sample propagation. We do not account for
the messages sent when a local outlier is identified, since these
are infrequent. We assume that each sensor generates one
reading every 1 second. The size of the window |W | was set
to 10240, the sample size |R| was set to 1024, and the sample
fraction f was equal to 0.25. Figure 11 shows the number
of messages generated per second (in log scale), while scaling
up the number of nodes. As expected, the D3 approach gives
better savings compared to both MGDD and centralized.
We observe that the D3 algorithm requires approximately
two orders of magnitude fewer messages, and hence the best
method with respect to optimizing communication cost.

11. RELATED WORK
Madden and Franklin [31] present a framework for the effi-

cient execution of queries in a sensor network. The problem
of evaluating aggregate operators in a sensor network is ad-
dressed by Madden et al. [32]. Yao and Gehrke [45] investi-
gate the problem of query processing in sensor networks. In
a complementary study, Bonfils and Bonnet [9], describe an
algorithm for mapping a tree of query operators on the sensor

network.
A recent study [16] proposes a sensor data acquisition tech-

nique, based on models that approximate the data with prob-
abilistic confidences. This general technique results in re-
duced communication costs, without sacrificing much of the
accuracy [15]. However, any special characteristics of the
data distribution, such as periodic drifts, have to be explic-
itly encoded in the space of models considered. In our work,
we describe a more general technique, which can efficiently
overcome this limitation. Moreover, we observe all the data
values, and can therefore reason about outliers, whereas the
above technique aims at minimizing the cost of making some
observations that will ensure the user-defined probabilistic
confidence thresholds are met.

A framework for modeling sensor network data is also pro-
posed by Guestrin et al. [20]. The goal in this approach is for
the nodes in the network to collaborate in order to fit a global
function to each of their local measurements. This is a para-
metric approximation technique, and as such, requires the
user to make an assumption about the number of estimators
required to fit the data. This model has more parameters to
fit than the approach that we propose, where we only have to
estimate a single parameter, thus reducing the requirements
of in-network computation. Cormode and Garofalakis [13]
describe a technique for approximate query tracking based
on sketches. Their technique can efficiently operate in a dis-
tributed, online setting. Even though it can be generalized,
it is mainly geared toward discrete domains and the unre-
stricted window model. In order to work for sliding windows,
it would require to store all the values of the window, which
is something we avoid doing in the framework we propose.

Greenwald and Khanna [19] study the problem of com-
puting order statistics in a sensor network. Another recent
study [41] addresses the problem of approximating the data
distribution for computing order statistics, as well as range
queries. There has also been work on predicting and caching
the values generated by the sensors [35, 26], which can re-
sult in significant communication savings. Nevertheless, it is
not obvious how to use this approach in our setting, since
distance-based outliers require the computation of the num-
ber of neighboring values. It may be the case that values
within the change detection threshold defined by the above
approaches are outliers, and values outside this threshold are
not. In addition, our model is designed to efficiently compute
the distribution of a region, and therefore, identify outliers
by combining the data from multiple sensors.

A similar approach for outlier detection in streaming data
is described by Yamanishi et al. [44]. In contrast to our work,
their method does not operate on sliding windows, but rather
on the entire history of the data values, using an exponential
forgetting factor for discounting the effect of the older values.
Furthermore, the above approach is not geared towards a
distributed environment, such as a sensor network.

There is extensive literature in the statistics community re-
garding outlier detection [6], as well as in the database com-
munity [3, 28, 38, 10]. However, none of these approaches
is directly applicable to a sensor environment, either because
they assume knowledge of the input data distribution, or be-
cause they are not tailored to operate online. There has been
work on the special case of identifying outliers in streaming
time-series data [37, 34]. Nevertheless, the significance of the
temporal ordering is a major difference from the semantics of
the problem we are considering in this study.

197

Recent work [22] gives an online technique to compute the
JS divergence. This approach can be applied for some of the
applications we consider, such as identifying faulty sensors
but does not impact our algorithms for finding outliers.

12. CONCLUSIONS
In this paper, we study the problem of outlier detection in

sensor networks. Outlier detection is very important in this
context, since it enables the analyst to focus on the interest-
ing events in the network. We propose a framework based on
the approximation of the distribution of the sensor measure-
ments. The techniques we describe operate efficiently in an
online fashion. Moreover, they distribute the computation
effort among the nodes in the network, thus better exploiting
the available resources and cutting back on the communica-
tion and processing costs. We evaluated our approaches with
a set of experiments with real and synthetic datasets. The ex-
perimental evaluation shows that our algorithm can achieve
very high precision and recall rates for identifying outliers,
and demonstrate the effectiveness of the proposed approach.
As future work, we plan to evaluate our techniques in a real
sensor network.

Acknowledgments: We would like to thank Samuel Mad-
den for providing us the source code of the TAG simulator.
The research of Vana Kalogeraki and Dimitrios Gunopulos is
supported by NSF Grant 0330481.

References
[1] Crossbow Technology Inc. http://www.xbow.com/.
[2] Earth Climate and Weather, University of Washington.

http://www-k12.atmos.washington.edu/k12/grayskies/.
[3] Andreas Arning, Rakesh Agrawal, and Prabhakar Raghavan. A

Linear Method for Deviation Detection in Large Databases. In
KDD, 1996.

[4] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling
From a Moving Window Over Streaming Data. In SODA, 2002.

[5] Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan
O’Callaghan. Maintaining Variance And k-medians Over Data
Stream Windows. In PODS, pages 234–243, USA, 2003.

[6] V. Barnet and T. Lewis. Outliers in Statistical Data. John Wiley
and Sons, Inc., 1994.

[7] Shai Ben-David, Johannes Gehrke, and Daniel Kifer. Identifying
Distribution Change in Data Streams. In VLDB, Toronto, ON,
Canada, 2004.

[8] Bjorn Blohsfeld, Dieter Korus, and Bernhard Seeger. A Compar-
ison of Selectivity Estimators for Range Queries on Metric At-
tributes. In SIGMOD, 1999.

[9] B. Bonfils and P. Bonnet. Adaptive and decentralized operator
placement for in-network query processing. In IPSN, 2003.

[10] M.M. Breunig, H.-P. Kriegel, R.T. Ng, and Jörg Sander. LOF:
Identifying Density-Based Local Outliers. In SIGMOD, 2000.

[11] Paul G. Brown and Peter J. Haas. Techniques for warehousing of
sample data. In ICDE, 2006.

[12] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and
Kyuseok Shim. Approximate Query Processing Using Wavelets.
In VLDB, 2000.

[13] Graham Cormode and Minos N. Garofalakis. Sketching streams
through the net: Distributed approximate query tracking. In
VLDB, pages 13–24, 2005.

[14] Thomas M. Cover and Joy A. Thomas. Elements of Information

Theory. John Wiley & sons, 1991.
[15] Amol Deshpande, Carlos Guestrin, and Samuel R. Madden. Us-

ing Probabilistic Models for Data Management in Acquisitional
Environments. In Proc. CIDR, 2005.

[16] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M.
Hellerstein, and Wei Hong. Model-Driven Data Acquisition in
Sensor Networks. In VLDB, Toronto, ON, Canada, 2004.

[17] D. Ganesan, B. Greenstein, D. Estrin, J. Heidemann, and
R. Govindan. Multiresolution storage and search in sensor net-
works. ACM TOS, 1(3):27–315, 2005.

[18] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin
Strauss. Surfing Wavelets on Streams: One-Pass Summaries for
Approximate Aggregate Queries. In VLDB, Rome, Italy, 2001.

[19] M.B. Greenwald and S. Khanna. Power-Conserving Computation
of Order-Statistics over Sensor Networks. In PODS, 2004.

[20] Carlos Guestrin, Peter Bodik, Romain Thibaux, Mark Paskin, and
Samuel Madden. Distributed Regression: an Efficient Framework
for Modeling Sensor Network Data. In IPSN, Berkeley, CA, 2004.

[21] Sudipto Guha and Nick Koudas. Approximating a Data Stream
for Querying and Estimation: Algorithms and Performance Eval-
uation. In ICDE, pages 567–576, San Jose, CA, USA, 2002.

[22] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubrama-
nian. Streaming and sublinear approximation of entropy and in-
formation distances. In In Proceedings of the seventeenth annual

ACM-SIAM symposium on Discrete algorithm, 2006.
[23] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Car-

lotta Domeniconi. Approximating Multi-Dimensional Aggregate
Range Queries over Real Attributes. In SIGMOD, 2000.

[24] Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan,
and John Heidemann. Impact of network density on data aggre-
gation in wireless sensor networks. In ICDCS, 2002.

[25] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poos-
ala, Kenneth C. Sevcik, and Torsten Suel. Optimal Histograms
with Quality Guarantees. In VLDB, New York, NY, USA, 1998.

[26] A. Jain, E.Y. Chang, and Y.-F. Wang. Adaptive Stream Resource
Management Using Kalman Filters. In SIGMOD, 2004.

[27] Ralph M. Kling. Intel Mote: An Enhanced Sensor Network Node.
In Workshop on Advanced Sensors, Structural Health Monitor-

ing, and Smart Structures, Kanagawa, Japan, 2003.
[28] E.M. Knorr and R.T. Ng. Algorithms for Mining Distance-Based

Outliers in Large Datasets. In VLDB, NY, NY, 1998.
[29] Lillian Lee. On the effectiveness of the skew divergence for statis-

tical language analysis. In Artificial Intelligence and Statistics

2001, pages 65–72, 2001.
[30] J. Lin. Divergence measures based on the shannon entropy. IEEE

Trans. Infor. Theory, 37:145–151, 1991.
[31] Samuel Madden and Michael J. Franklin. Fjording the Stream: An

Architecture for Queries Over Streaming Sensor Data. In ICDE,
2002.

[32] Samuel Madden, Michael J. Franklin, and Joseph M. Hellerstein.
TAG: A Tiny Aggregation Service for Ad-Hoc Sensor Networks.
In OSDI, 2002.

[33] N. Malpani, J. Welch, and N. Vaidya. Leader Election Algorithms
for Mobile Ad Hoc Networks. In DIAL M Workshop, 2000.

[34] S. Muthukrishnan, Rahul Shah, and Jeffrey Scott Vitter. Mining
Deviants in Time Series Data Streams. In SSDBM, 2004.

[35] C. Olston, J. Jiang, and J. Widom. Adaptive Filters for Contin-
uous Queries over Distributed Data Streams. In SIGMOD, 2003.

[36] S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos.
Loci: Fast outlier detection using the local correlation integral,
2003.

[37] Vasundhara Puttagunta and Konstantinos Kalpakis. Adaptive
Methods for Activity Monitoring of Streaming Data. In ICMLA,
2002.

[38] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Effi-
cient Algorithms for Mining Ouliers from Large Data Sets. In
SIGMOD, 2000.

[39] Dongmei Ren, Baoying Wang, and William Perrizo. Rdf: A
density-based outlier detection method using vertical data rep-
resentation. In ICDM, pages 503–506, 2004.

[40] D. Scott. Multivariate Density Estimation: Theory, Practice
and Visualization. Wiley & Sons, 1992.

[41] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant
Agrawal, and Subhash Suri. Medians and Beyond: New Ag-
gregation Techniques for Sensor Networks. In ACM SenSys,
Baltimore, MD, USA, 2004.

[42] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidi-
mensional histograms. In SIGMOD Conference, 2002.

[43] B. Warneke, M. Last, B. Liebowitz, and K. Pister. Smart dust:
Communicating with a cubic-millimeter computer. IEEE Com-
puter Magazine, pages 44–51, January 2001.

[44] Kenji Yamanishi, Jun ichi Takeuchi, Graham J. Williams, and Pe-
ter Milne. On-Line Unsupervised Outlier Detection Using Finite
Mixtures with Discounting Learning Algorithms. Data Mining

and Knowledge Discovery, 8(3):275–300, 2004.
[45] Yong Yao and Johannes Gehrke. Query Processing for Sensor

Networks. In CIDR, Asilomar, CA, USA, 2003.
[46] Fan Ye, Haiyun Luo, Jerry Cheng, Songwu Lu, and Lixia Zhang.

A Two-Tier Data Dissemination Model for Large-Scale Wireless
Sensor Networks. In MOBICOM, Atlanta, GA, USA, 2002.

[47] S. Zhao, K. Tepe, I. Seskar, and D. Raychaudhuri. Routing pro-
tocols for self-organizing hierarchical ad hoc wireless networks. In
IEEE Sarnoff Symposium, 2003.

198

