
A Deferred Cleansing Method for RFID Data Analytics
 Jun Rao Sangeeta Doraiswamy Hetal Thakkar

1
 Latha S. Colby

 {junrao,dsang}@us.ibm.com hthakkar@cs.ucla.edu lathac@us.ibm.com

 IBM Almaden Research Center UCLA IBM Almaden Research Center

ABSTRACT
Radio Frequency Identification is gaining broader adoption in

many areas. One of the challenges in implementing an RFID-

based system is dealing with anomalies in RFID reads. A small

number of anomalies can translate into large errors in analytical

results. Conventional “eager” approaches cleanse all data upfront

and then apply queries on cleaned data. However, this approach is

not feasible when several applications define anomalies and

corrections on the same data set differently and not all anomalies

can be defined beforehand. This necessitates anomaly handling at

query time. We introduce a deferred approach for detecting and

correcting RFID data anomalies. Each application specifies the

detection and the correction of relevant anomalies using

declarative sequence-based rules. An application query is then

automatically rewritten based on the cleansing rules that the

application has specified, to provide answers over cleaned data.

We show that a naive approach to deferred cleansing that applies

rules without leveraging query information can be prohibitive. We

develop two novel rewrite methods, both of which reduce the

amount of data to be cleaned, by exploiting predicates in

application queries while guaranteeing correct answers. We

leverage standardized SQL/OLAP functionality to implement

rules specified in a declarative sequence-based language. This

allows efficient evaluation of cleansing rules using existing query

processing capabilities of a DBMS. Our experimental results

show that deferred cleansing is affordable for typical analytic

queries over RFID data.

1. Introduction
Radio Frequency Identification (RFID) technology is being

deployed in several application areas including supply-chain

optimization, business process automation, asset tracking, and

problem traceability applications. While RFID itself is not a new

concept, Electronic Product Code (EPC™) [1] standards-based

product identification and tracking is emerging as a key

component in the enablement of these applications. EPC is a

scheme for uniquely identifying individual objects using RFID

tags and other means. One of the challenges in implementing an

RFID-based system is dealing with anomalies in the data

representing RFID reads. These data can have errors arising from

many different sources.

Unlike barcode readers that detect signals based on a fixed line of

sight, RFID readers need to respond to signals from a wider range

of objects that could potentially be moving. The complexities of

“reader physics” give rise to duplicate reads, missed reads, and

cross reads. In addition to errors arising from physical reads,

anomalies can occur at the logical or business process level. For

example, suppose that a product item moves to a store floor but is

returned to the back-room due to lack of shelf space and at a later

time is again moved to the store floor; and this cycle repeats a few

times. An application may treat such a cycle as an anomaly and

want to remove it as erroneous data, even though the raw reads

are themselves accurate.

The conventional data cleansing approach is to remove all

anomalies upfront and to store only the cleaned data in a database.

For example, many device controllers at the edge of an RFID

network provide de-duping and primitive filtering capabilities and

errors such as duplicate reads are often correctible at the edge.

Such eager cleansing methods can potentially reduce the amount

of data that have to be managed by applications down-stream in

the business process and help avoid repeated cleansing of the data

at query time.

However, it is not always possible to remove all anomalies before

hand. One reason is that the rules and the business context

required for cleansing may not be available at data loading time.

For example, we may not know the presence of cycles and

whether they will affect any analysis until users observe

irregularity in query results some time later. As a result, an

application may constantly evolve existing anomaly definitions

and add new ones. Also, the rules for correcting data anomalies

are often application specific. For example, application queries

tracking shelf space planning or labor productivity will want to

know about all cycles within stores. On the other hand, another

application that calculates how long a product item has stayed in

every location will want to remove everything in the cycle except

for the first and the last reads. Finally, in applications such as

pharmaceutical e-pedigree tracking, laws require the preservation

of tracking information which then precludes up-front cleansing

of the data. Maintaining and adapting multiple cleaned versions

physically is prohibitive, when different application requirements

dictate sets of rules that are dynamically changing. All these

reasons make the eager approach infeasible.

We propose a deferred cleansing approach to complement the

eager one. Known anomalies whose detection and correction is

common to all consumers of the data are still handled eagerly, but

the processing of other anomalies is deferred until query time.

Each application specifies its own anomalies by defining

cleansing rules. The rules do not change the content of the

database directly, but are evaluated when an application issues a

query. In this approach, although an application pays some

cleansing overhead at query time, it gains the flexibility of being

able to evolve its anomaly specifications over time.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the VLDB copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Very Large Data Base Endowment. To copy

otherwise, or to republish, to post on servers or to redistribute to lists,

requires a fee and/or special permission from the publisher, ACM.

VLDB ‘06, September 12–15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1Work performed at IBM Almaden.

175

mailto:hthakkar@cs.ucla.edu

A key characteristic of RFID data is its sequential nature. We first

describe different types of anomalies that can occur in RFID data

and show the patterns in the read sequences that are indicative of

those anomalies. We define cleansing rules in an extended version

of SQL-TS[3]—a simple yet powerful sequence-based language,

and implement each rule in SQL/OLAP for efficient evaluation.

The naïve way of performing deferred cleansing is to clean all the

data on the fly before executing a query. This is prohibitive since

RFID data has high volume. We develop two query rewrite

techniques that effectively exploit query conditions to reduce the

amount of data to be cleaned at query time. We have built a

prototype implementation of the deferred cleansing model. Our

experimental results show that deferred cleansing is affordable for

typical RFID analytical queries and our rewrite techniques

improve query performance significantly compared to the naïve

evaluation.

The rest of this paper is organized as follows. Related work is

described in Section 2. An overview of our deferred cleansing

system is provided in Section 3. Section 4 describes our approach

for specifying cleansing rules and the exploitation of SQL/OLAP.

It also provides example rules for detecting and correcting the

errors in several scenarios. In Section 5, we present mechanisms

for rewriting user queries based on cleansing rules and show how

these rewrites can be optimized. We explain experimental results

that evaluate the benefits of deferred cleansing in Section 6 and

present our conclusions in Section 7.

2. Related Work
There are several challenges in dealing with RFID data [2].

Techniques for compactly representing RFID data along with

methods for accessing the data have been proposed by [16] and

[17]. In this paper, we focus on the challenge of dealing with

anomalies in the data. A data warehousing solution often contains

data cleansing as one of the steps in the ETL (Extract-Transform-

Load) process before the data is loaded into the data warehouse.

Commercial ETL products such as, [12] and [13] provide data

cleansing and profiling capabilities. These techniques involve

detecting and correcting 1) duplicate representations of the same

entity (e.g., customer), 2) references to missing data – based on

referential integrity constraints, and 3) data that are inconsistent

with some standard reference data (such as names and addresses

information obtained from postal directories). There has been

some recent research ([14] and [15]) in applying fuzzy operators

to the correction of these types of anomalies.

Data generated from RFID reads adds another dimension of

complexity to the cleansing process. Cleansing RFID data

requires analyzing product lifecycle information which involves

detecting and correcting errors across sequences of facts.

Duplicate reads (caused by the same reader reading a tag

continuously) are often easily corrected at the edge of the EPC

network and edge devices manufactured by several companies

provide this form of de-duping capability. Recently, companies

like OAT systems [11] have also started to offer more complex

error detection and correction capabilities in the edge systems.

SAP’s Auto-ID infrastructure described in [6], provides data

filtering, enriching, and aggregation components in the device

control layer. Our solution, on the other hand, can compensate

for errors that persist beyond the edge and deal with application

specific data quality requirements.

In [4], the authors describe a system for transforming low-

level device-specific and error-prone data into idealized data that

can be processed by higher-level applications. A declarative

language is used to define cleansing operations that involve de-

duping, removing outliers (using standard deviation), and

smoothing data collected from different sources. Wang and Liu

[5] describe a system for managing RFID data based on an

extended ER model. They provide example rules for data filtering

(deleting duplicate reads by the same reader), and inferring

aggregation events (e.g., when pallets have been loaded on to a

truck). Both of these approaches cleanse data up-front using a

fixed set of rules. Our approach, on the other hand, allows

application specific cleansing at query time.

There has been a large body of work on consistent query

answering over inconsistent databases (e.g., [9]). These papers

study the problem of answering queries posed over an inconsistent

database to generate answers over a consistent version of the data

as defined by consistency constraints. Some of them focus on the

complexity of query answering in the presence of inconsistencies.

Others ([7][8][10]) have presented techniques for efficiently

rewriting the queries to provide consistent answers, i.e., queries

whose result sets represent the result of applying a possible

“repair”. The class of constraints studied is limited to those

requiring set (or bag) based relational semantics. Our focus is on

a different but related problem. In this paper, we assume that the

consistency rules specified by the user include not only the

consistency definition but also the action that specifies the

“repairs”. The class of applications that we have focused on

requires analysis of sequences to detect and correct anomalies. A

naïve approach to evaluating these sequence-based consistency

rules would be extremely inefficient. We present techniques for

combining these rules with user queries to generate rewritten

queries that are not only efficient to execute but also preserve the

semantics of the sequence constraints.

In [3], Sadri et al, propose a pattern language, namely SQL-

TS, and optimization techniques for its efficient evaluation. These

optimization techniques involve capturing the logical

relationships between the pattern elements based on the specified

predicates. The approach proposed in this paper also involves

analyzing the predicates of the SQL-TS rules. However the two

techniques are very different in many respects. For instance, [3]

determines dependencies among the predicates of the SQL-TS

query itself to prevent redundant pattern matching, whereas our

technique compares SQL-TS rule predicates with the predicates

specified in the user query to determine the data that needs to be

cleaned. The analysis of the predicates is performed very

differently and for very different reasons.

In [18], Deshpande et al, describe techniques for querying

live data from sensor networks by incorporating statistical models.

These models can provide approximations and extrapolations of

missing and faulty readings. Queries are answered by calculating

estimates of current readings from the constructed model. Finally,

view adaptation [20] techniques can be applied to maintain

materialized results when the view definition evolves. However,

such techniques are not directly applicable on sequence data.

3. System Overview
Our implementation of the deferred cleansing approach comprises

two main components - the Cleansing Rule engine and the Query

176

Rewrite engine. Both components are prototyped in Java above

the DBMS, are extensible, and are not proprietary to any DBMS

vendor. A high level architecture diagram is depicted in Figure 1.

 Figure 1: System Architecture

The numbered steps in Figure 1 represent the flow of information

in the system and are summarized below.

1. The rule engine accepts rules specified in extended SQL-TS for

different applications and generates a SQL/OLAP template for

each rule. This SQL/OLAP template encapsulates logic to detect

and compensate for anomalies and is plugged in at query time.

2. The SQL/OLAP template is persisted in the rules table.

Specifically, the rule pattern, conditions, and action clauses are

stored in this table for use by the rewrite engine.

3. The rewrite engine intercepts user SQL queries to determine if

they need to be re-written to compensate for errors.

4. If needed, the user query is rewritten to a new one by efficiently

applying relevant rules stored in the rules table.

5. The rewritten query is submitted to the DBMS for execution.

6. The DBMS returns cleansed query results to the user.

4. Cleansing Rules
In this section, we describe how we detect and correct anomalies

using declarative cleansing rules. We assume that the reads of all

RFID tags are stored in a relational table R whose schema is

depicted in Figure 2. This schema is used throughout the paper.

Table R (for RFID reads)

epc, RFID tag identifier

rtime, time when tag is read by a reader

reader, identifier of reader that reads the tag

biz_loc, business location where tag is read

biz_step, business steps associated with the read

Figure 2: RFID Table Schema

4.1 Cleansing Rules Language Considerations
We can naturally view RFID data as a set of EPC sequences, each

of which consists of all reads of a particular tag in rtime order.

Such a model makes it convenient to detect various types of

anomalies for RFID applications. Many sequence-based

languages have been proposed in the literature. However, few

have recognized that SQL/OLAP functions (part of the SQL99

standard) can be exploited for processing sequences. For example,

to detect and filter duplicate reads, we can use this SQL statement:

 with v1 as (

 select biz_loc as loc_current,

 max(biz_loc) over (partition by epc order by rtime asc

 rows between 1 preceding and 1 preceding) as loc_before

 from R)

 select * from v1

 where loc_current != loc_before or loc_before is null;

The key in the above statement is the utilization of SQL/OLAP for

computing column loc_before. SQL/OLAP uses the partition by

and the order by clauses to define the input as a set of sequences,

and allows us to define for each row r, a scalar aggregate on a

window (within a sequence) relative to r. In this example, we

define the input as EPC sequences and specify a window (given

by the rows clause) with a single row before each row r in

sequence order. The biz_loc of the previous row in the window

can be extracted using a scalar aggregate. We can then compare

the location of two consecutive reads to remove duplicates. The

second disjunct in the where clause handles border line rows that

have no rows before them in a sequence.

Exploiting SQL/OLAP for sequence processing has several

advantages: (1) it is more efficient than SQL using self joins or

subqueries (the above SQL statement can be executed by making

a single pass over table R in a sorted order); (2) it is integrated

inside the database engine and therefore automatically benefits

from DBMS features such as optimization and parallelism; (3) it

is standardized and supported by the leading DBMS vendors.

The main drawback of using SQL/OLAP is its redundancy in

syntax. Observe that in order to retrieve a column value from a

previous row, one has to specify a relatively complex scalar

aggregate. If multiple columns are needed, each requires its own

scalar aggregate specification. Such redundancy makes it hard for

users to express cleansing rules directly in SQL/OLAP.

To overcome such drawback, we extend the syntax of SQL-TS, a

natural sequence language, to make it easier to define cleansing

rules. Once a rule is defined, we automatically generate a template

in SQL/OLAP to be used at query time for efficient execution.

Section 4.2 introduces a SQL-TS based rule language and shows

how rules expressed in such a language can be mapped to a SQL

implementation. We then use several examples to demonstrate

how our language can be used to specify cleansing rules in

Section 4.3. We discuss the issue of rule ordering in Section 4.4.

4.2 SQL-TS based Cleansing Rules
Our SQL-TS based rule grammar is described below; all clauses

except for those in italics are borrowed as-is from SQL-TS.

 DEFINE [rule name]

ON [table name]

FROM [table name]

CLUSTER BY [cluster key]

SEQUENCE BY [sequence key]

AS [pattern]

WHERE [condition]

 ACTION [DELETE | MODIFY | KEEP]

The CLUSTER BY and the SEQUENCE BY clauses are similar

to the ‘partition by’ and ‘order by’ clauses in SQL/OLAP and

define how to convert the input data to sequence sets. Typically

DATABASE

2 4

3

5

CLEANSING

RULES ENGINE

RULES TABLE EPC READS TABLE

USER

RULE

1

6

USER

QUERY

QUERY REWRITE

ENGINE

177

the cluster key is epc and the sequence key is rtime. The main

simplification comes from the pattern specification in the AS

clause. A pattern defines an ordered list of references. If a

reference is not designated with a * sign, it refers to a single row

in the input. A reference with a * sign can only appear at the

beginning or the end of the pattern, and refers to a set of rows

either before or after a row bound to a singleton reference within a

sequence. A condition is specified on columns of the pattern

references. For example, duplicate detection can be expressed in

SQL-TS as:

 AS (A, B) WHERE A.biz_loc !=B.biz_loc

References A and B each refers to a single row and the pattern

implies that the two rows are adjacent in a sequence. Compared to

SQL/OLAP, the specification of the two consecutive reads in

SQL-TS is simpler and more intuitive. A condition on a set

reference (with a * sign) has the existential semantics, i.e., it is

true if any row in the set makes it true (note that the semantics

here is slightly different from the one used in the original SQL-

TS). We show such an example in Section 4.3.

Our rule language extends SQL-TS in two ways. First, we add an

ACTION clause that specifies how to fix anomalies when the

condition in the WHERE clause is satisfied. An action is specified

on a singleton reference defined in the pattern. We allow the

action to be any of DELETE, MODIFY and KEEP. Using both

DELETE and KEEP provides more flexibility since sometimes it

is more intuitive for users to specify reads to remove, instead of

retain, or vice versa. MODIFY can change the value of any

column in a row. If a column to be modified does not exist, we

create a new column on the fly. Note that an action does not

directly change what is stored in the input table, but controls what

flows out of it. We deliberately exclude INSERT from the

ACTION clause, since often direct insertion is not useful. Second,

we separate the table on which a rule is defined (by the ON

clause) and the table from which the rule gets the input (by the

FROM clause). We assume in the rest of the paper that a rule is

always defined on the reads table R. However, an application can

choose to use an input including data in R as well as some extra

data for reference or compensation (e.g., handling missed reads in

Example 5 in the next section). This is essentially how we support

insertion without an explicit one in the ACTION clause. The input

table is required to have a schema including all columns in R, but

can have some extra ones. The rule condition can refer to any

column in the input table.

We can always convert a cleansing rule to an implementation in

SQL/OLAP. The conversion of the cluster by and the sequence by

clauses is trivial and we focus on the conversion of the WHERE

and the ACTION clauses. If a rule condition refers to two

singletons, we can specify one of them in SQL/OLAP as a number

of scalar aggregates (one for each needed column) over a window

of size one. The window is defined according to the relative

sequence positions of the two singletons. If a rule condition refers

to a set and a singleton, we define a window including the set and

convert the rule condition to a “case” expression over the

window. A scalar aggregate is used to determine whether any row

in the set tests to true. The DELETE and KEEP actions are

implemented as filter conditions in SQL. The rule condition is

used directly as the filter for KEEP and is negated for DELETE

with proper handling of the null semantics. Finally, MODIFY can

be handled by another “case” expression as seen in Section 4.3.

4.3 Cleansing Rule Examples
In this section, we use some examples to illustrate how cleansing

rules are defined using the extended SQL-TS. We show only the

pattern, condition and action specifications for each rule. Unless

otherwise mentioned, a rule is always on table R, from table R,

clustered by epc, and sequenced by rtime. We also highlight the

interesting parts of the SQL/OLAP implementation of these rules.

In this paper, we assume that the rules are manually specified. We

leave the automatic discovery of such rules for future work.

Example 1 (duplicate rule): Although most duplicates can be

fixed at the edge, a small number of them may survive for reasons

such as edge server restart. We can further restrict duplicate

removal to only reads that are t1 minutes apart, where t1 can be

customized for different applications. Such a rule is given below.

Here, we choose to keep the very first read among duplicates.

Pattern Condition Action

(A, B) A.biz_loc = B.biz_loc and

B.rtime – A.rtime < t1 mins

DELETE B

The SQL/OLAP implementation is similar to that in Section 4.1.

Example 2 (reader rule): Consider a scenario where a forklift

equipped with an RFID reader (say readerX) carries a tagged case

to a destination in a warehouse. On reaching the destination,

readerX reads the EPC on the case and a pre-installed location tag

at the destination and generates a new read. During transportation,

the case on the forklift may be accidentally read by other readers

(say a reader on a docking door). If we discover that such

transportation takes up to t2 minutes, we can define the following

rule to remove all reads recorded t2 minutes before a read by

readerX. Notice that B is designated as a set reference by the *.

Pattern Condition Action

(A, *B) B.reader = ‘readerX’ and

B.rtime – A.rtime < t2 mins

DELETE A

The reader rule can be implemented in SQL/OLAP by defining a

scalar aggregate “has_readerX_after”:

 max(case when reader = 'readerX' then 1 else 0 end)

 over (range between 1 macro sec following

 and t2 min following) as has_readerX_after

Notice how we construct the window by exploiting the constraint

on the sequence key rtime to include rows that B refers to. We can

then filter out rows whose has_readerX_after is set to 1.

Example 3 (replacing rule): Suppose readers at two locations

‘loc1’ and ‘loc2’ are close to each other and can incur cross reads.

Also suppose that because of the business flow, a shipment being

read at ‘loc1’ is always read at another location ‘locA’ next,

within t3 minutes. We can then use the following rule to detect

the anomaly and modify its location.

Pattern Condition Action

(A, B) A.biz_loc = ‘loc2’ and

B.biz_loc = ‘locA’ and

B.rtime–A.rtime < t3 mins

MODIFY

A.biz_loc=‘loc1’

The SQL implementation of the MODIFY action is a “case”

expression that either keeps biz_loc as it is or changes it to ‘loc1’

depending on the test of a condition.

178

Example 4 (cycle rule): Suppose that an application does not

want to see reads back and forth between a set of locations. Hence

a location pattern such as [X Y X Y X Y] for an EPC should be

changed to [X Y], keeping only the first X and the last Y. This

can be achieved by the following cycle rule. A rule that removes

cycles of arbitrary length is also possible, but more involved.

Pattern Condition Action

(A, B, C) A.biz_loc=C. biz_loc and

A.biz_loc != B.biz_loc

DELETE B

Example 5 (missing rule): Let us take a scenario where a pallet

and cases in it are known to travel together along a certain

business path. Also assume that pallet tags are always readable,

but due to the orientation of the tag and contents, cases are not

always read at every location. Suppose that at location L1, pallet P

is read, but a case C in P is not. We will be more confident that C

in fact missed a read (instead of being stolen) if some time later,

we see a read of C and P together again at some location L2. We

can then compensate for the missing read of C at L1, by

converting the pallet read at L1 to a case read (replacing P’s epc

with C’s epc).

Below, we specify the missing rule in two sub-rules r1 and r2.

Both r1 and r2 are defined on table R, which we assume for now,

contains only case reads. The input (in the FROM clause) to r1 is

not R, but a derived table of the same schema in Figure 2, with an

extra column “is_pallet”. We defer details on how this input is

derived until Section 6. For now, let us assume that the derived

table is a union of R and another set R’. For a pallet P containing

n cases, there are n copies of every read of P in R’ and the epc of

each copy is set to each case epc. While R has the ‘actual’ reads

for the cases, R’ contains the ‘expected’ case reads based on the

more reliable pallet reads. Every row in R and R’ has is_pallet set

to 0 and 1, respectively.

Rule r1 uses A to reference a pallet read and then checks if A has

a nearby case read at the same location. If so, it sets a flag

“has_case_nearby”, which indicates no missing reads at that

location. The output of r1 is pipelined to Rule r2. r2 keeps all

original case reads, plus the pallet reads without a nearby case

read, as long as the same case is read later together with the pallet.

Observe that the preserved pallet reads compensate for the

missing case reads.

r1. Pattern Condition Action

(X,A,Y) A.is_pallet=1 and

((X.is_pallet=0 and

 A.biz_loc=X.biz_loc and

 A.rtime-X.rtime<5 mins)

OR

 (Y.is_pallet=0 and

 A.biz_loc=Y.biz_loc and

 Y.rtime-A.rtime<5 mins)

)

MODIFY

A.has_case_nearby=1

r2. Pattern Condition Action

(A,*B) A.is_pallet=0 or

(A.has_case_nearby=0 and

 B.has_case_nearby=1)

KEEP A

To express r1 in SQL, has_case_nearby can be computed by a

single scalar aggregate over a window including a row r, a row

before and a row after r, since the condition on X and Y are the

same. r2 can be dealt with methods similar to those in Example 2.

SQL/OLAP is richer than SQL-TS for expressing conditions. For

example, if we change the scalar aggregate for computing

“has_readerX_after” in Example 2, from max() to count(), we can

further control how many reads by readerX should be observed

before taking an action. Extending SQL-TS to take advantage of

such capabilities in SQL/OLAP is beyond the scope of this paper

since the current SQL-TS language is powerful enough to express

many common types of anomalies.

4.4 Rule Ordering
When an application defines multiple rules on the same table, we

require that their input table be the same. Often, there is a

dependency among rules and their ordering is important. Consider

the location of a sequence of tag reads given by [X Y X]. If we

apply the cycle rule first, followed by the duplicate rule (without

constraint on rtime), the cleaned sequence becomes [X] (first X).

If we switch the two rules, we get [X X] instead. In our system,

rules are ordered by their creation time and applied in this order.

5. Rewriting Queries using Cleansing Rules
Given a user query Q and a cleansing rule C defined on R, we

denote the correct answer to Q with respect to C as Q[C]. We

define ФC(d) as the result of applying rule C on a data set d

including all columns in R’s schema. By definition, Q[C] can be

computed by replacing all references to R in Q with ФC(R). Such

a computation requires cleaning all data in R and thus is

prohibitive. In this section, we describe how deferred cleansing

can be performed through more efficient query rewrites. In

Section 5.1, we show why pushing predicates in Q to R directly

does not always produce the correct answer and illustrate two

efficient query rewrite approaches that preserve the query

semantics. We describe techniques to generate these two types of

rewrites in Section 5.2 and 5.3 respectively, in the presence of a

single cleansing rule. We then extend our solution to support

multiple rules in Section 5.4. In this section, we assume that the

input to C is also table R, but our techniques apply to any input to

C.

5.1 Motivation
To reduce the amount of data to be cleaned, it is tempting to push

predicates in Q directly to R first and then to apply rule C,

followed by the evaluation of the rest of Q. Unfortunately, this

does not always return the correct answer for Q[C].

Consider the cleansing rule C1 (defined as the reader rule in

Section 4.3) defined on table R1 and query Q1 given in Figure

3(a). We use an rid field to identify rows in a table. Applying C1

on R1 will remove row r1 because there is a read by readerX

subsequently within 5 minutes. The remaining row r2 does not

satisfy the condition in Q1 and the correct answer to Q1[C1] is

{}. If we push Q1’s condition “rtime < t1” on R1 first, only row

r1 qualifies. Applying C1 on {r1} does not remove r1 this time

since r2 is no longer present. Thus, we get the answer {r1}, which

is incorrect.

As another example, consider a cleansing rule C2 defined on table

R2 and another query Q2 given in Figure 3(b). Note that C2 is a

modified version of the duplicate rule in Section 4.3 obtained by

omitting the time constraint. Applying C2 on R2 produces {r3}

179

because r4 is a duplicate. Since r3 has an rtime no greater than t2,

the correct answer for Q2[C2] is again {}. However, if we apply

the condition in Q2 on R2 first before cleansing, only r4 is

selected. Applying C2 on {r4} does not remove r4 since it is the

only one in the set. Again, we get the incorrect answer {r4}.

Both Q1[C1] and Q2[C2] can still be answered more efficiently.

For instance, we can compute Q1[C1] using an expression e1 =

σrtime<t1(ФC1(σrtime<t1+5(R1))). Intuitively, we know from C1’s

condition that in order for a read r in R1 to be deleted, we need

another read by readerX that trails r by 5 minutes or less. By

relaxing the original condition in Q1 slightly, e1 gets enough data

to remove all reads relevant to Q1. Cleansing is then applied on

this slightly larger data set. Finally, e1 reapplies the original

condition to remove the extra data that is needed only for

cleansing.

A similar approach cannot directly be used for Q2[C2]. This is

because in C2, two duplicate reads can be arbitrarily far apart in

time (remember that we removed the time constraint from the

original duplicate rule). Nevertheless, Q2[C2] can be alternatively

answered by e2=σrtime>t2(ФC2(R2ÅepcΠepc(σrtime>t2(R2)))), where

Åepc represents a natural join on epc between two tables, and Πepc

projects the input on epc and removes duplicates. Observe that C2

only removes rows from an input sequence. Therefore, we only

need to clean sequences that include at least one read satisfying

the condition in Q2. The remaining sequences are not relevant

because even if we clean them, no reads will be selected by Q2

anyway. That’s precisely what e2 does. It first identifies sequences

that have to be cleaned and then revisits R2 to extract all data on

those sequences. Cleansing such a data set guarantees that all

relevant anomalies are removed. Similar to e1, e2 reapplies the

original condition in the end to filter out data no longer needed

after cleansing. As we will see in Section 6, because the condition

in typical RFID queries tends to correlate with the sequence key,

the relevant sequence set can be limited effectively using this

approach. It is easy to verify that e1 and e2 indeed produce the

correct answer for Q1[C1] and Q2[C2], respectively.

It is hard for a conventional query optimizer to automatically

generate rewrites such as e1 and e2. There are several reasons why

this is challenging for a conventional optimizer. First of all,

SQL/OLAP, while providing a more efficient way of bringing

together different rows from the same table than self joins, hides

the original row identity inside scalar aggregates and Boolean

expressions (as we have seen in Section 4.3). This makes it

difficult for the optimizer to do effective transitivity analysis.

Second, a cleansing rule may have multiple equivalent

SQL/OLAP implementations. It is difficult for an optimizer to

recognize that such different query representations originate from

the same rule logic and then to apply the same rewrite.

Instead of enhancing a conventional optimizer, we built a query

rewrite unit outside the engine that takes a set of cleansing rules

and a user query, and generates a rewritten query that gives the

correct answer with respect to those rules. Because our rewrite

unit is at the rule level, it can transform queries more effectively

than a DBMS optimizer. Next, we will describe two styles of

query rewrites, expanded (e.g., e1) and join-back (e.g., e2).

5.2 Expanded Rewrite
In this Section, we describe the expanded query rewrite. We

assume for now that only a single cleansing rule C is defined on

table R.

Definition 1. The pattern in a cleansing rule C specifies two types

of data references: a target reference and a context reference. The

former is the reference used in the action part of C (a rule has only

one target reference). The rest of the references in the pattern are

the context references. For example, in Figure 3(a) and Figure

3(b), references A and F are target references while references B

and E are the context references (underlined).

A target reference T and a context reference X both refer to row

sets in table R, but they are not independent. We refer to a

condition that links T and X as a correlation condition. Some

correlation conditions are given explicitly in the rule condition

and some others are implied in the rule pattern specification (more

on this later). Consider a user query Q given by σs(R). Because we

only need to clean data that the query cares about, Q essentially

binds T to a row set RT=σs(R). Through a correlation condition cr,

the context reference X is in turn bound to another row set RX

referred to as the context set (RT and RX may overlap). Intuitively,

RX is the set of rows required in order to determine whether to

take any action on some rows in RT. The key is to select from R,

not only the query data RT, but also the context set RX, so that all

necessary cleansing can be done. The direct pushdown approach

in the previous section fails because it ignores data present only in

the context sets.

C1: Pattern Condition Action

(A, *B) B.reader = ‘readerX’ &&

B.rtime – A.rtime < 5 min

DELETE A

R1 (rid, epc, rtime, reader)

 = { (r1, e1, t1-2min, ‘readerY’),

 (r2, e1, t1+2min, ‘readerX’) }

Q1:

select * from R1

where rtime < t1

C2: Pattern Condition Action

(E, F) E.biz_loc = F.biz_loc DELETE F

R2 (rid, epc, rtime, biz_loc)

= { (r3, e2, t2-2 min, ‘locZ’),

 (r4, e2, t2+2 min, ‘locZ’) }

Q2:

select * from R2

where rtime > t2

C1

Q1

cr1: A.rtime<B.rtime, A.epc=B.epc,

 B.rtime<A.rtime+5min, B.reader=’readerX’

s1 : A.rtime < t1

cc1: B.rtime <t1+5min && B.reader=’readerX’

ec1: rtime<t1+5min &&

 (rtime<t1 || reader=’readerX’)

C2

Q2

cr2: E.rtime<F.rtime, E.epc=F.epc,

s2 : F.rtime > t2

cc2: {}

(a) cleansing rule C1 defined on R1, queried by Q1

(d) deriving expanded rewrite for Q2[C2]

(c) deriving expanded rewrite for Q1[C1]

(b) cleansing rule C2 defined on R2, queried by Q2

Figure 3. Running Examples

180

If we bind query condition s to the target reference T and then run

a transitivity analysis on s and the correlation condition between T

and X, we may derive a new condition referencing only the

context reference X. The new condition essentially defines the

context set for X and we refer to it as a context condition. We can

then use the context condition together with s to limit the amount

of data extracted from R for cleansing. A correlation condition

between T and X includes all conjuncts in the rule condition that

refer to both T and X, as well as conjuncts that are implied in the

rule pattern. There are two types of implied conjuncts, one on the

cluster key ckey and another on the sequence key skey. Both ckey

and skey are given in the rule definition and they are typically

bound to columns epc and rtime, respectively. Since both X and T

refer to rows within the same sequence (defined by ckey), this

implies a conjunct X.ckey=T.ckey. If X is listed before (after) T in

the pattern, another conjunct X.skey<T.skey (X.skey<T.skey) is

implied. Adding both types of implied conjuncts for transitivity

analysis allows a stronger context condition to be derived.

For context references (referred to as position-based) without a *

in the rule pattern, there is actually a third implied correlation

conjunct, on sequence position (spos). For example, from the

pattern in rule C2 in Figure 3, a conjunct E.spos=F.spos-1 is

implied and it is stronger than E.skey<F.skey. Such a conjunct

does not exist between context reference B (with a *) and target

reference A in rule C1 in Figure 3, because the exact relative

position of B to A is not important. Dealing with the implied

conjunct on spos is subtle. The main difficulty comes from the

fact that sequence positions typically are not materialized in the

input data, but are computed on the fly. Thus, when determining

the context condition, we have to be careful to not change the

relative position of selected rows. Before describing the solution,

we first introduce the following definition and observation.

Definition 2. Consider a correlation condition cr between a target

reference T and a context reference X. We say that cr is position-

preserving if for any given row r referred to by T, the context set

V (computed through cr) for r has the following property: for

every row v in V, all rows between v and r in the original

sequence also belong to V. Observe that within any data set from

R containing both V and {r}, the sequence position of any row in

V relative to r is the same as that in R.

Observation 1. (a) The following correlation conditions between

a target reference T and a context reference X are position-

preserving: (1) X.ckey = T.ckey; (2) X.skey < T.skey and X.skey >

T.skey – t, if X is before T in C’s pattern; X.skey > T.skey and

X.skey < T.skey + t, if X is after T in C’s pattern, where t is a

positive constant. (b) Any correlation condition on columns other

than ckey and skey is not position-preserving.±

Reason: (a) Follows from definition. (b) For any such correlation

condition cr, it is always possible to construct a counter example

by making the column used in cr independent of the sequence key.

Therefore, for position-based context references, we do not

include all conjuncts in the correlation condition for transitivity

analysis. Instead, we keep only those that are position-preserving.

We are now ready to summarize the process of generating an

expanded rewrite for Q[C] in Figure 4. From line 2 to line 10, we

iterate through each context reference X in rule C. Depending on

whether X is position-based or not, we prepare accordingly the

correlation condition between X and the target reference T, as a

list of conjuncts. We then apply transitivity analysis between the

correlation condition rc and the query condition s (s is bound to

T). If any conjunct can be derived referencing X only, it is added

to the context condition cc. If there are multiple context

references, context conditions are or-ed together to select the

combined context sets. If any context condition cannot be derived,

we set it to empty and break out of the “for” loop. From line 11 to

line 13, if the context condition is not empty, we proceed to

generate the expanded rewrite Qe. We first compute an expanded

condition ec as s||cc and it becomes the predicate that can be

pushed to R directly. After performing cleansing on the data set

selected by ec, we have to apply s again to remove rows in the

context set that we no longer need. We use an optimization here

to simplify s to s’, by avoiding reapplying conjuncts in s already

covered in the context condition. Finally, Qe is given by an

expression σs’(Фc(σec(R))).

Theorem 1. Qe computed by the algorithm in Figure 4 gives the

correct answer to Q[C].

Proof: (sketch) We can show that for each row r not selected by

ec, r is not needed either directly by Q, or indirectly in order to

clean any row of interest to Q. Therefore, not selecting r does not

change the query semantics.±

We illustrate the algorithm in Figure 4 using our running

examples. The first example is shown in Figure 3(c) and is based

on rule C1 and query Q1. Because context reference B is not

position-based, all four conjuncts (listed as cr1), including

implied ones, that correlate B to target reference A can be used for

deriving the context condition. The condition specified in query

Q1 is given by s1, only now bound to A. By computing

transitivity on s1 and cr1, the context condition cc1 includes a

newly derived conjunct B.rtime<t1+5min and another one directly

from cr1. The expanded condition is given by ec1, which can be

relaxed to rtime<t1+5min (which is actually used in e1 in Section

5.1), if the second conjunct is not very selective.

Figure 3(d) describes the second example based on rule C2 and

query Q2. Since C2 has a position-based context reference E, only

Figure 4: Algorithm for Expanded

Inputs: s, a condition on R in a user query Q

 C, a cleansing rule on R

Output: Qe , an expanded rewrite for answering Q[C]

Method: cr: correlation condition, cc: context condition

 ec: expanded condition

1. cc = {}

2. for each context reference X in C {

3. cr = conjuncts in C’s conditions referring to X +

 implied conjuncts on ckey and skey

4. if X is position-based context

5. keep only position-preserving conjuncts in cr

6. run transitivity between cr and s (bind s to

 target reference T)

7. d = derived conjuncts referring to X only

8. if (d not empty) cc = cc || d

9. else { cc = {}; break}

10. }

11. if (cc not empty) {

12. ec = s||cc; s’ = s – cc; Qe = σs’(Фc(σec(R))) }

13. else Qe = null (no possible Qe)

181

the two position-preserving conjuncts can be used as the

correlation condition (listed as cr2). However, no conjuncts can

be derived on E through transitivity analysis between cr2 and s2.

Therefore, the expanded rewrite is not feasible for Q2. In Section

5.3, we will discuss how to handle Q2 using the join-back rewrite.

Join Query Support: When Q contains joins of σs(R) to other

tables, in general, we have to generate Qe for σs(R) first and then

join Qe with the rest of tables. However, for a certain class of

queries, it is possible to do the joins before cleansing. Consider a

query Q of the form σsRÅK1σS1D1Å…ÅKnσSnDn, where table R

joins each table Di on column Ki and all joins are n to 1 (queries

of this type are common since the reads table is typically only

joined with other reference tables). We can convert each join

condition to a conjunct of R.Ki in (select Ki from Di where Si)

such that it looks like a local condition on R. We can then apply

the algorithm in Figure 4 as before. After the transitivity analysis,

some of those “in” conjuncts are derived on the context reference

and are added to the context condition. We refer to those

conjuncts as Pi on tables D’i, for i from 1 to m[n. Since each Pi

can be converted back to a join condition, this means that each

table D’i can be joined to R before we apply cleansing. While

pushing local predicates before the more expensive cleansing step

is always a good idea, whether to apply a join before cleansing

really depends on factors such as their relative cost and

selectivity. There are 2m possible ways of pushing the m D’i tables

before cleansing and trying them all is too expensive. Instead, we

employ a heuristic that favors tables with more restrictive local

predicates. Specifically, we order D’i by the selectivity of S’i

ascendingly (the selectivity of each S’i can be obtained from the

execution plan of the original query Q after compiling it in a

DBMS). We then generate m+1 SQL statements as follows: The

first statement defers all joins after cleansing. Each of the next m

statements pushes one more table D’i (in selectivity order) before

cleansing. All m+1 statements are then compiled by the DBMS

and the statement with the cheapest cost estimate is selected as the

expanded rewrite.

5.3 The Join-back Rewrite
When the context condition is empty, the expanded rewrite is not

feasible since no conditions can be pushed before cleansing. In

this section, we describe a join-back rewrite that is always

applicable. The idea is to remove non-relevant sequences early

such that cleansing only needs to be applied on a smaller number

of sequences. Again, consider a query Q=σs(R). Expression

Πckey(σs(R)) defines all the sequences in R that Q is interested in,

because rule C only deletes or modifies (but does not insert) rows

from R. If we go back to table R and fetch all rows that belong to

those sequences, we will have enough data to perform the correct

cleansing. The join-back rewrite for Q[C] is given by Qj =

σs(Фc(RÅckeyΠckey(σs(R)))). This is how we derived expression e2

to answer Q2[C2] in Section 5.1.

Even when the expanded rewrite is applicable, the join-back

approach could be more efficient. The tradeoff is that the former

selects more rows from R at the beginning than the latter (since ec

is typically less restrictive than s), but does not need to join R a

second time afterwards. Furthermore, we can take advantage of

the expanded condition generated in Figure 4. Given a sequence

in R, the expanded condition selects all rows in it needed for the

query as well as for cleansing. Thus, during join-back, we only

have to bring back rows that qualify the expanded condition. The

improved join-back rewrite is given by Qj =

σs’(Фc(σec(R)ÅckeyΠckey(σs(R)))). As an example, Q1[C1] in

Section 5.1 can also be answered by a join-back rewrite

σrtime<t1(ФC1(σrtime<t1+5(R1)ÅepcΠepc (σrtime<t1(R1)))).

We can also extend the join-back rewrite to support join queries.

Consider the same join query Q σsRÅK1σS1D1Å…ÅKnσSnDn given

in Section 5.2. We can further limit the relevant sequence set by

performing a semi-join between each Di and R, using

Πckey(σsRÅKiσSiDi). Again, there are tradeoffs on how many semi-

joins to apply before cleansing. Pushing more semi-joins reduces

the amount of data to be cleaned, but increases the join overhead.

We follow the heuristic used in Section 5.2 by ordering Di in

ascending selectivity of Si. We then generate n+1 SQL queries,

pushing from 0 to n semi-joins in that order before cleansing. The

query with the cheapest cost estimate by the DBMS is picked as

the join-back rewrite. Finally, we compare the expanded rewrite

with the join-back one and pick the rewrite with a lower cost

estimate for execution.

5.4 Supporting Multiple Rules
We now discuss how to rewrite queries with respect to a list of

cleansing rules C1 to Cn. We assume that all rules created by an

application share the same ckey and skey. Because of

dependencies among rules, we have to make sure that the rules are

evaluated in the order of their creation time, say from C1 to Cn.

We first illustrate how to generate an expanded rewrite for a query

Q given by σs(R). For each rule Ci, we compute a context

condition cci using lines 1 to 10 in Figure 4. If any cci is empty,

there is no feasible expanded rewrite and we have to rely on the

join-back one discussed next. Otherwise, we calculate an overall

context condition cc as cc1||cc2…||ccn, which selects enough

context data for all the rules. By following lines 11 to 13 in Figure

4, we can determine the expanded condition ec and the condition

s’ accordingly. The expanded rewrite is then given by the

expression σs’(ФCn…ФC1(σec(R))). We omit the discussion on join

queries since they can be dealt with in a similar way as described

in Section 5.2. Next, extending the join-back rewrite to support

multiple rules is straightforward because the elimination of non-

relevant sequences is independent of the cleansing rules.

Therefore, after all data in those relevant sequences are extracted,

we can apply the cleansing rules C1 to Cn in this order.

It is easy to see that both our rewrites give the correct answer to

Q[C1…Cn], because all rules are applied in the right order. An

interesting question is whether we can switch the evaluation order

of those rules without changing the query semantics. In general,

this is a hard problem and we leave it for future work. However,

we observe that switching rule order may not be very crucial for

achieving better performance. One can treat each rule Ci as an

expensive predicate on table R. Those predicates have the

characteristics that their selectivities are all high (because the

number of anomalies is typically small) and their costs are

comparable (because the sorting cost to produce the sequence

order may be dominant). Since the optimal order for evaluating a

set of expensive predicates [19] mainly depends on their

selectivity and relative cost, the performance difference between

different orders is likely small.

6. EXPERIMENTS
We experimentally validate the effectiveness of the deferred

cleansing approach. Our goal is to test its scalability along three

182

dimensions, namely, the amount of data to be queried, the number

of rules to be applied, and the number of anomalies.

6.1 Experimental System Design
Because there is no existing benchmark for testing RFID

applications, we built an RFID data generator called RFIDGen in

Java. RFIDGen simulates a typical supply chain of a retailer W

that keeps RFID data over the last five years together with some

related reference data. All information is stored in seven relational

tables and their schema and relationships are summarized in

Figure 5. The primary key of each table is underlined and the

arrows represent foreign key references. The number inside the

parenthesis indicates the number of rows in each table (the scale

factor s will be explained later).

We first describe the generation of normal RFID data, i.e.,

without anomalies. We assume that all goods sold by W have to

go through three levels of distributions: a distribution center

(DC), a warehouse, and a retail store. There are 1,000 retails

stores, each of which receives goods from one of the 25

warehouses, each of which in turn receives shipments from one of

the 5 DCs. Every site (a DC, a warehouse, or a store) has 100

distinct locations, each equipped with an RFID reader. The

“location” table stores all 13,000 distinct locations, each

identified by a 13-character Global Location Number. Every

shipment is read 10 times (readers randomly selected) at each of

the 3 sites that it has to go through and generates a total of 30

RFID reads. The first read of an EPC is chosen randomly within a

5-year window and the latency between two consecutive reads of

a shipment is randomly selected between 1 and 36 hours. Each

shipment is uniquely identified by a 96-bit EPC represented by a

50-byte varchar. We assume two types of shipments, a case and a

pallet. To factor in variance in goods size, we randomly choose a

number between 20 and 80 as the number of cases contained in a

particular pallet. For simplicity, we store case reads and pallet

reads in two separate tables, “caseR” and “palletR”, respectively,

and store the association between a case EPC and a pallet EPC in

a third “parent” table. We assume that neither the case EPC nor

the pallet EPC is reused and an association entry is always valid.

The schema of palletR is identical to caseR. A pallet and its

associated cases always travel together and are read by the same

reader within 10 minutes of each other. Each case EPC generates

an entry in an “EPC_info” table, in which item specific

information such as the lot number, the manufacture date and the

expiration date are stored. Details about products are stored in a

“product” table which is referenced by the EPC_info table. We

generate a total of 1,000 different products, randomly assigned to

50 manufacturers. Each RFID read is also assigned a randomly

selected business step from a total of 100 different steps stored in

a “steps” table. All steps are evenly classified into 10 different

types. We define the number of pallet EPCs “s” as the scale

factor. For a given s, there are approximately s*50 case EPCs.

Therefore, palletR, caseR, parent, and EPC_info contain s*30,

s*50*30 (=s*1.5k), s*50, and s*50 rows, respectively.

We then add anomalies over the regular data. Because pallets are

read more reliably than cases, we introduce anomalies to case

reads only. We add five types of anomalies described in Section 4

by reversing the action of the cleansing rules. For example, if an

action deletes a read from a sequence, we would add a false read

that meets the rule’s condition. Given an anomaly percentage D,

we distributed anomalies evenly among the five different types.

rule name q1 q2

reader

duplicate

replacing

cycle

missing

rtime<=T1+5 min (c1)

rtime<=T1 (c2)

rtime<=T1+20 min (c3)

{}

{}

rtime>=T2 (c4)

rtime>=T2+10min (c5)

rtime>=T2

{}

rtime>=T2

Table 1 Expanded Conditions for q1 and q2

In Figure 6, we describe two representative benchmark queries

and the SQL statements used in our tests. The first query q1

performs a typical “dwell” analysis that calculates the average

time shipments spent between two consecutive locations. To

achieve that, q1 exploits the SQL/OLAP functions to bring

information of two adjacent reads of each EPC to the same row.

The rest of the computation is straightforward. The second query

q2 resembles a typical analytical query. Table caseR is treated as

the fact table, which is joined with multiple dimensional tables to

bring in the reference data. Specifically, it reports the reader

utilization and business steps involved for each manufacturer at a

particular distribution center. The choice of the two timestamps

T1 and T2 will be explained later in this section. We use the five

q1. “Dwell” analysis

with v1 as

(select biz_loc as current_loc, rtime,

 max(rtime) over (… rows 1 preceding) as prev_time,

 max(biz_loc) over (… rows 1 preceding) as prev_loc

 from caseR where rtime <= T1)

select l1.loc_desc, l2.loc_desc, avg(rtime-prev_time)

from v1, locs l1, locs l2

where v1.prev_loc = l1.gln and v1.current_loc = l2.gln

group by l1.loc_desc, l2.loc_desc

q2. Site analysis

select p.manufacturer, count(distinct s.type),

 count(distinct c.reader)

from caseR c, steps s, locs l, epc_info i, product p

where c.biz_step=s.biz_step and c.biz_loc=l.gln

 and c.epc=i.epc and i.product=p.product

 and c.rtime >= T2

 and l.site = ‘distribution center 2’

group by p.manufacturer

Figure 6 Benchmark Queries

steps (100)

biz_step

desc

type

comment

parent(s*50)

child_epc

parent_epc

locs (13k)

gln

desc

site

state

city

comment

caseR(s*1.5k)

epc

rtime

reader

biz_loc

biz_step

EPC_info(s*50)

epc

product

lot

manufacture_date,

expiration_date

comment

product (1,000)

product

manufacturer

comment

palletR(s*30)

epc

…

Figure 5 RFID Data Schema

183

cleansing rules defined in Section 4 in our experiments, with t1, t2

and t3 set to 5, 10 and 20 minutes respectively. Table 1

summarizes the expanded conditions computed by the algorithm

in Figure 4 for both q1 and q2 with respect to each of the rules.

Note that the cycle rule has two context references, one before and

one after the target. Since neither context is bounded by time, no

expanded condition exists for both queries. The missing rule has

an unbounded context reference following the target and only q1

does not have an expanded condition.

We used DB2 V8.2 on a modern server-type machine running

AIX for our performance evaluation. We chose a scale factor s

that generates approximately 10 million normal case reads (about

1GB). We then loaded four different databases into DB2,

corresponding to anomaly percentage 10, 20, 30 and 40,

respectively (we refer to them as db-10 to db-40). Data is loaded

in an order partially correlated with time. For each database, we

indexed all columns in both caseR and palletR except for the

reader column. The parent table was indexed on child_epc to

provide fast case-to-pallet lookups. The rest of the tables have

indexes only on their primary keys except for the locs table which

is further indexed on site and the steps table is further indexed on

type. Each database uses a bufferpool of 160MB. For each test,

we compare the elapsed time of running a benchmark query q on

the dirty data directly (referred to as q), the expanded rewrite

(q_e), the join-back rewrite (q_j), and the naïve rewrite (q_n) that

first cleans all data and then evaluates q. Note that unlike the

other three, q does not always give the correct result, and is only

used for baseline comparison. We do not explicitly compare eager

cleansing with deferred cleansing in the experiments. However,

the cost of eager cleansing should be comparable to that of q,

since the anomaly percentage is typically small.

6.2 Varying Selectivity
In this section, we test deferred cleansing by scaling the data size

requested by queries. We assume that only the reader rule is

enabled, and use the database with 10% anomalies (db-10). We

then vary the selectivity of the predicate on rtime in both q1 and

q2 from 1% to 40%, by adjusting T1 and T2 accordingly.

The results for q1 are shown in Figure 7(a). Both q1_e and q1_j

perform much better than the naïve version across all selectivities

and q1_e is more effective than q1_j. We now take a closer look

at the execution plans. The plan for q1 is shown in Figure 7(b). It

first scans table caseR using the index on rtime. It then evaluates

the two scalar aggregates specified by SQL/OLAP by sorting

input data in (epc,rtime) order. After that, q1 joins table locs twice

and does the final aggregation. In comparison, the plan for q1_e is

shown in Figure 7(c). Since the predicate on rtime is expanded by

five minutes, q1_e needs to bring in a little bit more data from

caseR initially (shown as a box with double side edges). Next, it

evaluates the reader rule, by first sorting the input on (epc,rtime)

and then removes anomalies through a filter. Once cleansing is

completed, it continues with the rest of q1. It is important to see

that because the ordering requirement for the SQL/OLAP

evaluation in q1 is the same as that in the cleansing rule, data only

needs to be sorted once. Although this seems incidental, we

expect such order sharing to be common in RFID applications

because it is often useful to process RFID data in sequence order.

Therefore, compared with q1, q1_e only incurs the extra overhead

of computing one more scalar aggregate, but does not have an

extra sort. This explains why q1_e adds only a small overhead on

top of q1. In this example, since the only predicate restricting

caseR is expandable, the expanded approach is always better than

the join-back one which has to access table caseR twice. Finally,

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4
selectivity

s
e
c
o

n
d

s

q2

q2_e

q2_j

q2_n

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4
selectivity

s
e
c
o

n
d

s

q1

q1_e

q1_j

q1_n

Figure 7 Varying selectivity in q1 and q2, applying “reader rule”, on db-10

locs

caseR

caseR

rest …

join

join

join locs

join

join locs

join

caseR locs

join

group caseR

locs filter

locs caseR

rest …

join

locs filter

caseR

join

rest …

sort

sort

(b) q1 plan

(a) q1 (d) q2

(c) q1_e plan (e) q2 plan (f) q2_e plan (g) q2_j plan group
group

sort

sort

locs filter

184

the naïve approach has to sort all data since it does not push down

any predicate, and thus is much worse.

We now move to q2 and show the performance results in Figure

7(d). Similar to q1, both q2_e and q2_j perform much better than

the naïve approach. In contrast to q1, this time q2_j becomes

more effective than q2_e. We explain the difference by analyzing

the plans. A partial plan for the original query q2 is shown in

Figure 7(e). q2 first joins table caseR and locs since they are the

only ones with local predicates. The box denoted by “rest …”

includes the rest of the joins (which don’t reduce the cardinality

further) and the final aggregation. The plan for q2_e is shown in

Figure 7(f). Note that q2_e does one more sort than q2 since the

ordering requirement from cleansing in SQL/OLAP is different

from that for grouping. Because only the rtime predicate is

expandable, the cleansing process has to be done immediately

after accessing table caseR before joining table locs. Thus, q2_e

has to sort data including those to be rejected later by the join.

The plan for q2_j in Figure 7(g) exploits the constraint on both

table caseR and locs by joining them first. It then computes a

unique list of EPCs e through grouping, which essentially

contains the set of shipments that q2 actually cares about. After

that, q2_j visits table caseR a second time to extract the full

history of EPCs in e for cleansing. Note that the site column is

partially correlated with EPC since at a particular site, a given

EPC is read either multiple times (since it goes through that site)

or none at all (since it does not go through the site). As a result,

the predicate on site, in addition to the one on rtime, helps reduce

the size of E significantly. This benefits q2_j a lot since it has to

sort fewer data and computes fewer scalar aggregates. To

complete this discussion, q2_j still needs to apply the predicate on

rtime and site a second time to remove data no longer needed after

cleansing. Such an overhead is small since it is on a small data set.

The rest of q2_j is the same as q2. In summary, when the

selectivity of the expandable predicate is small, q2_e is

comparable to q2_j since the data reduction in the latter is offset

by the join-back overhead. However, as the predicate on rtime

becomes less restrictive, q2_j performs much better because it can

effectively exploit the filtering power from the predicate on site.

As an extreme test, we design another query q2’ by swapping

l..site and s.type in q2 and changing the constant from a DC to a

specific business type. We deliberately populated data such that

s.type is completely uncorrelated with EPCs. The results for q2’

are shown in Figure 8. q2’_j is no longer much better than q2’_e.

Although the predicate on s.type reduces the number of reads, it

does not significantly reduce the set of EPCs (many EPCs having

a single read) required for cleansing. Thus, the overhead of

sorting and computing scalar aggregates in q2’_j is comparable

with that in q2’_e. In reality, predicates on columns that

(partially) correlate to EPCs are used more often in application

queries because multiple reads for a shipment can be analyzed

together. For example, it is more reasonable for q2’ to select a set

of business steps all common to some shipments.

6.3 Varying Rules and Dirty Percentage
In this section, we first study the scalability of deferred cleansing

in terms of the number of rules. In both q1 and q2, we fixed the

selectivity of the rtime predicate at 10% and chose the database

with 10% anomalies. We then scale the number of rules from 1 to

5. The rules are added in the order as listed in Table 1. For both

q1 and q2, the expanded approach is only feasible up to the first

three rules. The join-back approach is valid for all rules. The

results are presented in Figure 9(a) and Figure 9(b). From 1 rule

to 3 rules, the increase in the best rewrite strategy q1_e and q2_j

is fairly small. Observe that the ordering requirements for all rules

are the same. Thus, only the first rule incurs the sorting overhead.

Subsequent rules share the same sort and only pay the overhead of

computing their own scalar aggregates. Starting from 4 rules, only

the join-back approach becomes applicable. For both q1_j and

q2_j, the cycle rule adds somewhat more overhead compared to

previous ones. This is mainly because no expanded conditions can

be applied on table caseR during join-back. The missing rule adds

the most overhead among all rules. Unlike other ones, this rule

takes input from the following derived table.

 select epc, rtime, biz_loc, biz_step, reader, 0 as is_pallet

 from caseR

 union

 select child_epc, rtime, biz_loc, biz_step, reader, 1 as is_pallet

 from palletR, parent

 where palletR.epc = parent.parent_epc

Conditions in q1 and q2 are applied on both caseR and palletR to

obtain the set of EPCs to be cleaned and join-back is also

performed on both tables. Since approximately every case read is

now paired with a pallet read, the amount of data to be sorted is

now doubled. The extra joins needed to retrieve pallet reads also

add some overhead, but this is secondary because the reads are

restricted to a smaller set of EPCs. Nevertheless, both q1_j and

q2_j perform significantly better than the naïve approach, which

takes about 1,000 seconds (out of the pictures) with 5 rules.

Our last experiment tests deferred cleansing with respect to the

number of anomalies. Again, we fix the selectivity of the predicate

on rtime at 10% in both q1 and q2. We applied the first three rules

as listed in Table 1. We then test the queries on four different

databases, with anomalies from 10% to 40%. The results are

shown in Figure 9(c) and Figure 9(d). For both q1 and q2, the

expanded query and the join-back query increase only slightly

with more and more anomalies, and match the trend of the

original query. Note that X% anomalies do not translate to an X%

larger database because anomalies such as missing reads actually

reduce the amount of raw data.

Summary: Our experimental results show that deferred cleansing

is affordable for typical analytic queries on RFID data. Both the

expanded and the join-back approach perform much better than

the naïve approach. When both are applicable, there are tradeoffs

between the two. It is also important to note that the overhead of

Figure 8 Varying selectivity in q2’, 1 rule, on db-10

0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4
selectivity

s
e
c
o

n
d

s

q2'

q2'_e

q2'_j

q2'_n

185

cleansing is limited to the reads table. For analytic queries joining

more reference data and computing more aggregates, the relative

overhead of deferred cleansing will be even smaller.

7. Conclusion
In this paper, we investigate cleansing anomalies in RFID data at

query time. Deferred cleansing makes it feasible for different

applications to employ different cleansing policies as well as to

quickly change them at any time. We extend the SQL-TS

language to allow applications to specify cleansing rules easily

based on a sequence model. Cleansing rules are automatically

converted to SQL/OLAP for efficiency. We provide novel query

rewrite methods that exploit conditions in user queries to restrict

the amount of data to be cleaned. Our experimental results show

that deferred cleansing is affordable for typical analytical queries

on RFID data, and our query rewrite methods provide significant

benefit over the naïve approach. Although the development of our

techniques was motivated by RFID applications, they are

applicable to other forms of sequential data containing errors.

8. Acknowledgements
We thank Jussi Myllymaki for his contribution to the initial ideas

of this work.

9. References
[1] EPCglobal Inc. http://www.epcglobalinc.org

[2] S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S.

Sarma, “Managing RFID Data”, VLDB 2004.

[3] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi, “Optimization

of Sequence Queries in Database Systems”, PODS 2001.

[4] Shawn R. Jeffery, et al., “Declarative Support for Sensor

Data Cleaning”, Pervasive Computing 2006: 83-100.

[5] F. Wang and P. Liu, “Temporal Management of RFID Data”,

VLDB 2005.

[6] C. Bornhövd, et al., “Integrating Automatic Data Acquisition

with Business Processes: Experience with SAP’s Auto-ID

Infrastructure”, VLDB 2004.

[7] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent Query

Answers in Inconsistent Databases”, PODS 1999.

[8] M. Arenas, L. Bertossi, and J. Chomicki, “Scalar

Aggregation in FD-Inconsistent Databases”, ICDT 2001.

[9] A. Cali, et al., “On the decidability and complexity of query

answering over inconsistent and incomplete databases”,

PODS 2003.

[10] A. Fuxman, E. Fazli, and R. Miller, “ConQuer: Efficient

Management of Inconsistent Databases”, SIGMOD 2005.

[11] Oat Systems. http://www.oatsystems.com.

[12] Informatica. http://www.informatica.com.

[13] IBM WebSphere Quality Stage. http://ibm.ascential.com/

products/websphere_qualitystage.html.

[14] S. Chaudhuri, et al., “Data Cleaning in Microsoft SQL

Server 2005”, SIGMOD 2005.

[15] S. Chaudhuri et al,. “Robust and Efficient Fuzzy Match for

Online Data Cleaning”, SIGMOD 2003.

[16] Y. Hu, S. Sundara, T. Chorma, and J. Srinivasan,

“Supporting RFID-Based Item Tracking Applications in

Oracle DBMS using a Bitmap Data Type”, VLDB 2005.

[17] H. Gonzalez, J. Han, X. Li, and D. Klabjan, “Warehousing

and Analyzing of Massive RFID Data Sets”, ICDE 2006.

[18] A. Deshpande, et al., “Model-Driven Data Acquisition in

Sensor Networks”, VLDB 2004.

[19] Joseph M. Hellerstein, “Optimization Techniques for Queries

with Expensive Methods”. ACM TODS. 23(2), 1998

[20] Ashish Gupta, et al., “Adapting Materialized Views after

Redefinitions”. SIGMOD 1995: 211-222

0

100

200

300

400

500

600

10 20 30 40
dirty percentage

s
e
c
o

n
d

s

q2

q2_e

q2_j

q2_n

0

100

200

300

400

500

600

10 20 30 40
dirty percentage

s
e
c
o

n
d

s

q1

q1_e

q1_j

q1_n

0

100

200

300

400

500

600

1 2 3 4 5
of rules

s
e
c
o

n
d

s

q2

q2_e

q2_j

q2_n

0

100

200

300

400

500

600

1 2 3 4 5
of rules

s
e
c
o

n
d

s

q1

q1_e

q1_j

q1_n

Figure 9 Varying # of Rules and Dirty Percentages

(a) varying

 rules (q1)

(c) varying

dirty % (q1)

(d) varying

dirty % (q2)

(b) varying

rules (q2)

186

http://www.epcglobalinc.org/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jeffery:Shawn_R=.html
http://www.informatik.uni-trier.de/~ley/db/conf/pervasive/pervasive2006.html
http://www.oatsystems.com/
http://www.informatica.com/
http://ibm.ascential.com/ products/websphere_qualitystage.html
http://ibm.ascential.com/ products/websphere_qualitystage.html
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods23.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gupta:Ashish.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod95.html

	Introduction
	Related Work
	System Overview
	Cleansing Rules
	Cleansing Rules Language Considerations
	SQL-TS based Cleansing Rules
	Cleansing Rule Examples
	Rule Ordering

	Rewriting Queries using Cleansing Rules
	Motivation
	Expanded Rewrite
	The Join-back Rewrite
	Supporting Multiple Rules

	EXPERIMENTS
	Experimental System Design
	Varying Selectivity
	Varying Rules and Dirty Percentage

	Conclusion
	Acknowledgements
	References

