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ABSTRACT 
Radio Frequency Identification is gaining broader adoption in 

many areas. One of the challenges in implementing an RFID-

based system is dealing with anomalies in RFID reads. A small 

number of anomalies can translate into large errors in analytical 

results. Conventional “eager” approaches cleanse all data upfront 

and then apply queries on cleaned data. However, this approach is 

not feasible when several applications define anomalies and 

corrections on the same data set differently and not all anomalies 

can be defined beforehand.  This necessitates anomaly handling at 

query time. We introduce a deferred approach for detecting and 

correcting RFID data anomalies.  Each application specifies the 

detection and the correction of relevant anomalies using 

declarative sequence-based rules. An application query is then 

automatically rewritten based on the cleansing rules that the 

application has specified, to provide answers over cleaned data. 

We show that a naive approach to deferred cleansing that applies 

rules without leveraging query information can be prohibitive. We 

develop two novel rewrite methods, both of which reduce the 

amount of data to be cleaned, by exploiting predicates in 

application queries while guaranteeing correct answers. We 

leverage standardized SQL/OLAP functionality to implement 

rules specified in a declarative sequence-based language. This 

allows efficient evaluation of cleansing rules using existing query 

processing capabilities of a DBMS. Our experimental results 

show that deferred cleansing is affordable for typical analytic 

queries over RFID data. 

1. Introduction 
Radio Frequency Identification (RFID) technology is being 

deployed in several application areas including supply-chain 

optimization, business process automation, asset tracking, and 

problem traceability applications.   While RFID itself is not a new 

concept, Electronic Product Code (EPC™) [1] standards-based 

product identification and tracking is emerging as a key 

component in the enablement of these applications. EPC is a 

scheme for uniquely identifying individual objects using RFID 

tags and other means.  One of the challenges in implementing an 

RFID-based system is dealing with anomalies in the data 

representing RFID reads.  These data can have errors arising from 

many different sources.  

Unlike barcode readers that detect signals based on a fixed line of 

sight, RFID readers need to respond to signals from a wider range 

of objects that could potentially be moving.  The complexities of 

“reader physics” give rise to duplicate reads, missed reads, and 

cross reads.  In addition to errors arising from physical reads, 

anomalies can occur at the logical or business process level. For 

example, suppose that a product item moves to a store floor but is 

returned to the back-room due to lack of shelf space and at a later 

time is again moved to the store floor; and this cycle repeats a few 

times. An application may treat such a cycle as an anomaly and 

want to remove it as erroneous data, even though the raw reads 

are themselves accurate.  

The conventional data cleansing approach is to remove all 

anomalies upfront and to store only the cleaned data in a database. 

For example, many device controllers at the edge of an RFID 

network provide de-duping and primitive filtering capabilities and 

errors such as duplicate reads are often correctible at the edge.  

Such eager cleansing methods can potentially reduce the amount 

of data that have to be managed by applications down-stream in 

the business process and help avoid repeated cleansing of the data 

at query time. 

However, it is not always possible to remove all anomalies before 

hand. One reason is that the rules and the business context 

required for cleansing may not be available at data loading time. 

For example, we may not know the presence of cycles and 

whether they will affect any analysis until users observe 

irregularity in query results some time later. As a result, an 

application may constantly evolve existing anomaly definitions 

and add new ones. Also, the rules for correcting data anomalies 

are often application specific. For example, application queries 

tracking shelf space planning or labor productivity will want to 

know about all cycles within stores. On the other hand, another 

application that calculates how long a product item has stayed in 

every location will want to remove everything in the cycle except 

for the first and the last reads. Finally, in applications such as 

pharmaceutical e-pedigree tracking, laws require the preservation 

of tracking information which then precludes up-front cleansing 

of the data. Maintaining and adapting multiple cleaned versions 

physically is prohibitive, when different application requirements 

dictate sets of rules that are dynamically changing.  All these 

reasons make the eager approach infeasible.  

We propose a deferred cleansing approach to complement the 

eager one. Known anomalies whose detection and correction is 

common to all consumers of the data are still handled eagerly, but 

the processing of other anomalies is deferred until query time. 

Each application specifies its own anomalies by defining 

cleansing rules. The rules do not change the content of the 

database directly, but are evaluated when an application issues a 

query. In this approach, although an application pays some 

cleansing overhead at query time, it gains the flexibility of being 

able to evolve its anomaly specifications over time.  
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A key characteristic of RFID data is its sequential nature. We first 

describe different types of anomalies that can occur in RFID data 

and show the patterns in the read sequences that are indicative of 

those anomalies. We define cleansing rules in an extended version 

of SQL-TS[3]—a simple yet powerful sequence-based language, 

and implement each rule in SQL/OLAP for efficient evaluation. 

The naïve way of performing deferred cleansing is to clean all the 

data on the fly before executing a query. This is prohibitive since 

RFID data has high volume. We develop two query rewrite 

techniques that effectively exploit query conditions to reduce the 

amount of data to be cleaned at query time. We have built a 

prototype implementation of the deferred cleansing model. Our 

experimental results show that deferred cleansing is affordable for 

typical RFID analytical queries and our rewrite techniques 

improve query performance significantly compared to the naïve 

evaluation. 

The rest of this paper is organized as follows. Related work is 

described in Section 2. An overview of our deferred cleansing 

system is provided in Section 3. Section 4 describes our approach 

for specifying cleansing rules and the exploitation of SQL/OLAP. 

It also provides example rules for detecting and correcting the 

errors in several scenarios. In Section 5, we present mechanisms 

for rewriting user queries based on cleansing rules and show how 

these rewrites can be optimized. We explain experimental results 

that evaluate the benefits of deferred cleansing in Section 6 and 

present our conclusions in Section 7. 

2. Related Work 
There are several challenges in dealing with RFID data [2].  

Techniques for compactly representing RFID data along with 

methods for accessing the data have been proposed by [16] and 

[17].  In this paper, we focus on the challenge of dealing with 

anomalies in the data.  A data warehousing solution often contains 

data cleansing as one of the steps in the ETL (Extract-Transform-

Load) process before the data is loaded into the data warehouse.  

Commercial ETL products such as, [12] and [13] provide data 

cleansing and profiling capabilities.  These techniques involve 

detecting and correcting 1) duplicate representations of the same 

entity (e.g., customer), 2) references to missing data – based on 

referential integrity constraints, and 3) data that are inconsistent 

with some standard reference data (such as names and addresses 

information obtained from postal directories).  There has been 

some recent research ([14] and [15]) in applying fuzzy operators 

to the correction of these types of anomalies.   

Data generated from RFID reads adds another dimension of 

complexity to the cleansing process.  Cleansing RFID data 

requires analyzing product lifecycle information which involves 

detecting and correcting errors across sequences of facts.  

Duplicate reads (caused by the same reader reading a tag 

continuously) are often easily corrected at the edge of the EPC 

network and edge devices manufactured by several companies 

provide this form of de-duping capability.  Recently, companies 

like OAT systems [11] have also started to offer more complex 

error detection and correction capabilities in the edge systems.  

SAP’s Auto-ID infrastructure described in [6], provides data 

filtering, enriching, and aggregation components in the device 

control layer.  Our solution, on the other hand, can compensate 

for errors that persist beyond the edge and deal with application 

specific data quality requirements. 

In [4], the authors describe a system for transforming low-

level device-specific and error-prone data into idealized data that 

can be processed by higher-level applications. A declarative 

language is used to define cleansing operations that involve de-

duping, removing outliers (using standard deviation), and 

smoothing data collected from different sources. Wang and Liu 

[5] describe a system for managing RFID data based on an 

extended ER model. They provide example rules for data filtering 

(deleting duplicate reads by the same reader), and inferring 

aggregation events (e.g., when pallets have been loaded on to a 

truck).   Both of these approaches cleanse data up-front using a 

fixed set of rules. Our approach, on the other hand, allows 

application specific cleansing at query time. 

There has been a large body of work on consistent query 

answering over inconsistent databases (e.g., [9]). These papers 

study the problem of answering queries posed over an inconsistent 

database to generate answers over a consistent version of the data 

as defined by consistency constraints. Some of them focus on the 

complexity of query answering in the presence of inconsistencies.  

Others ([7][8][10]) have presented techniques for efficiently 

rewriting the queries to provide consistent answers, i.e., queries 

whose result sets represent the result of applying a possible 

“repair”.  The class of constraints studied is limited to those 

requiring set (or bag) based relational semantics.  Our focus is on 

a different but related problem.  In this paper, we assume that the 

consistency rules specified by the user include not only the 

consistency definition but also the action that specifies the 

“repairs”.  The class of applications that we have focused on 

requires analysis of sequences to detect and correct anomalies.  A 

naïve approach to evaluating these sequence-based consistency 

rules would be extremely inefficient. We present techniques for 

combining these rules with user queries to generate rewritten 

queries that are not only efficient to execute but also preserve the 

semantics of the sequence constraints. 

In [3], Sadri et al, propose a pattern language, namely SQL-

TS, and optimization techniques for its efficient evaluation. These 

optimization techniques involve capturing the logical 

relationships between the pattern elements based on the specified 

predicates. The approach proposed in this paper also involves 

analyzing the predicates of the SQL-TS rules. However the two 

techniques are very different in many respects. For instance, [3] 

determines dependencies among the predicates of the SQL-TS 

query itself to prevent redundant pattern matching, whereas our 

technique compares SQL-TS rule predicates with the predicates 

specified in the user query to determine the data that needs to be 

cleaned. The analysis of the predicates is performed very 

differently and for very different reasons. 

In [18], Deshpande et al, describe techniques for querying 

live data from sensor networks by incorporating statistical models.  

These models can provide approximations and extrapolations of 

missing and faulty readings.  Queries are answered by calculating 

estimates of current readings from the constructed model. Finally, 

view adaptation [20] techniques can be applied to maintain 

materialized results when the view definition evolves. However, 

such techniques are not directly applicable on sequence data. 

3. System Overview 
Our implementation of the deferred cleansing approach comprises 

two main components - the Cleansing Rule engine and the Query 
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Rewrite engine. Both components are prototyped in Java above 

the DBMS, are extensible, and are not proprietary to any DBMS 

vendor. A high level architecture diagram is depicted in Figure 1.  

 
               Figure 1: System Architecture 

 

The numbered steps in Figure 1 represent the flow of information 

in the system and are summarized below.  

1. The rule engine accepts rules specified in extended SQL-TS for 

different applications and generates a SQL/OLAP template for 

each rule. This SQL/OLAP template encapsulates logic to detect 

and compensate for anomalies and is plugged in at query time. 

2. The SQL/OLAP template is persisted in the rules table. 

Specifically, the rule pattern, conditions, and action clauses are 

stored in this table for use by the rewrite engine. 

3. The rewrite engine intercepts user SQL queries to determine if 

they need to be re-written to compensate for errors. 

4. If needed, the user query is rewritten to a new one by efficiently 

applying relevant rules stored in the rules table.  

5. The rewritten query is submitted to the DBMS for execution. 

6. The DBMS returns cleansed query results to the user. 

4. Cleansing Rules 
In this section, we describe how we detect and correct anomalies 

using declarative cleansing rules. We assume that the reads of all 

RFID tags are stored in a relational table R whose schema is 

depicted in Figure 2. This schema is used throughout the paper. 

Table R (for RFID reads) 

epc,          RFID tag identifier 

rtime,       time when tag is read by a reader 

reader,      identifier of reader that reads the tag 

biz_loc,    business location where tag is read 

biz_step,   business steps associated with the read 

Figure 2: RFID Table Schema 

4.1 Cleansing Rules Language Considerations 
We can naturally view RFID data as a set of EPC sequences, each 

of which consists of all reads of a particular tag in rtime order. 

Such a model makes it convenient to detect various types of 

anomalies for RFID applications. Many sequence-based 

languages have been proposed in the literature. However, few 

have recognized that SQL/OLAP functions (part of the SQL99 

standard) can be exploited for processing sequences. For example, 

to detect and filter duplicate reads, we can use this SQL statement: 

  with v1 as ( 

    select biz_loc as loc_current,  

   max(biz_loc) over (partition by epc  order by rtime asc 

   rows between 1 preceding and 1 preceding) as loc_before 

    from R      ) 

  select * from v1 

  where loc_current != loc_before or loc_before is null; 

The key in the above statement is the utilization of SQL/OLAP for 

computing column loc_before. SQL/OLAP uses the partition by 

and the order by clauses to define the input as a set of sequences, 

and allows us to define for each row r, a scalar aggregate on a 

window (within a sequence) relative to r. In this example, we 

define the input as EPC sequences and specify a window (given 

by the rows clause) with a single row before each row r in 

sequence order. The biz_loc of the previous row in the window 

can be extracted using a scalar aggregate. We can then compare 

the location of two consecutive reads to remove duplicates. The 

second disjunct in the where clause handles border line rows that 

have no rows before them in a sequence.  

Exploiting SQL/OLAP for sequence processing has several 

advantages: (1) it is more efficient than SQL using self joins or 

subqueries (the above SQL statement can be executed by making 

a single pass over table R in a sorted order); (2) it is integrated 

inside the database engine and therefore automatically benefits 

from DBMS features such as optimization and parallelism; (3) it 

is standardized and supported by the leading DBMS vendors.  

The main drawback of using SQL/OLAP is its redundancy in 

syntax. Observe that in order to retrieve a column value from a 

previous row, one has to specify a relatively complex scalar 

aggregate. If multiple columns are needed, each requires its own 

scalar aggregate specification. Such redundancy makes it hard for 

users to express cleansing rules directly in SQL/OLAP. 

To overcome such drawback, we extend the syntax of SQL-TS, a 

natural sequence language, to make it easier to define cleansing 

rules. Once a rule is defined, we automatically generate a template 

in SQL/OLAP to be used at query time for efficient execution.  

Section 4.2 introduces a SQL-TS based rule language and shows 

how rules expressed in such a language can be mapped to a SQL 

implementation. We then use several examples to demonstrate 

how our language can be used to specify cleansing rules in 

Section 4.3. We discuss the issue of rule ordering in Section 4.4. 

4.2 SQL-TS based Cleansing Rules 
Our SQL-TS based rule grammar is described below; all clauses 

except for those in italics are borrowed as-is from SQL-TS.  

    DEFINE              [rule name] 

ON                      [table name] 

FROM                 [table name] 

CLUSTER BY    [cluster key] 

SEQUENCE BY [sequence key] 

AS                       [pattern] 

WHERE              [condition] 

    ACTION             [DELETE | MODIFY | KEEP] 

The CLUSTER BY and the SEQUENCE BY clauses are similar 

to the ‘partition by’ and ‘order by’ clauses in SQL/OLAP and 

define how to convert the input data to sequence sets. Typically 
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the cluster key is epc and the sequence key is rtime. The main 

simplification comes from the pattern specification in the AS 

clause. A pattern defines an ordered list of references. If a 

reference is not designated with a * sign, it refers to a single row 

in the input. A reference with a * sign can only appear at the 

beginning or the end of the pattern, and refers to a set of rows 

either before or after a row bound to a singleton reference within a 

sequence. A condition is specified on columns of the pattern 

references. For example, duplicate detection can be expressed in 

SQL-TS as: 

  AS (A, B)  WHERE A.biz_loc !=B.biz_loc 

References A and B each refers to a single row and the pattern 

implies that the two rows are adjacent in a sequence. Compared to 

SQL/OLAP, the specification of the two consecutive reads in 

SQL-TS is simpler and more intuitive. A condition on a set 

reference (with a * sign) has the existential semantics, i.e., it is 

true if any row in the set makes it true (note that the semantics 

here is slightly different from the one used in the original SQL-

TS). We show such an example in Section 4.3. 

Our rule language extends SQL-TS in two ways. First, we add an 

ACTION clause that specifies how to fix anomalies when the 

condition in the WHERE clause is satisfied. An action is specified 

on a singleton reference defined in the pattern. We allow the 

action to be any of DELETE, MODIFY and KEEP. Using both 

DELETE and KEEP provides more flexibility since sometimes it 

is more intuitive for users to specify reads to remove, instead of 

retain, or vice versa. MODIFY can change the value of any 

column in a row. If a column to be modified does not exist, we 

create a new column on the fly. Note that an action does not 

directly change what is stored in the input table, but controls what 

flows out of it. We deliberately exclude INSERT from the 

ACTION clause, since often direct insertion is not useful. Second, 

we separate the table on which a rule is defined (by the ON 

clause) and the table from which the rule gets the input (by the 

FROM clause). We assume in the rest of the paper that a rule is 

always defined on the reads table R. However, an application can 

choose to use an input including data in R as well as some extra 

data for reference or compensation (e.g., handling missed reads in 

Example 5 in the next section). This is essentially how we support 

insertion without an explicit one in the ACTION clause. The input 

table is required to have a schema including all columns in R, but 

can have some extra ones. The rule condition can refer to any 

column in the input table. 

We can always convert a cleansing rule to an implementation in 

SQL/OLAP. The conversion of the cluster by and the sequence by 

clauses is trivial and we focus on the conversion of the WHERE 

and the ACTION clauses. If a rule condition refers to two 

singletons, we can specify one of them in SQL/OLAP as a number 

of scalar aggregates (one for each needed column) over a window 

of size one. The window is defined according to the relative 

sequence positions of the two singletons. If a rule condition refers 

to a set and a singleton, we define a window including the set and 

convert the rule condition to a “case” expression over the 

window. A scalar aggregate is used to determine whether any row 

in the set tests to true. The DELETE and KEEP actions are 

implemented as filter conditions in SQL. The rule condition is 

used directly as the filter for KEEP and is negated for DELETE 

with proper handling of the null semantics. Finally, MODIFY can 

be handled by another “case” expression as seen in Section 4.3.  

4.3 Cleansing Rule Examples 
In this section, we use some examples to illustrate how cleansing 

rules are defined using the extended SQL-TS. We show only the 

pattern, condition and action specifications for each rule. Unless 

otherwise mentioned, a rule is always on table R, from table R, 

clustered by epc, and sequenced by rtime. We also highlight the 

interesting parts of the SQL/OLAP implementation of these rules. 

In this paper, we assume that the rules are manually specified. We 

leave the automatic discovery of such rules for future work. 

Example 1 (duplicate rule): Although most duplicates can be 

fixed at the edge, a small number of them may survive for reasons 

such as edge server restart. We can further restrict duplicate 

removal to only reads that are t1 minutes apart, where t1 can be 

customized for different applications. Such a rule is given below. 

Here, we choose to keep the very first read among duplicates. 

Pattern Condition Action 

(A, B) A.biz_loc = B.biz_loc and 

B.rtime – A.rtime < t1 mins 

DELETE B 

The SQL/OLAP implementation is similar to that in Section 4.1. 

Example 2 (reader rule): Consider a scenario where a forklift 

equipped with an RFID reader (say readerX) carries a tagged case 

to a destination in a warehouse. On reaching the destination, 

readerX reads the EPC on the case and a pre-installed location tag 

at the destination and generates a new read. During transportation, 

the case on the forklift may be accidentally read by other readers 

(say a reader on a docking door). If we discover that such 

transportation takes up to t2 minutes, we can define the following 

rule to remove all reads recorded t2 minutes before a read by 

readerX. Notice that B is designated as a set reference by the *. 

Pattern Condition Action 

(A, *B) B.reader = ‘readerX’ and  

B.rtime – A.rtime < t2 mins 

DELETE A 

The reader rule can be implemented in SQL/OLAP by defining a 

scalar aggregate “has_readerX_after”: 

    max(case when reader = 'readerX' then 1 else 0 end)  

    over (range between 1 macro sec following 

                     and  t2 min following) as has_readerX_after 

Notice how we construct the window by exploiting the constraint 

on the sequence key rtime to include rows that B refers to. We can 

then filter out rows whose has_readerX_after is set to 1.  

Example 3 (replacing rule): Suppose readers at two locations 

‘loc1’ and ‘loc2’ are close to each other and can incur cross reads. 

Also suppose that because of the business flow, a shipment being 

read at ‘loc1’ is always read at another location ‘locA’ next, 

within t3 minutes. We can then use the following rule to detect 

the anomaly and modify its location. 

Pattern Condition Action 

(A, B) A.biz_loc = ‘loc2’ and  

B.biz_loc = ‘locA’ and  

B.rtime–A.rtime <  t3  mins 

MODIFY 

A.biz_loc=‘loc1’ 

The SQL implementation of the MODIFY action is a “case” 

expression that either keeps biz_loc as it is or changes it to ‘loc1’ 

depending on the test of a condition.  
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Example 4 (cycle rule): Suppose that an application does not 

want to see reads back and forth between a set of locations. Hence 

a location pattern such as [X Y X Y X Y] for an EPC should be 

changed to [X Y], keeping only the first X and the last Y. This 

can be achieved by the following cycle rule. A rule that removes 

cycles of arbitrary length is also possible, but more involved. 

Pattern Condition Action 

(A, B, C) A.biz_loc=C. biz_loc and 

A.biz_loc != B.biz_loc 

DELETE B 

Example 5 (missing rule): Let us take a scenario where a pallet 

and cases in it are known to travel together along a certain 

business path. Also assume that pallet tags are always readable, 

but due to the orientation of the tag and contents, cases are not 

always read at every location. Suppose that at location L1, pallet P 

is read, but a case C in P is not. We will be more confident that C 

in fact missed a read (instead of being stolen) if some time later, 

we see a read of C and P together again at some location L2. We 

can then compensate for the missing read of C at L1, by 

converting the pallet read at L1 to a case read (replacing P’s epc 

with C’s epc).  

Below, we specify the missing rule in two sub-rules r1 and r2. 

Both r1 and r2 are defined on table R, which we assume for now, 

contains only case reads. The input (in the FROM clause) to r1 is 

not R, but a derived table of the same schema in Figure 2, with an 

extra column “is_pallet”. We defer details on how this input is 

derived until Section 6. For now, let us assume that the derived 

table is a union of R and another set R’. For a pallet P containing 

n cases, there are n copies of every read of P in R’ and the epc of 

each copy is set to each case epc. While R has the ‘actual’ reads 

for the cases, R’ contains the ‘expected’ case reads based on the 

more reliable pallet reads. Every row in R and R’ has is_pallet set 

to 0 and 1, respectively. 

Rule r1 uses A to reference a pallet read and then checks if A has 

a nearby case read at the same location. If so, it sets a flag 

“has_case_nearby”, which indicates no missing reads at that 

location. The output of r1 is pipelined to Rule r2. r2 keeps all 

original case reads, plus the pallet reads without a nearby case 

read, as long as the same case is read later together with the pallet. 

Observe that the preserved pallet reads compensate for the 

missing case reads. 

r1. Pattern Condition Action 

(X,A,Y) A.is_pallet=1 and 

(  (X.is_pallet=0 and 

     A.biz_loc=X.biz_loc and 

     A.rtime-X.rtime<5 mins)  

OR  

   (Y.is_pallet=0 and 

     A.biz_loc=Y.biz_loc and 

     Y.rtime-A.rtime<5 mins) 

) 

MODIFY 

A.has_case_nearby=1 

 

r2. Pattern Condition Action 

(A,*B) A.is_pallet=0 or  

(A.has_case_nearby=0 and 

  B.has_case_nearby=1) 

KEEP A 

To express r1 in SQL, has_case_nearby can be computed by a 

single scalar aggregate over a window including a row r, a row 

before and a row after r, since the condition on X and Y are the 

same. r2 can be dealt with methods similar to those in Example 2.  

SQL/OLAP is richer than SQL-TS for expressing conditions. For 

example, if we change the scalar aggregate for computing 

“has_readerX_after” in Example 2, from max() to count(), we can 

further control how many reads by readerX should be observed 

before taking an action. Extending SQL-TS to take advantage of 

such capabilities in SQL/OLAP is beyond the scope of this paper 

since the current SQL-TS language is powerful enough to express 

many common types of anomalies. 

4.4 Rule Ordering 
When an application defines multiple rules on the same table, we 

require that their input table be the same. Often, there is a 

dependency among rules and their ordering is important. Consider 

the location of a sequence of tag reads given by [X Y X]. If we 

apply the cycle rule first, followed by the duplicate rule (without 

constraint on rtime), the cleaned sequence becomes [X] (first X). 

If we switch the two rules, we get [X X] instead. In our system, 

rules are ordered by their creation time and applied in this order. 

5. Rewriting Queries using Cleansing Rules  
Given a user query Q and a cleansing rule C defined on R, we 

denote the correct answer to Q with respect to C as Q[C]. We 

define ФC(d) as the result of applying rule C on a data set d 

including all columns in R’s schema. By definition, Q[C] can be 

computed by replacing all references to R in Q with ФC(R). Such 

a computation requires cleaning all data in R and thus is 

prohibitive. In this section, we describe how deferred cleansing 

can be performed through more efficient query rewrites. In 

Section 5.1, we show why pushing predicates in Q to R directly 

does not always produce the correct answer and illustrate two 

efficient query rewrite approaches that preserve the query 

semantics. We describe techniques to generate these two types of 

rewrites in Section 5.2 and 5.3 respectively, in the presence of a 

single cleansing rule. We then extend our solution to support 

multiple rules in Section 5.4. In this section, we assume that the 

input to C is also table R, but our techniques apply to any input to 

C. 

5.1 Motivation 
To reduce the amount of data to be cleaned, it is tempting to push 

predicates in Q directly to R first and then to apply rule C, 

followed by the evaluation of the rest of Q. Unfortunately, this 

does not always return the correct answer for Q[C].  

Consider the cleansing rule C1 (defined as the reader rule in 

Section 4.3) defined on table R1 and query Q1 given in Figure 

3(a). We use an rid field to identify rows in a table. Applying C1 

on R1 will remove row r1 because there is a read by readerX 

subsequently within 5 minutes. The remaining row r2 does not 

satisfy the condition in Q1 and the correct answer to Q1[C1] is 

{}. If we push Q1’s condition “rtime < t1” on R1 first, only row 

r1 qualifies. Applying C1 on {r1} does not remove r1 this time 

since r2 is no longer present. Thus, we get the answer {r1}, which 

is incorrect.  

As another example, consider a cleansing rule C2 defined on table 

R2 and another query Q2 given in Figure 3(b). Note that C2 is a 

modified version of the duplicate rule in Section 4.3 obtained by 

omitting the time constraint. Applying C2 on R2 produces {r3} 
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because r4 is a duplicate. Since r3 has an rtime no greater than t2, 

the correct answer for Q2[C2] is again {}. However, if we apply 

the condition in Q2 on R2 first before cleansing, only r4 is 

selected. Applying C2 on {r4} does not remove r4 since it is the 

only one in the set. Again, we get the incorrect answer {r4}. 

Both Q1[C1] and Q2[C2] can still be answered more efficiently. 

For instance, we can compute Q1[C1] using an expression e1 = 

σrtime<t1(ФC1(σrtime<t1+5(R1))). Intuitively, we know from C1’s 

condition that in order for a read r in R1 to be deleted, we need 

another read by readerX that trails r by 5 minutes or less. By 

relaxing the original condition in Q1 slightly, e1 gets enough data 

to remove all reads relevant to Q1. Cleansing is then applied on 

this slightly larger data set. Finally, e1 reapplies the original 

condition to remove the extra data that is needed only for 

cleansing.  

A similar approach cannot directly be used for Q2[C2]. This is 

because in C2, two duplicate reads can be arbitrarily far apart in 

time (remember that we removed the time constraint from the 

original duplicate rule). Nevertheless, Q2[C2] can be alternatively 

answered by e2=σrtime>t2(ФC2(R2ÅepcΠepc(σrtime>t2(R2)))), where 

Åepc represents a natural join on epc between two tables, and Πepc 

projects the input on epc and removes duplicates. Observe that C2 

only removes rows from an input sequence. Therefore, we only 

need to clean sequences that include at least one read satisfying 

the condition in Q2. The remaining sequences are not relevant 

because even if we clean them, no reads will be selected by Q2 

anyway. That’s precisely what e2 does. It first identifies sequences 

that have to be cleaned and then revisits R2 to extract all data on 

those sequences. Cleansing such a data set guarantees that all 

relevant anomalies are removed. Similar to e1, e2 reapplies the 

original condition in the end to filter out data no longer needed 

after cleansing. As we will see in Section 6, because the condition 

in typical RFID queries tends to correlate with the sequence key, 

the relevant sequence set can be limited effectively using this 

approach. It is easy to verify that e1 and e2 indeed produce the 

correct answer for Q1[C1] and Q2[C2], respectively. 

It is hard for a conventional query optimizer to automatically 

generate rewrites such as e1 and e2. There are several reasons why 

this is challenging for a conventional optimizer. First of all, 

SQL/OLAP, while providing a more efficient way of bringing 

together different rows from the same table than self joins, hides 

the original row identity inside scalar aggregates and Boolean 

expressions (as we have seen in Section 4.3). This makes it 

difficult for the optimizer to do effective transitivity analysis. 

Second, a cleansing rule may have multiple equivalent 

SQL/OLAP implementations. It is difficult for an optimizer to 

recognize that such different query representations originate from 

the same rule logic and then to apply the same rewrite.  

Instead of enhancing a conventional optimizer, we built a query 

rewrite unit outside the engine that takes a set of cleansing rules 

and a user query, and generates a rewritten query that gives the 

correct answer with respect to those rules. Because our rewrite 

unit is at the rule level, it can transform queries more effectively 

than a DBMS optimizer. Next, we will describe two styles of 

query rewrites, expanded (e.g., e1) and join-back (e.g., e2). 

5.2 Expanded Rewrite 
In this Section, we describe the expanded query rewrite. We 

assume for now that only a single cleansing rule C is defined on 

table R.  

Definition 1. The pattern in a cleansing rule C specifies two types 

of data references: a target reference and a context reference. The 

former is the reference used in the action part of C (a rule has only 

one target reference). The rest of the references in the pattern are 

the context references. For example, in Figure 3(a) and Figure 

3(b), references A and F are target references while references B 

and E are the context references (underlined).  

A target reference T and a context reference X both refer to row 

sets in table R, but they are not independent. We refer to a 

condition that links T and X as a correlation condition. Some 

correlation conditions are given explicitly in the rule condition 

and some others are implied in the rule pattern specification (more 

on this later). Consider a user query Q given by σs(R). Because we 

only need to clean data that the query cares about, Q essentially 

binds T to a row set RT=σs(R). Through a correlation condition cr, 

the context reference X is in turn bound to another row set RX 

referred to as the context set (RT and RX may overlap). Intuitively, 

RX is the set of rows required in order to determine whether to 

take any action on some rows in RT. The key is to select from R, 

not only the query data RT, but also the context set RX, so that all 

necessary cleansing can be done. The direct pushdown approach 

in the previous section fails because it ignores data present only in 

the context sets.  

C1: Pattern Condition Action 

(A, *B) B.reader = ‘readerX’ &&  

B.rtime – A.rtime < 5 min 

DELETE A 

R1   (rid, epc,  rtime,        reader) 

 = { ( r1,  e1,  t1-2min,  ‘readerY’),           

       ( r2,  e1,  t1+2min, ‘readerX’) }  

Q1: 

select * from R1 

where rtime < t1 

 

C2: Pattern Condition Action 

(E, F) E.biz_loc = F.biz_loc DELETE F 

R2 (rid, epc,    rtime,     biz_loc)  

= { (r3,  e2,   t2-2 min,  ‘locZ’),  

      (r4,  e2,   t2+2 min, ‘locZ’)  } 

Q2: 

select * from R2  

where rtime > t2 

 

 

C1 

 

Q1 

 

 

cr1: A.rtime<B.rtime,            A.epc=B.epc,  

        B.rtime<A.rtime+5min, B.reader=’readerX’ 

s1  : A.rtime < t1 

cc1: B.rtime <t1+5min && B.reader=’readerX’ 

ec1: rtime<t1+5min &&  

        (rtime<t1 || reader=’readerX’) 

 

C2 

 

Q2 

 

cr2:  E.rtime<F.rtime,       E.epc=F.epc, 

 

s2  : F.rtime > t2 

cc2: {} 

 

(a) cleansing rule C1 defined on R1, queried by Q1 

(d) deriving expanded rewrite for Q2[C2] 

(c) deriving expanded rewrite for Q1[C1] 

(b) cleansing rule C2 defined on R2, queried by Q2 

Figure 3. Running Examples 
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If we bind query condition s to the target reference T and then run 

a transitivity analysis on s and the correlation condition between T 

and X, we may derive a new condition referencing only the 

context reference X. The new condition essentially defines the 

context set for X and we refer to it as a context condition. We can 

then use the context condition together with s to limit the amount 

of data extracted from R for cleansing. A correlation condition 

between T and X includes all conjuncts in the rule condition that 

refer to both T and X, as well as conjuncts that are implied in the 

rule pattern. There are two types of implied conjuncts, one on the 

cluster key ckey and another on the sequence key skey. Both ckey 

and skey are given in the rule definition and they are typically 

bound to columns epc and rtime, respectively. Since both X and T 

refer to rows within the same sequence (defined by ckey), this 

implies a conjunct X.ckey=T.ckey. If X is listed before (after) T in 

the pattern, another conjunct X.skey<T.skey (X.skey<T.skey) is 

implied. Adding both types of implied conjuncts for transitivity 

analysis allows a stronger context condition to be derived. 

For context references (referred to as position-based) without a * 

in the rule pattern, there is actually a third implied correlation 

conjunct, on sequence position (spos). For example, from the 

pattern in rule C2 in Figure 3, a conjunct E.spos=F.spos-1 is 

implied and it is stronger than E.skey<F.skey. Such a conjunct 

does not exist between context reference B (with a *) and target 

reference A in rule C1 in Figure 3, because the exact relative 

position of B to A is not important. Dealing with the implied 

conjunct on spos is subtle. The main difficulty comes from the 

fact that sequence positions typically are not materialized in the 

input data, but are computed on the fly. Thus, when determining 

the context condition, we have to be careful to not change the 

relative position of selected rows. Before describing the solution, 

we first introduce the following definition and observation.  

Definition 2. Consider a correlation condition cr between a target 

reference T and a context reference X. We say that cr is position-

preserving if for any given row r referred to by T, the context set 

V (computed through cr) for r has the following property: for 

every row v in V, all rows between v and r in the original 

sequence also belong to V. Observe that within any data set from 

R containing both V and {r}, the sequence position of any row in 

V relative to r is the same as that in R. 

Observation 1. (a) The following correlation conditions between 

a target reference T and a context reference X are position-

preserving: (1) X.ckey = T.ckey; (2) X.skey < T.skey and X.skey > 

T.skey – t, if X is before T in C’s pattern; X.skey > T.skey and 

X.skey < T.skey + t, if X is after T in C’s pattern, where t is a 

positive constant. (b) Any correlation condition on columns other 

than ckey and skey is not position-preserving.± 

Reason: (a) Follows from definition. (b) For any such correlation 

condition cr, it is always possible to construct a counter example 

by making the column used in cr independent of the sequence key.  

Therefore, for position-based context references, we do not 

include all conjuncts in the correlation condition for transitivity 

analysis. Instead, we keep only those that are position-preserving. 

We are now ready to summarize the process of generating an 

expanded rewrite for Q[C] in Figure 4. From line 2 to line 10, we 

iterate through each context reference X in rule C. Depending on 

whether X is position-based or not, we prepare accordingly the 

correlation condition between X and the target reference T, as a 

list of conjuncts. We then apply transitivity analysis between the 

correlation condition rc and the query condition s (s is bound to 

T). If any conjunct can be derived referencing X only, it is added 

to the context condition cc. If there are multiple context 

references, context conditions are or-ed together to select the 

combined context sets. If any context condition cannot be derived, 

we set it to empty and break out of the “for” loop. From line 11 to 

line 13, if the context condition is not empty, we proceed to 

generate the expanded rewrite Qe. We first compute an expanded 

condition ec as s||cc and it becomes the predicate that can be 

pushed to R directly. After performing cleansing on the data set 

selected by ec, we have to apply s again to remove rows in the 

context set that we no longer need. We use an optimization here 

to simplify s to s’, by avoiding reapplying conjuncts in s already 

covered in the context condition. Finally, Qe is given by an 

expression σs’(Фc(σec(R))). 

Theorem 1. Qe computed by the algorithm in Figure 4 gives the 

correct answer to Q[C]. 

Proof: (sketch) We can show that for each row r not selected by 

ec, r is not needed either directly by Q, or indirectly in order to 

clean any row of interest to Q. Therefore, not selecting r does not 

change the query semantics.± 

We illustrate the algorithm in Figure 4 using our running 

examples. The first example is shown in Figure 3(c) and is based 

on rule C1 and query Q1. Because context reference B is not 

position-based, all four conjuncts (listed as cr1), including 

implied ones, that correlate B to target reference A can be used for 

deriving the context condition. The condition specified in query 

Q1 is given by s1, only now bound to A. By computing 

transitivity on s1 and cr1, the context condition cc1 includes a 

newly derived conjunct B.rtime<t1+5min and another one directly 

from cr1. The expanded condition is given by ec1, which can be 

relaxed to rtime<t1+5min (which is actually used in e1 in Section 

5.1), if the second conjunct is not very selective.  

Figure 3(d) describes the second example based on rule C2 and 

query Q2. Since C2 has a position-based context reference E, only 

Figure 4: Algorithm for Expanded 

Inputs:   s, a condition on R in a user query Q 

              C, a cleansing rule on R 

Output:  Qe , an expanded rewrite for answering Q[C] 

Method: cr: correlation condition, cc: context condition 

              ec: expanded condition 

1.   cc = {} 

2.   for each context reference X in C { 

3.      cr = conjuncts in C’s conditions referring to X + 

                implied conjuncts on ckey and skey 

4.      if X is position-based context 

5.          keep only position-preserving conjuncts in cr 

6.      run transitivity between cr and s (bind s to  

             target reference T)  

7.      d = derived conjuncts referring to X only 

8.      if (d not empty)  cc = cc || d 

9.      else { cc = {}; break} 

10. } 

11. if (cc not empty) { 

12.    ec = s||cc; s’ = s – cc; Qe = σs’(Фc(σec(R))) } 

13. else Qe = null (no possible Qe) 
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the two position-preserving conjuncts can be used as the 

correlation condition (listed as cr2). However, no conjuncts can 

be derived on E through transitivity analysis between cr2 and s2. 

Therefore, the expanded rewrite is not feasible for Q2. In Section 

5.3, we will discuss how to handle Q2 using the join-back rewrite. 

Join Query Support: When Q contains joins of σs(R) to other 

tables, in general, we have to generate Qe for σs(R) first and then 

join Qe with the rest of tables. However, for a certain class of 

queries, it is possible to do the joins before cleansing. Consider a 

query Q of the form σsRÅK1σS1D1Å…ÅKnσSnDn, where table R 

joins each table Di on column Ki and all joins are n to 1 (queries 

of this type are common since the reads table is typically only 

joined with other reference tables). We can convert each join 

condition to a conjunct of R.Ki in (select Ki from Di where Si) 

such that it looks like a local condition on R. We can then apply 

the algorithm in Figure 4 as before. After the transitivity analysis, 

some of those “in” conjuncts are derived on the context reference 

and are added to the context condition. We refer to those 

conjuncts as Pi on tables D’i, for i from 1 to m[n. Since each Pi 

can be converted back to a join condition, this means that each 

table D’i can be joined to R before we apply cleansing. While 

pushing local predicates before the more expensive cleansing step 

is always a good idea, whether to apply a join before cleansing 

really depends on factors such as their relative cost and 

selectivity. There are 2m possible ways of pushing the m D’i tables 

before cleansing and trying them all is too expensive. Instead, we 

employ a heuristic that favors tables with more restrictive local 

predicates. Specifically, we order D’i by the selectivity of S’i 

ascendingly (the selectivity of each S’i can be obtained from the 

execution plan of the original query Q after compiling it in a 

DBMS). We then generate m+1 SQL statements as follows: The 

first statement defers all joins after cleansing. Each of the next m 

statements pushes one more table D’i (in selectivity order) before 

cleansing. All m+1 statements are then compiled by the DBMS 

and the statement with the cheapest cost estimate is selected as the 

expanded rewrite.  

5.3 The Join-back Rewrite 
When the context condition is empty, the expanded rewrite is not 

feasible since no conditions can be pushed before cleansing. In 

this section, we describe a join-back rewrite that is always 

applicable. The idea is to remove non-relevant sequences early 

such that cleansing only needs to be applied on a smaller number 

of sequences. Again, consider a query Q=σs(R). Expression 

Πckey(σs(R)) defines all the sequences in R that Q is interested in, 

because rule C only deletes or modifies (but does not insert) rows 

from R. If we go back to table R and fetch all rows that belong to 

those sequences, we will have enough data to perform the correct 

cleansing. The join-back rewrite for Q[C] is given by Qj = 

σs(Фc(RÅckeyΠckey(σs(R)))). This is how we derived expression e2 

to answer Q2[C2] in Section 5.1. 

Even when the expanded rewrite is applicable, the join-back 

approach could be more efficient. The tradeoff is that the former 

selects more rows from R at the beginning than the latter (since ec 

is typically less restrictive than s), but does not need to join R a 

second time afterwards. Furthermore, we can take advantage of 

the expanded condition generated in Figure 4. Given a sequence 

in R, the expanded condition selects all rows in it needed for the 

query as well as for cleansing. Thus, during join-back, we only 

have to bring back rows that qualify the expanded condition. The 

improved join-back rewrite is given by Qj = 

σs’(Фc(σec(R)ÅckeyΠckey(σs(R)))). As an example, Q1[C1] in 

Section 5.1 can also be answered by a join-back rewrite 

σrtime<t1(ФC1(σrtime<t1+5(R1)ÅepcΠepc (σrtime<t1(R1)))). 

We can also extend the join-back rewrite to support join queries. 

Consider the same join query Q σsRÅK1σS1D1Å…ÅKnσSnDn given 

in Section 5.2. We can further limit the relevant sequence set by 

performing a semi-join between each Di and R, using 

Πckey(σsRÅKiσSiDi). Again, there are tradeoffs on how many semi-

joins to apply before cleansing. Pushing more semi-joins reduces 

the amount of data to be cleaned, but increases the join overhead. 

We follow the heuristic used in Section 5.2 by ordering Di in 

ascending selectivity of Si. We then generate n+1 SQL queries, 

pushing from 0 to n semi-joins in that order before cleansing. The 

query with the cheapest cost estimate by the DBMS is picked as 

the join-back rewrite. Finally, we compare the expanded rewrite 

with the join-back one and pick the rewrite with a lower cost 

estimate for execution. 

5.4 Supporting Multiple Rules 
We now discuss how to rewrite queries with respect to a list of 

cleansing rules C1 to Cn. We assume that all rules created by an 

application share the same ckey and skey. Because of 

dependencies among rules, we have to make sure that the rules are 

evaluated in the order of their creation time, say from C1 to Cn.  

We first illustrate how to generate an expanded rewrite for a query 

Q given by σs(R). For each rule Ci, we compute a context 

condition cci using lines 1 to 10 in Figure 4. If any cci is empty, 

there is no feasible expanded rewrite and we have to rely on the 

join-back one discussed next. Otherwise, we calculate an overall 

context condition cc as cc1||cc2…||ccn, which selects enough 

context data for all the rules. By following lines 11 to 13 in Figure 

4, we can determine the expanded condition ec and the condition 

s’ accordingly. The expanded rewrite is then given by the 

expression σs’(ФCn…ФC1(σec(R))). We omit the discussion on join 

queries since they can be dealt with in a similar way as described 

in Section 5.2. Next, extending the join-back rewrite to support 

multiple rules is straightforward because the elimination of non-

relevant sequences is independent of the cleansing rules. 

Therefore, after all data in those relevant sequences are extracted, 

we can apply the cleansing rules C1 to Cn in this order. 

It is easy to see that both our rewrites give the correct answer to 

Q[C1…Cn], because all rules are applied in the right order. An 

interesting question is whether we can switch the evaluation order 

of those rules without changing the query semantics. In general, 

this is a hard problem and we leave it for future work. However, 

we observe that switching rule order may not be very crucial for 

achieving better performance. One can treat each rule Ci as an 

expensive predicate on table R. Those predicates have the 

characteristics that their selectivities are all high (because the 

number of anomalies is typically small) and their costs are 

comparable (because the sorting cost to produce the sequence 

order may be dominant). Since the optimal order for evaluating a 

set of expensive predicates [19] mainly depends on their 

selectivity and relative cost, the performance difference between 

different orders is likely small. 

6. EXPERIMENTS 
We experimentally validate the effectiveness of the deferred 

cleansing approach. Our goal is to test its scalability along three 
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dimensions, namely, the amount of data to be queried, the number 

of rules to be applied, and the number of anomalies.  

6.1 Experimental System Design 
Because there is no existing benchmark for testing RFID 

applications, we built an RFID data generator called RFIDGen in 

Java. RFIDGen simulates a typical supply chain of a retailer W 

that keeps RFID data over the last five years together with some 

related reference data. All information is stored in seven relational 

tables and their schema and relationships are summarized in 

Figure 5. The primary key of each table is underlined and the 

arrows represent foreign key references. The number inside the 

parenthesis indicates the number of rows in each table (the scale 

factor s will be explained later).  

We first describe the generation of normal RFID data, i.e., 

without anomalies. We assume that all goods sold by W have to 

go through three levels of distributions: a distribution center 

(DC), a warehouse, and a retail store. There are 1,000 retails 

stores, each of which receives goods from one of the 25 

warehouses, each of which in turn receives shipments from one of 

the 5 DCs. Every site (a DC, a warehouse, or a store) has 100 

distinct locations, each equipped with an RFID reader. The 

“location” table stores all 13,000 distinct locations, each 

identified by a 13-character Global Location Number. Every 

shipment is read 10 times (readers randomly selected) at each of 

the 3 sites that it has to go through and generates a total of 30 

RFID reads. The first read of an EPC is chosen randomly within a 

5-year window and the latency between two consecutive reads of 

a shipment is randomly selected between 1 and 36 hours. Each 

shipment is uniquely identified by a 96-bit EPC represented by a 

50-byte varchar. We assume two types of shipments, a case and a 

pallet. To factor in variance in goods size, we randomly choose a 

number between 20 and 80 as the number of cases contained in a 

particular pallet. For simplicity, we store case reads and pallet 

reads in two separate tables, “caseR” and “palletR”, respectively, 

and store the association between a case EPC and a pallet EPC in 

a third “parent” table. We assume that neither the case EPC nor 

the pallet EPC is reused and an association entry is always valid. 

The schema of palletR is identical to caseR. A pallet and its 

associated cases always travel together and are read by the same 

reader within 10 minutes of each other. Each case EPC generates 

an entry in an “EPC_info” table, in which item specific 

information such as the lot number, the manufacture date and the 

expiration date are stored. Details about products are stored in a 

“product” table which is referenced by the EPC_info table. We 

generate a total of 1,000 different products, randomly assigned to 

50 manufacturers. Each RFID read is also assigned a randomly 

selected business step from a total of 100 different steps stored in 

a “steps” table. All steps are evenly classified into 10 different 

types. We define the number of pallet EPCs “s” as the scale 

factor. For a given s, there are approximately s*50 case EPCs. 

Therefore, palletR, caseR, parent, and EPC_info contain s*30, 

s*50*30 (=s*1.5k), s*50, and s*50 rows, respectively.  

We then add anomalies over the regular data. Because pallets are 

read more reliably than cases, we introduce anomalies to case 

reads only. We add five types of anomalies described in Section 4 

by reversing the action of the cleansing rules. For example, if an 

action deletes a read from a sequence, we would add a false read 

that meets the rule’s condition. Given an anomaly percentage D, 

we distributed anomalies evenly among the five different types. 

  

rule name q1 q2 

reader 

duplicate 

replacing 

cycle 

missing 

rtime<=T1+5 min   (c1) 

rtime<=T1              (c2) 

rtime<=T1+20 min (c3) 

{} 

{} 

rtime>=T2             (c4) 

rtime>=T2+10min (c5) 

rtime>=T2 

{} 

rtime>=T2 

Table 1 Expanded Conditions for q1 and q2 

In Figure 6, we describe two representative benchmark queries 

and the SQL statements used in our tests. The first query q1 

performs a typical “dwell” analysis that calculates the average 

time shipments spent between two consecutive locations. To 

achieve that, q1 exploits the SQL/OLAP functions to bring 

information of two adjacent reads of each EPC to the same row. 

The rest of the computation is straightforward. The second query 

q2 resembles a typical analytical query. Table caseR is treated as 

the fact table, which is joined with multiple dimensional tables to 

bring in the reference data. Specifically, it reports the reader 

utilization and business steps involved for each manufacturer at a 

particular distribution center. The choice of the two timestamps 

T1 and T2 will be explained later in this section. We use the five 

q1. “Dwell” analysis 

with v1 as 

( select biz_loc as current_loc, rtime, 

     max(rtime) over (… rows 1 preceding) as prev_time, 

     max(biz_loc) over (… rows 1 preceding) as prev_loc 

   from caseR where rtime <= T1 ) 

select l1.loc_desc, l2.loc_desc, avg(rtime-prev_time) 

from v1, locs l1, locs l2 

where v1.prev_loc = l1.gln and v1.current_loc = l2.gln 

group by l1.loc_desc, l2.loc_desc 

q2. Site analysis 

select p.manufacturer, count(distinct s.type),  

          count(distinct c.reader) 

from caseR c, steps s, locs l, epc_info i, product p 

where c.biz_step=s.biz_step and c.biz_loc=l.gln 

    and c.epc=i.epc and i.product=p.product 

    and c.rtime >= T2 

    and l.site = ‘distribution center 2’ 

group by p.manufacturer 

Figure 6  Benchmark Queries 

steps (100) 

biz_step 
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type  

comment 

 

parent(s*50) 

child_epc  

parent_epc 
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state 

city 
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epc  

rtime 
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biz_loc 

biz_step 
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product 

lot 

manufacture_date, 

expiration_date 

comment 

 

product (1,000) 

product 

manufacturer 

comment 

 

palletR(s*30) 

epc  

… 

 
Figure 5  RFID Data Schema 
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cleansing rules defined in Section 4 in our experiments, with t1, t2 

and t3 set to 5, 10 and 20 minutes respectively. Table 1 

summarizes the expanded conditions computed by the algorithm 

in Figure 4 for both q1 and q2 with respect to each of the rules. 

Note that the cycle rule has two context references, one before and 

one after the target. Since neither context is bounded by time, no 

expanded condition exists for both queries. The missing rule has 

an unbounded context reference following the target and only q1 

does not have an expanded condition. 

We used DB2 V8.2 on a modern server-type machine running 

AIX for our performance evaluation. We chose a scale factor s 

that generates approximately 10 million normal case reads (about 

1GB). We then loaded four different databases into DB2, 

corresponding to anomaly percentage 10, 20, 30 and 40, 

respectively (we refer to them as db-10 to db-40). Data is loaded 

in an order partially correlated with time. For each database, we 

indexed all columns in both caseR and palletR except for the 

reader column. The parent table was indexed on child_epc to 

provide fast case-to-pallet lookups. The rest of the tables have 

indexes only on their primary keys except for the locs table which 

is further indexed on site and the steps table is further indexed on 

type. Each database uses a bufferpool of 160MB. For each test, 

we compare the elapsed time of running a benchmark query q on 

the dirty data directly (referred to as q), the expanded rewrite 

(q_e), the join-back rewrite (q_j), and the naïve rewrite (q_n) that 

first cleans all data and then evaluates q. Note that unlike the 

other three, q does not always give the correct result, and is only 

used for baseline comparison. We do not explicitly compare eager 

cleansing with deferred cleansing in the experiments. However, 

the cost of eager cleansing should be comparable to that of q, 

since the anomaly percentage is typically small. 

6.2 Varying Selectivity 
In this section, we test deferred cleansing by scaling the data size 

requested by queries. We assume that only the reader rule is 

enabled, and use the database with 10% anomalies (db-10). We 

then vary the selectivity of the predicate on rtime in both q1 and 

q2 from 1% to 40%, by adjusting T1 and T2 accordingly.  

The results for q1 are shown in Figure 7(a). Both q1_e and q1_j 

perform much better than the naïve version across all selectivities 

and q1_e is more effective than q1_j. We now take a closer look 

at the execution plans. The plan for q1 is shown in Figure 7(b). It 

first scans table caseR using the index on rtime. It then evaluates 

the two scalar aggregates specified by SQL/OLAP by sorting 

input data in (epc,rtime) order. After that, q1 joins table locs twice 

and does the final aggregation. In comparison, the plan for q1_e is 

shown in Figure 7(c). Since the predicate on rtime is expanded by 

five minutes, q1_e needs to bring in a little bit more data from 

caseR initially (shown as a box with double side edges). Next, it 

evaluates the reader rule, by first sorting the input on (epc,rtime) 

and then removes anomalies through a filter. Once cleansing is 

completed, it continues with the rest of q1. It is important to see 

that because the ordering requirement for the SQL/OLAP 

evaluation in q1 is the same as that in the cleansing rule, data only 

needs to be sorted once. Although this seems incidental, we 

expect such order sharing to be common in RFID applications 

because it is often useful to process RFID data in sequence order. 

Therefore, compared with q1, q1_e only incurs the extra overhead 

of computing one more scalar aggregate, but does not have an 

extra sort. This explains why q1_e adds only a small overhead on 

top of q1. In this example, since the only predicate restricting 

caseR is expandable, the expanded approach is always better than 

the join-back one which has to access table caseR twice. Finally, 
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the naïve approach has to sort all data since it does not push down 

any predicate, and thus is much worse. 

We now move to q2 and show the performance results in Figure 

7(d). Similar to q1, both q2_e and q2_j perform much better than 

the naïve approach. In contrast to q1, this time q2_j becomes 

more effective than q2_e. We explain the difference by analyzing 

the plans. A partial plan for the original query q2 is shown in 

Figure 7(e). q2 first joins table caseR and locs since they are the 

only ones with local predicates. The box denoted by “rest …” 

includes the rest of the joins (which don’t reduce the cardinality 

further) and the final aggregation. The plan for q2_e is shown in 

Figure 7(f). Note that q2_e does one more sort than q2 since the 

ordering requirement from cleansing in SQL/OLAP is different 

from that for grouping. Because only the rtime predicate is 

expandable, the cleansing process has to be done immediately 

after accessing table caseR before joining table locs. Thus, q2_e 

has to sort data including those to be rejected later by the join. 

The plan for q2_j in Figure 7(g) exploits the constraint on both 

table caseR and locs by joining them first. It then computes a 

unique list of EPCs e through grouping, which essentially 

contains the set of shipments that q2 actually cares about. After 

that, q2_j visits table caseR a second time to extract the full 

history of EPCs in e for cleansing. Note that the site column is 

partially correlated with EPC since at a particular site, a given 

EPC is read either multiple times (since it goes through that site) 

or none at all (since it does not go through the site). As a result, 

the predicate on site, in addition to the one on rtime, helps reduce 

the size of E significantly. This benefits q2_j a lot since it has to 

sort fewer data and computes fewer scalar aggregates. To 

complete this discussion, q2_j still needs to apply the predicate on 

rtime and site a second time to remove data no longer needed after 

cleansing. Such an overhead is small since it is on a small data set. 

The rest of q2_j is the same as q2. In summary, when the 

selectivity of the expandable predicate is small, q2_e is 

comparable to q2_j since the data reduction in the latter is offset 

by the join-back overhead. However, as the predicate on rtime 

becomes less restrictive, q2_j performs much better because it can 

effectively exploit the filtering power from the predicate on site.  

As an extreme test, we design another query q2’ by swapping 

l..site and s.type in q2 and changing the constant from a DC to a 

specific business type. We deliberately populated data such that 

s.type is completely uncorrelated with EPCs. The results for q2’ 

are shown in Figure 8. q2’_j is no longer much better than q2’_e. 

Although the predicate on s.type reduces the number of reads, it 

does not significantly reduce the set of EPCs (many EPCs having 

a single read) required for cleansing. Thus, the overhead of 

sorting and computing scalar aggregates in q2’_j is comparable 

with that in q2’_e. In reality, predicates on columns that 

(partially) correlate to EPCs are used more often in application 

queries because multiple reads for a shipment can be analyzed 

together. For example, it is more reasonable for q2’ to select a set 

of business steps all common to some shipments.  

6.3 Varying Rules and Dirty Percentage 
In this section, we first study the scalability of deferred cleansing 

in terms of the number of rules. In both q1 and q2, we fixed the 

selectivity of the rtime predicate at 10% and chose the database 

with 10% anomalies. We then scale the number of rules from 1 to 

5. The rules are added in the order as listed in Table 1. For both 

q1 and q2, the expanded approach is only feasible up to the first 

three rules. The join-back approach is valid for all rules. The 

results are presented in Figure 9(a) and Figure 9(b). From 1 rule 

to 3 rules, the increase in the best rewrite strategy q1_e and q2_j 

is fairly small. Observe that the ordering requirements for all rules 

are the same. Thus, only the first rule incurs the sorting overhead. 

Subsequent rules share the same sort and only pay the overhead of 

computing their own scalar aggregates. Starting from 4 rules, only 

the join-back approach becomes applicable. For both q1_j and 

q2_j, the cycle rule adds somewhat more overhead compared to 

previous ones. This is mainly because no expanded conditions can 

be applied on table caseR during join-back. The missing rule adds 

the most overhead among all rules. Unlike other ones, this rule 

takes input from the following derived table.  

  select epc, rtime, biz_loc, biz_step, reader, 0 as is_pallet 

  from caseR 

  union  

  select child_epc, rtime, biz_loc, biz_step, reader, 1 as is_pallet 

  from palletR, parent 

  where palletR.epc = parent.parent_epc  

Conditions in q1 and q2 are applied on both caseR and palletR to 

obtain the set of EPCs to be cleaned and join-back is also 

performed on both tables. Since approximately every case read is 

now paired with a pallet read, the amount of data to be sorted is 

now doubled. The extra joins needed to retrieve pallet reads also 

add some overhead, but this is secondary because the reads are 

restricted to a smaller set of EPCs. Nevertheless, both q1_j and 

q2_j perform significantly better than the naïve approach, which 

takes about 1,000 seconds (out of the pictures) with 5 rules. 

Our last experiment tests deferred cleansing with respect to the 

number of anomalies. Again, we fix the selectivity of the predicate 

on rtime at 10% in both q1 and q2. We applied the first three rules 

as listed in Table 1. We then test the queries on four different 

databases, with anomalies from 10% to 40%. The results are 

shown in Figure 9(c) and Figure 9(d). For both q1 and q2, the 

expanded query and the join-back query increase only slightly 

with more and more anomalies, and match the trend of the 

original query. Note that X% anomalies do not translate to an X% 

larger database because anomalies such as missing reads actually 

reduce the amount of raw data. 

Summary: Our experimental results show that deferred cleansing 

is affordable for typical analytic queries on RFID data. Both the 

expanded and the join-back approach perform much better than 

the naïve approach. When both are applicable, there are tradeoffs 

between the two. It is also important to note that the overhead of 

Figure 8  Varying selectivity in q2’, 1 rule, on db-10 
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cleansing is limited to the reads table. For analytic queries joining 

more reference data and computing more aggregates, the relative 

overhead of deferred cleansing will be even smaller. 

7. Conclusion 
In this paper, we investigate cleansing anomalies in RFID data at 

query time. Deferred cleansing makes it feasible for different 

applications to employ different cleansing policies as well as to 

quickly change them at any time. We extend the SQL-TS 

language to allow applications to specify cleansing rules easily 

based on a sequence model.  Cleansing rules are automatically 

converted to SQL/OLAP for efficiency. We provide novel query 

rewrite methods that exploit conditions in user queries to restrict 

the amount of data to be cleaned. Our experimental results show 

that deferred cleansing is affordable for typical analytical queries 

on RFID data, and our query rewrite methods provide significant 

benefit over the naïve approach. Although the development of our 

techniques was motivated by RFID applications, they are 

applicable to other forms of sequential data containing errors.  
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