
XCheck: A Platform for Benchmarking XQuery Engines
http://ilps.science.uva.nl/Resources/XCheck/

Loredana Afanasiev∗

ISLA, University of Amsterdam
The Netherlands

lafanasi@science.uva.nl

Massimo Franceschet
Università “Gabriele

D’Annunzio”
Italy

francesc@science.uva.nl

Maarten Marx
ISLA, University of Amsterdam

The Netherlands

marx@science.uva.nl

ABSTRACT
XCheck is a tool for assessing the relative performance of
different XQuery engines by means of benchmarks consist-
ing of a set of XQuery queries and a set of XML documents.
Given a benchmark and a set of engines, XCheck runs the
benchmark on these engines and produces highly informa-
tive performance output. The current version of XCheck
contains all available XQuery benchmarks which are run
against four XQuery engines: Galax, Qizx/open, Saxon and
MonetDB/XQuery. XCheck’s design makes it easy to in-
clude new engines and new benchmarks.

1. INTRODUCTION
The essential role of benchmark tools in the development

of XML query engines, or any type of data management
systems for that matter, is well established. Benchmarks al-
low one to assess a system’s capabilities and help determine
its strengths or potential bottlenecks. The two main rea-
sons to do XQuery benchmarking are (1) correctness check
(does the output of engine X conform to the W3C stan-
dard?) and (2) relative performance testing (how well does
engine X1 perform, in terms of processing speed and mem-
ory use, compared to engines X2 . . . Xn?).

Running a benchmark by hand is tedious and time con-
suming. Even more so, when benchmarking the relative per-
formance of several engines. One has to keep track of many
system and engine parameters and the output is usually a
huge amount of raw data that is difficult to interpret. A
software tool is needed

∗This work was sponsored by the Stichting Nationale
Computerfaciliteiten (National Computing Facilities Fon-
dation, NCF) for the use of supercomputer facilities,
with financial support from the Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (Netherlands Organiza-
tion for Scientific Research, NWO). L. Afanasiev and M.
Franceschet/E. Zimuel are also supported by NWO, under
grant numbers 017.001.190 and 612.000.207, respectively.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

1) to help XML query engine developers to evaluate the
performance of their processor, also in comparison with
other implementations.

2) to enable XML researchers to experimentally test their
ideas, like a new optimization technique or the impact
of language features, more easily.

3) to help XML users to compare and choose a query
engine that performs well on their data.

This motivated us to create XCheck. The main goal of
XCheck is to automate all the tasks involved in benchmark-
ing XML query engines, except for the creative aspects of
designing benchmarks and interpreting the results. In fact,
XCheck is meant to minimize the technical effort of the last
task. We implemented a platform that allows one to execute
performance benchmarks on several query engines and helps
in analyzing their relative performance. Ease of adding new
engines and new benchmarks was an important constraint
on XCheck’s design.

XCheck already hosts all XQuery XCheck supported
Benchmarks
XMach-11 [5]
XMark [13]
XPathMark [9]
X007 [7]
XBench [14]
Michigan [12]

Table 1.

related benchmarks, and several en-
gines: Galax [8], MonetDB/XQuery
[11], Qizx/open [4] and Saxon [10].
To get an impression of the time-
investment needed to run a bench-
mark: 43 hours were needed to run
XMark on four engines with docu-
ment sizes up to 113Mb.

This abstract is organized as fol-
lows. Section 2 describes the de-
sign, architecture and usage of XCheck.
Section 3 relates XCheck to other XML benchmarking plat-
forms. Section 4 describes our planned demonstration.

2. SYSTEM DESCRIPTION
In this section we describe the design, architecture and

usage of XCheck, which is delivered under the GNU Gen-
eral Public License. It is freely available at http://ilps.

science.uva.nl/Resources/XCheck/. XCheck focuses on
performance benchmarks, as opposed to correctness bench-
marks. Thus, the benchmarks do not need to specify correct
answers. Nevertheless, XCheck helps to detect incorrect an-
swers by performing a comparison of the size of the answers
given by the different engines.

The main idea behind the design of XCheck is that a user
can learn most from comparing the performance of differ-
ent engines on many benchmarks. Thus adding engines and
1XMach-1 is designed for a multi-user scenario with a query
throughput under time constrains measure. XCheck exe-
cutes only its single-user case.

1247

Figure 1: XCheck architecture

benchmarks had to be easy, and the output should be di-
rected towards relative performance.

XCheck works in two phases. During the running phase,
it executes a given performance test on a given set of query
processors and produces detailed evaluation data, including
diverse processing times and environment parameters. In
the data analysis phase, XCheck applies statistical analysis
and performance measures on the data obtained during the
running phase. The output of the data analysis phase is a
collection of high-level evaluation data presented in different
formats (tables, plots, rankings).

The general process flow of XCheck is depicted in Fig-
ure 1. In this figure, BENCHMARK is an XML file specifying
the experiment (which engines, which queries, which docu-
ments). The labels TIMES, STATISTICS and PLOTS denote
the raw measurements, the analyzed data and the created
data plots, respectively. Data analysis and creating plots is
optional and can also be done in a latter stage, combining
raw data from several experiments, if needed.

In the following, we describe the running and data analysis
phases in more detail.

2.1 Running phase
Input The input of an experiment run on XCheck consists
of: (i) a list of XQuery engines; (ii) a list of benchmark
documents, or the commands to generate the documents
whenever a document generator is available; (iii) a list of
queries of the benchmark, or the commands to generate the
queries whenever a query generator is provided. For each en-
gine, for each document, XCheck runs all provided queries.
This is implemented by leaving empty the argument of the
fn:doc() function in the queries. XCheck will fill them with
the appropriate file names. This design is sufficient to rep-
resent all XQuery benchmark published so far, including the
multi-document scenario benchmarks.2

2 XMach-1 and, partially, XBench are multi-document sce-
nario benchmarks, i.e. a query is executed against a big
collection of documents at once. For these benchmarks we
used only one input document containing the list of the doc-
uments in the collection. Before each query execution, the
input document is queried and a resulting sequence of doc-

Engine adapter design At the core of XCheck is a plug-
gable engine adapter design. There are many types of XML
query engines, with different architectural design and run-
ning scenarios, implemented in different programming lan-
guages. XCheck calls each engine with a fixed input (query,
set of documents) and receives a fixed output (query an-
swer, several processing times, error messages). This is im-
plemented via adapters which work as wrappers for the en-
gines. In this way, XCheck can test any query engine as
soon as an adapter for the engine is available.

There are two ways of implementing an adapter. If the
engine is a command line executable, then an adapter is
an XML document containing engine execution instructions
and a description of the engine’s output. XCheck processes
this document and executes the instruction indicated there.
Otherwise, a specific engine adapter in the form of a com-
mand line executable has to be implemented.

It is often desirable to measure the times taken by indi-
vidual processing steps, such as, document processing time,
query compilation time, query execution time, and result se-
rialization time [3]. Measuring these times might be difficult
or impossible, unless the engine provides this information.
In such cases, XCheck captures these times and analyzes
them.
Measurement accuracy Besides the times that the en-
gines report, XCheck itself measures the total execution
time, reported in CPU time. To reduce the possibility of
unreliable results, XCheck executes each experiment a con-
figurable number of times and outputs the average times,
together with the standard deviation. We experienced that
3 runs are sufficient to obtain standard deviations which are
less than 2% of the mean time. Moreover, XCheck records
the hardware configuration of the machine on which it runs.
Error and crash handling Two types of errors might oc-
cur during execution. The first type is an error produced and
handled by the engine, such as static and dynamic query pro-
cessing errors. The second type, typically an engine crash,
is handled by the platform. XCheck treats both types, and
provides informative output to the user.

Finally, a pseudo-correctness test is implemented by com-
paring the size of the output of the different engines and
producing a warning in case of large divergences.
Output The default output consists of an XML document
containing the total query execution times, the processing
times provided by the engines themselves, and the error mes-
sages whenever a query fails, grouped by engines, documents
and queries. It also contains the total benchmark run time
and the configuration of the testing environment. A more
readable HTML format of this information is also provided.
Optionally, XCheck saves the answers to the queries. An-
other optional output of the platform is a vast set of possible
graphs displaying the data. The Gnuplot code for generat-
ing these graphs is also provided, so that the user can easily
edit and modify the graphs.
Example As an example we run the XMark benchmark on
the following XQuery engines: SaxonB 8.6.1, Galax 0.5.0,
Qizx/open 1.0 and MonetDB/XQuery 0.10. The input query
set consists of the 20 XMark queries and the document set
consists of 7 documents corresponding to the scaling fac-
tors3 0.016 to 1.024 of size 1.80 MB to 113.99 MB, respec-

ument nodes is transmitted to the query as input.
3XMark provides a document generator that produces doc-
uments whose sizes are proportional to a unique parameter

1248

Figure 2: Total execution time for each query

tively. For each engine, for each document, every query was
run four times. The times reported are the mean of the last
three executions. The full output of XCheck on this example
is accessible at http://ilps.science.uva.nl/Resources/

XCheck/examples.html.
Figure 2 gives a first impression of the relative perfor-

mance of the four engines, by showing the total execution
times for each engine for each query on one specific docu-
ment. Notice that Galax crashes on queries Q11 and Q12
(which are known to be hard) and Qizx/open does not parse
queries Q3, Q11, Q12, and Q18. Moreover, Figure 3 shows
how the different engines scale with respect to document size
on query Q8. The times are those reported by the engines.
Galax is not here, because, as confirmed by the authors, its
reported query execution time is not reliable for the version
we checked. In both cases, XCheck plotted the times in
logarithmic scale.

Finally, Figure 4 provides a breakup, in terms of percent-
ages, of the total execution time for Saxon on all XMark
queries and on the biggest document in our sequence. No-
tice that on queries Q8–Q12 almost all the time is spent on
query execution, while on all other queries the document
processing time was the main factor.

2.2 Data analysis phase
After running the benchmark, XCheck can perform some

data analysis tasks. Most measures are dependent on the
specific benchmark and are not provided by XCheck. That
given, XCheck performs some standard data analysis, as in-
dicated in the following.
Quantitative analysis The goal is to analyze the amount
of time spent by any engine for the processing of any evalua-
tion phase on any fragment of the benchmark. As an exam-
ple, we define the medley relay speed (measured in MB/sec)
of an engine on the document set D and the query set Q as
follows:

MRSD,Q =
|Q| · P

d∈D size(d)
P

d∈D,q∈Q time(d, q)

It summarizes the elaboration speed of the engine on the
given documents and queries.

called the scaling factor. A scaling factor of 1 produces a
document of about 100 MB.

Figure 3: Query execution time for each document

Figure 4: Query execution time for each document

Qualitative analysis The goal is to analyze the qualita-
tive behavior of the performance of the engines. Relevant
measures are the qualitative distance between two engines,
which indicates the similarity between the evaluation strate-
gies of the two engines, and the stability measure of an en-
gine, which indicates the stability of the elaboration times
of the engine.
Scalability analysis The goal is to analyze the perfor-
mance of any engine either when the complexity of the input
query grows (query scalability analysis) or when the size of
the input document grows (data scalability analysis). The
scalability analysis is significant only when the benchmark
has been designed to target the engine scalability. For in-
stance, let D = (d1, d2, . . . , dk), for k ≥ 2, be a sequence of
documents of increasing sizes. We define the data scalability
factor for an engine on the document sequence D and the
query set Q as follows:

if k = 2, then DS(d1,d2),Q =
MRSd1,Q

MRSd2,Q
,

if k > 2, then DSD,Q =

Pk−1
j=1 DS(dj,dj+1),Q

k−1
.

Notice that, by virtue of the definition of medley relay speed
(MRS), a data scalability factor less than 1 (respectively,
equal to 1, bigger than 1) corresponds to a sub-linear (re-

1249

spectively, linear, super-linear) increase of the elaboration
time when the data size increases.

Below is an extract of the data analysis result on our ex-
ample. We excluded from the computation queries Q3, Q11,
Q12 and Q18 because they are not supported by all engines.
Finally, as said above, we have no information on the query
execution time for Galax.

Total execution Query execution
time time

Engine MRS DS MRS DS

MonetDB 4.356 MB/s 0.863 212.220 MB/s 0.768
Saxon 1.611 MB/s 1.145 1.927 MB/s 1.502
Qizx 7.629 MB/s 0.847 8.511 MB/s 0.946
Galax 0.131 MB/s 1.707

3. RELATED SYSTEMS
To the extent of the authors knowledge, there are two

other automated testing platforms for evaluating XML query
engines, BumbleBee [1] and XSLTMark [2]. BumbleBee is a
test harness for evaluating XQuery engines and for validat-
ing queries expressed in the XQuery language. Although it
measures the total execution times its main goal is to test
engine’s compliance with the language specification. The
application can execute user defined tests containing refer-
ence answers for the correctness check. XSLTMark is a sim-
ilar application for XSLT processor performance and com-
pliance benchmarking. It comes with a collection of default
test cases that are performance oriented. Both Bumblebee
and XSLTMark have a fixed input/output pluggable adapter
design.

In comparison, XCheck is optimized for executing user
defined performance tests. It is based on a more flexible
input/output adapter design that allows the users to cus-
tomize the information the platform is managing. This al-
lows one to obtain a detailed evaluation for the intermedi-
ate processing steps and other important engine parameters.
XCheck performs statistical analysis of the data and outputs
graphs, facilitating correct interpretation of the results. Al-
though XCheck does not perform a proper correctness test,
it implements a pseudo test by comparing the size of the
query results of several engines relative to each other.

4. DEMONSTRATION SETUP
The demonstration of XCheck has two purposes. First,

we show how XCheck works. As running a benchmark takes
too much time, we focus on the preparation of the input
and the interpretation of the output of XCheck. Second, we
provide the results obtained with XCheck.
For the first purpose, we show in particular:

• how easy it is to add benchmarks and engines to XCheck;

• how the output of XCheck addresses the use-cases de-
scribed in the Introduction;

• the under-the-hood design choices.
For the second purpose, visitors of the demo can see how
their favorite engine performs on the benchmarks in Table 1.
We are currently collecting these data and plan to run all
these benchmarks on all XQuery processors described in [6],
provided they are freely available. Notice that Figure 16 in
[6] gives the results of running XMark on 17 XQuery engines,
but the data are collected from the literature (and hence the
corresponding experiments were run on different machines).

Hence the results are not easy to compare. Using XCheck we
can provide an independent and fair comparison since every
test is performed under the same controlled circumstances.

5. ADDITIONAL AUTHORS
Enrico Zimuel, Università “Gabriele D’Annunzio”, Italy.

email: zimuel@science.uva.nl.

6. REFERENCES
[1] BumbleBee. http://www.xquery.com/bumblebee/.

[2] XSLTMark.
http://www.datapower.com/xmldev/xsltmark.html.

[3] L. Afanasiev, I. Manolescu, and P. Michiels. MemBeR:
a micro-benchmark repository for XQuery. In
Proceedings of XSym, pages 144–161, 2005.

[4] Axyana software. Qizx/open. An open-source Java
implementation of XQuery.
http://www.axyana.com/qizxopen, 2006.

[5] T. Böhme and E. Rahm. XMach-1: A benchmark for
XML data management. In Proceedings of BTW2001,
Oldenburg, 2001.

[6] P. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teuber. MonetDB/XQuery: a fast
XQuery processor powered by a relational engine. In
Proceedings of SIGMOD, 2006.

[7] S. Bressan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li,
U. Nambiar, and B. Wadhwa. X007: Applying 007
benchmark to XML query processing tool. In
Proceedings of CIKM, pages 167–174, 2001.

[8] M. Fernández, J. Siméon, C. Chen, B. Choi,
V. Gapeyev, A. Marian, P. Michiels, N. Onose,
D. Petkanics, C. Ré, M. Stark, G. Sur, A. Vyas, and
P. Wadler. Galax. The XQuery implementation.
http://www.galaxquery.org, 2006.

[9] M. Franceschet. XPathMark: an XPath benchmark
for the XMark generated data. In Proceedings of
XSym, pages 129–143, 2005.
http://www.science.uva.nl/~francesc/xpathmark.

[10] M. H. Kay. Saxon. An XSLT and XQuery processor.
http://saxon.sourceforge.net, 2006.

[11] MonetDB/XQuery. An XQuery Implementation.
http://monetdb.cwi.nl/XQuery, 2006.

[12] K. Runapongsa, J. Patel, H. Jagadish, Y. Chen, and
S. Al-Khalifa. The Michigan Benchmark: A
Microbenchmark for XML Query Processing Systems.
In Proceedings of EEXTT, pages 160–161, 2002.

[13] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. In Proceedings of VLDB,
pages 974–985, 2002. http://monetdb.cwi.nl/xml/.

[14] B. Yao, T. Özsu, and N. Khandelwal. XBench
benchmark and performance testing of XML DBMSs.
In Proceedings of ICDE, pages 621–633, 2004.

1250

