
Simple and Realistic Data Generation

Kenneth Houkjær
Aalborg University

khp1412@cs.aau.dk

Kristian Torp
Aalborg University

torp@cs.aau.dk

Rico Wind
Aalborg University

rw@cs.aau.dk

ABSTRACT
This paper presents a generic, DBMS independent, and high-
ly extensible relational data generation tool. The tool can
efficiently generate realistic test data for OLTP, OLAP, and
data streaming applications. The tool uses a graph model
to direct the data generation. This model makes it very sim-
ple to generate data even for large database schemas with
complex inter- and intra table relationships. The model also
makes it possible to generate data with very accurate char-
acteristics.

1. INTRODUCTION
Most software developers and database researchers use syn-
thetic data to test the correctness and performance of their
work. Such test data must be realistic and correct in terms of
size and distributions to be useful, e.g., see the TPC bench-
marks [1]. The tools used to generate synthetic data are
often specialized and not reusable. This makes the task of
building such tools complicated, time consuming, and error-
prone. In addition, the specialized tools have limited sup-
port for complex database schemas, e.g., composite keys and
cycles in foreign-key relationships. This paper presents a
simple, generic, and extensible tool for generating synthetic
test data. The tool is highly customizable and easy to use. It
can significantly reduce the complexity and the time needed
to generate realistic and correct test data. The tool can be
downloaded from [2].

The demonstration of the tool will focus on the following:

• Presentation of the graph-model based data-generation
algorithm, including how the tool automatically builds
this graph model.

• How the user can adjust the graph model, includ-
ing adding additional (primary/unique/foreign) keys
to the graph model.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

• How the user can very accurately control the charac-
teristics of the generated data, e.g., to evaluate a query
optimizer.

• How to handle conflicting user adjustments, e.g., if
the cardinality distribution of a foreign key is too high
compared to the number of rows in a table.

• How to enhance the realism of the test data by using a
non-empty database schema as the outset for the data
generation.

• How to increase the data realism by adding new user-
defined data types and distributions.

• How to generate data for well-known benchmarks in-
cluding Wisconsin, TPC-C, and TPC-H.

• How to generate ”dirty” data, e.g., to test data-ware-
house ETL functionality.

1.1 Example
Figure 1 shows a database schema that is used as a run-
ning example in the paper. Boxes in the figure are tables
and arrows are foreign-key constraints. A star to the left of a
column marks that it is a part of a primary key. The schema
consists of four tables and models a software company with
employees and projects. The Employee and Project tables
store information on employees and projects, respectively.
The Works On table models a many-to-many relationship
between the employees and projects. The Employee table
has a one-to-many relationship to itself that is implemented
via the Works For FK column. There is a one-to-many re-
lationship between the Project and Project Detail tables.
Please note the composite and overlapping primary and for-
eign keys.

Column Name Type
StartDate datetime
ExpectedEndDate datetime
ExpectedPrice int
ExpectedManHours int

* p_Name_FK varchar
* p_Location_FK varchar

Column Name Type Column Name Type Column Name Type
* EmployeeId int * StartDate datetime * Name varchar

EmployedDate datetime EndDate datetime * Location varchar
FirstName varchar * p_Location_FK varchar Priority int
LastName varchar * p_Name_FK varchar
SSN int * e_Id_FK int
Works_For_FK int

ProjectEmployee

Project_Detail

Works_On

Figure 1: Example Database Schema

1243

2. ARCHITECTURE
Figure 2 shows the architecture of the data generation tool.
It consists of a kernel, five extensible component collections,
a GUI, and a distributed generation component. The kernel
contains the core functionality of the tool and is responsible
for the primary, unique, and foreign-key handling. The ac-
tual data generation is done by the data types. The kernel
and the data types use the distributions to control the data
characteristics. The input to the tool is via the meta-data
interface. This interface makes the tool DBMS indepen-
dent and it supports the Oracle, SQL Server, PostgreSQL,
and MySQL DBMSs. Additional DBMSs can easily be sup-
ported. The tool can output data in several formats includ-
ing to file, to database, and as streaming data. The user
can easily add new data types, outputs, functions, and dis-
tributions.

DataType

Interface

Distribution

Interface

MetaData

Interface

Kernel

Address

Varchar

Integer

MySQL

Oracle

MSSQL

LogNormal

Uniform

Normal

GUI
Distributed

Generation

Output

Interface

Stream

Database

File

GraphBuilder Graph

Function

Interface

Mult

Add

Pow

Figure 2: System Architecture

2.1 The Graph Model
Figure 3 shows a directed graph model of the database schema
in Figure 1. This model controls the overall data generation.
In the model tables are represented as nodes and foreign-key
constraints as edges. The model is automatically built us-
ing the metadata interface. The letters above each edge
indicate whether the edge is a Normal, Forward, or Back-
ward edge [6]. The number of in-bound edges for each node
is shown as the number below the node.

ProjectEmployee Works_On
N N

B

202

Project_Details

0
F

Figure 3: Graph Model

Each node in the graph contains information about a single
table. This includes information about columns and pri-
mary, unique, and foreign keys. Keys can be overlapping,
e.g., a foreign key can be part of a primary key. Composite
primary, unique, and foreign keys are supported.

The direction of the edges is from the table containing the
foreign key, to the table containing the primary (or unique)
key. The edges are used to determine the order in which to
generate data.

The graph model holds various statistical information about

foreign key and column content. Each edge contains infor-
mation about a foreign key, including a distribution of the
cardinality. The distribution itself and all distribution vari-
ables can be adjusted by the user. If the source database
schema contains data, the distribution can be based on this
data. If no data exist, a default cardinality will be used.
The edges also contain information about participation, i.e.,
how large a percentage of the unique or primary keys that
are referenced. The participation can be adjusted by the
user.

The number of rows to generate for each table can be set
by the user at the database and table level. If the size is
set at the database level, all tables are scaled equally, i.e.,
the number of rows in each table is increased by the same
percentage. If the size is set at the table level, the user can
choose to propagate the new size, i.e., the size of all related
tables (by edges in the model) are updated recursively. It is
possible to fix the size of a table and hereby specifying that
the table does not allow propagation. This freezes the size of
the fixed and possibly related tables. As an example, if the
Project table is fixed, changes to the size of the Employee
table will only affect the Employee and Works On tables.

The tool supplies data types that generalize DBMS specific
data types. Each column in a database schema is associ-
ated with one of the data types, e.g., FirstName in table
Employee uses the varchar data type. The user can change
the default data type and specify additional data-domain
constraints. The tool supplies 39 data types, including all
simple SQL:2003 data types. In addition, a number of real-
life data types such as first name, last name, and zip-code
are supplied. Advanced data types such as moving-object
simulations and images are also supplied. The tool trans-
lates DBMS specific data types to the supplied data types,
e.g., both the Oracle VARCHAR2 type and the SQL Server
VARCHAR type are mapped to the supplied varchar data
type.

2.2 Column and Row Dependencies
This section explains the different dependencies possible in
database schemas and how these are handled by the tool.
Four different types of dependencies are possible. The first
is a foreign-key constraint that is modeled as an edge in the
graph. The second is an intra-row dependency, e.g., the de-
pendency between the StartDate and EndDate columns of
the Works On table. The StartDate must always be smaller
than the EndDate. This is achieved by basing the value of
EndDate on the value of StartDate. To do this the user binds
the EndDate column to the StartDate column. This binding
gives the data type for the EndDate column access to the
last generated value for StartDate. The intra-row binding
between columns must form an acyclic graph. The third
possibility is an intra-column dependency, i.e., the value of
a column dependent on earlier generated values. As an ex-
ample, the temperature in a refrigerator that dependents
on the last 10 generated temperatures is implemented by
storing the last 10 values in a data type. The second and
third type of dependencies can be combined, e.g., 5 differ-
ent refrigerators dependent on their last 10 values. This
is implemented using a dictionary with the refrigerator id
as the key that points to the previously generated values.
The fourth possibility is intra-table dependencies between

1244

columns not specified as foreign keys, e.g., redundant data
stored to optimize a query. The tool does not support this
type of dependency.

3. DATA GENERATION
This section explains the main principles of the data gener-
ation algorithm. For details, please see [2]. It is assumed
that the schema to generate data for is empty, i.e., there are
no rows in any table.

3.1 Adjusting the Graph Model
The data will be simple if the database schema is empty and
no adjustments are made, e.g., all primary key values are
referenced once and the column data is build using default
settings. The user can adjust all of these variables. This is
shown here by using the schema in Figure 1. The partic-
ipation is set to 100% between the Works On and Project
tables, to 80% between the Works On and Employee tables,
to 10% between the Employee to Employee table, and to
100% between the Project Detail and Project tables. The
distribution of how many times each of the primary key val-
ues are referenced is also adjusted. To model that each of
the projects has between 6 and 14 employees associated,
a normal distribution is chosen for the edge between the
Works On and Employee tables with a mean of 10, a stan-
dard deviation of 3, a minimum of 6, and a maximum of 14.
To further improve the realism of the generated data, the
data type is changed for some of the columns. The data type
for the FirstName and LastName columns in the Employee
node is changed to the specialized firstname and lastname
data types. The specialized firstname data type has an op-
tion that allows the user to set the percentage of male and
female names. Since the example models a software devel-
opment company, the male percentage is set to 70%. The
EndDate column on the Works On table is bound to the
StartDate column. The date-time data type provides op-
tions for specifying a distribution that models the time to
add to the column to which it is bound (can be negative).

The final adjustment assigns a function to the Expected-
Price column of the Project Details table. The Excel-like
function creates a dependency between the ExpectedPrice
and ExpectedManHours columns. The function is declared
as Mult(ExpectedManHours;250).

3.2 Generation Algorithm
The main principle of the data generation is a depth-first
traversal of the graph. The challenge in the algorithm is
to generate and exchange composite and overlapping pri-
mary, unique, and foreign keys. The traversal begins at non-
referenced nodes, i.e., nodes not referenced by other nodes.
This is the Works On node in Figure 3. If no such node
exists the schema has cycles and random edges are altered
to break these cycles. The next step is then to examine all
out-bound edges of the chosen start node.

Three different types of edges can be encountered. A Nor-
mal edge means that values are needed for a foreign key in
the referenced node (table), but that data for this node has
not yet been generated. A Forward edge means that the
data for the referenced node has already been created and
foreign-key data is available. A Backward edge indicates

a cycle. This means that the referenced node needs data
(directly or indirectly) from the current node. Temporary
values are then used in the current node for the foreign key.
These temporary values are later replaced with real values
when the data generation has completed for all other nodes.
Two out-bound Normal edges can be traversed from the
Works On node in Figure 3. Assume that the edge pointing
at the Employee node is traversed first. In the Employee
node only one out-bound Backward edge exists (a cycle).
The cycle is simple, but the technique used for dealing with
Backward edges applies equally well to more complicated
cycles. Data is generated for the Employee node since no
further traversal is possible. The data is generated one row
at a time. Data for the columns are generated in an or-
der based on a topological sort of the bound columns and
functions. None of the columns in Employee are bound or
has functions assigned, so the order of columns is based on
their ordinal position. 70% male names are generated for the
FirstName column, and temporary values are generated for
the Works For FK column (a cyclic foreign-key). When the
generation for the Employee node has ended the algorithm
returns to the Works On node and the edge to Project is
traversed. This continues until data for all tables has been
created. When data is generated for all nodes what remains
is to exchange the temporary values for the cyclic foreign-
key in the Employee node with real values.

3.3 Non-Empty Database Schemas
One-click data generation is possible using both empty and
non-empty database schemas. When using a non-empty
schema, statistical information is automatically collected from
the existing data and used to increase the realism of the
generated data. The information includes cardinalities and
participations of foreign keys. A normal distribution is used
as default but this can be changed by the user. If changed,
the new distribution is re-calculated based on the source
data. Each column is automatically associated with a data
type. The data type can collect statistics about the data
in the original column. This statistical data is passed to
the data type as a forward-only stream. The stream can be
ignored, e.g., the firstname data type uses a local database
with names and no statistics are needed. Other data types
such as integer and varchar uses the source data to create
descriptive distributions. The use of distributions limits the
memory footprint. If a column’s data type is changed by the
user, the new data type also has access to the forward-only
stream. To generate null values, where appropriate, the per-
centage of null values in the source data is stored with each
column. The user can adjust this percentage.

4. PERFORMANCE
Figure 4 shows the performance of the tool, implemented
in C#, when generating data for the TPC-C benchmark [1]
(AMD Sempron 1,8 GHz, 1GB RAM). The tool shows lin-
ear scale-up and generates approximately 1.7MB data per
second. The tool has been tested up to 400 GB of data on
various OLTP and OLAP schemas. It shows linear scale-up
even for the large data sets.

The general tool is approximately 2 times faster than a ded-
icated Perl program, but approximately 5 times slower than
a dedicated C program. The speed of the data generation is
dependent on the structure of the database schema. On the

1245

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25

S
ec

on
ds

Number of Warehouses

C
Tool
Perl

Figure 4: TPC-C Performance

schema for the Wisconsin benchmark the tool creates 2.6
MB/s. Figure 5 shows the performance when generating

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200 250 300 350 400
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

S
ec

on
ds

M
B

/s

Generated size in GB

Generation time
Generation speed

Figure 5: Data-Warehouse Performance

data for a real-world data warehouse (1 fact table, 5 dimen-
sion tables, and 8 outbreak or bridge tables [9]). The x-axis
is the size of the generated data in GB. The left y-axis is the
total number of seconds used for the generation. The right
y-axis is the speed of the generation in MB pr. second.

In this test, the dimension tables are set to a fixed size and
the fact table is scaled to achieve the required data sizes.
The results show almost linear scale-up for data sizes up to
400 GB. The speed of the generation is approximately 3.2
MB/s and it is independent of the size of data generated.
The small decrease in the generation speed is due to in-
creased time used on sorting keys while randomizing. Note
that it is considerablely faster to generate data for this data-
warehouse schema (3.2 MB/s) than for the TPC-C schema
(1.7 MB/s).

In general, the tool is typically very fast when generating
data for a star schema because the large fact table is created
by combining already generated keys from the dimension
tables. These keys can typically be held in memory.

5. RELATED WORK
A recent article [4] presents a language approach for gen-
erating synthetic data. The main purpose of this language
is to allow for generation of data that conforms to exact
characteristics such as a normal or a Zipfian distribution.
The language approach is very good at concisely specifying
how to generate synthetic data. The graph-model approach
presented in this paper is advantageous when the schema
to generate data for is large and when existing data can be
used as an outset for the data generation. With respect
to large schemas the language approach has no automatic
handling of foreign-key constraints. This is left entirely to
the user. In the graph-model approach the model is build
automatically from metadata and can be adjusted by the
user. Note that it will require fundamental changes to the
language approach to do this in a similar automated fashion.
With respect to existing data it is again in the language ap-
proach left entirely to the user to specify the distribution of
data for each column in the schema. In the approach taken
in this paper the tool suggests distribution based on existing
data that the user can adjust.

Freely available test data generation tools exist for most
database benchmarks, e.g., tools for most TPC benchmarks
can be downloaded from [1]. These tools are however very
specialized, in contrast to the general tool presented here.
[7] describes how to generate a billion records in less then 30
minutes using a cluster of high-end computers. An approach
for generating consistent test data based on first order logic
is presented in [8]. A part of [5] describes a data generation
tool included in a framework for testing database applica-
tions. [3] uses a tree structure to automatically generate
synthetic XML data according to a number of inputs. The
system supports arbitrary complex structures, and can con-
tain recursive definitions.

6. REFERENCES
[1] TPC homepage. www.tpc.org, Jun. 2006.

[2] www.data-generation.com, Jun. 2006.

[3] A. Aboulnaga, J. F. Naughton, and C. Zhang.
Generating synthetic complex-structured XML data. In
WebDB, pages 79–84, 2001.

[4] N. Bruno and S. Chaudhuri. Flexible database
generators. In VLDB, pages 1097–1107, 2005.

[5] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J.
Weber. A framework for testing database applications.
In ISSTA ’00, pages 147–157, 2000.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. The MIT Press, 2
edition, 2001.

[7] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and
P. J. Weinberger. Quickly generating billion-record
synthetic databases. In SIGMOD, pages 243–252, 1994.

[8] A. Neufeld, G. Moerkotte, and P. C. Lockemann.
Generating consistent test data: Restricting the search
space by a generator formula. The VLDB Journal,
2(2):173–214, 1993.

[9] European Internet Accessibility Observatory home
page. www.eiao.net, Jun. 2006.

1246

