
InteMon: Intelligent System Monitoring on Large Clusters

Evan Hoke Jimeng Sun Christos Faloutsos
Computer Science Department

Carnegie Mellon University
Pittsburgh,USA

ehoke@andrew.cmu.edu, {jimeng,christos}@cs.cmu.edu

ABSTRACT
InteMon is a prototype monitoring and mining system for
large clusters. Currently, it monitors over 100 hosts of a
prototype data center at CMU. It uses the SNMP protocol
and it stores the monitoring data in an mySQL database.
Then, it allows for visualization of the time-series data using
a JSP web-based frontend interface for users.

What sets it apart from other cluster monitoring systems
is its ability to automatically analyze the monitoring data
in real time and alert the users for potential anomalies. It
uses state of the art stream mining methods, it has a sophis-
ticated definition of anomalies (broken correlations among
input streams), and it can also pinpoint the reason of the
anomaly. InteMon has a user-friendly GUI, it allows the
users to perform interactive mining tasks, and it is fully op-
erational.

1. INTRODUCTION
Stream monitoring and stream mining have attracted a

lot of research interest recently. Here we showcase one of
the latest stream mining algorithms, SPIRIT [9], as applied
on a real setting that involves monitoring the machines of a
large data center.

In recent years, large computational clusters become a
popular trend in production environments. This architec-
ture shift brought up many challenges for the designers and
system administrators such as scalability, reliability, hetero-
geneity and manageability. Exactly because of these chal-
lenges, monitoring systems have become of great impor-
tance. They provide a way for users to remotely monitor
and tune the systems.

Several monitoring systems have been developed mainly
addressing the issues on scalability and reliability [10, 11,
3] (details are introduced in Section 2). And most of moni-
toring systems provide a graphical interface for viewing the
cluster behaviors in real time and also log the raw moni-
toring data. However, these approaches have two big draw-
backs:

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

First, there is no such manpower to make effective use of
those real-time monitoring. In reality, the administrators
usually find out the errors or failures by other means such
as user complaints, then they realize that the monitoring
system actually has been observing the unusual behaviors
for a long time. Because of the large volume of data, it is al-
most impossible for human to directly utilize the monitoring
information. As a result, the monitoring system becomes a
not-so-useful tool for verifying error and failure in retrospec-
tion.

Second, most of the useful but hidden information has
not been discovered. For example, observing the correla-
tions among different measurements can be very helpful for
the administrator to understand the system and find out
potential anomalies. However, it is hard to pick up those
patterns from the raw data by just eye-balling the simple
plots generated from current monitoring systems.

We believe an efficient data mining module is absolutely
crucial for monitoring systems. The data mining module
should be able to analyze the monitoring data in real-time
and report the patterns and anomalies for inspection. The
mining capability is essential for turning the passive moni-
toring tool into an active administrator assistant. InteMon
is a intelligent monitoring system that is being built to ad-
dress these issues. It is a monitoring application for large-
scale clusters that provides automatic mining capability over
the data in addition to the monitoring functionality as other
monitoring systems. In particular, it can observe the cor-
relations over the measurements and summarize them in a
succinct manner; it can pick up the (non-trivial) anomaly
behaviors and identify the sources.

The contributions of our system are :

• it processes real-time monitoring streams through sim-
ple network management protocol (SNMP) over hun-
dreds of hosts;

• it provides an automatic data mining module over the
incoming streams and records the underlying correla-
tions;

• it spots the anomalies and identifies the source causing
it;

• it has a simple web-based interface for the administra-
tors to monitor all layers of information over the hosts
(from overall behavior of the entire cluster to the per-
formance of the individual host);

• it gives database support to manage the historical data
as well as the mining results.

 1239

From a data mining perspective, we studied several im-
portant practical issues throughout the development:

1. How to find the correlation over large number of streams?

2. How to deal with missing values and asynchronous
measurements?

3. How to handle bursty data?

4. How to spot anomaly and do prediction?

The rest of the demo proposal gives a brief literature sur-
vey in Section 2, the architecture of our system Section 3,
discussion on stream mining issues Section 4, demonstration
plan in Section 5and the conclusions in Section 6.

2. RELATED WORK
There are a number of research and commercial moni-

toring systems, mainly focusing on the system architecture
issues such as scalability and reliability.

Ganglia [10] is a hierarchical monitoring system that uses
a multicast-based listen/announce protocol to monitor nodes
within clusters, and it uses a tree structure to aggregate
the information of multiple clusters. SuperMon [11] is an-
other hierarchical monitoring system which uses a custom
kernel module running on each cluster node. ParMon [3] is
a client/server monitoring system similar to ours but with-
out mining capabilities. There exist commercial monitoring
suites such as OpenView [5], Tivoli [6], and Big Brother [2],
as well as several open-source alternatives, including Na-
gios [8]. These systems are primarily driven by threshold-
based checks. As long as the result of a query lies within a
predefined range, the service is considered to be operating
normally.

While our main focus is discovering anomalous behavior
to aid system administrators, others have examined ways of
using this data to address performance tuning or workload
distribution. Magpie [1] creates a statistical model of re-
quests moving through a distributed system to analyze sys-
tem performance. Weatherman [7] examines environmental
data (e.g., workload distribution, cooling configuration, and
physical topology) via a neural network to predict thermal
behavior. Cohen, et al. [4] have had success using perfor-
mance monitoring data and Tree-Augmented Bayesian Net-
works to infer whether a system is meeting its service-level
objective (SLO).

In terms of mining algorithm, we focus on the SPIRIT
algorithm [9], which performs PCA in a streaming fashion,
discovering the hidden variables among the given n input
streams, and automatically determining when more or fewer
hidden variables are needed.

3. SYSTEM ARCHITECTURE
In this section, we present our system design in details.

First, Figure 3.1 introduces the real-time data collection pro-
cess for monitoring sensor metrics in a production data cen-
ter. Figure 3.2 presents the database schemas for data stor-
age. Then Figure 3.3 shows the functionalities of the web
interface. The overall system design is shown in Figure 1.

3.1 Monitoring sensor metrics
Monitoring is done via the Simple Network Management

Protocol (SNMP). The reason to choose SNMP is because

Figure 1: System design

it is a widely used protocol for managing network devices
remotely, such as routers, hosts, room temperature sensors,
and etc. Furthermore, some software that allows the re-
trieval of SNMP information can also be managed, includ-
ing web servers and databases. Moreover, since SNMP has
been actively running in our production systems of the data
center, we decide to use this powerful infrastructure on our
benefit to build this monitoring system.

Name Description
ifInOctets.2 Bytes Received

ifInUcastPkts.2 Unicast Packets Received
ifOutOctets.2 Bytes Sent

ifOutUcastPkts.2 Unicast Packets Sent
ssCpuRawUser.0 Unprivileged CPU Utilization

ssCpuRawSystem.0 Privileged CPU Utilization
ssCpuRawNice.0 Other CPU Utilization
ssCpuRawIdle.0 CPU Idle Time

Table 1: Examples of sensor metrics

Data collection is done through a daemon process running
on a designated server. This server is configured to query
a designated set of sensor metrics (see Figure 2) from all
hosts in the data center through SNMP periodically. More
specifically, after a fixed time period, typically a minute, the
server will query, via the snmpget program, each of the hosts
and store the result in a customized MYSQL database. Note
that queries are spread out uniformly in the entire period
to reduce the concurrent server load. And the individual
client load is negligible. Our monitoring algorithm is then
run across the incoming data to detect any abnormalities.
The data is first grouped by signals of a given type across
all hosts, then it is grouped by all signals on a given host.

3.2 Database backend

The initial data is stored in the SIGNAL DATA table.
Each row contains a value, indexed by the time, host id
and signal id it is associated with. The monitoring table in-
serts but never reads from this table as the algorithm needs
to see each value only once. The table is used primarily
by the web front end for generating graphs. The tables
HOST HIDDEN and SIGNAL HIDDEN are used to store
the hidden variables found when analyzing the data grouped
by host and grouped by the type of signal. These values are
indexed by their time as well as their host id or signal id

 1240

Figure 2: Data

SIGNAL DATA (time, host id, signal id, value)
HOST HIDDEN (time, host id, hidden id, value)
SIGNAL HIDDEN (time, signal id, hidden id, value)
HOST RECON (time, host id, signal id, value)
SIGNAL RECON (time, host id, signal id, value)
HOST ALERT (alert id, host id, time)
SIGNAL ALERT (alert id, signal id, time)
HOST ALERT WEIGHTS (alert id, signal id, weight)
SIGNAL ALERT WEIGHTS (alert id, host id, weight)

Table 2: Database Tables

and hidden variable number. Similar to the SIGNAL DATA
table, with the same fields are the HOST RECON and SIG-
NAL RECON tables, which store the reconstructed values
generated from the hidden variables found when analyzing
the data grouped by host, or grouped by signal respectively.

In addition to these tables that are updated periodically
there is a HOST ALERTS and SIGNAL ALERTS table.
These tables are used primarily for generating alerts on
the main page of the web front end. New rows are in-
serted into these tables whenever our algorithm detects an
abnormality, caused by a change in the number of hidden
variables. These rows contain the time of the abnormal-
ity as well as the host or signal effected and an id which is
a key into either the HOST ALERTS WEIGHTS or SIG-
NAL ALERTS WEIGHTS tables. An entry is inserted for
each host or signal corresponding to how much that host
or signal contributed to the new hidden variable giving the
system administrator a clue as to what may be going wrong
with the systems.

The database uses round-robin table with aggregated sum-
marization so that the data storage are fixed. Note that the
hidden variables and anomalies are stored separately so that
the anomaly information information is never lost.

3.3 Web interface
The web interface is JSP based and is currently running

on Apache Tomcat 5.5.15 with JRE 1.5.0. The interface
consists of a main page with links to monitoring page for
each type of signal and for each host. Also this page lists
the most recent alerts and the hosts / signals they effect
as well as a list to a more extensive page of abnormalities.
This gives the system administrator the pertinent informa-
tion that needs to be dealt with immediately as well as to
tools to investigate further. See screen shot.

The individual monitoring pages consist of three graphs(see
Figure 3). These graphs are generated with the JFreeChart

library version 1.0.1. Current graphs are cached for im-
proved performance, while graphs of older data are gener-
ated on the fly. For the host monitoring page, the first graph
contains a minute by minute plot of all the signals monitored
for the specified host. This is similar to graphs you would
see in most monitoring systems.

The second graph contains the hidden (that is, latent)
variables. Intuitively if all hosts show the same pattern of
CPU utilization, (eg., a daily cycle), we have only one hidden
variable, which is exactly a sinusoid-like wave with 24hours
period; now if half of the machines get overloaded to a 90%
utilization, we need a second latent variable, constant at
90%, to capture the fact.

The last graph gives the reconstructed data. This graph
uses only the hidden variables to try to approximate the
original data and gives the user a feel for how well the al-
gorithm is working. The signal monitoring pages are simi-
lar except all the signals of a given signal across hosts are
plotted. On each graph, vertical bars are drawn at the loca-
tions where abnormalities occur, i.e., the number of hidden
variables changes. These pages provide navigation to other
monitoring pages via pull down menus as well as links to
move forward and backward in time. See screen shots in
Figure 3.

For each abnormality that occurs there is a link to a page
providing analysis of the abnormality as shown in Figure 2.
For example, if a new hidden variable is needed to describe
the data, the leading signals that contribute to that hidden
variable will be listed.

4. STREAM MINING
We now answer the questions listed in the end of Section 1.

Correlation Detection: Many correlation detections are
available in the literature. But most of them require to do
O(n2) comparisons where n is the number sensor metrics
every time tick. This is clearly too expensive. We decide to
use the algorithm in [9] to monitor the multiple time series,
which only requires O(nk) where n is the number of sensor
metrics and k is the hidden variables.

For example, if we are monitoring the number of packets
sent over the network across n hosts, this data is grouped
into an n dimensional vector and the algorithm is applied
to project this vector into a k dimensional space (k � n).
The projections are the hidden variables (or the overall cor-
relations). And the number of hidden variables are auto-
matically determined based on the reconstruction error, i.e.,
given the desirable error threshold (say 10%), the algorithm
will pick the smallest number of hidden variables that satis-
fies that.
Anomaly detection: We consider the anomalies as the
sudden changes of system behavior, which is indicated by
the change on the number of hidden variables. More specifi-
cally, if the number of dimensions in this space changes, this
signifies an abnormality and its occurrence as well as the rel-
ative weights of the signals causing the abnormality. Notice
that this sophisticated definition can capture anomalies way
beyond values-out-of-bounds, because our system observes
the past, summarizes it in a few latent/hidden variables, and
issues an alert when the past is not good enough to describe
the future.
Missing values: Missing values often occur in the system,
usually because of SNMP goes through UDP which is unre-
liable but lighter weight compared to TCP. In this case, we

 1241

(a) original (b) hidden variables (c) reconstruction

Figure 3: Web interface screenshots

use the reconstruction values to substitute which is usually
a good estimates. If no value is observed of a host for a long
period time, that host is marked as a dead node, which is
also recorded as an abnormal event.
Asynchronous arrival: The data collection is asynchronous
across different hosts. However, the correlation detection al-
gorithm require synchronous streams. Therefore, we inter-
polate the individual stream and correlate the streams all at
the beginning of each time period.

5. DEMONSTRATION PLAN
Since the system is running in real-time on a data center,

we can easily demonstrate to users how easy it is to monitor
hundreds of machines using InteMon.

More specifically, the system provides user-defined moni-
toring functionality in addition to the existing mining pro-
cess. For example, the user can specify a subset of hosts and
signal and run mining module on them to find correlation
and anomalies. Since we have the historical data stored in
the database, users specify different time ranges or different
resolution (per minute, per hour, per day, per week) for the
mining module.

Overall, the demonstration will be interactive experience
for users to exploit variety of real monitoring data. The
goal is to show that network monitoring problem can be
dramatically simplified and improved with the online data
mining’s help.

6. CONCLUSION
We developed InteMon: an intelligent monitoring system

for a large cluster. InteMon operates on a real production
cluster consisting of over 100 machines. In addition to the
variety of monitoring functionalities and an intuitive graph-
ical web frond-end, InteMon has an online data mining ca-
pability which analyzed the data in real-time to find the
underlying trend/correlation and report anomalies. Finally,
we hope with this demonstration we can illustrate the impor-
tance of data mining function in a monitoring application.

7. ACKNOWLEDGEMENT
This material is based upon work supported by the Na-

tional Science Foundation under Grants No. IIS-0209107
SENSOR-0329549 EF-0331657 IIS-0326322 IIS-0534205. This
work is also supported in part by the Pennsylvania Infras-
tructure Technology Alliance (PITA), a partnership of Carne-
gie Mellon, Lehigh University and the Commonwealth of
Pennsylvania’s Department of Community and Economic

Development (DCED). Additional funding was provided by
donations from Intel, NTT and Hewlett-Packard. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation,
or other funding parties.

We are pleased to acknowledge John Strunk and Greg
Ganger from parallel data lab at CMU for providing the
invaluable data and discussion.

8. REFERENCES
[1] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan.

Magpie: Online modelling and performance-aware
systems. In HOTOS, pages 79–84. USENIX
Association, 2003.

[2] Big brother. http://www.bb4.org.

[3] R. Buyya. PARMON: a portable and scalable
monitoring system for clusters. Software - Practice
and Experience, 30(7):723–739, 2000.

[4] E. Cohen and M. Strauss. Maintaining time-decaying
stream aggregates. In SIGMOD, 2003.

[5] Hp openview.
http://www.managementsoftware.hp.com/index.html.

[6] Ibm tivoli. http://www.ibm.com/software/tivoli/.

[7] J. Moore, J. Chase, and P. Ranganathan.
Weatherman: Automated, online, and predictive
thermal mapping and management for data centers. In
International Conference on Autonomic Computing,
2006.

[8] Nagios. http://www.nagios.org.

[9] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming
pattern discovery in multiple time-series. In VLDB,
pages 697–708, 2005.

[10] F. D. Sacerdoti, M. J. Katz, M. L. Massie, and D. E.
Culler. Wide area cluster monitoring with ganglia. In
CLUSTER, 2003.

[11] M. J. Sottile and R. Minnich. Supermon: A
high-speed cluster monitoring system. In CLUSTER,
pages 39–46, 2002.

 1242

