
HUX: Handling Updates in XML∗

Ling Wang, Elke A. Rundensteiner, Murali Mani and Ming Jiang
Worcester Polytechnic Institute, Worcester, MA 01609, USA

{lingw|rundenst|mmani|jiangm}@cs.wpi.edu

ABSTRACT
We demonstrate HUX (Handling Updates in XML) which provides
a reliable and efficient solution for the XML view update prob-
lem. Given an update over an XML view, our U-Filter subsytem
first determines whether the update is translatable or not by exam-
ining potential conflicts in both schema and data. If an update is
determined to be translatable, our U-Translator subsystem searches
potential translations and finds a ”good” one. Our demonstration
illustrates the working, as well as the performance, of the two sub-
systems within HUX for different application scenarios.

1. MOTIVATION

With the growing popularity of XML, it has become the primary
data model for creating XML wrapper views and querying the data-
base through them [5, 12, 9]. For example, biologists use XML
views to provide the online protein information resource; autho-
rized geography institutes as well as normal GPS users use XML
views to represent the world geography information. XML views
are also widely used in education systems. Let us consider As-
sistment system (http://www.assistment.org/) which is developed
jointly by Worcester Polytechnic Institute and Carnegie Mellon Uni-
versity and funded by NSF and United States Department of Edu-
cation. It is a web-based system that offers instruction to students
while providing a more detailed evaluation of their abilities to the
teacher than is possible under current approaches. This greatly
helps teachers assisting students’ development and assessing their
abilities. This system is currently used in some middle schools in
Massachusetts. Fig. 1 shows a part of relational schema of the As-
sistment system. Using this system, a teacher may be interested in
the problem information as shown by the XML wrapper view in
Fig. 21.

Although not addressed yet, support of update operations against

9∗This project is partially supported by NSF grant, IIS 0414567.
91Like other recent XML systems [5, 8], we use a basic XML view,
called default XML view, to define one-to-one relational-to-XML
mappings. User specific views are defined on top of the default
XML view

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

such wrapper views would be useful. For instance, when the teacher
looks at the view, he may want to insert students’ new scores for
some existing problems; delete some inappropriate or old problems
or update a student’s score after regrading. However, allowing the
teacher to directly update the base tables might not be practical, as
he need not be aware of underlying data models, such as the update
language or access modes of the underlying storage system. The
ideal solution is that the teacher simply describes what the updated
view should look like and this update requirement is automatically
translated to the underlying database updates. This is also the goal
we want to achieve.

Update requests through views are difficult in the sense that they
have to be translated into “appropriate” updates on the underlying
databases. This translation should be handled transparently by the
database system, while the effects of translated updates should at
the same time meet the user expectations.

GeometryS2

Algebras1

subnamesubid

problem

subject

Primary
Key

Non Key

Legend:
CREATE TABLE subject(
subid VARCHAR2(10) PRIMARY KEY,
subname VARCHAR2(100)
UNIQUE NOT NULL);

CREATE TABLE problem(
pid VARCHAR2(20) PRIMARY KEY,
subid VARCHAR2(10)

REFERENCES subject(subid),
ptext VARCHAR2(300) NOT NULL);

CREATE TABLE student(
sid VARCHAR2(20) ,
pid VARCHAR2(10)

REFERENCES problem(pid),
score VARCHAR2(10),
time VARCHAR2(10),
CONSTRAINT student_pk

PRIMARY KEY (sid, pid));

t1
t2
t3

t2

student

t1
t2

t1

t3 353.0p2s3

404.0p1s2

303.0p1s1

timescorepidsid

…s2p3

…s1p2

…s1p1

ptextsubidpid

Figure 1: Relational Database of Running Example

In general, two problems concerning updating views need to be
tackled. First, update translatability concerns whether some up-
dates on the base data storage, which may for example be a rela-
tional database or a native XML document, can be made to have the
same effect as the given update to the view directly without caus-
ing any view-side-effect. Second, we need to devise an appropriate
translation strategy. That is, assuming the view update is indeed
translatable, how to map the updates on the XML view into the
equivalent tuple-based SQL updates or XML document updates on
the base data.

The XML view update problem is more complex than the tradi-
tional relational view update problem [2, 6, 7]. Not only do all the
problems in the relational context still exist in XML semantics, but

 1235

we also have to address the new update issues introduced by the
XML hierarchical data model and its flexible update language.

We demonstrate our XML view updating system named HUX (Han-
dling Updates in XML). It provides a reliable and efficient solution
for both aspects of the XML view update problem. HUX is com-
plementary and also compatible with much of recent effort in XML
query support by both academic prototype systems and commercial
DBMS vendors, and thus we expect that HUX can be used com-
monly as an advanced feature for various view based applications.

2. HUX: THE FULL-FLEDGED XML VIEW
UPDATING FRAMEWORK

The framework of HUX system is shown in Fig. 3. The U-Filter
subsystem first addresses update translatability issue by perform-
ing a three-step check to detect all the potential conflicts in both
schema [14, 15] and data [15], which can cause an update to be un-
translatable. Second, U-Translator is used to search correct update
translations over the base data storage when it is mappable [16]. In
particular, we focus on the following:

• Resolve the mismatch between the XML hierarchical view
model and the base data model.

• Handle flexible XML view updates, namely updates can hap-
pen on any XML view element instead of just root element.

• Support efficient order-sensitive update translation.

Data
Storage XML Repository

XML/RDB
Schema

User
UpdatesView Query

Update
Checker
(U-Filter)

Annotated
Schema Graph

Generator

Update
Translator

(U-Translator)

RDBMS

HUX

SQLXQuery

Error
Message

Figure 3: The Framework of XML View Updating System

To achieve these, several challenges have to be addressed as briefly
illustrated by the following examples.

First, updates over a given view can be problematic for several dif-
ferent reasons, such as violating constraints, causing view side ef-
fects or conflicting with the underlying data. To avoid translation
costs caused by forced rollbacks to undo faulty update translations,
or even worse, a faulty translation, an update needs to be carefully
checked before the translation starts.

EXAMPLE 1. To delete only the ptext of a subject is not trans-
latable since the ptext of the subject relation is NOT NULL.

EXAMPLE 2. To delete the subject of the first ProblemInfo ele-
ment from the ProblemView is not translatable. The reason is there
is a foreign key from problem relation to the subject relation in the
underlying relational database. When the subject is deleted, the
corresponding problem tuple has to be either also deleted, or the

pid of the problem is replaced with NULL, depending on the dele-
tion policy defined by the foreign key constraints. However, neither
of these two are correct because they both would cause the corre-
sponding problem elements to no longer appear in the view. We
thus say that this update is not translatable since it causes a view
side effect in the form of an unintended view deletion. We can draw
the conclusion for each subject element; therefore schema knowl-
edge decides the un-translatability of the updates.

EXAMPLE 3. To delete a StudentInfo of a certain ProblemInfo
from the ProblemView is always translatable. The reason is each
student tuple contributes to one StudentInfo only and there is no
other view element that refers to it. We can draw the same conclu-
sion for each StudentInfo element; thus schema knowledge guaran-
tees the update always translatable.

EXAMPLE 4. To delete a certain ProblemInfo is always trans-
latable by deleting the corresponding tuple in problem relation.
This is guaranteed because every problem tuple contributes to only
one ProblemInfo. However, there are also other possible ways to
achieve the updates. For example, for the third ProblemInfo, we
can delete the the second tuple in subject to delete it, because this
subject tuple only contributes to this view element and won’t cause
any side effects. On the contrary, the other two ProblemInfo can
not be deleted by deleting the first tuple in subject, because it con-
tributes to two view elements.

From the last example, we observe the fact even though we can use
schema knowledge to decide whether an update is translatable or
not, we sometimes need concrete data to find all the correct trans-
lations.

3. U-FILTER: LIGHT-WEIGHT XML VIEW
UPDATE CHECKER

U-Filter is a component of our system and used to check whether a
view update is translatable [14, 15]. As shown by Fig. 4, U-Filter
first performs two steps of schema-level (and thus very inexpen-
sive) checking. Only when necessary, more expensive checking
requiring the base data to be accessed is employed.

Update Validation

Schema-driven Translatability Reasoning

Data-driven Translatability Checking

User Update Query

Valid

Translatable Update Query

ASG

Invalid

Untranslatable

Conditionally translatableUnconditionally
Translatable

Data Conflicts

Error message

Condition Analysis
Unsatisfied

Satisfied

Error message

U-Translator

U-Filter

Annotated
Schema Graph

Generator

Figure 4: The U-Filter sub-system

The first step, called update validation, identifies whether the given
view update is valid according to the view schema. The problem in

 1236

<ProblemView>
FOR $subject IN document(“subject.xml")/subject/row,

$problem IN document(“problem.xml")/problem/row
WHERE $subject/subid = $problem/subid
RETURN

<ProblemInfo>
$problem/ptext,
<subject>$subject/subname</subject>
FOR $student IN document(“student.xml")/student/row
WHERE $student/pid = $problem/pid
RETURN

<StudentInfo>
$student/sid,
$student/score,
$student/time

</StudentInfo>
</ProblemInfo>

</ProblemView>

</ProblemView>
<ProblemInfo>

<ptext> x + 4 = 10. x = ? </ptext>
<subject> Algebra </subject>
<StudentInfo>

<sid> s1 </s1>
<score> 3.0 </score>
<time> 30</time>

</StudentInfo>
<StudentInfo>

<sid> s2 </s1>
<score> 4.0 </score>
<time> 40 </time>

</StudentInfo>
</ProblemInfo>

<ProblemInfo>
<ptext> 2 * x = 7. x = ? </ptext>
<subject> Algebra </subject> (b)(a)

<StudentInfo>
<sid> s3 </s1>
<score> 3.0 </score>
<time> 35</time>

</StudentInfo>
</ProblemInfo>

<ProblemInfo>
<ptext> For the three angles in a

triangle, one is 50 , one is 60 , what is
the rest?

</ptext>
<subject> Geometry </subject>

</ProblemInfo>
</ProblemView>

Figure 2: XQuery Views over Relational Database in Fig. 1

Example 1 is identified by this step. This view schema can either
be pre-defined or be inferred from the view definition query and
the base relational schema knowledge. It is modeled using a graph
named Annotated Schema Graph, and generated similar to the view
forest in SilkRoute [12]. Given that a lot of work has already been
done in the literature on schema validation [4, 13], here we focus on
two questions closely related with the view update issue: (i) How
to extract the view schema from the view query and the relational
schema? (ii) Which of the extracted constraints in the view schema
should the validation procedure consider?

In the second step, called schema-driven translatability reason-
ing(STAR), updates determined to be valid by Step 1 are further
examined. The potential view side effects are checked, which can
be caused by different reasons, including foreign key constraints
conflicting with the view structure, or, base data duplication in the
view. This compile-time check only utilizes the view query and the
relational schema. Example 3 and 2 are identified here. Techniques
in this step is included in our earlier work [14, 15]. [14] extends [7]
into a clean-extended source theory for XML views; this serves as
the criteria for determining whether a given translation is correct.
[15] focuses on identifying the factors deciding the translatability
of deletions over XML views.

There are some updates that may have potential side effects need
to further checked. For instance, in Example 4, in order to make
sure whether deleting from subject is a correct translation or not,
we need to check how many view elements a certain subject con-
tributes to. In our third step, the run-time data-driven translatabil-
ity checking, such facts will be identified by issuing probe queries.
As an example, the probe query for Example 4 is: { SELECT
COUNT(*) FROM subject WHERE subject.sid = problem.sid AND
problem.pid = “p3”}. As the result is 1, the second subject tuple
contributes to only one ProblemInfo element. This check can only
be resolved by examining actual base data. This is typically rather
expensive. Hence it is practical to employ it only at last, when the
prior steps have been considered.

Moreover, for an order-sensitive XML view using a FLWOR ex-
pression, an order-sensitive update can delete an existing view ele-
ment in a certain position or insert a new view element into a certain
position of the view. This update can cause new data-related update
translatability issues in terms of the update position itself being in-
valid. Special order-specific probe queries are utilized to verify the
legality of the deleting or inserting position.

4. U-TRANSLATOR: AN EFFICIENT UP-
DATE TRANSLATION MECHANISM

Now assume a view update is not filtered out by U-Filter and thus
is found to be translatable. Then we tackle the question of how best
to translate updates on the XML view into equivalent tuple-based
SQL updates or XML document updates on the base data. This
requires understanding the ways in which individual view update
requests may be satisfied by updates over the underlying data stor-
age. In some cases, there will be precisely one way to perform the
database update that results in the desired view update. However, in
most cases, the new view state may correspond to several different
database states. Consequently, the question of choosing a particu-
lar database state arises. Of the multiple database states, we would
like to choose one that is “as close as possible” under some mea-
sure to the original database state, namely, to minimize the effect
of the view update on the database [3, 10].

We design a set of criteria to distinguish between a “good” and
a “bad” translation that extends the validity criteria established for
relational view updates [10, 11, 1, 3]. Conceptually an enumeration
of all possible valid translations of each view update on the view
should be examined. For practical reasons, we do not instantiate
this enumeration in our system. We merely use it to define the
space of alternatives for correct update translations.

When the underlying data storage is a relational database, the mis-
match between the two update languages (XQuery FLWU updates
on the view versus SQL queries on the base) is carefully dealt with
to pick efficient update translation. New optimization techniques
on generating efficient base updates, which consider the perfor-
mance impacts imposed by for example using some partially ma-
terialized index, have also been incorporated into our system. The
implementation is based on the XML algebra tree (XAT) of Rain-
bow XQuery engine.

We have developed an order sensitive query optimization technique
when an XML view is defined over relational databases [16]. U-
Translator utilizes this general approach for supporting order-sensi-
tive XQuery-to-SQL translation that works irrespective of the cho-
sen XML-to-relational data mapping and also the selected order-
encoding method. Special probe queries over the XML base are
employed, which extract information to generate a proper order
code in the relational database or position in the XML document
for the newly inserted view element.

5. DEMONSTRATION

 1237

We demonstrate HUX in two different scenarios, namely when the
XML view is defined over (i) a relational database and (ii) an XML
document. We provide various XML views for teachers and stu-
dents. For example, a teacher can manage current problems for
the subject he is teaching by maintaining (updating) the problems
listed under that subject through SubjectViews. He can also insert or
delete students’ scores of a certain problem in ProblemViews. The
student can thus get refreshed information including problems he
has finished, time he used and scores he got through StudentViews.
All of these services rely on the capability of updating through
views. HUX performs careful update translatability checking by
U-Filter to assure that the database is properly maintained. HUX
also provides efficient service through U-Translator to translate the
user update into correct database updates, even for heavy update
workloads.

U-Filter. Here we demonstrate our three-step update translatability
checking of U-Filter, which make extensive use of the Annotated
Schema Graph (below). As an example, to check the translatability
of update in Example 2, the ASG is pre-marked as shown in screen
snapshot below. Since the subject node is marked as (dirty|unsafe-
delete), the update on deleting subject only is indicated to be not
translatable [14, 15].

We monitor the performance of different steps over different update
cases. The schema-based checking time is almost negligible in both
the successfully translatable case and the failed untranslatable case.

80.2518

21.424

1.258 0.9272 0.5722

80.263

21.4448

1.279 0.9486 0.5934

0

10

20

30

40

50

60

70

80

Region Nation Customer Order Lineitem
Relation

Time(s)

Update

Update With STARChecking

81.61

21.334

1.424 0.982 0.7040.0112 0.0208
0.021 0.0214 0.0212

0

10

20

30

40

50

60

70

80

Region Nation Customer Order Lineitem Relation

Time(s)

Update
Update With STARChecking

STAR translatable STAR untranslatable

U-Translator. We show how a given view update is translated into

a sequence of SQL update statements. We also illustrate the per-
formance of the generated update statements when different update
translation policies are used. Especially, when order is considered,
we will show strategies for optimization of order-sensitive database
updates. We monitor the execution performance of different up-
date translation “plan” (below), which provides valuable informa-
tion about which translation strategy should be selected.

Internal approach

External approach
Outside strategy
Hybrid strategy

U-Filter
U-Translator

0

1

2

3

4

5

6

7

50 100 150 200 250 300 350 400 450 500

DB size
 (Mb)

Execution
Time (s)

Internal

External

Acknowledgment. We would like to thank Song Wang, Maged ElSayed and Xin
Zhang for their contributions to this project in terms of ideas and systems. We would
also like to thank David Krolick, Alex Perry for their contributions for implementation
help.

6. REFERENCES
[1] A. M. Keller. The Role of Semantics in Translating View Updates. IEEE

Transactions on Computers, 19(1):63–73, 1986.
[2] F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. In ACM

Transactions on Database Systems, pages 557–575, Dec 1981.
[3] T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold. Updating

Relational Databases through Object-Based Views. In SIGMOD, pages
248–257, 1991.

[4] M. Benedikt, C. Y. Chan, W. Fan, and R. Rastogi. DTD-Directed Publishing
with Attribute Translation Grammars. In VLDB, pages 838–849, 2002.

[5] M. J. Carey, J. Kiernan, J.Shanmugasundaram, E. J. Shekita, and S. N.
Subramanian. XPERANTO: Middleware for Publishing Object-Relational Data
as XML Documents. In The VLDB Journal, pages 646–648, 2000.

[6] S. S. Cosmadakis and C. H. Papadimitriou. Updates of Relational Views.
Journal of the Association for Computing Machinery, pages 742–760, Oct 1984.

[7] U. Dayal and P. A. Bernstein. On the Correct Translation of Update Operations
on Relational Views. In ACM Transactions on Database Systems, volume 7(3),
pages 381–416, Sept 1982.

[8] M. F. Fernandez, A. Morishima, D. Suciu, and W. C. Tan. Publishing Relational
Data in XML: the SilkRoute Approach. IEEE Data Engineering Bulletin,
24(2):12–19, 2001.

[9] H. Jagadish, S. Al-Khalifa, L. Lakshmanan, A. Nierman, S. Paparizos, J. Patel,
D. Srivastava, and Y. Wu. Timber: A native xml database. In VLDB, 2002.

[10] A. M. Keller. Algorithms for Translating View Updates to Database Updates for
View Involving Selections, Projections and Joins. In Fourth ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, pages
154–163, 1985.

[11] A. M. Keller. Choosing a View Update Translator by Dialog at View Definition
Time. In VLDB, pages 467–474, 1986.

[12] M. Fernandez et al. SilkRoute: A Framework for Publishing Relational Data in
XML. ACM Transactions on Database Systems, 27(4):438–493, 2002.

[13] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of xml schema
languages using formal language theory. In ACM TOIT, 2005.

[14] L. Wang and E. A. Rundensteiner. On the Updatability of XQuery Views
Publised over Relational Data. In ER, pages 795–809, 2004.

[15] L. Wang, E. A. Rundensteiner, and M. Mani. Updating XML Views Published
Over Relational Databases: Towards the Existence of a Correct Update
Mapping. In DKE Journal, 2005 to appear.

[16] L. Wang, S. Wang, B. Murphy, and E. A. Rundensteiner. Order Sensitive
XQuery Processing over Relational Sources: An Algebraic Approach. In
IDEAS, 2005.

 1238

