
Crimson: A Data Management System to Support
Evaluating Phylogenetic Tree Reconstruction Algorithms ∗

Yifeng Zheng, Stephen Fisher, Shirley Cohen,
Sheng Guo, Junhyong Kim, and Susan B. Davidson

University of Pennsylvania

yifeng@cis.upenn.edu, safisher@sas.upenn.edu, shirleyc@cis.upenn.edu,
sheng@mail.med.upenn.edu, junhyong@sas.upenn.edu, susan@cis.upenn.edu

ABSTRACT
Evolutionary and systems biology increasingly rely on the con-

struction of large phylogenetic trees which represent the relation-
ships between species of interest. As the number and size of such
trees increases, so does the need for efficient data storage and query
capabilities. Although much attention has been focused on XML as
a tree data model, phylogenetic trees differ from document-oriented
applications in their size and depth, and their need for structure-
based queries rather than path-based queries.

This paper focuses on Crimson, a tree storage system for phyloge-
netic trees used to evaluate phylogenetic tree reconstruction algo-
rithms within the context of the NSF CIPRes project. A goal ofthe
modeling component of the CIPRes project is to construct a huge
simulation tree representing a “gold standard” of evolutionary his-
tory against which phylogenetic tree reconstruction algorithms can
be tested.

In this demonstration, we highlight our storage and indexing strate-
gies and show how Crimson is used for benchmarking phylogenetic
tree reconstruction algorithms. We also show how our designcan
be used to support more general queries over phylogenetic trees.

1. INTRODUCTION
Phylogenetics – the science of identifying and understanding evo-
lutionary relationships between different species – has become in-
creasingly important in biomedical research, and a varietyof phylo-
genetic tree reconstruction algorithms have been proposed[5, 10].
As the use of these algorithms spreads and the number and sizeof
phylogenetic trees that are generated increases, a number of ques-
tions arise. First, how do we design efficient data storage and query
capabilities for managing phylogenetic trees; and second,how can
these algorithms be evaluated? Both of these questions are at the
core of the NSF funded Cyberinfrastructure for Phylogenetic Re-
search (CIPRes) effort.
∗ This work was funded by NSF ITR EF 03-31654 entitled
”BUILDING THE TREE OF LIFE: A National Resource for Phy-
loinformatics and Computational Phylogenetics”.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

Evaluating phylogenetic tree reconstruction algorithms remains elu-
sive since evolutionary history is not known. Under the standard
paradigm for phylogeny algorithm experiments, a branchingtree
model is generated by some method (usually a stochastic model)
and the evolution of a bio-molecular sequence is simulated using
the tree as a guide. A typical experiment will consist of manyvari-
ations of the tree model as well as variations of the bio-molecular
sequence evolution model. However, the possible model space for
both trees and sequences is extremely large, resulting in poor ex-
perimental design by non-evolutionary biologists (e.g., algorithm
developers).

The key idea behind the modeling component of the CIPres project
is to generate very large tree models and very complex sequence
evolution models that are carefully curated by experts [10]. These
“gold standards” can then be sampled to evaluate phylogenetic al-
gorithms in a manner analogous to how actual empirical data is
collected. The Crimson system focuses on providing data manage-
ment support for this component of CIPres.

An important concern in phylogenetic tree management, whether
trees are constructed by an algorithm or generated as a gold stan-
dard, is scalability. Phylogenetic trees contain millionsof species.
Species may also have species data associated with them. Species
data is typically gene sequences representing some phenotypic char-
acteristic (such as eyecolor), and may contain millions of individual
sequences each with thousands of characters. Due to the sheer size
of the phylogenetic trees, the issue of how to efficiently manage
and query this data is important.

Although XML, a standard tree data model, is a natural candidate
for representing phylogenetic trees, the data management strate-
gies developed for XML are not suitable due to the size and depth
of phylogenetic trees, as well as the type of queries, which are
structure-based rather than path-oriented.

According to a study of about 200,000 XML documents [7], most
XML documents are relatively shallow: the average depth was
reported to be 4, and the deepest document was 135 levels. In
contrast, simulation phylogenetic trees have an average depth of
greater than 1000, and the deepest tree can be more than 1 million
levels.

The queries used with phylogenetic tree are also very different from
the path-oriented or restructuring queries supported by XPath and
XQuery, and include structure-based queries such asleast common
ancestor, minimal spanning clade, tree pattern match, andtree pro-
jection(see [10] for details of these operations).

1231

Bha Lla Spy

0.75

1 1

0.5

1.5

Syn

2.5

1.25

Bsu

Figure 1: A sample phylogenetic tree

Bha Lla

0.75

1.5 1.5

Syn

2.5

Figure 2: The projection subtree for leaf set {Bha, Lla, Syn}
from the sample phylogenetic tree

To benchmark phylogenetic algorithms using the “gold standard”
trees, we must also support a variety ofsampling queries. Since
the phylogenetic reconstruction problem is NP-hard [5], current al-
gorithms can only handle a relative small input set (i.e. several
hundred to several thousand species). To benchmark these recon-
struction algorithms, we must therefore be able to efficiently sam-
ple a subset of species according to various criteria, andprojectthe
tree pattern induced by the sample in the simulation tree.

To illustrate tree projection, Figure 1 shows an example of atree
in which the leaves have species names, and edges are labeled
with the evolutionary time from the parent species to child species
(species data is omitted in this figure). Randomly sampling three
species from the simulation tree in Figure 1 could yield the set
{Bha, Lla, Syn}. Projecting the tree induced by{Bha, Lla, Syn}
yields the subtree in Figure 2. Since all nodes in trees produced by
phylogenetic tree reconstruction algorithms have outdegree greater
than 1, if any such node occurs in the projection tree we mergeit
with its child and take the new edge weight as the sum of the two
edge weights (as is the case with the parent of nodeLla).

In this demonstration, we highlight the design of our storage and in-
dexing strategy to efficiently support sampling and structure-based
operations on phylogenetic trees, and show how this is used to
support benchmarking phylogenetic tree reconstruction algorithms.
We also discuss how these strategies can be used for supporting
more general queries over phylogenetic trees. The indexingstrat-
egy is based on an extension of the Dewey labeling scheme [11]
in which the input tree is decomposed into a set of subtrees with
bounded depth; each subtree is then labeled using the Dewey label-
ing scheme.

The rest of paper is organized as follows: Section 2 describes the
architecture and each module of Crimson. Section 3 presentsthe
key features of Crimson included in the demonstration.

2. CRIMSON ARCHITECTURE
In this section, we present the main highlights of the Crimson sys-
tem. As shown in Figure 3, the system consists of three compo-
nents: arepository manager, a benchmarking managerand aGUI
manager. Crimson loads the trees into a relational database via
the loading query provided by the repository manager. The bench-

Tree Projector

Sampling
Benchmark
Manager

Projection
Tree

Tree
Repository

Species
Repository

Query
Repository

Repository
 Manager

GUI
Manager

Input
Query

Tree Viewer

Query
History

Data Loader

Simulation
Tree

Sampling Species
with Sequences

Figure 3: Architecture of Crimson

marking manager characterizes and evaluates a tree inference al-
gorithm by comparing its output to a set of projection trees from
the relational database. The GUI manager provides a user friendly
interface.

2.1 Repository Manager
NEXUS [6] is the standard data format for representing phyloge-
netic data. While it is efficient for exchanging phylogenetic data,
NEXUS is not well suited for querying. Crimson therefore stores
trees in relational form, and uses indexes based on Dewey label-
ing [11] to speed up queries.

The idea behind Dewey labels is as follows: For each noden, we
randomly order the outgoing edges and use the order as the label
of the edge. Since there is a unique pathp from the root to a given
noden, we concatenate the labels of edges appearing inp, using
the resulting string as the Dewey label for noden. For example,
the label of the leaf nodeLla in Figure 1 would be (2.1.1), and that
of Spywould be (2.1.2). As shown in [10], using Dewey labels
for structure-based queries is very efficient. For example,the least
common ancestor ofLla andSpycould be found by computing the
longest common prefix of their labels, yielding the (interior) node
with label (2.1).

However, since the size of a Dewey label is proportional to the
length of the path from the root to the node and phylogenetic trees
are very deep, the Dewey labels of nodes may become large enough
to hurt query performance. Crimson therefore uses a hierarchical
labeling scheme which bounds the size of labels to a constantf .
The idea is as follows: Given a phylogenetic tree, we decompose
it into a set of subtrees with bounded depthf . We call the set of
subtrees “layer 0”. If there is more than one subtree in layer0, we
build one or more “layer 1” trees, each of which has bounded depth
f ; each node in a layer 1 tree corresponds to a subtree in layer 0,
and the relationship between nodes in a layer 1 tree is the same as
the relationship between the subtrees in layer 0. If layer 1 contains
more than one subtree, we recursively build higher layers until we
reach a layer with only one subtree. Each node is then given a
Dewey label which is local to its tree, and therefore the sizeof each
label is bounded byf .

The LCA l of two nodesm andn inside the same subtree can be
calculated as the longest common prefix of the labels ofm and

1232

Bha
2 Bsu

 Syn

1

3

Lla Spy

4

5

6

Layer 0

Layer 1

Figure 4: Index structure of the sample tree 1 with bounded
depth 3

n, as illustrated before. If the nodes are not in the same subtree,
we go up one layer, find the two nodesrm andrn that represent the
subtrees in whichm andn are located, and compute the LCA ofrm

andrn, denotedl′. (Note that this may imply traversing recursively
up through the layers of the tree structure.) Then the LCAl of m

andn must be located in the subtree thatl′ represents. To findl
in this subtree, we find for each a node which is their ancestor, i.e.
nodesm′ andn′ such thatm′ is an ancestor-or-self ofm andn′ is
an ancestor-or-self ofn. Ancestors are found using source nodes.
Thenl is the LCA ofm′ andn′.

For example, Figure 4 shows the index structure of the tree inFig-
ure 1. The subtrees rooted at nodes1 and4 are in the partition of
the original tree, which is layer 0. The tree rooted at node5 is in
layer 1. The dotted edge from node6 to node3 indicates that the
tree represented by6 has been split off from node3, i.e. that the
subtree rooted at node4 was split off from node3. We call node3
thesource nodeof node6.

Continuing our example, suppose we want to find the LCA of nodes
SynandLla, which are not in the same subtree. We must therefore
go up a layer and find the nodes which represent the trees contain-
ing Synand Lla (5 and6). We then compute the LCA of nodes
5 and6, obtaining node5 which represents the subtree rooted by
node1. Then the LCA ofLla andSynmust be located in the subtree
rooted by1. We then find thatSynis itself in this subtree, and that
node3 is an ancestor ofLla (node3 is the source of node6, node
6 is an ancestor-or-self of node6, andLla is in the tree represented
by node6). Thus the LCA ofLla andSynis the LCA of3 andSyn,
which is node2.

Since queries are structure-based, we separate the storageof the
tree structure from the species data. In our architecture, the Tree
Repositoryand Species Repositorycontain the tree structure and
species data, respectively. In addition to these data repositories,
the system also records a history of user input queries in theQuery
Repository. Used in conjunction with the Crimson GUI, the Query
Repository makes it convenient for users to recall and rerunhistor-
ical queries.

2.2 Benchmark Manager
The Benchmark Manager tests and evaluates tree inference algo-
rithms against the gold-standard simulation tree. Since reconstruct-
ing phylogenetic trees is an inherently hard problem, current tree
reconstruction algorithms do not scale to the size of the simulation
tree. We therefore provide the ability to sample a subset of species
in the simulation tree to create an input set against which the algo-

rithm can be tested. To recreate the tree structure connecting the
sampled species in the simulation tree, we must then projectthe
tree over the sampled set.

We now describe two queries that are heavily used within Crimson.

Sampling a set of species with respect to a given time.The tar-
get of this sampling method is to guarantee that the sampled results
are derived from an evolutionary time period. As an example,a
user may want to randomly sample four species with respect toan
evolutionary distance of 1 from the sample simulation tree shown
in Figure 1. To do this, we use the following strategy: First,we
search for all the nodes of the tree (including the leaves) whose
total weight from the root of the tree exceeds 1. From our exam-
ple, there are four nodes which satisfy this condition. Theyare
{Bha, x, Syn, BSU}, wherex is the parent node ofLla andSpy.
Then, for each node, we randomly select 4/4=1 leaves from thesub-
tree rooted by the node. The result is{Bha, Lla, Syn, BSU} or
{Bha, Spy, Syn, BSU}.

Tree projection:As explained in Section 1, given a treeT and a
subsetS of its leaves, the tree projection ofT overS is a “subtree”
T in which each edge is a subpath of a path from the root ofT to
a node inS and each node has at least two children. To do this,
we use the following strategy: We sort the input leaf set according
to the pre-order of tree T. Starting with an empty treeT , we insert
nodes into the tree in order. In this way, at each point the node being
inserted will become the rightmost leaf node inT after insertion.
We keep a pointer to the rightmost leaf node in the current tree.
To determine the parent of the new noden in T , we check the
ancestor-descendant relationship between nodes in the rightmost
path in the current tree and the insert node in bottom-up direction.
We can check ancestor-descendant relationship by a least common
ancestor query: Given two nodesm andn in a treeT , m is an
ancestor ofn if and only if LCA(m,n) = m.

Our indexing strategy can also be used to support more general
structure-based queries over phylogenetic trees, such as least com-
mon ancestor, minimal spanning clade and tree pattern match[10].
We have already discussed how to answer least common ancestor,
and now describe the other two queries.

Minimal spanning clade:Given a set of input leaf nodes, their min-
imal spanning clade is the set of nodes in the tree rooted by their
least common ancestor. Since the ancestor-descendant relation-
ship between two nodes can be easily checked using LCA, find-
ing the minimal spanning clade can be efficiently implemented by
LCA [10].

Tree pattern match:Given an input pattern tree and a tree, tree
pattern match determines whether or not the input tree pattern exists
in the input tree. As an example, the tree pattern shown in Figure 2
will match the tree shown in Figure 1. However if we exchange the
location of speciesBha andLla in the pattern tree, the new pattern
will not match the tree.

To answer a tree pattern match query, we first determine the leaves
in the tree pattern. Using this set of leaves as input, we thenproject
a subtree from the input tree. We then check whether or not thepro-
jected tree and tree pattern are equal (in the case of an exactmatch)
or compute the difference between them as a measure of similarity
(in the case of approximate match). Since tree comparison can be
done in linear time [10, 1], this can be done very efficiently.

1233

Figure 5: A Snapshot of Crimson System

3. DEMONSTRATION
Crimson has been implemented in C++ and Java. A snapshot of
Crimson is shown in Figure 5. The following features of Crimson
will be demonstrated:

Loading Data: Users may choose to load a phylogenetic tree
with species data, load a phylogenetic tree structure only,or ap-
pend species data to an existing phylogenetic tree. Messages about
the loading status as well as errors are dynamically generated and
displayed to the user.

Tree Projection: Crimson supports several ways of selecting species
and projecting a tree: random sampling, random sampling with re-
spect to time, and user input. Each selection method may require
appropriate input values. If an input value is invalid, a popup win-
dow will be generated to show any error messages.

Visualizing the results:Users may display result trees graphically
or view them as NEXUS files. The graphical interface is based
on Walrus, a Java application developed for 3D viewing of large
graphs; Python is used to convert a NEXUS file to a Walrus input
file.

Besides demonstrating Crimson, we will describe the index struc-
tures and algorithms used in the system.

Why don’t we use XML?
Although XML is a tree structured model, existing XML index-
ing and query evaluation techniques cannot be directly applied to
phylogenetic trees for the following reasons:

1. Phylogenetic simulation trees of arbitrary depth, e.g. several
thousand nodes. However, existing web and commercial data stored
in XML format is typically much shallower, and it is for this type
of data that XML indexing and query evaluation techniques have

been developed.

2. The queries used in phylogenetic tree benchmarking are not
path-oriented or restructuring queries such as those supported by
XPath and XQuery. For example, finding a tree pattern induced
by a set of nodes is quite different from retrieving a set of nodes
following a path pattern.

What are the database challenges in Crimson?
There are several database challenges in Crimson system:

1. Simulation trees are huge, yet the portions retrieved by asingle
query are relatively small. It is important to support random access
based on species names or evolutionary time, which argues against
using main memory techniques to implement the operations.

2. Existing indexing techniques to support XPath/XQuery are based
on paths, which are not important for phylogenetic trees.

3. Various labeling schemes [3, 2] have been designed to find re-
lationships between nodes, e.g. parent/child, ancestor/descendant.
However, only the Dewey labeling scheme [11] facilitates finding
the least common ancestor of a set of nodes, which is important
when finding the tree pattern induced by a set of nodes.

4. The Dewey labeling scheme suffers, however, in very deep trees
since the Dewey number of a noden encodes the path from root to
n. How to extend Dewey labeling to answer queries on very deep
tree is another issue addressed in this demo.

Why would this demo be interesting for the database commu-
nity?
Stonebraker recently argued [9] that the traditional database con-
cept of “one size fits all” is no longer applicable in the database
market. Nowhere is this more true than with scientific data, whose
structure and usage differs dramatically from business data. This
demo illustrates the complexity of structure as well as usage of one
common form of scientific data.

4. REFERENCES
[1] N. Amenta, F. Clarke, and K. S. John. A linear-time majority tree

algorithm. InProceedings of WABI, 2003.

[2] D. DeHaan, D. Toman, M. Consens, and M. T. Ozsu. A
comprehensive XQuery to SQL translation using dynamic interval
encoding. InProceedings of SIGMOD, 2001.

[3] P. F. Dietz. Maintaining order in a linked list. InProceedings of
STOC, 1982.

[4] Y. Hyun. Walrus - graph visualization tool.
http://www.caida.org/tools/visualization/walrus/.

[5] J. Kim and T. Warnow. Tutorial on phylogenetic tree estimation.
citeseer.nj.nec.com/254275.html.

[6] D. Maddison, D. Swofford, and W. Maddison. NEXUS: an extensible
file format for systematic information.Syst. Biol, 46:590–621, 1997.

[7] L. Mignet, D. Barbosa, and P. Veltri. The XML web: a first study. In
Proceeding of WWW, 2003.

[8] T. Munzner.Interactive Visualization of Large Graphs and Networks.
PhD thesis, Stanford University, 2000.

[9] M. Stonebraker. ’One Size Fits All’: An Idea Whose Time Has Come
and Gone. InProceedings of ICDE, 2005.

[10] Susan B. Davidson and Junyhong Kim and Yifeng Zheng. Efficiently
Supporting Structure Queries on Phylogenetic Trees. InProceedings
of SSDBM, 2005.

[11] V. Vesper. Let’s do Dewey.
http://www.mtsu.edu/ vvesper/dewey.html.

1234

