
EOS2: Unstoppable Stateful PHP
German Shegalov*, Gerhard Weikum

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85,

66123 Saarbrücken, Germany
german.shegalov@acm.org, weikum@mpi-inf.mpg.de

1. INTRODUCTION
A growing number of businesses deliver mission-critical applica-
tions (stock trading, auctions, etc.) to their customers as Web
Services. These applications comprise heterogeneous components
distributed over multiple layers. They pose strong requirements
for service and consistent data availability from both legal and
business standpoints. Since many systems count many millions of
lines of code, some bugs pass quality assurance undetected which
leads to unpredictable service outages at some point.

Recovery in transactional systems guarantees: i) that an opera-
tion sequence declared as a transaction is executed atomically
(either completely or not at all when interrupted by a failure) ii)
and that completed transactions persist all further failures. Atom-
icity and persistence do not suffice to guarantee correctness. It is
the application that needs to handle timeouts and other exceptions,
retry failed requests to servers, handle message losses, and pre-
pare itself with a full suite of failure-handling code.

Incorrect failure handling in applications often leads to in-
complete or to unintentional non-idempotent request executions.
This happens because many applications that are stateful by na-
ture, i.e., with a state remembered between consecutive interac-
tions, are rendered stateless, where all interactions are independ-
ent for easier manageability. Consequently, timeouts and resent
messages among application servers or Web Services may lead to
unintended duplication effects such as delivering two tickets for a
single-ticket purchase request, resulting in severe customer irrita-
tion and business losses. The standard solution in the TP and
DBMS world requires all state information of the application to be
managed in the database or in transactional queues [4, 7, etc.], but
this entails a specific programming discipline that is often viewed
as an unnatural burden by application developers.

The interaction contracts (IC) framework [3] provides a ge-
neric solution by means of integrated data, process, and message
recovery. It masks failures, and allows programmers to concen-
trate on the application logic, greatly simplifying and speeding up
application development. A challenge in implementing this kind
of comprehensive multi-tier application recovery is to minimize
the overhead of synchronous disk writes forced by the recover-
ability criteria. While message and process recovery has a rich
body of literature [6], IC's improve the prior state of the art in
terms of efficiency and flexibility regarding autonomous compo-
nent recovery. The need for new recovery techniques has also

been raised by [5]
This paper presents a new version of the Exactly-Once Web

Service platform EOS2 whose initial prototype has been described
in [3, 9]. EOS2 is a major advancement over EOS and differs sig-
nificantly from its predecessor. EOS2 masks failures from the end-
user in a sense that she does not perceiver transient failures in the
middle tiers and the backends whereas more severe failures re-
quire only that she revisits the greeting page, and her session is
automatically restored without any data loss. EOS2 masks failures
from the DHTML/AJAX developer in a sense that she does not
need to write the browser crash and the network outage handling
code to achieve what is described above. EOS2 masks failures
from the PHP developer in a sense that she does not need to care
about PHP crashes and network outages when calling remote PHP
scripts. EOS2 is able to replay arbitrarily structured n-tier PHP
applications with interleaved accesses to shared data, whereas
EOS was limited to two-tier applications with a frontend browser
and a single PHP backend node accessed without race conditions.
The improvements to the original PHP Session module include:
I/O-efficient log structured access of session data, LRU buffers
for state and log data, and improved concurrency through
spinlock-based shared/exclusive latches.

1.1 Review of Interaction Contracts
The framework considers a set of interacting components of three
different types. (i) Persistent components (Pcom), (clients, appli-
cation servers) are able to recreate their state and messages as of
the time of the last interaction upon crashes, and eliminate dupli-
cates; (ii) Transactional components (Tcom), e.g., database serv-
ers, provide thesame guarantees only for the final interaction
(commit request/reply); (iii) eXternal components (Xcom) with-
out any recovery guarantees represent human users and legacy
components that do not comply with the framework.

The Pcom is a central concept of the framework. Pcom’s are
piecewise deterministic, i.e., their execution is deterministic up
to nondeterministic input from other components. A Pcom’s state
as of any particular time can be recreated via deterministic re-
play of the recovery log where the nondeterminism of the original
execution is captured.

The exactly-once execution in the overall system is guaran-
teed when components obey to the obligations of the IC's. Interac-
tions between two Pcom’s must comply with either the Commit-
ted IC (CIC) or the Immediately Committed IC (ICIC). Pcom’s
and Tcom’s exchange messages using the Transactional IC
(TIC). Xcom’s communicate only with Pcom’s as determined by
the External IC (XIC). CIC and ICIC are defined below. Please
see our previous publications for details about TIC and XIC [3, 9].

1.1.1 Commited IC and Imediately Committed IC
The sender part of the CIC consists of the following obligations.
The sender promises: (s1) that its state as of the time of the mes-
sage send or later is persistent; (s2a) to send the message repeat-
edly (driven by timeouts) until receiver releases it (perhaps im-

*Current address: Oracle Portland Development Center, OR, USA

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1223

plicitly) from this obligation; (s2b) to resend the message upon
explicit receiver request until the receiver releases it from this
obligation; (s3) that its messages have unique identifiers, typically
message sequence numbers (MSN).

The receiver promises: (r1) to eliminate duplicate messages
(which sender may send to satisfy s2a); (r2a) that before releasing
sender obligation S2a, its state as of the time of message receive
or later is persistent without periodical resend by the sender; (r2b)
that before releasing the sender from obligation S2b, its state as of
the time of the message receive or later is persistent without the
sender assistance. After s2a release, the receiver must explicitly
request the message from the sender; the interaction is stable, i.e.,
it persists (via recovery if needed) over subsequent crashes with
the same state transition as originally. After s2b release, the inter-
action is installed, i.e., the sender and the receiver can both re-
cover autonomously.

The Immediately Committed IC is a CIC where the receiver
immediately installs the interaction (usually by adding the com-
plete message to the stable log), such that the sender is released
from the obligation s2a without entering the obligation s2b.

1.2 Technology Background
1.2.1 PHP and the Zend Engine
PHP (recursive acronym for “PHP: Hypertext Preprocessor”) [8]
is a widely used general-purpose scripting (i.e., interpreted) lan-
guage that is especially geared for Web application development.
PHP is platform-independent and is available as an add-on mod-
ule for a wide variety of Web servers. PHP is used with more than
50% of the Apache Web Server installations [1, 2]. The PHP im-
plementation is an open-source project consisting of many PHP
modules responsible for different function subsets of the PHP
language and the Zend engine implementing the language inter-
preter [11]. Most of PHP’s syntax is borrowed from C with a
small fraction of elements coming from C++, Java, and Perl.
PHP owes its popularity to the ease of its syntax and its expressive
power. In the rest of the paper, the term PHP is used to refer to
PHP 4.0.6 that served as the basis of our prototype.

1.2.2 PHP Session Management
PHP is shipped with a session module for maintaining the PHP
application state across multiple HTTP requests. The session
module supports various methods of storing the session state (e.g.,
in the file system, shared memory, central database, etc.). The
state of a PHP application may be private (e.g., a shopping cart) or
shared, concurrently accessed by multiple users (e.g., the highest
bid in an electronic auction). The state variables, accessed by their
string names through the global session array $HTTP_-
SESSION_VARS, may be of any basic or derived data types except
resources. PHP typically uses a cookie to propagate the session
(state) id to the Web browser.

The session support is activated either explicitly by calling the
function session_start or it is started automatically, if configured

appropriately, prior to executing the PHP code for the given re-
quest. The session module reads the state associated with the ses-
sion id provided with the request from the session storage and
makes it accessible for the PHP script as the session array. The
new state is made available for subsequent requests by either call-
ing the function session_write_close or implicitly when the script
terminates.

The script of Figure 1 counts how frequently it has been in-
voked. It looks up the current state (line 2), zeroes the state vari-
able count upon the first access (lines 3-4), and increments this
variable for each invocation (line 5). If a script maintains a shared
state for several users, their accesses must be serialized for consis-
tency. The session module relies on the session storage module
in current use to achieve this. The standard session storage mod-
ule that makes use of the server’s file system exploits file locking
for this purpose. This, however, works only on UNIX systems
where requests are executed by different server processes. Our
prototype provides a more flexible concurrency control mecha-
nism coined latches based on spinlocks.

The standard session storage module allocates a new file for
each session upon the very first call to the function session_start
that exists until the function session_destroy is called at the end of
the session. The original implementation does not have a cache in
the main memory, and performs a random I/O for every access to
a particular PHP application state. We improve this by implement-
ing LRU caching.

1.2.3 PHP Business-to-Business
PHP offers several options to interact with (potentially PHP-
enabled) Web services. One of the most popular and elegant
methods provides the CURL module that allows PHP applications
to access remote HTTP and many other resources in a uniform
fashion. The complexity of the protocols is hidden behind a sim-
ple interface that keeps the coding effort at minimum. This func-
tionality is implemented by the CURL library for C [10].

Figure 2 shows a fragment of a PHP script that uses CURL to
call another Web service to bid for an auction item. It first initial-
izes a resource variable for this operation (line 2) and defines its
parameters in an array variable (line 3). Next, the PHP script
specifies that the POST method should be used, and associates the
parameter array with the request (lines 4-5). Some Web Services
are invoked via SOAP, the Simple Object Access Protocol layered
on top of HTTP. When SOAP is involved, we would pass a SOAP
message as a POST parameter. The HTTP request is sent to the
URI provided during the resource initialization and the reply
string is assigned to the variable $b2b_reply (line 6). When the
CURL resource is no longer needed, it can be either explicitly
closed (line 7) or it is garbage collected automatically at some
point after the termination of the script.

Note that by implementing a CIC for CURL and Session mod-
ules of PHP, recovery guarantees are provided at the HTTP layer
and thus, higher-level applications including PHP script libraries

01. <?php
02. session_start();
03. if(isset($HTTP_SESSION_VARS["count"])==FALSE)
04. $HTTP_SESSION_VARS["count"] = 0;
05. $HTTP_SESSION_VARS["count"]++;
06. echo "Hi, I have been called ";
07. echo $HTTP_SESSION_VARS["count"];
08. echo "times\n";
09. ?>

Figure 1: Sample Usage of PHP Session Support

01. <?php
02. $b2b=curl_init("http://eosauctions.com/b2b/");
03. $par=array("auct_id"=>100232, "bid"=>50.74);
04. curl_setopt($b2b, CURLOPT_POST, TRUE);
05. curl_setopt($b2b, CURLOPT_POSTFIELDS, $par);
06. $b2b_reply=curl_exec($b2b);
07. curl_close($b2b);
08. ?>

Figure 2: Sample Usage of the CURL Module

1224

for SOAP and other protocols over HTTP are relieved from deal-
ing with system errors at all.

1.3 Contribution
Using the technologies and the components described in the pre-
vious section developers are able to build arbitrarily distributed
(potentially stateful) Web applications. The EOS2 software en-
hances all components in this distributed environment with inter-
action contracts and their strong recovery guarantees. This masks
all transient failures like component crashes or message losses to
the application, thus greatly relieving the programmer from writ-
ing exception handling code. EOS2 server part is implemented on
multithreaded Apache 1.3.20 within PHP 4.0.6 for Windows XP.
Our recovery layer comprises less than 10,000 lines of C code
including modifications to the Zend engine, its Apache API, and
the PHP session module.

Figure 3 sketches a sample Web application. End-users call
Web applications on the server sites PHP 1 and PHP 4 using their
browsers. PHP 1 invokes (through the CURL module) Web Ser-
vices on PHP 2 and PHP 3 that in turn call PHP 5 and PHP 6,
accordingly. The frontend Web application server PHP 4 usually
behaves identically; occasionally, however, it optimizes this exe-
cution path by having the browser immediately invoke PHP 5
from one of the embedded HTML elements. EOS2 enables failure
resilience and masking in the entire system. To comply with the
IC framework, the PHP application servers and the browsers are
turned into Pcoms whereas the end-users can only be viewed as
Xcoms. The interactions between a browser and an end-user must
follow the XIC. PHP servers interact under the CIC or the ICIC.
Note that the contracts are established and enforced automatically
by EOS2 and are completely transparent to the Web application.

2. PERSISTENT BROWSER
There are two major design goals of EOS enhancements to the
browser. The first is to improve the user experience by saving as
much of her input across a failure (a browser crash or Web Ser-
vice unavailability) as possible. This avoids the need for annoying
repetition of long inputs, which may happen with lengthy forms
such as e-government applications (tax declarations, visa applica-
tions, etc.) and e-business applications (e.g., insurance and credit
approval requests). This is the task of the XIC implementation for
the browser. The second design goal is to give the guarantee to the
end-user that all server requests are executed exactly once, which
is the task of the CIC stub of the browser.

Browser recovery is implemented using JavaScript and it has
not changed since the initial prototype version described in [3, 9].
The server adds the browser logging and recovery code as the last
step of output processing. Original server scripts do not have to be
changed. Logging is done by modifying a so-called XML store, an
XML structure managed by IE on the client’s disk similarly to
persistent cookies. Since we had no access to the browser source
code, we require the user to revisit the greeting page (e.g.,

http://servername/) of the Web Service manually after a crash, in
order to have her session restored automatically.

3. PERSISTENT PHP (EOS-PHP)
EOS-PHP is the major (middleware) part of our prototype. It can
serve as both an HTTP server and a middle-tier HTTP client at the
same time. It transparently implements the (I)CIC stubs for in-
coming and outgoing HTTP interactions with other PHP applica-
tions and Web browsers. EOS-PHP is geared to provide the re-
covery guarantees for stateful PHP applications. The log is pro-
vided as a universal storage for log entries identified by log se-
quence numbers (LSN), and the session state data identified by
a pair (LSN, session id). LRU buffers are used to save IO's. EOS-
PHP controls concurrency using shared and exclusive latches.

EOS-PHP extensions are implemented in the C language.
They encompass ca. 5500 lines of source code. For the implemen-
tation we used as much of the existing efficient Zend engine infra-
structure as possible. Web server code is not changed.

When considering a single PHP Zend engine, we can distin-
guish three relevant system layers from the logging perspective.
We observe HTTP requests at the highest level L2, individual
PHP language statements at the middle level L1, and finally I/O
calls to external resources such as the file system and TCP sockets
(level L0). EOS-PHP does not support interactions with the file
system, i.e., the PHP file system functions. Instead, EOS-PHP
efficiently manages persistent application states stored as session
variables. EOS-PHP does not deal with the PHP socket interface.
Instead, EOS-PHP supports recoverable HTTP interactions
through the CURL module.

A request execution by EOS-PHP breaks down into the fol-
lowing stages: client identification (Stage 1), URI recovery (Stage
2 for browsers only), reply resend (Stage 3), request execution
(Stage 4), output processing (Stage 5). Note that Stages 2 and 3
are EOS-PHP operations needed for browser recovery. Prior to the
request execution, a shared activity latch is obtained for the dura-
tion of the request execution. It prevents the garbage collection
mechanism that uses this latch in the exclusive mode from physi-
cal reorganization of the log file.

3.1 Stage 1: Client Identification.
During request startup, EOS-PHP identifies the client id informa-
tion submitted as cookies. If this information is missing, the client
is assigned a new id and is redirected to the first session URI
(browsers only). A B2B component (i.e., another EOS-PHP node)
autonomously generates its id by concatenating its host name and
TCP listen port (socket) number.

The following Stages 2, 3, and the state initialization part of
Stage 4 are initiated on behalf of the function session_start.

3.2 Stage 2: URI Recovery.
Browsers need an additional stage for assisting in recovering the
last message sent to the EOS-PHP engine. EOS-PHP checks if the
current URI coincides with the URI that started the session (i.e.,
the greeting page URI). If so, we know that this is an browser
revisiting the greeting page to restore the interrupted session. An
empty page containing solely client recovery code is sent to back
to the browser without incrementing the MSN cookie.

3.3 Stage 3: Reply Message Resend.
The log is consulted through the request message id lookup in the
volatile input message lookup table (IMLT) (client id, MSN,
reply LSN), in order to determine if the HTTP reply is already

Browser Browser

PHP 1

PHP 3PHP 2

PHP 4

PHP 6

Browser Browser

PHP 5

Figure 3: Sample EOS2 Web Application

1225

present. In the positive case, the HTTP reply is served right away
and the current request is terminated. When the IMLT contains an
entry for the request with the reply LSN being invalid, EOS-PHP
is dealing with a request message resend: this thread is paused
until the reply LSN is set, and the reply can be served. When the
current request is not a duplicate, it is not terminated by this stage.

3.4 Stage 4: Request Execution
The request starts with fetching the PHP application state through
the state buffer. If the entry for the current PHP application state
could not be found (a new PHP session), the request inserts an
empty state into the state buffer. A new LSN is generated for the
request and EOS-PHP adds an initial log entry to the log buffer
that contains PHP representation of the HTTP request and the
translated PHP script file path. (additional variables can be
marked for logging in the PHP configuration file if needed). An
entry is also added to the IMLT containing the client id, the MSN
of the message (both as submitted by the client cookies), and an
invalid LSN. At this point the request thread latches the PHP ap-
plication state in the shared or exclusive mode (as specified in the
EOS2-enhanced PHP function session_start that now accepts a
Boolean flag $read_only as an optional argument). In contrast to
the original PHP implementation, the ability to access the applica-
tion state in the shared mode is an appropriate response to the fact
that the load of e-commerce sites is dominated by read-only cata-
log browsing requests. The latch for the application state is held
until the script calls the function session_close that replaces the
original PHP function session_write_close to avoid irritation. If
the request is declared as a write by calling session_start(false),
the application state is stamped with the request LSN, whereas the
volatile read LSN field of the buffer cell is updated in any event.

Nondeterministic functions treated by EOS-PHP include sys-
tem clock reads (e.g., time() returning the current time, random
value generators such as rand(min, max) generating a random
number in the interval between min and max, and last but not least
curl_exec returning output of a different Web Service. The rou-
tines asking for the system clock and random values are not only
interesting because of their potential direct usage in a PHP script,
but also because they are used to generate PHP session ids that are
pairwise distinct with a high probability. This avoids a potential
bottleneck of having a single node in a Web farm assign sequence
numbers as session ids to all clients. The EOS2-enchanced func-
tion curl_exec($handle) implements the CIC transparently to PHP
developers. One part of it the original code reporting failures to
the user is replaced by a loop repeating requests on timeouts until
the underlying libcurl function curl_easy_perform returns the
success return code CURL_OK.

3.5 Stage 5: HTTP Output Processing
When the execution of the request is finished, EOS-PHP updates
the reply LSN field of the request entry in the IMLT. In the cur-
rent prototype solution, the log entries with HTTP output do not
require immediate log forcing, since these messages are recreated
during deterministic replay. In fact, for curl_exec requests EOS-
PHP does not even create a log entry with the content of the out-
going message, just the reply is logged to resolve recovery de-
pendency, as you saw above. The point is that EOS-PHP is able to
send out the HTTP reply messages prior to forcing them to stable
log. Therefore, EOS-PHP can lazily force output messages (from
several KB to several MB) that are orders of magnitude larger
than preceding log entries of the same request whose sizes range
from less than 256 bytes to some KB. In addition, the browser

recovery code permanently cached in the main memory is inserted
into original HTTP replies to browsers. This does not have to be
logged of course, which otherwise would further increase the size
of the output message log entry.

4. ABOUT THE DEMO
The call structure of the demonstrated application is shown in
Figure 4. Both servers deploy the same PHP script. The script
calls the nondeterministic function time(), reads the current appli-
cation state, and increments the state variable count. On the
backend server (receiving the flag b2b as a parameter), the ac-
cessed state is shared among all clients as specified by the explicit
call to the function session_id. The new value of the state variable
count is the only content of the HTTP reply body produced by the
backend server. In contrast, the frontend server accesses a private
state to increment the variable count and invokes another instance
of this script on the backend server. The frontend server replies
with a complete HTML page containing the shared and private
count values to the browser.

In the demo, we invoke the Web application with two concur-
rent clients generating a random interleaving of PHP statements
on the backend server. An arbitrary number of failures (backend
and frontend server crashes, link outages) are injected. We show
that our recovery replays all components in an exactly-once man-
ner to the state intended by the original execution without failures.
Additionally, browser recovery as in [3] makes the recovery guar-
antees complete.

5. REFERENCES
[1] Apache HTTP Server Project, http://httpd.apache.org/
[2] Apache Module Report, http://www.securityspace.com/
[3] Barga, R., D. Lomet, G. Shegalov and G. Weikum: Recovery

Guarantees for Internet Applications, ACM Transactions on
Internet Technologies (TOIT) 4(3), 2004

[4] BEA Tuxedo, http://bea.com/
[5] Candea, G. et al:.: Microreboot -- A Technique for Cheap

Recovery, 6th Symposium on Operating System Design and
Implementation (OSDI), Dec 2004, San Francisco, CA, USA

[6] Elnozahy, E., L. Alvisi, Y.-M. Wang, and D. Johnson: A Survey
of Rollback-Recovery Protocols in Message-Passing Systems.
ACM Comput. Surv. 34(3), 2002

[7] Oracle Advanced Queuing, http://oracle.com/
[8] PHP: Hypertext Preprocessor, http//www.php.net/
[9] Shegalov, G., G. Weikum, R. Barga,, D. Lomet: EOS: Exactly-

Once E-Service Middleware, 28th Int’l Conference on Very
Large Databases (VLDB), Hong Kong, China, 2002

[10] Stenberg, D.: cURL and libcurl, http://curl.haxx.se/
[11] Zend Technologies, Inc. The PHP Company, http://zend.com/

Backend
Server

Frontend
Server

shared
count

234 ���� 235

private
count
2����3

private
count
2����3

private
count
2����1

private
count
2����3

POST (ICIC)
action=increment
b2b=true

1235

<html>
<p>Privatel Count: 3
<p>Shared Count: 1235
</html>

POST (ICIC)
action=increment

Web Client

Figure 4: EOS2 Demo Application

1226

