
Entirely Declarative Sensor Network Systems

David Chu Arsalan Tavakoli Lucian Popa Joseph Hellerstein
EECS Computer Science Division
University of California, Berkeley

Berkeley, CA 94720

{davidchu,arsalan,popa,hellerstein}@cs.berkeley.edu

ABSTRACT
The database and sensor network community have both rec-
ognized the utility of SQL for interfacing with sensor net-
work systems. Recently there have been proposals to con-
struct Internet protocols declaratively in variants of Datalog.
We take these ideas to their logical extreme, and demon-
strate entire distributed sensor network systems built declar-
atively. Our demo exposes the rapidity, flexibility, and ef-
ficiency of our approach by building several fully-functional
yet widely-varying sensor network applications and services
declaratively. As a result of our declarative construction, we
are able to highlight a wealth of previously underexposed
similarities between sensor networks and database concepts.
In addition, we tackle many database systems challenges in
building multiple layers of a declarative database for an em-
bedded, distributed system.

1. INTRODUCTION
The database and sensor network community have both

recognized the utility of declarative interfaces to the sen-
sor network. TinyDB, arguably the most successful sensor
network application to date, exposes the sensor network as
a data stream management system with an adapted SQL
interface [7]. For some applications, this approach lends fa-
miliarity, safety and sufficient flexibility.

Yet, as with embedded systems, sensor networks exhibit
tight couplings with their intended applications. This often
means systems designers and application developers choose
systems languages, e.g. C, because high-level interfaces do
not support particular features (expressiveness) or do not
offer acceptable performance (efficiency). Understandably,
this comes at the expense of increased development complex-
ity, error-prone implementations, and difficulty in expressing
global behavior and high-level optimizations.

This demo presents a third point in this design space. We
propose the use of deductive declarative query languages
as the systems language for sensor networks. In particular,
we use a variant of Datalog, SNlog, to construct entire sen-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ’06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

sor system stacks in our distributed deductive declarative
database system, DSN. Modeling the sensor network as a
deductive declarative database makes a lot of sense since
the central process of the sensor network is to manage the
generation, transformation and movement of data. In sensor
networks, each system stack is composed of several proto-
cols, services and applications. We have found the following
classes of protocols, services and applications particularly
amenable to the declarative approach:

• End-user applications: Event tracking applications;
passive monitoring applications.

• Data presentation services: SQL-like interfaces; publish-
subscribe interfaces; distributed inference algorithms.

• System management services: In-network system re-
programming services; node localization and coordi-
nate establishment algorithms; distributed data stor-
age services.

• Network protocols: Routing protocols such as proto-
typical many-to-one, one-to-many and point-to-point
protocols; Both datagram and stream-oriented trans-
port protocols with varying reliability, in-order deliv-
ery, data object size properties

For some of the above classes, we demonstrate several
different instances of the class in DSN. These applications
then have different different storage, localization, routing,
etc. needs.

The idea of casting routing and overlay protocols as de-
ductive databases has recently been proposed in [6, 5, 4].
SNlog is derived from Overlog, the declarative query lan-
guage proposed in [5]. The benefits of declarative network-
ing transfer directly to sensor networks: expressiveness of
the language, efficiency of the resulting protocols, and safety
properties in line with Datalog’s termination guarantees.

In addition, entirely declarative sensor networks also of-
fer several additional benefits. First, querying for sensor
data is straightforward. The range of declarative data ac-
quisition options that made TinyDB attractive are similarly
available through DSN’s SNlog. Second, with the projected
decreasing costs of Flash memory, data storage is an area of
rapidly increasing interest. Since DSN already implements
a database, DSN offers a natural solution here as well, such
as cost-based interfacing with Flash backing stores. Third,
DSN provides straightforward support for event detection.
Our use of a logic language naturally lends itself to com-
posing higher level events (e.g. “Car Detected”) from lower

1203

level events (e.g. “Magnotemeter Sensor” and “Vibration
Sensor”). Fourth, DSN provides data independence: DSN
helps shield sensor network programmers from the slew of
hardware platform changes. It is particularly important in
the sensor network space, where the rate introduction of
new platforms and sensor hardware is commensurate with
the rate of new applications. Hence, application writers can
concentrate on defining application logic; hardware vendors
can focus on introducing new sensors and platforms. Lastly,
DSN allows concise declarations of entire system behavior,
and not just the routing or overlay layer. Not only do we
use declarative rules to specify connections between appli-
cation, service and protocol components, we also implement
these components with declarative rules. The declarative
rules for a given component are rarely more than a dozen
lines. Entire system stacks are often less than one hundred
lines.

In the following sections, we show several SNlog exam-
ples (Section 2), provide an overview of the system architec-
ture (Section 3), and discuss the demo of DSN (Section 4).

2. SNLOG BY EXAMPLE
To give a sense for the declarative approach, we present

several SNlog examples. In addition to regular Datalog con-
ventions, at most one parameter of each tuple is marked
with an “at” sign (@). This denotes that the parameter is a
nodeid type and that when the parameter is fixed, the des-
tination of the tuple is the parameter’s value. We discuss
how we process these rules in Section 3. For now, we focus
on the structure of SNlog declarations.

2.1 Simple Collection and Dissemination
Our first example, Listing 1, is a data collection appli-

cation that gathers data from all nodes in the network at
the base station. Despite its simplicity, it is appropriate for
many simple sensor network deployments. This prototypical
sensor network application is easily expressed with a single
rule and query.

Listing 1: Collection and Dissemination
CD1 : s t o r e (@Y, Oid , Object):− produce (@X, Oid , Object) ,

consume (@Y, Oid) .
Query : s t o r e (@Y, Oid , Object) .

Rule CD1 is read as: if a node X produces an object data
identified as Oid, and the node Y consumes Oid, then this Object

that is currently stored at X should also be stored at Y. The
query sets the goal the system aims to solve; in this example,
store (@Y,Oid,Object) collects every neighbor node’s sensor data
at Y. To collect facts at base we need to specify facts of the
form 2:

Listing 2: Collection Facts
consume (@base , Oid) .

The produce predicate is a builtin predicate that will gen-
erate tuples based on sensed data. If a consume predicate is
true at the base and produce events get fired up at nodes,
then the system will store the produced objects at base.

The same rule set of Listing 1 can support another very
common sensor network service, namely data dissemination.
This is typically a subprocess of network control, e.g. repro-
gramming the sensor network with a new executable or dis-
seminating a new SQL query in TinyDB. For that we need

to specify facts as in Listing 3. Note that in this situation
the builtin predicate produce will activate at the base station
and not on the nodes.

Listing 3: Dissemination Facts
consume (@node1 , Oid1) .
consume (@node2 , Oid1) .
consume (@node1 , Oid2) .

At the level of abstraction of the collection application,
many service details (network, storage, etc.) are hidden
from the user, and hence this particular application interface
is similar to TinyDB. It is already apparent from this first
example that although data requires movement across the
network, the SNlog specification does not decide how this is
accomplished. This a rich area for optimization for both the
compiler and runtime. We mention one possible well-known
network routing protocol in the next section.

2.2 Tree construction
In-network spanning-tree routing is a well-studied sensor

network routing protocol. Coincidentally, tree construction
is a special case of the Internet’s Distance Vector Routing
(DVR) protocol. Hence, our tree construction protocol is
adapted from that of declarative DVR presented in [6]. The
basic idea is that constructing an network spanning tree
is equivalent to the transitive closure of shortest network
paths. For the sake of space, we refer the reader there to a
full discussion of this example.

2.3 Version coherency
Previous listings showed a data dissemination example. In

such situations, it is often desirable to provide coherency as
well, e.g. all nodes are running the same disseminated SQL
query. Various sensor network eventual consistency proto-
cols provide such version coherency , Listing 4 illustrates a
declarative implementation of one such protocol [3].

Listing 4: Version coherency
VC1 : compare (@Y,X, Oid , V1 , V2) :−

r e f r e s hE v e n t (@X) , l i n k (@X,Y,C) .
v e r s i o n (@X, Oid , V1) , v e r s i o n (@Y, Oid , V2) ,

VC2 : r e s pon s e (@Y,X, Oid , V1 , V2) :−
compare (@Y,X, Oid , V1 , V2) , V1<V2 .

VC3 : compare (@X,Y, Oid , V2 , V1) :−
r e s pon s e (@Y,X, Oid , V1 , V2) .

VC4 : r e q u e s t (@Y,X, Oid , V1 , V2) :−
compare (@Y,X, Oid , V1 , V2) , V1>V2 .

VC5 : s t o r e (@Y, Object) :− s t o r e (@X, Object) ,
r e q u e s t (@Y,X, Oid , V1 , V2) , r e s o l v e (Oid , Object) .

Query : s t o r e (@X, Object) .

In rule VC1, refreshEvent , a periodic, system-generated tu-
ple, initiates a comparison between a node X’s local version
V1 and each neighbor Y’s version V2 of item Oid. This com-
parison then leads to either a request by X for the new data
from its up-to-date neighbor (VC4 and VC5), or a response to
update its out-of-date neighbor (VC2). The response is ex-
pressed as a recursion leading to a subsequent request (VC3).

Not shown are three additional rules for manipulating
timers associated with refereshEvent .

3. SYSTEM ARCHITECTURE
Our architecture, shown in Figure 1, consists of four major

components. The SNlog declarative specification language
provides a rule-based interface for defining the system. The

1204

SNlog compiler/optimizer

query processor runtime

optimized system stack

path(…) :- link(…),
dest(…), …

…
… store(…) :- prod(…),

cons(…),
…
…
…

binary image

SNlog program

incoming tuple

resident tuples

result tuple

in-flight tuple

Node
runtime operation

Figure 1: DSN Architecture. SNlog is compiled and
distributed to the network, at which point each node
executes the query processor runtime. In addition,
not shown above, the runtime supports the dynamic
introduction of new queries.

compiler/optimizer converts the specification into a binary
image, which then is programmed into all nodes in the net-
work. Finally, the runtime query processor on each node
processes each query in order to produce the correct tuple
output. We examine each component in more depth below.

3.1 SNlog
As mentioned earlier, SNlog is a modified version of Data-

log that is able to specify certain physical properties such as
where tuples are stored and sent. We have further modified
it to provide additional features specific to sensor networks.
This provides a set of rules that define everything above the
link layer, in essence the network, transport, and application
layer, while assuming certain basic services provided by the
link layer, such as link discovery, neighbor table population,
etc. Furthermore, a set of possible queries that can be posed
are specified as well.

3.2 Compiler
The compiler translates the SNlog specification to create

requisite on-node data structures, and translates this spec-
ification, along with the list of potential queries, to create
a system stack combined with a runtime query processor
for each sensor node. The constrained resources of sensor
nodes make full fledged query processors infeasible. The
limited query processor is acceptable as sensor networks are
generally tasked with very specific applications, and hence

do not need to be able to process a wide variety of queries.
The system is designed for TinyOS [2], the de facto operat-

ing system for sensor networks, which uses nesC [1], a mod-
ified version of C. Consequently, all our code is converted
into nesC during the compilation process. We architect our
system for use with certain builtin predicates, such as SP,
a link layer abstraction for sensor networks [8]. The final
step is to compile the query processor and the underlying
structure into a single binary image for distribution.

3.3 Code Installation
The method for disseminating code in the form of binary

images has been relatively well studied for sensor networks.
We make the simplifying assumption that the initial binary
image are already download onto each node prior to deploy-
ment. One desire may be to change the binary images on
the nodes during runtime, perhaps to modify the query pro-
cessor to handle new classes of queries. Our demonstration
shows that such dissemination protocols can easily be im-
plemented by including them as part of a declarative service
specification in the system stack.

3.4 Runtime Query Processor
The query processor on each node allows for dynamic

queries to be inserted into the network. Queries are no
longer restricted to data gathering and analysis. As our
demonstration shows, networking functions such as collec-
tion, dissemination, topology building, and robust applica-
tions can be designed through the dissemination of queries
to systems that maintain the list of rules initially specified.
Runtime operations consist of nodes locally processing in-
coming tuples by joining with resident tuples according to
the SNlog specification. Result tuples are reinserted into
the set of resident tuples, potentially causing the execution
of more rules. Certain rules specify that result tuples are
required by other nodes in the network. In this case, these
tuples are shipped to their destinations.

3.5 Challenges and Optimizations
In addition, there are several technical systems challenges

that DSN addresses.

• Significant resource constraints: The declarative SNlog
translation to an operational system stack, and the
DSN runtime must operate extremely efficiently. Sen-
sor networks are rarely granted abundant resources.
This indicates that simple ports of existing deductive
declarative databases are unlikely to succeed.

• Amorphous library interfaces: Entire system stacks in-
variably are compromised of many components. SNlog
not only provides the ability to define new components,
but also manages inter-component relationships. Per-
forming this interfacing easily is not straightforward,
yet fundamental to growing a large SNlog component
library.

• Low-level system operations: DSN provides several built-
in primitives to interface with low-level system oper-
ations. Extensibility for interfacing with new device
drivers, such as those for a new type of sensor, is also
crucial.

Tackling these challenges effectively is of imminent im-
portance in any practical sensor network system. We pro-

1205

Figure 2: Internals of the Trio mote sensorboard

vide several optimizations designed to make implementing
an entire declarative networking system feasible. The ma-
jority of these deal with minimizing the number of messages
transmitted and received, as the radio is the most power-
consuming component for a sensor node. First of all, in
cases where possible, when a node receives a query, it pig-
gybacks the result onto any outgoing queries in the same
packet. Second, when the application allows it, nodes pro-
cess queries in a passive manner; instead of broadcasting a
request for a certain predicate required to process a query,
the node simply waits to receive it. Finally, we take advan-
tage of the fundamental broadcast nature of the link medium
to avoid the typical naive unicast communication.

4. DEMONSTRATION
Our demonstration showcases the system in its entirety,

by allowing the user to interactively specify applications us-
ing SNlog, and then observe the performance of the appli-
cation when it is implemented on a sensor network testbed.

4.1 Testbed
The testbed will consist of 10 sensor nodes arranged in a

grid format, and equipped with a wide variety of sensors,
including acoustic and passive infrared. Figure 2 shows the
internals of a Trio node. Every node is connected through
a USB backchannel to the base station, a laptop. The USB
connection is used to upload the initial binary image onto
each node. All other communication is performed using reg-
ular radio transmissions and receptions.

With a USB backchannel, each node is additionally instru-
mented to a real-time debugger, deployed in parallel with the
actual application. For a given running of the system, we are
able to step through the execution of SNlog on nodes. Ev-
ery node periodically sends its state, as well as any packets
that it receives, over the USB to the base station to create
a visual representation of the inner-workings of the system
in real-time, without affecting the actual application.

4.2 Applications
The user will be able to interact with the system in numer-

ous ways. We provide a library of complete system stacks
that the user can compile and readily deploy onto the nodes.
One such application is object detection and tracking. A
person can walk through the testbed and the application
will detect the intrusion and track the location of the person
as he or she moves through the network. Other programs
include temperature and acoustic sensing and data collec-

tion, as well as querying of data coupled with in-network
aggregation.

We also provide a variety of network layer protocols, such
as tree building and routing, gradient routing, point-to-point
routing, and runtime binary image distribution. The user
can plug-and-play these components with a high-level appli-
cations without having to worry about the underlying com-
munication primitives. For example, the user can write the
specification for a short program where nodes report their
acoustic readings if they are over a certain threshold, and
simply use the tree routing component for underlying com-
munication.

The user can also specify pertinent information to be
downloaded at the base station in order to analyze the per-
formance of the application. For the above applications, this
could mean examining the readings of the sensors to deter-
mine which nodes has detected the presence of an object, or
viewing a continuous stream of acoustic readings to make
sure those above the threshold are reported.

4.3 Optimizations
The unique characteristics of sensor networks make them

different from wired networks, and even wireless networks.
Consequently, we employ numerous optimizations as dis-
cussed in the previous architecture section. The demo allows
the user to examine the effect of each of these optimizations
on the specific application at hand by tracing through the
execution with the online debugger.

5. REFERENCES
[1] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and

D. Culler. The nesc language: A holistic approach to networked
embedded systems. In In ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2003.,
2003.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System architecture directions for networked
sensors. In Architectural Support for Programming Languages
and Operating Systems, pages 93–104, 2000.

[3] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and maintenance
in wireless sensor networks. In In First Symposium on Network
Systems Design and Implementation (NSDI), Mar 2004.

[4] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative networking with distributed recursive
query processing. In ACM SIGMOD International Conference
on Management of Data, June 2006.

[5] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing declarative overlays. In SOSP ’05:
Proceedings of the twentieth ACM symposium on Operating
systems principles, pages 75–90, New York, NY, USA, 2005.
ACM Press.

[6] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative routing: Extensible routing with declarative queries.
In ACM SIGCOMM Conference on Data Communication,
August 2005.

[7] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tinydb: An acquisitional query processing system for sensor
networks. Transactions on Database Systems (TODS), March
2005.

[8] A. Tavakoli, J. Taneja, P. Dutta, D. Culler, S. Shenker, and
I. Stoica. Evaluation and Enhancement of a Unifying Link
Abstraction for Sensornets. In UC Berkeley Technical Report,
2006.

1206

