
A Middleware for Fast and Flexible Sensor Network
Deployment �

Karl Aberer, Manfred Hauswirth, Ali Salehi
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
[karl.aberer, manfred.hauswirth, ali.salehi]@epfl.ch

ABSTRACT
A key problem in current sensor network technology is the het-
erogeneity of the available software and hardware platforms which
makes deployment and application development a tedious and time
consuming task. To minimize the unnecessary and repetitive im-
plementation of identical functionalities for different platforms, we
present our Global Sensor Networks (GSN) middleware which sup-
ports the flexible integration and discovery of sensor networks and
sensor data, enables fast deployment and addition of new platforms,
provides distributed querying, filtering, and combination of sen-
sor data, and supports the dynamic adaption of the system con-
figuration during operation. GSN’s central concept is the virtual
sensor abstraction which enables the user to declaratively specify
XML-based deployment descriptors in combination with the pos-
sibility to integrate sensor network data through plain SQL queries
over local and remote sensor data sources. In this demonstration,
we specifically focus on the deployment aspects and allow users
to dynamically reconfigure the running system, to add new sensor
networks on the fly, and to monitor the effects of the changes via
a graphical interface. The GSN implementation is available from
http://globalsn.sourceforge.net/.

1. INTRODUCTION
The growing diversity of available software and hardware plat-

forms in the sensor network domain creates problems when these
sensor networks are being deployed and applications being devel-
oped on top of them. At the moment developers and administrators
have to come up with specialized software and deployment strate-
gies for each of the platforms. This is a time consuming and te-
dious task which in other, admittedly more “stable” domains has
been addressed by abstracting from the physical view of a system
to a logical model and implementing this logical model in terms
of a middleware. The general purpose of middleware systems is to
provide powerful abstractions codifying the essential requirements
and concepts of a domain and providing flexible means for extend-
�
The work presented in this paper was supported (in part) by the

National Competence Center in Research on Mobile Information
and Communication Systems (NCCR-MICS), a center supported
by the Swiss National Science Foundation under grant number
5005-67322 and was (partly) carried out in the framework of the
EPFL Center for Global Computing.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

ing it to the concrete physical environment. This speeds up deploy-
ment and additionally pushes standardized APIs which simplifies
application development and applications become “portable” over
all physical systems included in the middleware.

In the sensor network context, the current research mainly fo-
cuses on routing, aggregation, and energy efficient data manage-
ment algorithms inside one sensor network. The deployment, ap-
plication development, and standardization aspects are usually not
addressed. However, as the price of wireless sensors diminishes
rapidly we can expect to see large numbers of heterogeneous sen-
sor networks being deployed in different locations around the globe
and being managed by different organizations. A major challenge
in such a “Sensor Internet” environment is minimizing the deploy-
ment efforts which is a key cost factor in large systems. The re-
quirements of the software infrastructure for processing, storing,
querying and publishing data produced from a sensor network, how-
ever, are similar and the main difference between various software
platforms is due to different abstractions for the available sensors.
Additionally, having a generic middleware for sensor networks not
only cuts costs, but also opens the possibility of sharing and inte-
grating data among heterogeneous sensor networks.

Our Global Sensor Networks (GSN) middleware addresses these
problems and provides a uniform platform for fast and flexible in-
tegration and deployment of heterogeneous sensor networks. The
design of GSN follows four main design goals: Simplicity (a mini-
mal set of powerful abstractions which can be easily configured and
adopted), adaptivity (adding new types of sensor networks and dy-
namic (re-) configuration of data sources has to be supported during
run-time), scalability (peer-to-peer architecture), and light-weight
implementation (small memory foot-print, low hardware and band-
width requirements, web-based management tools).

For a detailed description and analysis of all aspects of GSN we
refer the reader to [1].

2. VIRTUAL SENSORS
As noted above, a small set of powerful, easily combinable ab-

stractions are key to successful middleware design. The key ab-
straction in GSN is the virtual sensor. Virtual sensors abstract from
implementation details of access to sensor data and they are the ser-
vices provided and managed by GSN. A virtual sensor corresponds
either to a data stream received directly from sensors or to a data
stream derived from other virtual sensors. A virtual sensor can have
any number of input streams and produces one output stream. The
specification of a virtual sensor provides all necessary information
required for deploying and using it, including:

� metadata used for identification and discovery� the structure of the data streams which the virtual sensor con-
sumes and produces� a declarative SQL-based specification of the data stream pro-
cessing performed in a virtual sensor� functional properties related to persistency, error handling,
life-cycle management, and physical deployment

1199

To support rapid deployment, these properties of virtual sensors
are provided in a declarative deployment descriptor. Figure 1 shows
a fragment of such a virtual sensor definition which defines a sen-
sor returning an averaged temperature. The <life-cycle> el-
ement enables the control of network deployment aspects such as
the number of threads available for processing, the <storage>
element controls how stream data is persistently stored (among
other attributes this controls the temporal processing), and the el-
ement <output-structure> defines the structure of the pro-
duced output stream. To specify the processing of the input streams
we use SQL queries which refer to the input streams by the re-
served keyword WRAPPER. The attribute wrapper="remote"
indicates that the data stream is obtained from the Internet through
GSN (thus logical addressing is possible).�

�

�

�

...
<life-cycle pool-size="10" />
<output-structure>

<field name="TEMPERATURE" type="integer"/>
</output-structure>
<storage permanent-storage="true" size="10s" />
<input-stream name="dummy" rate="100" >

<stream-source alias="src1" sampling-rate="1"
storage-size="1h" disconnect-buffer="10">
<address wrapper="remote">
<predicate key="type" val="temperature" />
<predicate key="location" val="bc143" />

</address>
<query>select avg(temperature)

from WRAPPER</query>
</stream-source>

<query>select * from src1</query>
</input-stream>
...

Figure 1: Virtual sensor definition (fragment)

3. DATA STREAM PROCESSING
In GSN a data stream is a sequence of timestamped tuples. The

order of the data stream is derived from the ordering of the times-
tamps and the GSN container provides basic support to manage
and manipulate the timestamps. These services essentially consist
of the following components:

1. a local clock at each GSN container
2. implicit management of a timestamp attribute
3. implicit timestamping of tuples upon arrival at the GSN con-

tainer (reception time)
4. a windowing mechanism which allows the user to define count-

or time-based windows on data streams.
In this way it is always possible to trace the temporal history of

data stream elements throughout the processing history. Multiple
time attributes can be associated with data streams and can be ma-
nipulated through SQL queries. In this way sensor networks can be
used as observation tools for the physical world, in which network
and processing delays are inherent properties of the observation
process which cannot be made transparent by abstraction.

The production of a new output stream element of a virtual sen-
sor is always triggered by the arrival of a data stream element from
one of its input streams. Informally, the processing steps then are
as follows:

1. By default the new data stream element is timestamped using
the local clock of the virtual sensor provided that the stream
element had no timestamp.

2. Based on the timestamps for each input stream the stream
elements are selected according to the definition of the time
window and the resulting sets of relations are unnested into
flat relations.

3. The input stream queries are evaluated and stored into tem-
porary relations.

4. The output query for producing the output stream element is
executed based on the temporary relations.

5. The result is permanently stored if required and all consumers

of the virtual sensor are notified of the new stream element.
Additionally, GSN provides a number of possibilities to control

the temporal processing of data streams, for example, bounding
the rate of a data stream in order to avoid overloads of the system
which might cause undesirable delays, sampling of data streams in
order to reduce the data rate, bounding the lifetime of a data stream
in order to reserve resources only when they are needed, etc.

GSN’s query processing approach is related to TelegraphCQ as
it separates the time-related constructs from the actual query. Tem-
poral specifications, e.g., the window size, are provided in XML in
the virtual sensor specification, while data processing is specified in
SQL. At the moment GSN supports SQL queries with the full range
of operations allowed by the standard syntax, i.e., joins, subqueries,
ordering, grouping, unions, intersections, etc. The advantage of us-
ing SQL is that it is well-known and SQL query optimization and
planning techniques can be directly applied.

4. GSN ARCHITECTURE
GSN follows a container-based architecture and each container

can host and manage one or more virtual sensors concurrently. The
container manages every aspect of the virtual sensors at runtime
including remote access, interaction with the sensor network, se-
curity, persistence, data filtering, concurrency, and access to and
pooling of resources. This paradigm enables on-demand use and
combination of sensor networks. Virtual sensor descriptions are
identified by user-definable key-value pairs which are published in
a peer-to-peer directory so that virtual sensors can be discovered
and accessed based on any combination of their properties, for ex-
ample, geographical location and sensor type. GSN nodes commu-
nicate among each other in a peer-to-peer fashion. Figure 2 depicts
the internal architecture of a GSN node.

Query Processor

Notification Manager

Query Repository

Manager

Life Cycle

Storage

Integrity service

GSN/Web/Web−Services Interfaces

Pool of Virtual Sensors

Stream Quality Manager

Q
ue

ry
 M

an
ag

er

Virtual Sensor Manager

Input Stream Manager

Access control

Figure 2: GSN container architecture
The virtual sensor manager (VSM) is responsible for providing

access to the virtual sensors, managing the delivery of sensor data,
and providing the necessary administrative infrastructure. Its life-
cycle manager (LCM) subcomponent provides and manages the re-
sources provided to a virtual sensor and manages the interactions
with a virtual sensor (sensor readings, etc.) while the input stream
manager (ISM) manages the input streams and ensures stream qual-
ity (disconnections, unexpected delays, missing values, etc.). The
data from/to the VSM passes through the storage layer which is
in charge of providing and managing persistent storage for data
streams. Query processing is done by the query manager (QM)
which includes the query processor being in charge of SQL pars-
ing, query planning, and execution of queries (using an adaptive
query execution plan). The query repository manages all regis-
tered queries (subscriptions) and defines and maintains the set of
currently active queries for the query processor. The notification

1200

manager deals with the delivery of events and query results to the
registered clients. The notification manager has an extensible ar-
chitecture which allows the user to customize it to any required
notification channel. The top three layers deal with access to the
GSN container. The interface layer provides access functions for
other GSN containers and via the Web (through a browser or via
web services), the access control layer ensures that access is pro-
vided only to entitled parties, and the data integrity layer guarantees
data integrity and confidentiality through electronic signatures and
encryption (this can be defined at different levels, for example, for
the whole GSN container or for an individual virtual sensor).

5. IMPLEMENTATION
The GSN implementation consists of the GSN-CORE, imple-

mented in Java, and the platform-specific GSN-WRAPPERS, im-
plemented in Java, C, and C++, depending on the available toolk-
its for accessing sensors. The implementation currently has ap-
proximately 20,000 lines of code and is available from Source-
Forge (http://globalsn.sourceforge.net/). GSN is implemented to
be highly modular in order to be deployable on various hardware
platforms from workstations to small programmable PDAs, i.e., de-
pending on the specific platforms only a subset of modules may be
used. GSN also includes visualization systems for plotting data and
visualizing the network structure.

For deploying a virtual sensor the user only has to specify an
XML deployment descriptor as briefly outlined in Section 2 if GSN
already includes software support for the concerned hardware and
software. Adding a new type of sensor or sensor network can be
done by supplying a Java wrapper conforming to the GSN API
and interfacing the system to be included. The effort to implement
wrappers is quite low, i.e., typically around 100-200 lines of Java
code. For example, the TinyOS wrapper required 150 lines of code.
Our experience shows that new wrappers can be included usually
in less than 1 day. Currently GSN includes already wrappers for
the TinyOS family of motes (Mica, Mica2, Mica2Dot, TinyNodes,
etc.), USB and wireless (HTTP-based) cameras (e.g., AXIS 206W
camera), and several RFID readers (e.g., Texas Instruments).

A key factor determining the usability of GSN is its scalability in
the number of queries and clients. To evaluate GSN’s scalability we
performed experiments with 22 motes and 15 cameras arranged in
4 sensor networks connected via GSN. The devices produced data
items every 10, 25, 50, 100, 250, 500, and 1000 milliseconds and
we measure the internal processing times of a GSN node for various
sizes of produced data items as shown in Figure 3. High data rates
put some stress on the system but the absolute delays are still quite
tolerable. The delays drop sharply if the interval is increased and
then converge to a nearly constant time at a rate of approximately
4 readings/second or less. This result shows that GSN can tolerate
high rates and incurs low overhead for realistic rates.

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

Pr
oc

es
sin

g
Ti

m
e

in
 (m

s)

Output Interval (ms)

15 bytes
50 bytes

100 bytes
16KB
32KB
75 KB

Figure 3: GSN node under time-triggered load
Figure 4 shows an experimental result for query processing la-

tencies in a single GSN node for a stream element size (SES) of
32KB. We used random queries with 3 filtering predicates in the
where clause on average, using random history sizes from 1 sec-
ond up to 30 minutes and uniformly distributed random sampling

rates in the interval
� �	� ��
��
��

(seconds). Additionally, bursts were
produced with a probability of

�	� ���
.

The spikes in the figure correspond to the bursts. The query pro-
cessing latency heavily depends on the database used by the GSN
node (we used MySQL in the experiments) and as expected the
database’s performance is directly related to the number of clients
as with higher numbers more queries are sent to the database and
also the cost of query compiling increases. Nevertheless, the query
processing time is reasonably low, as the graph shows that the to-
tal time required to process 500 queries is around 40 milliseconds,
i.e., the processing time per client while handling 500 clients is less
than 1 millisecond.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500

To
ta

l p
ro

ce
ss

in
g

tim
e

(m
s)

 fo
r t

he
 s

et
 o

f c
lie

nt
s

Number of Clients

SES=32 KBytes

Figure 4: Query processing latency in a GSN node
Due to space constraints we can only give some key evaluation

results. A detailed evaluation is provided in [1].

6. DEMONSTRATION
The key advantages of GSN are its modularity and extensibility,

the low effort required for integrating new sensors, and the flexibil-
ity in supporting fast and simple deployment. In the demonstration
we specifically focus on the last item, as deployment and mainte-
nance are known to be the major cost factors by far in the software
industry. In the demo we will set up four sensor networks as shown
in Figure 5, i.e., one sensor network with RFID readers and tags, a
wireless camera sensor network, and two wireless sensor networks
using MICA2 motes equipped with light, temperature, and 2D ac-
celeration sensors. The RFID and the motes network share one
GSN node, whereas the other two networks have a dedicated GSN
node (this is an arbitrary setup we chose for the demo and it can be
changed easily).

In the demonstration the audience are first invited to query the
pre-configured system setup via a Web interface to exemplify the
functionalities described in the previous sections. The setup is done
such that the audience can query the individual networks, but also
complex configurations that integrate the data of several of the net-
works are included. This gives some initial hands-on experience of
the small “Sensor Internet” we have set up with a set of predefined
queries. Typical examples here would be to query for the average
light intensity and temperature in the last 10 minutes (active query),
or when the RFID reader recognizes an RFID tag, a picture of the
person/item it is attached to would be returned from the camera
network together with the current light intensity and temperature
taken from the other networks (notification).

After this initial familiarization with GSN, we invite the audi-
ence to interactively change the setup of the system on-the-fly while
the system is running. In detail we will demonstrate the following:

� We show how to rapidly deploy a sensor network without any
programming effort just by providing a simple XML config-
uration file.� The audience are invited to add, remove, and reconfigure
virtual sensors while the system is running and processing
queries. This will show the support for on-the-fly configura-
tion changes and demonstrate the plug-and-play capabilities
of GSN for dynamically adding and removing sensors and
networks.

1201

Figure 5: Physical deployment at demonstration

� The audience are invited to define new virtual sensors per-
forming joins and/or filtering on one or more of the sensor
networks deployed in the demonstration. This part of the
demo shows how a new sensor network which is based on
the data produced by other (heterogeneous) sensor networks
can be created by just providing some declarative configura-
tions and without any software programming efforts.� The audience are invited to define the events in the sensor
networks they are interested in and another audience can trig-
ger the event by performing an action such as passing a RFID
tag in front of the RFID reader or hiding the light sensor on
the motes (or a combination of such actions). This part of
the demo exemplifies how simple events can be specified and
how various notifications channels can be used.

During the whole demonstration, the audience are able to mon-
itor the effective status of all parts of the system and how it reacts
to changes in the configuration through a web interface and various
plots and network connection figures.

7. RELATED WORK
Probably the closest approach to GSN is [2] which suggests ba-

sic abstractions, a standard set of services, and an API to free ap-
plication developers from the details of the underlying sensor net-
works. However, the focus is on systematic definition and classifi-
cation of abstractions and services, while GSN takes a more gen-
eral view and provides not only APIs but a complete middleware.
Hourglass [3] provides an infrastructure for connecting sensor net-
works to applications and offers topic-based discovery and data-
processing services. Like GSN it tries to hide internals of sensors
from the user but focuses on maintaining quality of service of data
streams. HiFi [4] provides hierarchical data stream query process-
ing to acquire, filter, and aggregate data from multiple devices in a
static environment while GSN takes a peer-to-peer perspective as-
suming a dynamic environment and allowing any node to be a data
source, data sink, or data aggregator. IrisNet [5] proposes a two-tier
architecture consisting of sensing agents (SA) which collect and
pre-process sensor data and organizing agents (OA) which store
sensor data in a hierarchical, distributed XML database modeled
after the Internet DNS and supporting XPath queries. In contrast
to that, GSN follows a symmetric peer-to-peer approach as already

mentioned and supports publish/subscribe besides active queries.

8. CONCLUSIONS
GSN provides a flexible middleware for fast deployment of sen-

sor networks meeting the challenges that arise in real-world en-
vironments. The key concept in GSN are virtual sensors which
abstract from implementation details of access to sensor data and
correspond either to data streams received directly from sensors or
to data streams derived from other virtual sensors. Thus GSN hides
arbitrary data sources behind its virtual sensor abstraction and pro-
vides simple and uniform access to the host of heterogeneous tech-
nologies available through powerful declarative specification and
query tools which support on-the-fly configuration and adaptation
of the running system. Due to space constraints we could only pro-
vide an overview of GSN. A detailed description and analysis of
all aspects of GSN is given in [1]. The GSN implementation is
available from http://globalsn.sourceforge.net/.

9. REFERENCES
[1] K. Aberer, M. Hauswirth, and A. Salehi, “The Global Sensor

Networks middleware for efficient and flexible deployment
and interconnection of sensor networks,” Tech. Rep.
LSIR-REPORT-2006-006, Ecole Polytechnique Fédérale de
Lausanne, 2006.

[2] M. Sgroi, A. Wolisz, A. Sangiovanni-Vincentelli, and J. M.
Rabaey, “A service-based universal application interface for
ad hoc wireless sensor and actuator networks,” in Ambient
Intelligence, Springer Verlag, 2005.

[3] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos,
M. Seltzer, and M. Welsh, “Hourglass: An Infrastructure for
Connecting Sensor Networks and Applications,” Tech. Rep.
TR-21-04, Harvard University, EECS, 2004. http:
//www.eecs.harvard.edu/ � syrah/hourglass/papers/tr2104.pdf.

[4] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi,
E. Wu, O. Cooper, A. Edakkunni, and W. Hong, “Design
Considerations for High Fan-in Systems: The HiFi
Approach,” in CIDR, 2005.

[5] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan,
“IrisNet: An Architecture for a World-Wide Sensor Web,”
IEEE Pervasive Computing, vol. 2, no. 4, 2003.

1202

