
Adaptive Density Estimation

Arturas Mazeika
Free University of
Bozen-Bolzano

Dominikanerplatz-3
Bozen-Bolzano, Italy

arturas@inf.unibz.it

Michael H. Böhlen
Free University of
Bozen-Bolzano

Dominikanerplatz-3
Bozen-Bolzano, Italy

boehlen@inf.unibz.it

Andrej Taliun
Free University of
Bozen-Bolzano

Dominikanerplatz-3
Bozen-Bolzano, Italy

taliun@inf.unibz.it

ABSTRACT
This demonstration illustrates the APDF tree: an adaptive
tree that supports the effective and efficient computation
of continuous density information. The APDF tree allo-
cates more partition points in non-linear areas of the den-
sity function and fewer points in linear areas of the density
function. This yields not only a bounded, but a tight control
of the error. The demonstration explains the core steps of
the computation of the APDF tree (split, kernel additions,
tree optimization, kernel additions, unsplit) and demos the
implementation for different datasets.

1. INTRODUCTION
Density is common statistical information that is used for
approximate query answering, query optimization, cluster-
ing, etc. Typically, histogram [1, 3] are used to roughly
estimate the density. Kernel based estimators generalize his-
tograms [4]. They ensure that the estimated density func-
tion is continuous and that derivatives exist. This demon-
stration demos the APDF tree [2], an adaptive tree that
supports the effective and efficient computation of continu-
ous density information.

Figure 1(a) illustrates kernel additions. The data points are
illustrated by the six crosses at the bottom of Figure 1(a).
We draw a kernel function around each data point. The
addition of all kernels yields the estimation of the probability
density function (PDF, dashed line).

The kernel additions are computed on a uniform partition,
and the values of the PDF are interpolated between partition
points. The shaded regions quantify the shape error (SE):
the difference between the PDF and the linear interpola-
tions. The figure illustrates the key problem with a uniform
partitioning: a fine partitioning yields a good but slow esti-
mation whereas a coarse partitioning yields a bad but fast
estimation. The ADPF tree is an adaptive tree structure
that yields a fast and precise estimation of the PDF.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

Shape Error

PDF

Data

Estimated PDF
Kernel Additions

20 31 40 49 60
A

55
B C

(a) Uniform Partition

0
1
2

(b) The APDF Tree

Figure 1: The Idea of the APDF Tree (1D)

Figure 1(b) illustrates the APDF tree for the same dataset.
The APDF tree allocates more partition points in the non-
linearity areas of the PDF and fewer points in the linearity
areas of the PDF. This yields not only a bounded, but a
tight control of the shape error. This makes the estimation
fast and precise. The paper discusses the computation of
the APDF partitions with a tight control of shape error and
demos the implementation for different data.

We organize the demonstration in five main parts:

(i) Overview of the APDF method. The construction of
the partition is an iterative process. We start with a
uniform partition and show how the partition is refined
in areas with a high shape error.
Goal: Introduce the elemental concepts of the APDF
method: smallest partition, directional splits and areas

of high shape error.
Demoed datasets: PlaneSphere (2D).

(ii) Steps of a single iteration of the APDF method. We
zoom into one iteration of the method and demo the
individual steps of the iteration.
Goal: Introduce the core building blocks of the APDF
method: Split, TreeOptimization I, Kernel Additions,
UnSplit, TreeOptimization II. Demo of these steps.
Demoed datasets: PlaneSphere (2D)

(iii) Evaluation of the APDF method for different datasets.
We show how the APDF partition reflects the sub-
dimensionality of the structures and the areas of non-
linearity in the database.
Goal: Compare the final partitions of the APDF tree
for different datasets, and different dimensionality.
Demoed datasets: PlaneSphere data, Linear dataset,
Clickstream data, Plane (2D plane in 3D) PlaneHole

1191



(2D plane with a hole in 3D), Spiral (spiral in 3D),
Cone (3D).

(iv) Visual comparison of the APDF partition with his-
togram partitions: equi-width, wavelet based, GEN-
HIST, etc.
Goal: Compare the partition of the APDF estimator
wrt state-of-the-art histogram partitions.
Demoed datasets: PlaneSphere (2D).

(v) Robustness of the APDF tree. We select extreme data-
sets and parameters to illustrate the complexity of the
problem and give a feel for the application area of the
APDF tree.
Goal: Investigation of the estimator for very large
datasets, very high precisions, and very sparse initial
grid.
Demoed datasets: PlaneSphere (2D).

The paper is organized as follows. The overview part of
the demo is presented in Section 2. Section 3 describes the
steps of one iteration. The evaluation of the APDF tree is
presented in Section 4. Finally, we sketch the algorithm for
the construction of the APDF tree in Section 5.

2. OVERVIEW OF THE APDF METHOD
We use the PlaneSphere dataset (cf. Figure 2) to illustrate
the construction of the APDF tree. The dataset consists of
two structures: the plane (distributed in the unit square,
and a sphere (2D normal distributed data in the bottom-
right corner of the unit square).

Figure 2: The PlaneSphere Data and its PDF

Figure 3 illustrates the creation of the APDF tree for the
PlaneSphere dataset. The computation starts with a sparse
uniform partition and kernel additions on this partition (cf.
Figure 3(a). The APDF method estimates areas of non lin-
earity of PDF and splits the corresponding areas. In our
example all areas are split after the first iteration (cf. Fig-
ure 3(b)). This process continues until the approximated
shape error is uniformly low in all areas of the APDF tree.
In iteration 2 (cf. Figure 3(c)) only the areas at the borders
are split. Since the PDF is linear in the center of the space,
no additional points are introduced there. The 3rd iteration
(cf. Figure 3(c)) adds further partition points at the bor-
ders of the universe. The rectangles are split in X and Y

direction in the corners of the universe. The PDF is non-
linear in both directions there. The rest of the rectangles
are split in one direction since the PDF is non-linear only in
one direction. The 4th iteration completes the creation of
the APDF tree. Only the area with the sphere is split. The
PDF is non-linear at the peak point of the PDF and at the
boundary of the sphere.

3. INDIVIDUAL STEPS
This section zooms into the 3rd iteration and presents the
core steps of one iteration of the APDF tree construction:
split, tree optimization, kernel additions, unsplit, and the
second tree optimization.

4x4

2
x
8

M1

4
x
2

M2

6
x
2

M4

2
x
6

M3

Figure 4: Start of the Iteration (cf. Figure 3(c))

Figure 4 shows the APDF tree at the beginning of the it-
eration. The tree consists of the root node with a uniform
partition of size 4x4 (4 partition points per coordinate). 12
outer rectangles of the root are split, and 4 inner rectangles
are not split. The 12 split rectangles are organized into 4
(local uniform partition) nodes of sizes 2x8, 4x2, 6x2, and
2x6. The tree illustration shows the granularity of the nodes
and the parent-child connections. The areas that were split
in the previous iteration are colored green. These are the
only areas that can have a too high shape error.

The split step is the first step in the iteration. The split
step processes the set of nodes C that were introduced in
the previous step. It scans C and estimates whether the
shape error is too high along one of the coordinates. If the
shape error is too high, it splits according to the coordinate.
Since the split predicts the shape error it can (and often
will) introduce too many splits. The unsplit step is later
used to remove unnecessary splits.

4x4

2x8

2
x
2

×8

G1, G3

2
x
1

×8

G2

4x2

1
x
2

×4

G4

2
x
2

×8

G5

6x2

1
x
2

×8

G6

2
x
2

×4

G7

2x6

2
x
1

×8

G8

2
x
2

×4

G9

Figure 5: Split

Figure 5 illustrates the result of the split step. All areas were
split further. In the corners of the unit square the PDF is
non-linear in both dimensions, therefore we split the areas
according to both dimensions. In the other areas the PDF

1192



(a) Initial Parti-
tion

(b) 1st Iteration (c) 2nd Iteration (d) 3rd Iteration (e) 4th Iteration

Figure 3: Creation of the APDF Tree

is non-linear according to one dimension only, therefore the
rectangles are split according to one dimension only. The
split step produces a lot of small rectangles (the group of
rectangles is indicated by Gi). We use the three optimiza-
tion step to group the rectangles into a fewer nodes.

4x4

2x8

4
x
4

N1

4
x
4

N2

4
x
4

N3

4x2

2
x
4

N4

4
x
4

N5

6x2

4
x
4

N6

4
x
4

N7

2x6

4
x
2

N8

4
x
8

N9

Figure 6: Tree Optimization

The tree optimization (TO) step is applied to the APDF
tree to speed up the computation of kernel additions. The
TO step scans the nodes C that were split and groups nodes
of the same granularity into new nodes of local uniform par-

titions (LUP). The algorithm produces hyper-rectangular
shaped nodes (cf. Section 5). Figure 6 shows the APDF tree
after the tree optimization. The TO step reorganizes the 52
nodes introduced by the split step into 9 nodes. This effec-
tively reduces the time spent during the subsequent kernel
additions. The kernel addition step updates the new parti-
tion points with kernel additions.

(a) Unsplit (b) Tree Optimization
(TO)

Figure 7: Unsplit and Tree Optimization Steps

The unsplit (US) step scans the nodes and removes partition
points that did not increase the precision of the estimator.

At these points the shape error was already low and the split
step over-split the area. The partition after the US step
is illustrated in Figure 7(a). The second tree optimization
completes the iteration (cf. Figure 7(b)). Again contiguous
areas of the same shape are grouped into the same node to
get large areas with a local uniform partition.

4. EVALUATION OF THE APDF TREE
This section describes the third part of the demo: the com-
parison of the APDF partitions for different datasets and
dimensions. Figure 8 illustrates the APDF trees for the
Linear dataset. The distribution of the data is linear accord-
ing to each coordinate. The density increases from corner
(0, 0, 0) towards the opposite corner of the universe where it
decreases very fast.

(a) 2D APDF (b) 3D APDF

Figure 8: The Linear Dataset

The dataset illustrates the directional splits of the APDF
tree very nicely. The APDF tree does not allocate any par-
tition points in the area of linearity of PDF, and introduces
directional splits in the areas of non-linearity of the PDF.

Figure 9 illustrates the APDF tree for real world click stream
data. Country, time of visit, and URL of the retrieved doc-
ument are mapped to X, Y , and Z coordinates. The PDF
reflects that most clicks come from two countries and that
they have a different distribution along the time dimension.
The APDF tree introduces directional splits in the areas of
the non-linearity of the PDF, and does not split the rest of
the universe.

1193



(a) 2D APDF (b) 3D APDF

Figure 9: The Click-Stream Dataset

5. ALGORITHMS
Figure 10 presents the algorithm for constructing the APDF
tree. The algorithm consists of two parts: the initialization
part (lines 1–4) and the loop over the five core steps (line
5). The initialization part initializes the data structure with
uniform partition, computes kernel estimation parameters,
and augments kernel additions on the initial partition. The
loop iterates the five steps of the APDF method until the
shape error is lower than the given precision ε in all areas
of space.

Algorithm: Construct_APDF_Tree

Input:
Database: X[i] = (X1[i], X2[i], X3[i]), i = 1, . . . , n

Precision ε

Initial partition P I or the granularity g of
the input uniform partition

Output:
APDF tree a

Body:
1. Initialize a with the given initial partition P I or

a uniform partition of granularity g. The tree consists
of the root node only.

2. Calculate estimation parameters: mean, variance, and hopt

3. Augment Kernels on the root node:
KernelAdditions(root, X[i]).

4. SE=∞; nodes high SE = root;
5. WHILE nodes high SE �= ∅ DO

5.1 new leaves= Split(nodes high SE)

5.2 opt leaves= TreeOptimization(new leaves)
5.3 KernelAdditions(opt leaves, X[i])
5.4 nodes high SE= UnSplit(opt leaves)
5.5 nodes high SE= TreeOptimization(nodes high SE)

Figure 10: Construct APDF Tree Algorithm

Below we discuss the five core steps of the APDF algorithm
in more detail.

The Split step processes all candidate nodes and splits the
hyper-rectangles with a high shape error. Conceptually, the
check for high shape error in a cube is done in the following
way. Let PL, PM , and PR be three adjacent partition points.
Let LIPL,PR

(PM ) be the linear interpolation value between
PL and PR at point PM . If

|f(PM ) − LIPL,PR
(PM )| > ε (1)

then the shape error around line PL, PR is too high. This
idea is implemented in the following way. We scan the input
nodes; for each input node we scan the dimensions; for each
dimension we scan all adjacent triplets that are on the line

parallel to the dimension. If Equation (1) is satisfied for the
triplet, we split all hyper-rectangles surrounding the line.

The Split step introduces individual hyper-rectangles of a
very small granularity. The TreeOptimization step groups
individual hyper-rectangles of the same granularity into a
single hyper-rectangle. This step is implemented in the fol-
lowing way. While the set of individual hyper-rectangles is
not empty the algorithm takes a random hyper-rectangle C

from this set and tries to add individual hyper-rectangles
around C in all dimensions. If the expansion in all dimen-
sions is impossible we try to expand in all dimensions but
one. When that becomes impossible we try to expand in
all dimensions but two. We continue this process until it is
impossible to expand in any dimensions. This reorganizes
individual hyper-rectangles into large hyper-rectangles.

The KernelAdditions step augments kernel additions on
newly introduced nodes. The step is implemented in the
following way. For each data point it scans the new nodes.
For each new node it augments the kernels on the partition
points in the node. The efficiency of the kernel additions
increases, as the number of individual new nodes decreases.

The UnSplit step removes the splits in the areas where the
Split step over-split the hyper-rectangles. The step scans
the new nodes: for each dimension it checks adjacent triplets
of partition points and determines if the middle point can be
removed without loss of precision. If so the point is marked
for removal. At the end of the UnSplit step all marked par-
tition points are removed, which results in hyper-rectangles
with a small cardinality. These hyper-rectangles are grouped
with the second tree optimization step.

6. SUMMARY
The demonstration discusses the efficient estimation of con-
tinuous density information, which is important statistical
information that is used in many areas (e.g., approximate
query answering, clustering, query optimization). Our esti-
mator not only provides an upper but also a lower bound
for the error. This allows to control the space and time
complexity of the estimation. A variety of data sets will be
available that allow to investigate the estimation of density
information in general and the construction of the APDF
tree in particular.

7. REFERENCES
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning

histograms: building histograms without looking at
data. In SIGMOD, 1999.

[2] APDF-DS Method.
http://www.inf.unibz.it/dis/projects/3dvdm/. [Online;
accessed 09-June-2006].

[3] A. Deshpande, M. Garofalakis, and R. Rastogi.
Independence is good: dependency-based histogram
synopses for high-dimensional data. In ACM SIGMOD,
2001.

[4] B. Silverman. Density Estimation for Statistics and

Data Analysis. Chapman & Hall, London, 1986.

1194


