
A Semantic Information Integration Tool Suite
Jun Yuan Ali Bahrami Changzhou Wang Marie Murray Anne Hunt

Mathematics & Computing Technology
Boeing Phantom Works

P.O. Box 3707, M/C 7L-70
Seattle, Washington, 98124, U.S.A

{jun.yuan, ali.bahrami, changzhou.wang, marie.o.murray, anne.j.hunt}@boeing.com

ABSTRACT
We describe a prototype software tool suite for semantic
information integration; it has the following features. First, it can
import local metadata as well as a domain ontology. Imported
metadata is stored persistently in an ontological format. Second, it
provides a semantic query facility that allows users to retrieve
information across multiple data sources using the domain
ontology directly. Third, it has a GUI for users to define mappings
between the local metadata and the domain ontology. Fourth, it
incorporates a novel mechanism to improve system reliability by
dynamically adapting query execution upon detecting various
types of environmental changes. In addition, this tool suite is
compatible with W3C Semantic Web specifications such as RDF
and OWL. It also uses the query engine of Commercial EII
products for low level query processing.

1. INTRODUCTION
Information integration has been recognized as a critical enabler
for building large scale business applications such as enterprise-
wide decision support systems. Industry has invested tremendous
effort in integrating existing data systems across different
programs and business units, customers, suppliers, government
agencies, etc. With the recent explosion of the Internet and web-
based resources, information integration and the related semantic
interoperability are becoming an even greater concern.

To address such business needs, several Commercial-Off-the-
Shelf (COTS) Enterprise Information Integration (EII) products
have emerged [1] [2]. These products all provide a very important
capability, namely, answering queries against a variety of
information sources across the networks with a single unified
query interface. This is a great help in resolving non-semantic
heterogeneity including platform heterogeneity, network
heterogeneity, data model heterogeneity, and more importantly,
query capability heterogeneity. However, to our best knowledge,
almost all COTS EII products in the market are limited in, or
totally lack, the capabilities of semantic interoperability and
dynamic adaptation upon changes [1] [3].

Specifically, the common global schema in a COTS EII product is

usually represented using a low level (non-semantic) data model,
e.g. a relational model or XML schema/DTD files. The semantics
of information content are usually implicitly embedded in
schemata, expressed by application logic, or worse, captured only
in users’ minds. System integrators have to spend a lot of energy,
during the integration process, in discovering these hidden
semantics. However, the discovered semantics cannot be
explicitly represented by the low level data model in current
COTS EII products. This intensive discovery work often needs to
be repeated in the evolution of the information integration
process.

With the low level data models, information can only be retrieved
using a non-semantic query language such as SQL or XQuery.
This requires users to have adequate database knowledge in
understanding both the schema and the query language itself.
Such a query language is perhaps preferable for application
developers, but not user-friendly enough for normal business
users, who usually don’t have enough database knowledge but
possess plenty of domain knowledge.

In addition, these COTS EII products usually fail to execute a
query when any data element involved in the query becomes
inaccessible. Users only get error messages without any
information about other accessible data elements. In extreme
cases, the failure of one local data system will cause the whole
integrated system to cease functioning well. This leads to poor
system reliability, especially in a complex environment where
changes are expected to occur very often.

We present a prototype software tool suite that helps users build
integrated information systems. The tool suite continues the work
reported in [4] and is based on a framework proposed in [5]. Our
approach takes full advantage of COTS EII products; for example,
we use their optimized distributed query engines, and provide
value-added features including dynamic querying adaptation and
semantic interoperability. The tool suite keeps data in
existing/legacy data systems and integrates information based
upon its semantic equivalence. It uses a domain ontology to
explicitly describe the semantics of global information content. To
resolve semantic heterogeneity, the tool suite maps local models
onto the domain ontology. It also leverages Semantic Web
standards. For example, both the domain ontology and the
mapping knowledge can be exported into the Resource
Description Framework (RDF) or the OWL Web Ontology
Language (OWL) documents.

2. TOOL SUITE ARCHITECTURE
Figure 1 describes the overall architecture of the tool suite. The
metadata repository persistently stores the domain ontology. A

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1171

COTS EII product connects to each local system and produces an
EII common global schema to reflect its relationship with each
local system. Its underlying query engine executes distributed
queries at a low level. The COTS low level query engine supports
basic data operations in a distributed environment, for example,
distributed joins, selections and projections. With the help of a
graphical mapping tool within the tool suite, a system integrator
can create mappings between the ontology and local metadata
(thus the EII common global schema) and save them into the
metadata repository.

Post-Query
Processor

COTS EII Product
(Query Engine)

Metadata
Repository

Semantic
Query

Translator

��������
	
�����

Member
Systems

 �����
� �������

� �������

� ������	
��������������

�
�
�
�
��

��
�	

�
��

��
��

�
�
��

�
��	
����� ��� ���

������������ ������������

 ������� �������

� ������	
����� ��� ���

Mapping
Tools� ��������

� ������ �������

End User System
Integrator

GUI/Query
Generator

!
��

�
��
�
�
��

�
�
��

�
��	
�����

Figure 1. Semantic Information Integration Tool Suite
Architecture

The mappings play an important role in translating a user-defined
semantic query into one or multiple global query statements that
are executable by the underlying EII query engine. The query
generator allows users to define semantic queries. Upon receiving
a semantic query, the semantic query translator converts the
original query into one or more query statements, and then
submits them to the underlying COTS EII query engine. The post-
query processing module transforms the query answers from the
COTS EII query engine into instantiations of the domain
ontology, and presents them to the users via a GUI.

In this architecture, semantic information integration and
interoperability tasks are performed in two different layers. The
tasks of resolving non-semantic heterogeneity are pushed down
into the COTS EII product. Various types of semantic
heterogeneities are resolved using both the domain ontology and
the mappings. This two-layered approach enables us to take full
advantage of many distributed query optimization strategies
provided by COTS EII products.

3. SEMANTIC QUERY PARADIGM
We propose a Navigational Semantic Query Paradigm (NSQP) for
querying ontologies. Based on the two basic ontological elements,
concepts and relationships, NSQP is neutral to any specific
ontology representation standard. NSQP uses two basic
constructs, concept node and relationship node. A concept node
references exactly one concept in the domain ontology. A
relationship node references exactly one relationship in the
domain ontology. A relationship node represents a navigation step
from one concept node to another under the referenced
relationship. A relationship node may be connected to one or
many concept nodes, and these concept nodes refer to the ending

points of the navigation. A concept node may be connected to
zero or many relationship nodes to indicate either the query
targets or the navigations.

Concept nodes are very similar to variables in a conventional
query language. They are placeholders for occurrences of
concepts in the query. When a relationship/attribute value is
requested, it must be bound to a specific occurrence of a concept.
This enables us to only maintain the bindings for concept nodes
and to easily calculate the requested relationship/attribute values
on demand. As a result, merging query answers from multiple
sub-queries becomes easy.

NSQP also supports query constraints and aggregations attached
to either concept nodes or relationship nodes. Currently supported
query constraints are in the form of a single comparison function
or multiple simple comparisons connected with logical operators.

An important metric for a semantic information access
methodology is the semantic understandability of query answers.
NSQP represents query results as instantiations of the domain
ontology, i.e., a collection of instances of concepts and
relationships, and hence easily captures the semantics of query
answers.

We have implemented a graphical semantic query tool for NSQP.
When defining a query, a user typically picks a concept as a
starting point, and simply drags-and-drops the concept into the
designing panel. Then she/he selects appropriate relationships
(and the tool will add corresponding concepts). In this way the
user navigates the ontology from concept to concept under the
relationships.

Figure 2. Screenshot of Semantic Query Tool
Figure 2 presents a screenshot of the semantic query tool. To
compose the displayed sample query, a user first selects concept
PART, and drags-and-drops it into the query design panel. As a
result, a concept node named PART, shows up. Then the user
selects hasRecord (by clicking the radio button) in the PART
concept node, a relationship node hasRecord and a concept node
MAINTENANCE (references the range concept of relationship
hasRecord) pop up, implying a navigation from the PART concept
to the MAINTENANCE concept under the hasRecord relationship.
Likewise, the user selects isPartOf to navigate from PART to
AIRCRAFT. Note that there is a minor variation for the second

1172

navigation. The range concept of relationship isPartOf is replaced
by AIRCRAFT, which is a sub-concept of PART.

4. METADATA & MAPPING
There are three major types of metadata in our information
integration framework: domain ontology, local metadata, and
mappings between them. The scope of the domain ontology
encompasses the semantics of all the domain knowledge implicit
in the sources. Local metadata describes the logical or physical
schemata for each individual local system. Mappings encapsulate
the correlations and bridge the conceptual gap between the
domain ontology and different local schematic elements.

Identifying, developing, and managing mappings are critical to the
operation of an integrated information system. However, little
work has been done to create a generic formal methodology for
this problem. Our mapping strategy addresses this challenge from
the perspective of translating NSQP queries into low level queries
and transforming retrieved low level query answers into
instantiations of the domain ontology.

Pieces of data from different sources need to be integrated mainly
because they do share common semantics. The common semantics
here does not only mean ‘absolute equity’, but also refers to
‘approximate equivalence’. In the second case, data
transformations usually involve some conversion methods. Our
mapping strategy correlates multiple local schematic elements, for
example tables and columns, by means of mapping them onto the
same ontological concepts or relationships.

Concept A

isMappedTo

isMappedTo

Concept B
isMappedTo

isMappedTo

R-AB
Join1

Join2
isMappedTo

isMappedTo

Table1

Table2

Table3

Table4

Figure 3. A Simple Illustration of Mapping Mechanism
Figure 3 illustrates our mapping mechanism. We omit the detailed
mapping structure due to space limitation. In Figure 3, ConceptA
is mapped to Table1 and Table2, while ConceptB is mapped to
Table3 and Table4. The Relationship R-AB is mapped to two join
operations, i.e., Join1 and Join2 respectively. Join1 is between
Table2 and Table3, while Join2 is between Table1 and Table4.

The semantic navigation operation, one of the major semantic
query operations, is usually denoted by a relationship node in
NSQP. It can thus be evaluated by performing a relational join
operation. The mapping does not pre-define a fixed type of join
operation for any semantic navigation. Instead, an appropriate join
type will be chosen during runtime. NSQP supports two types of
navigation: optional navigation and mandatory navigation. An
optional navigation from ConceptA to ConceptB via R-AB
indicates the user’s intention to obtain instances of ConceptA even
if there is no related instance of ConceptB under R-AB. A
mandatory navigation means that users are interested in getting

instances of ConceptA only if there is at least one related instance
of ConceptB under R-AB. Obviously, an optional navigation is
similar to a relational outer join operation, while a mandatory
navigation is similar to that of a relational inner join operation.

In order to integrate information from multiple local systems,
users often need to invest significant effort extracting implicit
semantics from local metadata. This is often a manual process and
can hardly be automated with guaranteed accuracy. To avoid
repeating this costly process, the tool suite persistently stores all
extracted semantics explicitly by using ontological representations
for metadata.

In addition, query processing sometimes requires sophisticated
mapping knowledge be derived from basic mapping facts. For
example, if the domain ontology uses concept inheritance or OWL
axioms like “sameAs” or “equivalentClass”, sophisticated
mappings are needed. They are often derived from basic mappings
on the requested concept, its super-/sub-concepts, and its
equivalent concepts. These derivations may be as simple as
calculating transitive closure or as complex as evaluating an
advanced logic program. This imposes a requirement of inference
capability on mappings. With an ontological mapping
representation, such derivations can be pre-defined by rules. An
appropriate inference engine can fire these rules so as to expand
the basic mapping facts into more sophisticated ones.

5. DYNAMIC ADAPTATION
The second major aspect/contribution of our tool suite addresses
how to cope with changes related to information access that
commonly happen in a fairly complex environment. For example,
the accessibility and capability of each individual information
source may change; new data systems may be added or existing
data systems may be removed; the underlying data model of some
information sources may be modified; and network connectivity
and bandwidth may change significantly. These changes may
prevent users from getting the requested information. Therefore, it
is necessary to actively monitor changes in real time and to
automate reactions upon detection of these changes. In other
words, it is necessary to re-configure the system in real-time for
information integration.

Different types of changes may have different semantic
implications for existing mappings and hence the information
integration tasks. Automatically deriving such implications
obviously enables the automatic re-configuration. Unfortunately, a
fully automatic solution may not be viable yet. Nevertheless, we
can work towards this goal by automatically modifying the state
of the pre-defined mappings to incorporate detected changes.
These modifications include: removing invalid mapping
components, adding new mapping components, decomposing
complex mapping objects, and regrouping mapping structure.

Using this real-time automatic modification strategy, our approach
improves system robustness. Traditionally, information is
integrated in a purely static manner. Given a query request with
the static information integration strategy, only one static query
execution plan is generated in any circumstance. If the
aforementioned changes occur after the static integration, the
execution often fails totally. Our approach is to generate a
dynamic query execution plan according to the current state of
available mappings. This allows users to get partial answers in

1173

accordance with their tolerance to approximation or
incompleteness in query results.

The tool suite uses a novel query rewriting technique to perform
dynamic adaptation upon detecting changes. In particular, the
query rewriting technique eliminates inaccessible elements from
the query execution. For instance, if a mapped relational table is
inaccessible, either the table is removed from the translated query
statement, or the entire translated query statement is deleted from
the query execution. As a result, instead of error messages, users
are able to get partial information back. Users can also be
informed about the incompleteness of the query answers.
However, the semantic distance between the original and the
rewritten queries is not calculated in a quantitative manner in the
current version.

6. DEMONSTRATION
In this demo, we will show the major features of our semantic
information integration tool suite, including two graphical
software tools, namely, the metadata management tool and the
semantic query tool. The tool-suite is developed purely in Java, as
standalone Java applications. The Jena API [6] is used to
manipulate RDF/OWL compatible ontologies.

The graphical metadata management tool allows users to import
local metadata through either standard interfaces such as
JDBC/ODBC or proprietary APIs for Product Data Management
(PDM) systems. The imported metadata is then converted into an
internal ontological representation, and can be exported as
RDF/OWL documents. The types of supported data sources
include relational databases, XML documents, Microsoft Excel
spreadsheets, and table structured files like Comma Separated
Value (CSV) files. Due to availability, we are unable to
demonstrate any proprietary data system, for instance a PDM
system in manufacture.

The metadata management tool takes domain ontologies in
RDF/OWL format. We have also developed a utility tool to
accommodate ontologies written in a First-Order-Logic based
language, in order to show that our technology is independent of
any specific ontology language.

Mappings between the domain ontology and local metadata can
be entered through the GUI of the metadata management tool. The
demo will show how local schematic elements can be mapped
appropriately onto basic ontological constructs.

The semantic query tool presents a GUI for NSQP. The
ontological representation of NSQP allows a user-defined query
to be saved as an XML serialization of RDF/OWL document.
Query answers are returned as RDF/OWL documents too. We
have also implemented utilities to transform the query answers
into two other different formats, i.e. a tabular format (similar to
conventional tables) and a tree-like format (similar to an XML
document).

The demonstrated technology has been successfully applied in
building a pilot web-based aircraft heath management system [7].
The system integrates several existing relational databases from
different programs inside the company, some key customers, and

suppliers. The tool suite has also been adopted in a demonstration
to show interoperability among many oceanographic observation
data sets under a government contract. Our experience shows that
the performance of this tool suite is comparable to that of many
COTS EII products, mainly because we have pushed down most
of the query evaluation into the COTS EII query engine. The
transformation of query answers into an ontological format
requires additional processing. However, the performance
overhead is not significant according to our observation.

7. FUTURE WORK
Dynamic changes may occur in not only information producers
but also information consumers. We plan to utilize process
models and user workflows to model both the information
consumers and the information producers, along with their
capabilities. With these models, we can not only monitor but also
predict changes in regards to the consumption of information and
make adaptations accordingly.

8. ACKNOWLEDGMENTS
This work is supported by Boeing Phantom Works Enabling
Technology fund. The authors acknowledge Chuck Klabunde for
his tremendous support. We thank the members of Boeing
Information Management and Collaborative Technology group,
particularly Dave Jones and Mike Uschold, for their helpful
suggestions. We also thank the anonymous reviewers for their
great comments and suggestions on the draft paper.

9. REFERENCES
[1] Halevy, A., et al. Enterprise Information Integration:

Successes, Challenges, and Controversies. In Proceedings of
SIGMOD 2005, pages778-787.

[2] Macvittie, L. Enterprise Information Integration Suites—
Don’t Fear the Data. Network Computing Magazine, Issue
on Sept. 16, 2004.
http://www.nwc.com/showitem.jhtml?docid=1518f2

[3] Uschold, M. and Gruninger, M. Ontology and semantics for
seamless connectivity. SIGMOD Record 33(3), 2004, pages
58-64.

[4] Barrett, T., et al. Applying Semantic Web technology to the
integration of corporate information. International Journal of
Web Engineering and Technology, Vol. 2, No. 2/3, 2005,
pages 231-247

[5] Yuan, J. Semantic-Based Dynamic Enterprise Information
Integration. In Database Modeling for Industrial Data
Management Emerging Technologies and Applications.
Chapter VI. Idea Group Publishing, 2006, pages 185-216.

[6] Jena – A Semantic Web Framework for Java.
http://jena.sourceforge.net/

[7] Wilmering, T., Yuan, J., and VanRossum, D. A metadata
architecture for mediated integration of product usage data.
In proceedings of AUTOTESTCON 2003, IEEE Systems
Readiness Technology Conference, 2003, pages 564-575.

1174

