
AQAX: A System for Approximate XML Query Answers

Joshua Spiegel†

jspiegel@cs.ucsc.edu
Emmanuel Pontikakis‡∗

manos@cs.stanford.edu
Suratna Budalakoti†

suratna@cs.ucsc.edu

Neoklis Polyzotis†

alkis@cs.ucsc.edu

†Department of Computer Science
University of California, Santa Cruz

Santa Cruz, CA 95064-1077

‡Department of Computer Science
Stanford University

Stanford, CA 94305-9025

ABSTRACT
On-line, interactive exploration of large databases becomes
prohibitively expensive as the size of the database grows.
Approximate query answering offers a cost-effective solution
to this problem, by enabling the fast generation of approx-
imate results based on concise data summaries. We apply
this paradigm in the context of XML databases, where the
increased complexity of data and queries amplifies the chal-
lenges behind interactive exploration. We have developed an
on-line XML exploration system, termed AQAX that relies
on accurate XML summaries in order to enable the rapid
exploration of large data sets. To effectively support the
exploration of semi-structured query answers, our system
employs a tight coupling between the main query proces-
sor and the graphical clients that visualize the results. This
demonstration will showcase the functionality of our system
and the effectiveness of approximate query answering in the
context of XML databases.

1. INTRODUCTION
The Extensible Mark-up Language [2] (XML) is rapidly gain-
ing in popularity as a universal data model for data exchange
and integration. This is evidenced by the increasing num-
ber of available XML data sets and the wide-spread support
for XML data management from the major database sys-
tem vendors. Given the growing popularity of XML, it is
natural to expect the emergence of decision-support systems
that will enable the on-line exploration of massive XML data
stores. In this scenario, the user (typically, an analyst or a
domain expert) analyzes the data in an interactive fashion,
and it is thus crucial to maintain low response times in order
to avoid disrupting the task of data exploration. This impor-

∗ Work performed while author was at UC Santa Cruz

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

tant goal, however, conflicts with the increased complexity
of query evaluation over semi-structured data. Even though
several research studies are actively exploring the important
problem of efficient XML query evaluation, it is clear that
interactive response times remain a very challenging issue.

A cost-effective solution for mitigating the increased cost of
query evaluation is the use of approximate query answers [1,
3, 5]. In short, the system evaluates the query over a con-
cise synopsis (or, summary) of the XML data, generating
an answer that approximates well the actual result of the
query. The key advantage of course is that the approximate
answer is generated very efficiently, as it is based entirely on
the highly compressed summary. The user can thus receive
timely feedback on the results of the query, before or dur-
ing query evaluation. In some cases, we expect the user to
refine his/her query based on the feedback, while in others
he/she may be satisfied with the approximate answer only.
Overall, approximate query answering may reduce the num-
ber of costly queries that the system needs to evaluate, thus
increasing the efficiency of interactive data exploration.

This demonstration presents AQAX (Approximate Query
Answering for XML), a system that supports approximate
query answers over large XML data sets. Our system is
based on the recently proposed XCluster [4] framework
for the accurate summarization of large XML data sets.
To support the generation and exploration of approximate
tree-structured answers, AQAX employs a two-tier archi-
tecture. At the first tier, a query processor generates ap-
proximate answers to complex XML queries based on the
XCluster framework. At the second tier, a navigation
client enables the effective exploration of the tree-structured
answers through visual manipulation primitives that are ap-
plied on XCluster synopses. Our demonstration presents
the use of AQAX in a simulated data exploration scenario,
showing the internal workings of the system at both tiers.

The following sections provide an overview of the XCluster

framework, and then present in more detail the architecture
of the AQAX system. We conclude with a description of the
demonstration.

1159

movies

movie movie

movie

title budget actor title budget actor actor

title budget actor actor actor actor

{True Lies} {$110M} {Arnold Schwarz...} {Pulp Fiction} {$8M} {John Trav...}

{The Godfather} {$6M} {Marlon Brando} {James Caan}{Al Pacino} {Robert Duvall}

{Samuel...}

(a)
movies(1)

movie(1) movie(2)

actor(7) budget(3)title(3)

1 1

1 1

1 1

4 1.5

[value summ.][value summ.][value summ.]

(b)

Figure 1: (a) an XML document (b) one possible
XCluster synopsis for the document

2. OVERVIEW OF XCLUSTER
The recently introduced XCluster framework targets the
difficult problem of summarizing the structure and value
content of complex XML data. An XCluster synopsis is a
node- and edge-labeled graph, where each node represents a
sub-set of elements with the same tag, and an edge connects
two nodes if an element of the source node is the parent
of elements of the target node. To capture the structural
and value-based properties of the underlying data, the syn-
opsis records aggregate statistical information at nodes and
edges. More precisely, each node maintains the count and
tag of elements that it represents, and an optional value

summary that captures the distribution of the correspond-
ing element values. Each edge, on the other hand, maintains
the average child count between source and target elements,
thus capturing the connectivity between the corresponding
element-sets.

An example of XCluster synopses is shown in Figure 1,
that depicts a sample XML data set and one possible
XCluster summary. In this particular case, the XCluster

summary groups elements by their tag. Note that each node
carries only the number of elements it represents and possi-
bly a summary of their value distribution, while edges record
the average number of children for the source elements.

XCluster captures the structural characteristics of the un-
derlying data and supports the summarization of common
types of values, namely, numeric, string, and textual values.
Hence, a single XCluster summary can generate approxi-
mate answers for queries that reference the structure and the
heterogeneous value content of the underlying XML data.
We note that the original XCluster framework focuses pri-
marily on the problem of selectivity estimation. Since our fo-
cus is on the generation of general approximate answers, we
augment XCluster with query evaluation primitives that

enable the computation of tree-structured results or aggre-
gates (e.g., AVG, SUM) over the underlying XML data.

3. AQAX SYSTEM ARCHITECTURE
Figure 2 depicts the main components of the AQAX system
architecture. The user interacts with the navigation client
to create a visual query, which is subsequently translated
to XQuery and submitted to the server. The server pro-
cesses the query over the stored XCluster summaries and
returns an approximate query answer, which is visualized
and further manipulated at the graphical client. The fol-
lowing sections describe the client and server components in
more detail.

3.1 The AQAX Server
The AQAX Server is responsible for evaluating queries over
the stored summaries and generating approximate answers.
The user has the option of selecting the synopsis for generat-
ing approximate answers, thus setting the desired accuracy
of the generated approximate results. The user may also
designate the actual data set as the “synopsis” of the data.
In that case, AQAX forwards the query to an XML DBMS
and returns the exact results.

The server employs an extension of the XCluster frame-
work [4] in order to generate approximate answers for twig-
queries with value predicates and optional aggregates. The
generated results are returned to the Navigation Client in
the form of an XCluster synopsis, henceforth referred to
as the result synopsis.

3.2 The Navigation Client
The navigation client, shown in Figure 3(a), enables the user
to formulate queries and explore their results. As shown in
the screen-shot, the query formulation is performed graphi-
cally on the left side of the main window, by manipulating
a tree-based representation of the twig query. At any point,
the user may also view the XQuery equivalent of a graphi-
cally created query.

After submitting the query to the server, the client receives
the result synopsis of the query. Since the result synopsis
can be too complex to present on screen, the client visualizes
a working synopsis that represents a coarser summarization
of the query answers. Initially, the working synopsis is the
coarsest (or, simplest) possible view of the result, grouping
under a single node all the result elements with the same
tag. The user can subsequently refine the working synopsis
by applying a set of operations that essentially increase the
level of detail of the visualization. (To the limit, the working
synopsis becomes the same as the result synopsis.) These
operations are processed entirely in the client and thus do
not require any communication with the server. In what
follows, we briefly describe the main operations that we have
incorporated in our system.

Render: This operator produces statistics over an edge or
a value summary in the working synopsis. The output of
the operator is displayed to the user with an appropriate
visualization that depends on the context. When applied to
an edge, the operator generates statistics about the parent-
child relationships between the corresponding element sets

1160

XML DBMS

AQAX Server

XCluster
Synopses

XML

Navigation Client

Working
Synopsis

Result
Synopsis

Operations

Query

Approx. answer
or true result

Figure 2: AQAX system architecture.

and visualizes them with a histogram. Consider, for in-
stance, a movie database similar to the one shown in Fig-
ure 1 (a), where movie elements may be the parents of vary-
ing numbers of actor elements. Rendering the edge between
a movie node and a actor node will present the user with a
histogram that displays the distribution of actors per movie.
Figure 3(b) depicts an example of this visualization, where
the vertical axis indicates the number of parent elements and
the horizontal axis indicates the number of children elements
per parent.

Render can also be applied to a value summary of a given
path in the working synopsis, in order to visualize the distri-
bution of values under the given path. Since the XCluster

model provides support for numerical, textual, and string
content, the summarization inherently depends on the type
of values under the specified path. In the case of numerical
values, the client displays an approximate value distribution
in the form of a histogram, while for string or textual val-
ues, the user is presented with a list of the most frequent
substrings and terms respectively.

Split Edge: The split operator allows the refinement of
the working synopsis in areas where the user would like to
see more information. More precisely, a split operation par-
titions the elements represented by the source node based
on their child counts in the target node, and thus creates
new source nodes and edges in the working synopsis. As
an example, consider again the approximate result shown
in Figure 3 and observe that movie elements may have a
varying number of actor children elements. The working
synopsis may represent the data in its coarsest form, with
a single movie node, a single actor node, and an edge be-
tween them. (This would certainly be the case in the initial
working synopsis). Assume that movies may have up to 100
actors each, but the user is only interested in the budget
of movies with less than 10 actors. By applying the split
operator to the edge with a split point of 10, two new edges
and two new movie nodes will be created. The first movie

node will represent movie elements with less than 10 actor

children while the second will represent those elements with
10 or more. The user can then use the render operator to
view the budget value distribution for movies with with less
than 10 actors.

The set of split points may be entered manually, or by ma-
nipulating the histogram resulting from a render operation

on the edge to be split. In the latter mode of interaction,
the user can click on the bars of the histogram to designate
the corresponding child counts as split points. Figure 3(b)
shows an example of this manipulation, where the red lines
next to histogram bars indicate the split points that the user
has selected.

Merge Nodes: The merge operator is the inverse of the
split operator. This operator is applied on a set of nodes
in the working synopsis with the same tag name, and re-
places them with a single node that acquires their aggregate
characteristics. Overall, the combination of the merge and
split operators allows the user to contract or expand differ-
ent parts of the result synopsis depending on the goals of
the exploration task.

Filter: The filter operator applies a value predicate to the
working synopsis and essentially restricts the set of visual-
ized results. This operation is thus similar to re-executing
the query with the added predicate. We include it in this set
of operations as the client already has the necessary informa-
tion for applying the predicate. We also provide the option
to integrate the filter in the current query, in case the user
wishes to view results from a different data synopsis (e.g.,
of increased size).

4. DEMONSTRATION
Our demonstration aims to showcase the functionality of the
AQAX system in exploring semi-structured query answers,
and to demonstrate the effectiveness of approximate query
answering in the exploration of large XML data sets.

The first part of our demonstration shows the effectiveness
of our system in the interactive exploration of approximate
query answers. More precisely, we simulate an interactive
user session on a specific data set through a sequence of
exploratory XML queries that are formulated on the visual
client. Once a query is submitted to the server and the re-
sults returned, we show how the user can effectively explore
the tree-structured answers by manipulating the working
synopsis through the visual primitives that we introduced
in Section 3.2. To illustrate the functionality of different
operators, we introduce an auxiliary window that visualizes
the result synopsis of the query. This window is a visual aid
for our demonstration, showing how the updated working
synopsis (after the application of an operation) relates to
the result synopsis returned by the server.

1161

(a) (b)

Figure 3: The Navigation Client: (a) the main window, showing a query and the working synopsis; (b) a
histogram resulting from a render operation on an edge.

The next part of our demonstration illustrates the effective-
ness of approximate query answers by showing that they are
accurate and can be generated relatively fast. To aid in this
part of the demonstration, we introduce a second window in
the navigation client that displays a working synopsis of the
true query result (henceforth referred to as the exact work-
ing synopsis). This auxiliary window is synchronized with
the main window of the approximate working synopsis, in
that any operations (splits, merges, etc.) that are applied
to the approximate working synopsis in the first window are
automatically applied to the exact working synopsis. The
goal is to show the working synopsis that would result if
the user chose to manipulate and explore the true results
of the query, and hence to examine the effectiveness of ap-
proximate answers in capturing the main characteristics of
the true query result. The demonstration simulates again a
user session with several exploratory queries, comparing the
execution time to obtain the initial approximate and exact
working synopses, and evaluating the similarity between the
two after the application of our visual operations.

5. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. The Aqua Approximate Query
Answering System. In Proceedings of the 1999 ACM

SIGMOD Intl. Conf. on Management of Data, pages
574–576, 1999.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and
E. Maler. “Extensible Markup Language (XML) 1.0
(Second Edition)”. W3C Recommendation (available
from http://www.w3.org/TR/REC-xml/), October 2000.

[3] M. Garofalakis and P.B. Gibbons. Approximate Query
Processing: Taming the TeraBytes. In Proceedings of

the 27th Intl. Conf. on Very Large Data Bases, 2001.

[4] N. Polyzotis and M. Garofalakis. XCluster Synopses for
Structured XML Content. In Proceedings of the 22nd

Intl. Conf. on Data Engineering, pages to–appear, 2006.

[5] N. Polyzotis, M. Garofalakis, and Y. Ioannidis.
Approximate XML Query Answers. In Proceedings of

the 2004 ACM SIGMOD International Conference on

Management of Data, pages 263–274, 2004.

1162

