
SIREN: A Similarity Retrieval Engine for Complex Data

Maria Camila N. Barioni Humberto Razente Agma Traina Caetano Traina Jr.

Computer Sciences Department – ICMC/USP
Caixa Postal 668, 13560-970, São Carlos, SP, Brazil

{mcamila, hlr, agma, caetano}@icmc.usp.br

ABSTRACT
This paper presents a similarity retrieval engine – SIREN –
that allows posing similarity queries in a relational DBMS
using an extended syntax that adds the support for such
type of queries in the SQL language. It discusses the main
architecture of SIREN, describes some key features and pro-
vides a description of the demo.

1. INTRODUCTION
As objects of complex types such as multimedia data (e.g.

images, audio tracks, video and long texts), geo-referenced
information, time series, fingerprints, genomic data and pro-
tein sequences, among others, are being stored at an in-
creasing rate in Relational Database Management Systems
(RDBMS), the need to support similarity queries also in-
creases [3]. However, the standard SQL query language
does not provide effective support for such queries. Cur-
rently, the International Standards Organization is working
in the SQL/MM [7], a multi-part standard proposal that
provides storage and manipulation support for multimedia
data based on user defined types and functions (UDT and
UDF). Commercial products such as Oracle InterMedia and
IBM DB2 IAV Extenders follow this approach. While this
extension can use the existing highly optimized algorithms
for each specific similarity operation, it does not allow op-
timizations among the operators nor their integration with
the other operators used in a query.

Supporting to similarity queries from inside SQL in a na-
tive form is important to allow optimizing the full set of
search operations involved in each query posed. Therefore,
integrating similarity queries in a fully relational approach,
as proposed in this paper, is a fundamental step to allow
the supporting of complex objects as “first class citizens” in
modern database management systems. This paper presents
an extension to the SQL and a similarity retrieval engine
that allows posing similarity queries in a relational DBMS.
Table 1 compares our proposed approach to representative
available systems that allow posing similarity queries.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

Table 1: Comparison of similarity query approaches.
Features SIREN Oracle∗ DB2∗∗

Representation of similarity Native Ranking Ranking
queries predicates functions functions
Optimizations among similarity op- Yes No No
erators and/or relational operators
Multiple distance functions when Yes No No
defining similarity measures
Inclusion of new extractors Yes Yes Yes
∗ Oracle Intermedia 10g R2. ∗∗ DB2 AIV Extenders V. 8.

SIREN (SImilarity Retrieval ENgine) was implemented to
evaluate the adequacy of a syntax extension [1] and it can
be accessed at [5]. SIREN acts like a blade between a con-
ventional DBMS and the application programs intercepting
every SQL command sent from the application. If it has no
similarity construction nor a reference to complex objects,
SIREN sends the command to the underlying DBMS and
sends back the answer from the DBMS to the application
program. So, when only conventional commands are posed
by the application, SIREN is transparent. When the SQL
command has similarity-related demands or references to
complex objects, the command is re-written to execute the
similarity-related operations internally, using the underlying
DBMS to execute the conventional data operations.

Our demo illustrates the key features and applications of
SIREN. In particular, we present: how similarity queries
can be supported in SQL; how complex objects are manip-
ulated, stored, indexed and retrieved; the description of a
web-based prototype connected to SIREN that provides an
environment that allows posing SQL commands (both stan-
dard and extended); and an illustration of some SQL com-
mands that can be employed to explore complex data by
similarity.

2. SIREN DESCRIPTION
SIREN is composed of three main components (see Fig-

ure 1): the interpreter of the language extension that adds
similarity queries to SQL; the feature extraction algorithms
employed to extract features to represent and index complex
objects; and the access methods developed to answer simi-
larity queries (Metric Access Methods – MAM). The main
aspects related to each one of these components are briefly
described in the next sections.

2.1 Supporting Similarity Queries in SQL
To allow the representation of similarity queries over com-

plex domains, it is necessary to define the data types where

 1155

Application
Database

Metric Access
Method - MAM

SIREN - SImilarity Retrieval ENgine

Standard SQL/
Extended SQL

SQL

RDBMS

SIREN
Data

Dictionary

Feature
Extractors

Indexer

Query Interpreter

Application Program

Figure 1: SIREN architecture.

similarity will be measured. Two kinds of complex domains
were considered: those stored as structures composed of any
number of traditional attributes in a relation (e.g. time se-
ries, geo-referenced information, etc.) and those monolithi-
cally stored as Binary Large Objects – BLOBs (e.g. images,
audio tracks, etc.). They are represented respectively by the
domains PARTICULATE and Monolithic. In this paper, we il-
lustrate Monolithic domains using images. Other examples
of Monolithic domains are audio and video. Thus, new data
types were defined, such as PARTICULATE and STILLIMAGE,
where the last one is a specialization of the domain Mono-
lithic regarding the manipulation of images.

A core issue on including similarity queries in SQL is how
to define similarity measures (metrics). As there is no con-
cept resembling the definition of comparison operators in
SQL, it is needed to create new commands. Similarity mea-
sures are stored in the database catalog, thus their manip-
ulation commands should follow the DDL command style.
Hence, we created three commands to handle distance func-
tions: the CREATE METRIC, the ALTER METRIC and the DROP

METRIC. A metric embodies every handling of the attributes
employed to calculate similarity, including feature extrac-
tion (for monolithic domains), attribute normalization and
the object comparisons.

Once the metrics have been created, they can be asso-
ciated with one or several complex objects defined as at-
tributes in any relation as a constraint for the attribute, fol-
lowing the two usual ways to define constraints in a CREATE

TABLE command: as a column constraint or as a table con-
straint. Moreover, as they enable the creation of indexes to
speedup queries, they can also be defined in a CREATE INDEX

command.
The syntax of the DML commands – SELECT, UPDATE and

DELETE – were also extended with new constructions that
allows expressing similarity predicates. The syntax of the
INSERT command does not need changes, although its im-
plementation must consider the new data types. Some ex-
amples of the use of the new syntax are presented in Section
3. The complete syntax of the extension to SQL can be
found in [5]. The proposed extension aimed at causing a
low impact on SQL, whereas providing a strong support to
represent similarity queries.

2.2 Handling complex objects in SIREN
PARTICULATE data types are stored by their constituent

parts, presenting no new storage requirements. On the other
hand, the storage of STILLIMAGE and AUDIO data types must
include the features associated with them. Although these
data types are stored in attributes of type BLOB, it is also
required to store their extracted features. Feature extraction
is usually costly, and it must be executed for each object
once, when the object is stored in the database. The features
are stored as textual or numeric attributes associated with
the complex object. As the user does not provide attributes
in the relations to store the extracted features, the system
must provide the places to store them and their association
with the BLOB data in a way transparent to the user. This
is similar to what most commercial DBMSs do in order to
store BLOB data.

To store the features extracted from a STILLIMAGE object,
SIREN changes the definition of user defined tables that
have STILLIMAGE attributes as follows. Each STILLIMAGE

attribute is changed to a reference to a system-controlled
table that has as its attributes the BLOB and a set of at-
tributes that stores all features got by every extractor used
in each metric associated with the attribute. A new ta-
ble is created for each STILLIMAGE attribute. Whenever a
new image is stored in the database, SIREN intercepts the
INSERT command, stores the non-complex attributes in the
user table and the images in the corresponding system ta-
bles. Then, SIREN calls the feature extractors and stores
their outputs in the corresponding system tables. The stor-
age of the features as regular attributes in hidden relations,
instead of BLOB tags as it is done by Oracle Intermedia,
allows better indexing and retrieval operations and also a
consistent behavior over Monolithic and PARTICULATE data
types.

Whenever the user asks for data from its tables, SIREN
joins the system tables and the user tables, removing the
feature attributes, so the user never sees the table split nor
the features. Figure 2 shows an illustration of how these
new data types are stored by SIREN.

ID

Im
age

FA

F z

2050

...

...

...

...

Im
age extr

acted

features

BLO
B

ID

AUDIO

FA

F z

1001

...

...

...

...

Audio
extr

acted

features

BLO
B

(b)

x1

101 xyz 1001...

...

...............

STILLIMAGE

x2 x3 xn

2050

AUDIO

(a)

y1

22

...

y2

125

...

y3

50.5

...

y4

75

...

y5

33

... ...

ym

12.8

...

...

...

PARTICULATE

Figure 2: Storage schema of the new complex data
types. (a) STILLIMAGE and AUDIO data types. (b)
PARTICULATE data type

When the user poses queries involving similarity predi-
cates, SIREN uses the extracted features of the Monolithic
objects or the set of attributes that compose PARTICULATE

objects to execute the similarity operators. The current ver-
sion of SIREN has three types of feature extractors regard-

 1156

ing the STILLIMAGE data type (although other extractors
can be easily included): a texture extractor (TEXTUREEXT),
a shape extractor based on Zernike Moments (ZERNIKEEXT)
and a color extractor based on the normalized color his-
togram (HISTOGRAMEXT) [6].

SIREN implements five similarity operators. The first two
perform the similarity selection and correspond to the two
traditional types of similarity search: the Range query (Rq)
and the k-Nearest Neigbor query (k-NNq) [3]. The other
three operators implement the similarity joins: Range Join,
k-Nearest Neigbors Join and k-Closest Neigbors Join [2].

The metric access method (MAM) employed by SIREN to
index PARTICULATE and STILLIMAGE attributes is the Slim-
Tree [8], available in the Arboretum (an open source C++
library which implements various MAMs) [4]. The similar-
ity selection operators are already developed in Slim-Tree.
However, there is no procedure published to execute the sim-
ilarity join operators in this or in any other MAM. Thus,
if a complex attribute is associated with an index, SIREN
executes the similarity selection using a Slim-tree. If the at-
tribute does not have an index, or the required operator is a
similarity join, then the query is answered using sequential
scan. SIREN has been implemented in C++ and it employs
the ODBC protocol to connect with a DBMS. Although the
current version of the prototype is running over an Oracle
10g DBMS it can easily be adapted to other DBMS. An
eventual implementation of a DBMS with native support
for similarity queries can follow the same approach adopted
by SIREN.

3. EXAMPLE APPLICATIONS
In order to demonstrate the usability of the similarity

retrieval engine, a web (cgi) application was developed in
C++ providing an environment that allows posing SQL
commands. In this section we use this tool to show ex-
amples of posing similarity queries based on the extended
language.

In order to illustrate the new data domains defined, two
data sets are employed. The first one, called MedImages,
is composed of 5,180 medical images. The images are Com-
puterized Tomographies (CT) from three human body parts:
abdomen, cranium and thorax. Each tuple of this data set
has an image id, the image, the description of the body part
and an attribute that specifies whether the image identifies
a pathological condition. Similarity queries can be posed to
explore this data set considering several aspects of the im-
ages such as the similarity based on color distribution or on
texture. Two metrics were defined to handle these features,
one using the HISTOGRAMEXT extractor and other using the
TEXTUREEXT extractor. The commands employed to create
the table and the metrics follows.

CREATE METRIC HistogramLP1 USING LP1 FOR STILLIMAGE

(HISTOGRAMEXT (Histogram AS Histo));

CREATE METRIC Texture FOR STILLIMAGE

(TEXTUREEXT (Texture AS T));

CREATE TABLE MedImages (

Id INTEGER PRIMARY KEY,

BodyPart VARCHAR(15),

Img STILLIMAGE,

Pathology CHAR(1),

METRIC (Img) USING

(HistogramLP1 DEFAULT, Texture));

Examples of queries that utilize each one of these metrics
are shown in Figure 3.

(a)

(b)

Figure 3: Similarity query examples based on Med-
Images table. (a) k-NN query considering the de-
fault metric (Histogram). (b) Range query consid-
ering the Texture metric.

The second data set, called Cars1, is composed of the
description of 392 cars. This data set is composed of five at-
tributes that describe the following variables: MPG (miles
per gallon), horsepower, time to accelerate from 0 to 60 mph
(sec.), origin of car (American, European or Japanese) and
the car names. This data set can be queried by similar-
ity considering several questions. Here we show a metric
to compare cars based on the cost-benefit ratio related to
the variables horsepower, acceleration and MPG. The com-
mands employed to create the table and the metric described
above are presented following.

CREATE METRIC CostBenefit

USING LP2 FOR PARTICULATE

(hp FLOAT 5.0, mpg FLOAT, sec FLOAT 10.0);

CREATE TABLE Cars (

CarName CHAR(35),

Horsepower FLOAT,

1This is the cars.data data set available at
http://lib.stat.cmu.edu/

 1157

Consumption FLOAT,

Acceleration FLOAT,

Origin CHAR(8),

Car PARTICULATE,

METRIC REFERENCES (Horsepower AS hp,

Consumption AS mpg,

Acceleration AS sec)

USING (CostBenefit DEFAULT));

Several metrics can be associated with each complex at-
tribute. Using the metric associated with the Cars data set,
it is possible to perform queries such as those presented in
Figure 4.

(a)

(b)

(c)

Figure 4: Similarity query examples based on the
Cars table. (a) “Which are the 3 most similar cars
having: Horsepower = 67 hp, Consumption = 38
mpg and Acceleration = 15 s?”. (b) “Which are
the 10 cars most similar to the given car and whose
origin is not American?”. (c) “Which are the 3 most
similar European cars to each American car?”.

Considering the execution of a query, the time spent by
the search in a MAM depends on several factors such as: the
size of the feature vector; the number of objects indexed;
and the time needed to read a block in a hard disk. As
a reference, the total time spent by SIREN to analyze and
execute the query presented in Figure 3(b) was 0.29 seconds
and in Figure 4(b) was 0.16 seconds, running in a 1.8 GHz
PC (including the time spent to read the data dictionary,
but not the time spent to generate the image thumbnails
and the preparation of the html page).

4. CONCLUSIONS
This paper presented SIREN, a SQL interpreter prototype

that allows executing similarity queries over complex data
stored in RDBMS. The tool allows executing selections and
joins based on the similarity among objects of a complex
type. Two kinds of complex attributes are defined: image,
and complex attributes defined by simple attributes. The
tool allows executing simple queries as well as any combina-
tion of operations among themselves and among traditional
selections and joins, providing a powerful way of executing
similarity queries in complex databases. In addition to the
example applications presented herein, there are other data
sets and several query examples that can be executed in a
web-based prototype connected to SIREN that is available
at http://gbdi.icmc.usp.br/siren.

5. ACKNOWLEDGMENTS
This work has been supported by FAPESP (São Paulo

State Research Foundation), by CNPq (Brazilian National
Council for Supporting Research) and by CAPES (Brazilian
Coordination for Improvement of Higher Level Personnel).

6. REFERENCES
[1] M. C. N. Barioni, H. Razente, C. Traina-Jr, and

A. J. M. Traina. Querying complex objects by similarity
in SQL. In Brazilian Symposium on Databases (SBBD),
pages 130–144, Uberlândia, MG, 2005. SBC.

[2] C. Böhm and F. Krebs. High performance data mining
using the nearest neighbor join. In IEEE International
Conference on Data Mining (ICDM), pages 43–50,
Maebashi City, Japan, 2002.

[3] E. Chávez, G. Navarro, R. Baeza-Yates, and
J. Marroqúın. Searching in metric spaces. ACM
Computing Surveys (CSUR), 33(3):273–321, 2001.

[4] GBDI-ICMC-USP. GBDI Arboretum Library.
http://gbdi.icmc.usp.br/arboretum/, 2006.

[5] GBDI-ICMC-USP. Similarity Retrieval Engine –
SIREN. http://gbdi.icmc.usp.br/siren/, 2006.

[6] F. Long, H. Zhang, and D. D. Feng. Fundamentals of
content-based image retrieval. Multimedia Information
Retrieval and Management, Springer, 2002.

[7] J. Melton and A. Eisenberg. SQL Multimedia and
Application Packages (SQL/MM). SIGMOD Record,
30:97–102, 2001.

[8] C. Traina-Jr., A. J. M. Traina, C. Faloutsos, and
B. Seeger. Fast indexing and visualization of metric
datasets using Slim-trees. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
14(2):244–260, 2002.

 1158

