
NUITS: A Novel User Interface for Efficient Keyword Search
over Databases

Shan Wang, Zhaohui Peng, Jun Zhang
Lu Qin, Sheng Wang

School of Information, Renmin Univ. of China
Key Laboratory of Data Engineering and
Knowledge Engineering, MOE of China

Beijing, China

{swang,pengch,zhangjun11,
qinlu,wangsheng1}@ruc.edu.cn

Jeffrey Xu Yu, Bolin Ding
Department of Systems Engineering and

Engineering Management
The Chinese Univ. of Hong Kong

Hong Kong, China

{yu,blding}@se.cuhk.edu.hk

ABSTRACT
The integration of database and information retrieval tech-
niques provides users with a wide range of high quality ser-
vices. We present a prototype system, called NUITS, for
efficiently processing keyword queries on top of a relational
database. Our NUITS allows users to issue simple keyword
queries as well as advanced keyword queries with conditions.
The efficiency of keyword query processing and the user-
friendly result display will also be addressed in this paper.

1. INTRODUCTION
Keyword search over relational databases enables end users,
who do not understand the underneath schema and SQL, to
find the connections among the tuples stored in relations,
with a given set of keywords. Here, the connections among
the tuples are specified by foreign-key references. The re-
cent studies can be categorized into two types according to
the search mechanism they adopted, namely, schema-graph-
based and data-graph-based. The former includes DBXplore
[1] and IR-Style [3], whereas the latter includes BANKS [2,
4].

Consider a DBLP database [5] for citations among research
papers written by authors using 4 relations: Author, Paper,
Write, and Cite. The Author relation is with an author-id
(AID) and an author name (Name). The Paper relation is with
a paper-id (PID) and a title (Title). The Write relation
specifies the relationship between a paper and an author
using paper-id and author-id. PID and AID in the relation
Write are foreign key references to PID and AID in the Paper
relation and the Author relation, respectively. The Cite

relation specifies the citation between two papers, and both
attributes, cite and cited, are foreign key references to
PID in the relation Paper. Here, a simple keyword query
may contain several keywords, for example, Codd and XML.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

The results, for this 2 keyword query, include the papers
that have XML in the title and cite a paper written by Codd

with a possible sequence of citation relationships.

In this demonstration, we present a data-graph-based sys-
tem called NUITS over a relational database system. In
addition to supporting advanced keyword queries, NUITS
achieves high efficiency for keyword query processing and
provides users with different view mechanisms to assist them
to view the complicated structure among tuple connections,
which are considered as difficult tasks [8].

2. KEYWORD QUERY SPECIFICATION
NUITS supports several advanced keyword queries as well
as simple keyword queries. An example of simple keyword
query is given above. We discuss keyword specification fol-
lowed by the discussions on advanced keyword queries.

• Simple keyword: A simple keyword is just a key-
word, for example database.

• Typed keyword: Users do not need to know the un-
derneath relational database schema when they issue
keyword queries. But, because a keyword may ap-
pear in any attributes and in any relations, the results
may be large and include many users do not need.
In order to restrict the search space, typed keywords
are introduced in NUITS which allows users to spec-
ify a keyword with a type. Here a type can be ei-
ther relation-name or attribute-name. For example,
Paper:database means that a keyword of database

appearing in the Paper relation. In addition, we in-
troduce a wildcard * for any possible keyword. For
instance, if a user is interested in any authors who
wrote a paper on database, he/she can issue a 2 key-
word query with Author:* and database. Since casual
users may not know the exact relation or attribute
name, NUITS supports aliases. The same query in
the above example can also be written as Writer:*

and database, as long as the alias ”Writer” has been
configured in advance by system administrators.

• Conditional keyword: NUITS allows users to spec-
ify conditions associated with a keyword. For exam-

1143

 Search Engine

Structural Clustering

 Parser

Content Clustering

Top-k Trees

Internal Query Format

TreeCluster

User Query User Query

Database

......

List

Clusters

Figure 1: The NUITS architecture

ple, database year>2000 specifies a condition associ-
ated with the keyword database. The condition means
that, if a tuple containing the keyword database has
an attribute called year, its value must be greater than
2000. Instead of >, the other comparators such as <,
≤, =, ≥ and �= can also be used. Note: a keyword
can be associated with multiple conditions. In addi-
tion, NUITS provides a special operator ∼ for approx-
imation keyword. For example, database year∼2000
means that the tuple-connection-trees with nodes (tu-
ples) containing a numerical value of year, which is
closer to year 2000, will be given a smaller cost.

A keyword query is a set of keywords associated with Boolean
operators such as AND, OR and NOT. The keyword query spec-
ification is given below.

Q ::= p | (Q) | Q AND Q | Q OR Q | NOT Q

Here, p means a keyword which can be a simple keyword,
typed keyword, or conditional keyword. Q means a keyword
query. For instance, a keyword query, Ullman AND (database
OR algorithm), is to retrieve all the papers on database or
algorithm written or cited by Ullman.

3. ARCHITECTURE
The architecture of NUITS is shown in Figure 1. The system
adopts Browser/Server architecture. The browser allows
users to issue keyword queries and view the resulting con-
nections among tuples in a relational database. The server
consists of three modules: a parser module, a search engine
module, and a display module (denoted TreeCluster). Key-
word queries are first parsed by the parser, which transforms
various queries (simple queries and advanced queries) into
an internal format. The search engine processes the internal
query format in two steps. First, it identifies all the tuples
in RDBMS that contain at least a keyword using a full-
text index built on top of the RDBMS. Second, it finds the
top-k resulting tuple-connection-trees, based on a weighting
scheme. The resulting top-k tuple-connection-trees can be
listed directly or further clustered into clusters according to

Vagelis Hristidis

A2

Efficient IR-Style...Paper

Write Write

AuthorAuthor Yannis Papakonstantinou

P1

P1

P1A1

A2A1

Figure 2: An example of tuple-connection-tree

Write P2A1

Vagelis HristidisAuthor A1 DISCOVER: Keyword...Paper P2

A2Write P2

Author Yannis PapakonstantinouA2

Figure 3: Another example of tuple-connection-tree

each user’s preference by the TreeCluster module.

In the following, we mainly discuss the search algorithm and
the tree clustering.

4. SEARCH ALGORITHM
The search algorithm used in the search engine is outlined
below. Like BANKS [2, 4], we model a relational database
as a weighted graph, G(V, E). Here V is a set of nodes rep-
resenting tuples and E is a set of edges representing foreign-
key references among tuples. An edge, (u, v) ∈ E, represents
a foreign key reference between two nodes (tuples), u and v,
if u has a foreign key matching the primary key attributes of
v, or v has a foreign key matching the primary key attributes
of u. The weights on nodes and edges are preassigned [2, 4].

Given a l keyword query, p1, p2, · · · , pl, against a relational
database or equivalently the corresponding graph G(V, E).
Let Vi ⊆ V be a set of nodes that contain the keyword pi.
An answer (tuple-connection-tree) to such a keyword query
is a weighted and connected tree containing at least one
node from each Vi. The problem we are targeting is how to
find top-k minimum cost tuple-connection-trees. In order to
improve the algorithm given in [2, 4], we proposed a dynamic
programming approach to find the optimal top-1 with the
time complexity of O(3L · N + 2L((L + log N) · N + M)),
where N and M are the numbers of nodes and edges in
the graph G. Because the number of keywords, L, is small
in keyword queries, this solution can handle graphs with a
large number of nodes efficiently. It is important to note
that our solution can be easily extended to support top-k.
That is, we compute top-k minimum cost tuple-connection-
trees one-by-one incrementally, and do not need to compute
or sort all tuple-connection-trees in order to find the top-k
results.

5. TREE CLUSTERING
The search engine will report the top-k minimal cost tuple-
connection-trees. However, a potential problem is how to
select such a parameter k. When k is small, a user may not
be able to find the expected tuple-connection-trees. When
k is large, a user may find it difficult because there are too

1144

Paper

Write Write

Author (Hristidis) Author (Papakonstantinou)

Figure 4: The structural pattern of the two trees in
Figure 2 and Figure 3

many such trees. In order to assist users to find the needed
tuple-connection-trees, in NUITS, we propose to cluster the
similar trees into clusters. Two trees, ti and tj , are in the
same cluster, if ti and tj are isomorphic to each other. Here,
we consider trees as labeled trees at the schema level. Then,
ti and tj are isomorphic to each other, if there is a one-to-
one mapping from nodes of ti to nodes of tj . The details
will be discussed below using examples.

Consider a keyword query with two keywords, Hristidis

and Papakonstantinou. The keyword query intends to find
out the papers co-authored by the two authors. We show
two tuple-connection-trees, t1 and t2, in Figure 2 and Figure
3, respectively. Here, t1 represents a joint work on “Efficient
IR-Style Keyword Search over Relational Databases”, and
t2 represents a joint work on “DISCOVER: Keyword Search
in Relational Databases”. The two trees, t1 and t2, look dif-
ferent because the resulting tuple-connection-trees are not
rooted trees. But the two trees, t1 and t2, are tree iso-
morphic, if we ignore the details and concentrate on their
structure by labeling nodes/edges of t1/t2 using the rela-
tion name where they belong as node-labels and foreign-key
references as edge-labels. The structural pattern of the two
trees are given in Figure 4 where the edge labels are omitted.

The details of labeling nodes/edges in tuple-connection-trees
are given below. First, there are two kinds of nodes in
the resulting tuple-connection-trees, namely, the nodes that
contain one or many keywords, and the nodes that do not
contain any keyword but are used to connect those nodes
with keywords. We call the former and latter as K-node
and C-node, respectively. For C-nodes, we label them using
the relation-name where they belong. For K-nodes, because
they may contain several keywords and a keyword may ap-
pear in several attributes of a node (tuple), we concatenate
its relation-name, the attribute-name containing keywords
and the keywords themselves as the label of K-nodes. For
edges, we concatenate the primary-foreign key attributes as
their labels. Note: tree isomorphic is performed on the la-
beled trees discussed above.

Next, we discuss how to select a represented tree for a clus-
ter. Consider the two tuple-connection-trees, t1 and t2 shown
in Figure 2 and Figure 3. Both can be selected as a rep-
resentative tuple-connection-tree for the cluster. We solve
this problem by determining the root node of trees that are
isomorphic where the root node contains as much informa-
tion as possible. Several rules are discussed in [6]. The rules
include choosing a node with maximum degree or closing to
the tree center.

Figure 5: The structural-level clustering

Figure 6: The tuple-connection-tree

The tree clustering helps users to see the general structure
of tuple-connection-trees. The details of tree clustering, de-
noted TreeCluster is reported in [6]. TreeCluster can cluster
tuple-connection-trees in two levels, at the structural level
and the content level.

• Structural-Level Clustering: The structural-level
clustering is to cluster trees using the tree isomor-
phic mentioned above. Consider a 2 keyword query
against DBLP database, with Jim Gray and Database.
In the resulting tuple-connection-trees, there are sev-
eral potential clusters. For example, Jim Gray writes
papers about Database; Jim Gray’s papers are cited
by papers about Database; and Jim Gray’s papers cite
other papers about Database. All the resulting tuple-
connection-trees can be clustered into several clusters.

• Content-Level Clustering: The content-level clus-
tering further clusters tuple-connection-trees if the size
of the cluster is larger than a user given threshold, af-
ter structural-level clustering. The content-level clus-
tering is based on keyword frequencies and content

1145

similarity. For instance, consider a 2 keyword query
with Gray and Database against the DBLP database.
The keyword Gray may appear in a small number of
tuples in the Author relation, whereas Database ap-
pears in many tuples in the Paper relation. A user can
cluster tuple-connection-trees into a smaller number of
clusters based on the keyword frequencies. In this ex-
ample, a user can cluster it based on content of author
names, because it occurs less frequently, and can result
in a smaller number of clusters. There may be clusters
of tuple-connection-trees for different authors. For ex-
ample, a cluster of tuple-connection-trees for Jim Gray

and a cluster of tuple-connection-trees for W.A. Gray.

The structural-level clustering is based on isomorphism of
labeled trees, and the content-level clustering is based on
content of tuples. So the two levels of clustering are cost
effective, having slight effect on original system efficiency as
experiments demonstrate.

6. INTERFACE OVERVIEW
The current design of the graphical user interface of NUITS
is shown in Figure 6. It consists of several components. We
discuss them below.

• Keyword Query Input: This component is for users
to type in keyword queries.

• Database: There are two databases in this demon-
stration, DBLP [5] and MDB [7]. MDB consists of data of a
movie recommendation system, including 3 relations:
User, Movie and Evaluate. The User relation is with
a user-id (UID) and a user name (Name). The Movie

relation is with a movie-id (MID) and a title (Title).
The Evaluate relation specifies the rating a user gives
to a movie using user-id and movie-id. UID and MID in
the relation Evaluate are foreign key references to UID

and MID in the User relation and the Movie relation,
respectively.

• Algorithm: We support three algorithms BANKS [2],
B-BANKS [4], and our dynamic programming solution.

• Input-Parameter Selection: Users can select k for
finding top-k minimum cost tuple-connection-trees, and
select the threshold to cluster tuple-connection-trees
in the content-level clustering.

• Out-Parameter Selection: Users can select how to
view the resulting tuple-connection-trees. They can
review the results either in the format of list of tuple-
connection-trees or in the format of clusters of tuple-
connection-trees, by selecting either List or Cluster

in the interface of NUITS.

• Tree List: The resulting tuple-connection-trees are
listed on the left side of the interface.

• Two-Level Clustering: A user can view the com-
mon structure of a cluster of tuple-connection-trees
at the structural level, if he/she clicks the cluster of
tuple-connection-trees. The common structure of the
clusters of tuple-connection-trees is shown in the main

window of the interface. Under the structural-level
clusters, there are possible content-level clusters. A
user can further view the clusters of tuple-connection-
trees at the content-level. Finally, a user can view
each individual tuple-connection-tree in the two levels
of clusters.

Figure 5 shows the result for the keyword query with
Gray and Database against the DBLP database, when
the parameter k is 50. In Figure 5, it shows the display
when the user views one out of 9 clusters of tuple-
connection-trees at the structural-level. Because the
number of tuple-connection-trees in the 5th cluster at
structural-level is 23, which is greater than the user-
given threshold 20, the 5th cluster is further clustered
into 6 clusters at the content-level. Figure 6 shows the
same example when a user views an individual tuple-
connection-tree.

• Detailed Information: The detailed information of
a tuple can be displayed in the Detail field after it is
clicked.

We also provide an interface for system administrators to
manage and configure NUITS, including system configura-
tion for performance tuning and indexing maintenance, and
personalized user interface design.

7. ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (No.60473069 and No.60496325).

8. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A

System for Keyword-Based Search over Relational
Databases. In Proc. of ICDE’02, 2002.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword Searching and Browsing in
Databases using BANKS. In Proc. of ICDE’02, 2002.

[3] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient IR-Style Keyword Search over Relational
Databases. In Proc. of VLDB’03, 2003.

[4] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional Expansion
for Keyword Search on Graph Databases. In Proc. of
VLDB’05, 2005.

[5] M. Ley. DBLP: Computer Science Bibliography.
http://dblp.uni-trier.de/xml/.

[6] Z. Peng, J. Zhang, S. Wang, and L. Qin. Treecluster:
Clustering Results of Keyword Search over Databases.
In Proc. of WAIM’06, 2006.

[7] J. Riedl and J. Konstan. MoveLens.
http://www.cs.umn.edu/Research/GroupLens.

[8] S. Wang and K.-L. Zhang. Searching Databases with
Keywords. J. Comput. Sci. Tech., 20(1):55–62, January
2005.

1146

