
On the Path to Efficient XML Queries

Andrey Balmin
IBM Almaden

Research Center

abalmin@us.ibm.com

Kevin S. Beyer
IBM Almaden

Research Center

kbeyer@almaden.ibm.com

Fatma Özcan
IBM Almaden

Research Center

fozcan@almaden.ibm.com

Matthias Nicola
IBM Silicon Valley Lab

mnicola@us.ibm.com

ABSTRACT

XQuery and SQL/XML are powerful new languages for query-
ing XML data. However, they contain a number of stum-
bling blocks that users need to be aware of to get the ex-
pected results and performance. For example, certain lan-
guage features make it hard if not impossible to exploit XML
indexes.

The major database vendors provide XQuery and
SQL/XML support in their current or upcoming product
releases. In this paper, we identify common pitfalls gleaned
from the experiences of early adopters of this functionality.
We illustrate these pitfalls through concrete examples, ex-
plain the unexpected query behavior, and show alternative
formulations of the queries that behave and perform as an-
ticipated. As results we provide guidelines for XQuery and
SQL/XML users, feedback on the language standards, and
food for thought for emerging languages and APIs.

1. INTRODUCTION

XQuery [16] and SQL/XML [8, 9] are supported in ma-
jor database systems such as DB2 [5, 12], Microsoft SQL
Server [14], and Oracle [11]. All of these systems support
storing, querying, and indexing XML documents with or
without XML schemas, but differ in their implementation
and scope of functionality. However, compared to decades
of experience with plain SQL, most database application de-
velopers are very new to XQuery and SQL/XML. There is
a great need for “best practices” and “do’s and dont’s” to
master the complexities of these new languages. From the
experiences of early XQuery and SQL/XML adopters we
identified a number of common mistakes that novice users
of these languages tend to make. Some of these mistakes

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

lead to unexpected query results and thus are easy to spot,
but other issues can impact query performance. Many of
these problems are not implementation-specific in any par-
ticular system but inherent in the XQuery and SQL/XML
languages.

There are particular language features that impede the
exploitation of XML indexes for predicate evaluation. The
goal of a database system is to detect indexable predicates
regardless of how a query is expressed. However, seemingly
identical queries are not always equivalent due to sometimes
subtle differences in semantics, which novice users are not
aware of. This can lead to surprises in terms of performance
if indexes are not used for semantic reasons - and unexpect-
edly so for the user.

Also, relational techniques that are applicable to SQL are
not directly applicable to XQuery and SQL/XML. For ex-
ample, XQuery has properties which SQL does not have,
such as node identities, which make query rewrites more
complex.

In this paper we focus on fundamental issues that are
avoidable only by understanding the semantics of the query
languages. We discuss these language issues in the context
of two common application characteristics: (1) Applications
have to manage large numbers of small to medium sized
XML documents. For example, we observe that applications
which process millions of documents under 1MB per docu-
ment are much more common than those which process one
or few large documents. Financial applications, web services
(SOAP messages), and web feed formats such as RSS [7]
and Atom [1] are just a few examples. Even document- and
content-oriented XML applications with larger documents
typically manage many documents, not just one. There-
fore XML indexes are needed most of all to filter documents
(context). This is in contrast to indexing schemes which
only focus on XPath processing within a single document.

(2) Since flexibility is usually one of the main reasons
for using XML in the first place, we focus on supporting
XML datasets without schemas, with multiple or evolving
schemas, or with schemas that include extensibility points.
Such schema flexibility has recently been identified as a killer
application for XML databases [15] and matches our obser-
vations. A prime example for extensible schemas is RSS,
which allows elements of any namespace anywhere in the
document. The documents can use the xsi:type mechanism
to dynamically define the data type of the nodes. The power

1117

of XQuery and SQL/XML can tackle this dynamic environ-
ment. However, with the power of these languages come
some complexities and pitfalls that users must be aware of
in any XML database.

These issues in XQuery and SQL/XML are discussed in
terms of concrete query examples in DB2 Viper, but these
are language-specific issues and not particular to DB2. The
upcoming DB2 Viper release provides native XML stor-
age, indexing, navigation and query processing through both
SQL/XML and XQuery. The key design principles of the
XML support in DB2 Viper include truly hierarchical XML
storage, path-specific XML indexing, and a high degree of
schema flexibility [5, 12]. DB2 allows applications to as-
sign XML schemas to documents on a per-document basis
instead of a per-column basis. This maximizes schema flex-
ibility and enables DB2 to support schema evolution, a key
requirement for XML applications [15].

Our main goals are three-fold. First, we strive to educate
the users of XQuery and SQL/XML and enable them to suc-
cessfully deploy systems using these languages. To that end,
we provide tips for avoiding common mistakes and perfor-
mance problems. Second, we provide important feedback to
the language standards bodies by identifying language fea-
tures that impede efficient query processing. In Section 4 we
summarize the issues that we think should be revisited for
the next versions of the standards. Finally, this work should
be of interest to the new fledging communities that rely on
XML to provide messaging, content integration and other
functionality. New data formats and API’s such as RSS [7],
Atom [1], and JCR [10], are likely to give rise to new query
languages in the future. Our experience should be relevant
to the design of such new languages.

In Section 2 we describe the XML index architecture in
DB2 and the basic rules for index eligibility. Section 3
then discusses 10 areas where semantic language character-
istics prevent XML index usage or lead to unexpected query
results. These topics include SQL/XML query functions,
joins, namespaces, document and text nodes, “between”
predicates, and others. Usage tips are given throughout
these sections.

2. DB2/XML OVERVIEW

DB2 Viper stores XML data in native XML-type columns
in relational tables. The physical storage format for the
XML type preserves all the information in the XQuery data
model. An important feature of DB2 is that it does not
require an XML schema to be associated with an XML col-
umn. An XML column can store documents validated ac-
cording to many different and evolving schemas, as well as
non-validated documents, all in the same column. Hence,
the association between schemas and XML documents is
per document, for highest flexibility.

In DB2, documents conforming to new schemas are easily
added to the system at any time, and the new schema may
be similar to previous schemas. For example, an element
type may require a new child element. This ability is crucial
to storing the data of evolving systems, e.g. many Web
services [17, 6].

DB2 applications can access XML data using either
SQL/XML or XQuery. The two languages are composable:
SQL can be invoked from XQuery, and XQuery can be in-

voked from SQL. The key to this dual behavior is SQL’s
new XML data type [9], which is based on the XQuery data
model (XDM) [19]. Supporting arbitrary XDM results from
these functions enables the user to transition back and forth
between SQL and XQuery.

SQL programmers manipulate XML data using XQuery
subqueries from SQL’s xmlQuery, xmlExists, and xmlTable

functions. The XQuery arguments to xmlTable, xmlQuery
and xmlExists can be arbitrarily complex, including
FLWORs and joins with other tables. SQL also provides
xmlCast to convert XML data into SQL data, and the XML
publishing functions (e.g., xmlElement) to construct new
XML data from relational inputs.

DB2 also supports a stand-alone XQuery interface and
provides access to XML columns stored in tables through
the db2-fn:xmlcolumn function which simply imports an
entire XML column as a sequence of items. Further details
on DB2’s XML support can be found in [5, 12, 13, 4, 2].

2.1 XML Indexes in DB2
In relational systems, indexing is the most important fea-

ture for query performance, and this remains true for XML
data. However, the rich structure of XML introduces new
challenges. The obvious interpretation of an index on a rela-
tional column is that the values of the column are organized
so the system can quickly locate the rows that satisfy range
and equality predicates on the column. But what does it
mean to create an index on an XML column?

As with relational systems, applications typically cannot
afford to index every item. XML compounds the issue be-
cause of the sheer quantity of items that can be indexed. For
example, not only can a range predicate be on any simple
node in the document (the “leaf” elements and attributes),
but also the processing instructions, comments, text nodes
(which differ from their containing element), and interior
nodes (as the concatenation of all text nodes below it). If
DB2 only supported indexing every item in the XML doc-
ument, then the index storage would be several-fold larger
than the original document. Moreover, the number of I/Os
required to transactionally maintain the indexes would be
staggering. Therefore, we support the indexing of nodes
that are returned from a simple XQuery, as shown in the
(simplified) CREATE INDEX DDL:

ddl ::= CREATE INDEX index-name

ON table(xml-column)

USING ’pattern’ AS type

pattern ::= namespace-decls?

((/ | //) axis?

(name-test | kind-test))+

axis ::= @ | child:: | attribute:: |

self:: | descendant:: |

descendant-or-self::

name-test ::= qname | * | ncname:* | *:ncname

kind-test ::= node() | text() | comment() |

processing-instruction(ncname?)

type ::= varchar | double | date | timestamp

An index entry is created for each node that matches
the path expression and is convertible to the index data
type. The path expression may contain descendant axes
and wildcards, but it cannot contain any predicates. If a
node matches the path expression, but it is not a valid in-

1118

stance of the index data type, then the node is simply not
added to the index.

This “tolerant” behavior is important for schema evolu-
tion. For example, if the data contains U.S. postal codes,
then the schema and the queries may treat the data as a
number. But when the company begins shipping to Canada,
the schema must be changed to use a string for the postal
code. Until all the applications are changed to query the
postal code as a string, the system may require both a nu-
meric and a string index on the same data. If the old numeric
index rejected the non-numeric Canadian postal codes, then
we could not accept the new documents until the index was
dropped.

Another reason that the indexes are tolerant to type mis-
matches is the user may decide to create very broad indexes.
For example, the administrator may decide to index all of
the numeric attributes with an index on //@* as a double.
Such a broad index is useful for unpredictable query work-
loads because it would cover a numeric predicate on any
attribute in the entire XML column. If an XML index spec-
ified a constraint on the data type, then these broad indexes
would not be possible because they would inevitably stum-
ble upon a non-numeric attribute and prevent the document
insertion.

The index contains an entry for each node that matched
the path expression and the data type. Ultimately, we are
creating an index on the cast of the node to the indexed
type, taking into consideration the node’s type annotation
derived during validation. This implies that some string-
valued nodes appear in a numeric index, and that all nodes
appear in a string index.

The result of an XML index scan is set of nodes that
matched the query predicate. Under the covers, XML in-
dexes are implemented using B+Trees. The index contains
sufficient information to answer a range or an equality pred-
icate on the converted value, additional restrictions on the
path, as well as to perform node-level conjunctions and dis-
junctions of multiple predicates.

In this paper, we are solely concerned with using indexes
to locate the subset of context nodes from an entire collec-
tion that require further processing. For the present setting,
we can think of filtering documents from a collection (i.e.,
rows from a table), but the discussion applies to node-level
filtering as well. We are not considering the use of indexes
to locate related nodes from an arbitrary context node; in
other words, once we locate a context node, we do not dis-
cuss the use of indexes to navigate within that particular
document. We limit our focus to context filtering because it
is the main way to improve performance on the workloads
we observed, which manage large collections with millions of
modestly-sized documents. Therefore, we say that an index
is eligible only if it can eliminate documents from a collec-
tion based upon a predicate in the query. The next section
describes this process in detail.

2.2 Index Eligibility
The question of index eligibility (whether an index can

be used to answer a query predicate) is typically trivial in
relational query processing. Any index defined on a sin-
gle relational column can be used to answer any equality
or range predicate on this column. This problem, however
is more difficult for XML columns.Whereas any index on a

relational column stores all values in this column, an XML
index stores only values of nodes that match the XPath pat-
tern in the index definition. An XML index can be used to
answer an XML query predicate, only if this index contains
all XML nodes that satisfy the query predicate. However,
as we show in Section 3.2, this condition is necessary, but
not sufficient for the index to be usable.

Definition 1 (Index Eligibility). We say that an in-
dex I is eligible to answer predicate P of query Q, if for
any collection of XML documents D, the following holds:
Q(D) = Q(I(P, D)). Where I(P, D) is the set of XML doc-
uments produced, by probing index I with predicate P .

In other words, applying the query to the documents pre-
filtered by the index should produce the same result as ap-
plying the query to the full database.

This definition focuses on the indexes that pre-filter doc-
uments, in order to simplify the presentation. However, all
the problems that we describe in Section 3 would still apply
to indexes that return individual XML nodes satisfying the
indexable predicate.

It follows from Definition 1 that an index cannot be used
to answer a predicate in the query expression if the index
expression is more restrictive than the query expression.

Let us illustrate this condition with an example. All the
examples in this paper are based on the following schema:

create table customer (cid integer, cdoc XML);

create table orders (ordid integer, orddoc XML);

create table products (id varchar(13),

name varchar(32));

Consider an index li price defined as

CREATE INDEX li_price ON orders(orddoc)

USING XMLPATTERN ’//lineitem/@price’ AS double

This index contains values of price attributes of all lineitem
elements that appear anywhere in the orddoc column of the
orders table. Thus, this index can be used only if the
query has a predicate on a lineitem price. For instance,
Query 1 can use the li price index to filter the docu-
ments that contain price attributes that match the pattern
//order/lineitem/@price, and have values greater than
100.

Query 1.
for $i in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)

//order[lineitem/@price>100]

return $i

Notice that the index definition is less restrictive than the
XPath navigation embedded in the query. The index con-
tains all lineitem prices, and the query asks only for those
that occur in the order elements. Hence, the XML index
contains all the required information to answer this query
efficiently.

However, an index cannot be used to answer a query that
is less restrictive than the index definition. For example,
Query 2 cannot use the same index.

Query 2.
for $i in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)

//order[lineitem/@*>100]

return $i

1119

This query needs to return orders where any attribute
of the lineitem element satisfies the predicate. We cannot
check this condition using an index that contains only price

attributes. For example, if the following document appears
in the orders.orddoc column, its order element should be
returned by Query 2.

<doc>

<order @id="1001">

<date>January 1, 2001</date>

<lineitem @id="LI100101" @quantity="200">

<order>

</doc>

No node of this document will be indexed in li price, since
the document does not include any price attributes. Thus,
any index access plan that uses li price will miss this order
element.

Furthermore, to improve query execution time of Query 1,
the index will apply the entire //order/lineitem/@price > 100

predicate. Consider another order document, which does
contain a price attribute.

<doc>

<order @id="1002">

<date>January 1, 2002</date>

<lineitem @id="LI100201" @quantity="200"

@price="99.50" />

</order>

</doc>

The li price index stores the reference to the price at-
tribute, along with its value 99.50. This order element does
not satisfy the conditions of Query 1, and an index scan of
li price will filter out this document.

XML indexes can also be used to support structural pred-
icates. Notice that our definition of the value predicates in-
cludes the structural part, i.e., XPath navigation. For exam-
ple, an index on //lineitem/@price, can identify @price at-
tributes that satisfy the pattern //order/lineitem/@price,
if the index contains all values, regardless of their data type.
A varchar index, by definition, includes all matching values
cast into the varchar data type1. Thus, a DB2 varchar in-
dex can be used to answer structural predicates by scanning
a full range of values (−∞; +∞), for a given set of paths.
However, we believe that the main benefit of indexes will
come from supporting the value predicates, which are typi-
cally more selective.

More information can be found in [3] which describes the
prototype of the XML index eligibility algorithms used in
DB2 Viper.

3. COMMON PITFALLS

In this section we go over a list of problems that are fre-
quently encountered by early adopters of our system. Some
of these issues relate to the some features of the XML query
languages that users should be aware of in order to get
the expected results for their queries. This class of issues
includes use of SQL/XML query functions (Sections 3.2

1See Section 2.1 for more detail of the XML value index data
types.

and 3.3), XQuery LET clauses (Section 3.4), handling of
document nodes (Section 3.5), and namespaces (Section 3.7).
Another class of issues have to do with maximizing the
use of indexes while taking full advantage of the flexibil-
ity provided by XML. This includes determining predicate
data types (Section 3.1), use of construction (Section 3.6),
/text() functions (Section 3.8), attributes (Section 3.9),
and detecting “between” predicates (Section 3.10). These
issues are not particular to DB2 implementation, they will
be present in any system that supports the schema-less, in-
complete schemas, and schema evolution scenarios.

3.1 Matching Index and Query Predicate Data
Types

In order to establish index eligibility, the system must
prove that the data type of the predicate comparison is com-
patible with that of the index definition.

An XML index can be defined with one of the four data
types: varchar, double, timestamp, and date. By definition
the value of each XML node that matches the XML pattern
of the index, is type-cast into the data type of the index. If
the type-cast operation was successful, the result is inserted
into the index B-Tree structure. Thus, an index defined as
double will contain only numeric values, or values castable
to numbers, while the varchar index contains string repre-
sentation of all nodes, since any XML node value can be
converted into a string using the string() function.

For documents that have not been validated against
schemas, all element nodes will have the type annotation
untyped, and all attribute nodes will have the type anno-
tation untypedAtomic, and they will be cast to xs:string
by the comparison operators. However, in schema evolu-
tion scenario, different documents in an XML-typed column
might be validated against different (and possibly conflict-
ing) versions of the schema. Since, the type information is
on a document-level, as opposed to column-level, the sys-
tem cannot use any schema information to determine the
comparison type during compilation [5, 4]. 2 Instead DB2
relies on information embedded in the query in form of typed
constants, casts, and other functions with guaranteed result
data types. For example, Query 3 would match a varchar in-
dex on price, but will not match the li price index. This
is because the literal value “100” is in double quotes and
therefore is a string, not a number.

Query 3.

for $i in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)

//order[lineitem/@price > "100"]

return $i

Notice that the string predicate in this query will be satisfied
by string values such as “20 USD”, which will not exist in
the index li price defined as double.

Another way to communicate the comparison data type
information to the query compiler is to include type-casts
in the predicate. This is especially useful for join predicates
that normally don’t contain any type information, such as
constants.

2Note that during run-time when the system accesses each
document, it will use the type annotations of individual
nodes to determine the correct type of the comparison.

1120

Query 4.
for $i in db2-fn:xmlcolumn("ORDERS.ORDDOC")/order
for $j in db2-fn:xmlcolumn("CUSTOMER.CDOC")/customer
where $i/custid/xs:double(.) = $j/id/xs:double(.)
return $i

For example, Query 4 can use either of the following two
double indexes, because the xs:double() casts on both sides
of the equality guarantee that a numeric equality operator
will be used, which is valid only for values that can be cast
to double. All such values are guaranteed to be present in a
double index.

CREATE INDEX o_custid ON orders(orddoc)

USING XMLPATTERN ’//custid’ AS double

CREATE INDEX c_custid ON customer(cdoc)

USING XMLPATTERN ’/customer/id’ AS double

Without the casts, the join predicate can turn out to be,
for example, a string equality, for which a double index can-
not be used, since it won’t contain some of the values. Even
a varchar index, which, by definition, contains all the val-
ues converted into strings, still cannot be used without the
casts. Both sides of the join may turn out to be numeric, but
a varchar index cannot enforce some of the rules of numeric
comparison, such as 10E3 = 1000.

Tip 1. Use type-cast expression in XQuery join predi-
cates. Notice that the $i/xs:double(.) notation in Query 4
is more general than xs:double($i), since it does not re-
quire $i to be a singleton.

3.2 SQL/XML Query Functions
To query and manipulate XML data in SQL, SQL/XML

provides functions XMLQuery, XMLExists and XMLTable
for invoking XQuery from SQL. XMLQuery is a scalar func-
tion which executes an XQuery expression, and returns an
XML result as instance of the XQuery data model (XDM).
XMLExists is a predicate which executes an XQuery ex-
pression and returns true if the result is a non-empty se-
quence, and returns false otherwise. Finally, XMLTable is a
table function which executes multiple XQuery expressions
to compute a relational table. Each item in the result of the
first XQuery expression in an XMLTable function is used as
the context item in the rest of the XQuery expressions to
populate the columns of the result table.

All of these functions pass named arguments to XQuery
and may contain XPath predicates which might be index
eligible. However, depending on which function is used and
how it is used, XML indexes may or may not be eligible.
When an XMLQuery function is used in the select-list and
contains an XQuery expression on data that is passed in
from the from-clause, which contains predicates on nodes
that are indexed, the XML index is not eligible. Because,
the select-list in an SQL statement does not eliminate any
rows produced by the from-clause, and even if the result of
the XQuery expression is an empty sequence, it needs to be
returned to the user. Consider the following query:

Query 5.

SELECT XMLQuery(’$order//lineitem[@price > 100]’

passing orddoc as "order")

FROM orders

The output of this query might be as follows:

row 1: <lineitem id = “2” > ... </lineitem>
<lineitem id = “7” > ... </lineitem >

row 2: ()
row 3: ()
row 4: <lineitem id = “9” > ... </lineitem>
row ...: ...
row n: <lineitem id = “m”> ... </lineitem >

This query returns as many rows as there are rows in the
orders table. For orders which have a lineitem with a price
greater than 100 it returns those lineitems. For those or-
ders which do not have such a lineitem, it has to return an
empty sequence. Note that in this query all lineitems of
one order which satisfy the condition will be returned as an
XML sequence in one row. As the XML index would have
only returned lineitems which have a price greater than 100,
and incorrectly eliminated orders which do not have such a
lineitem, an XML index on the orddoc column of the orders
table cannot be used to answer this query. Note that in this
example, XML values (documents) are passed one at a time
to XQuery. If the input values were supplied as a single
sequence via the db2-fn:xmlcolumn function, like in the fol-
lowing example, then the li price XML index would be
eligible. The following query needs to return only lineitems
which have a price greater than 100 and those orders which
do not have such a lineitem would be eliminated in this path
expression.

Query 6.

VALUES (XMLQuery(’db2-fn:xmlcolumn("ORDERS.ORDDOC")

//lineitem[@price > 100] ’))

Query 6 may use an index on the orddoc column of the
orders table. However, this query returns a single row,
containing all the qualifying lineitems for all orders in the
orders table and its output would be:

row 1: <lineitem id = “2” > ... </lineitem>
<lineitem id = “7” > ... </lineitem >
<lineitem id = “9” > ... </lineitem>
<lineitem id = “15” > ... </lineitem>

...
<lineitem id = “m”> ... </lineitem >

The most efficient formulation of this query is Query 7,
because it can use an index on the orddoc column of the
orders table and it does not require aggregating all quali-
fying lineitems into a single XML sequence.

Query 7.

db2-fn:xmlcolumn(’ORDERS.ORDDOC’)//

lineitem[@price > 100]

Query 7 returns each lineitem as a separate row and its
output will look like as follows:

row 1: <lineitem id = “2” > ... </lineitem>
row 2: <lineitem id = “7” > ... </lineitem >
row 3: <lineitem id = “9” > ... </lineitem>
row 4: <lineitem id = “15” > ... </lineitem>
row ...: ...
row k: <lineitem id = “m”> ... </lineitem >

1121

Tip 2. If only XML fragments are to be retrieved, then
use the stand-alone XQuery interface (like in Query 7) to
extract XML values which satisfy a given condition.

When an XMLExists predicate, used in the where-clause
of an SQL statement, contains an XQuery expression with
a predicate on indexed nodes, then an XML index can be
considered to answer such queries. When the result of the
XQuery expression embedded in the XMLExists predicate is
an empty sequence, XMLExists returns false and filters out
the input row. Consider the following query which returns
the whole orddoc documents, which contain a lineitem with
a price greater than 100, and their ids. The li price index
can be used to answer this query.

Query 8.

SELECT ordid, orddoc

FROM orders

WHERE XMLExists(’$order//lineitem[@price > 100]’

passing orddoc as "order")

One needs to be careful when using the XMLExists func-
tion to evaluate XQuery predicates. When the XQuery ex-
pression embedded in an XMLExists function is a boolean
expression, returning true or false, XMLExists will always
return true, because the result is always a non-empty se-
quence, i.e. a sequence of one item whose value is either
true or false. For example, the following Query 9 will not
eliminate any order documents and will return all rows in
the orders table.

Query 9.

SELECT ordid, orddoc

FROM orders

WHERE XMLExists(’$order//lineitem/@price > 100’

passing orddoc as "order")

To retrieve only the order documents which contain a
lineitem with a price greater than 100, the query needs to be
formulated as in Query 8, enclosing the XQuery predicate as
a filter. In general, the XMLExists function is useful when
the whole XML document is retrieved, like in Query 8.

Tip 3. Use XMLExists function if full documents, as well
as additional relational columns, are to be retrieved based
on a condition on the XML column and make sure that the
XQuery expression embedded in XMLExists returns nodes or
atomic values, not a boolean value. For this purpose, embed
the predicate either in an XPath or a FLWOR expression.

The XMLExists function can also be used to eliminate
the empty sequences produced by XMLQuery when XML
fragments are to be retrieved. The following query would
only return lineitems which have a price greater than 100.

Query 10.

SELECT ordid,

XMLQuery(’$order//lineitem[@price > 100]’

passing orddoc as "order")

FROM orders

WHERE XMLExists(’$order//lineitem[@price > 100]’

passing orddoc as "order")

Note that in Query 10, only the path expression in XM-
LExists is eligible for an XML index. To extract values from
XML documents based on a set of conditions, the XMLTable
function can be more suitable. Because, XMLTable would
avoid repeating the same XQuery expression, once in the
select list for extraction and once in the where-clause for
restricting the output. The following query is similar to
Query 10.

Query 11.

SELECT o.ordid, t.lineitem

FROM orders o,

XMLTable(’$order//lineitem[@price > 100]’

passing o.orddoc as "order"

COLUMNS

"lineitem" XML BY REF PATH ’.’)

as t(lineitem)

Note that while Query 10 returns as many rows as the
number of orders which satisfy the condition, Query 113 re-
turns as many rows as the number of lineitems that satisfy
the condition. In Query 11, there is an implied join between
the orders table and the XMLTable function, because each
order document from the orders table is passed into the
XMLTable function as an argument. A relational table is
computed for each row of the orders table. An order doc-
ument may contain more than one lineitem which has price
greater than 100 and XMLTable will produce a table with
as many rows as there are such lineitems in a given order.

There is an important difference between the first XQuery
expression in the XMLTable function and the ones used to
specify the column values in the same XMLTable function.
The first one, called the “row-producer”, determines the
number of output rows in the XMLTable result, and if it
produces an empty sequence, no output table is computed.
As the first XQuery expression eliminates rows of the orders
table, an index on the orddoc column of the orders table is
eligible to evaluate the first XQuery expression. However,
the XQuery expressions which compute the column values
always produce a result and do not affect the output car-
dinality. When one such XQuery expression produces an
empty sequence, the result value of the corresponding col-
umn is the NULL value. Hence, a predicate in a column
XQuery expression is not index eligible. Consider the fol-
lowing query:

Query 12.

SELECT o.ordid, t.lineitem, t.price

FROM orders o,

XMLTable(’$order//lineitem’

passing o.orddoc as "order"

COLUMNS

"lineitem" XML BY REF PATH ’.’,

"price" DECIMAL(6,3) PATH ’@price[. > 100]’)

as t(lineitem, price)

3In Query 11, the BY REF keywords indicate that the
XQuery expression ’.’ which computes the output col-
umn lineitem returns node references. I.e., the result of
XMLTable contains node references to lineitem elements in
the original documents, preserving node identities and par-
ent linkages. The details of BY REF and its counterpart
BY VALUE can be found in [9].

1122

Query 12 returns the lineitems and their prices, as well
as the ordids of the order documents which contains these
lineitems. If the price of a lineitem is not greater than 100,
there is still going to be a row for that lineitem in the output,
but the value of the price column will be NULL. Hence, the
li price index is not eligible to filter the XML documents
in the orders table.

Tip 4. Use XMLTable if both relational values and XML
fragments are to be retrieved based on conditions on XML
columns and make sure to express the predicates in the ”row-
producer” XQuery expression of XMLTable.

3.3 Joining XML Values in SQL/XML
The SQL/XML query functions, XMLQuery, XMLExists

and XMLTable can be used to express joins between rela-
tional columns and values in XML documents. The join
condition can be expressed either in SQL or in XQuery, re-
sulting in slightly different queries as XQuery and SQL com-
parisons have different semantics. Consider the following
query, which returns the name of products, and the lineit-
ems which order them.

Query 13.

SELECT p.name, XMLQuery(’$order//lineitem’

passing orddoc as "order")

FROM products p, orders o

WHERE

XMLExists(’$order//lineitem/product[id eq $pid]’

passing o. orddoc as "order",

p.id as "pid");

The join condition in Query 13 is expressed in XQuery.
Note that only an XML index can be considered to answer
this query, because the join condition is expressed as an
XQuery condition, using XML schema data types. For ex-
ample, an XML index on //lineitem/product/id is eligible.
No relational index on the id column of the product ta-
ble is eligible, because relational indexes implement SQL
comparisons using SQL data types. The semantics of the
comparison operators are different in two languages. For in-
stance, while trailing blank characters are ignored in SQL,
they are significant in XQuery. Note that the $pid variable
in XQuery inherits its subtype from the SQL side (xs:string
in this example), providing the compiler enough information
to decide the data type of the join condition.

The following query, which expresses the join on the SQL
side, looks similar at surface, but has subtle and important
differences:

Query 14.

SELECT p.name, XMLQuery(’$order//lineitem’

passing orddoc as "order")

FROM products p, orders o

WHERE p.id =

XMLCast(

XMLQuery(’$order//lineitem/product/id’

passing o. orddoc as "order")

as VARCHAR(13))

In particular, this query is different from Query 13 in two
important ways: First, this one uses SQL comparisons for
the join condition and hence only a relational index on the

id column of the products table is eligible. Second, the XM-
LQuery function extracts all the ids of products in a given
order document, and the XMLCast function will insist that
there is only one such id in an order document (otherwise
XMLCast will raise a type error). Hence, if an order contains
more than one lineitem with a product, then Query 14 will
fail with a type error, while Query 13 will succeed. XML-
Cast in Query 14 will also fail if the value of an id element
has length greater than 13, whereas Query 13 will succeed,
because there is no length limit on xs:string type. Moreover,
if we change the value comparison (eq operator) in Query 13
to a general comparison (= operator), then the XQuery com-
parison would succeed even if a given product has more than
one id. These examples demonstrate that special attention
needs to be paid to the hierarchical relationships and the
relative cardinalities when joining XML values.

Tip 5. When joining an XML value and a relational value,
express the join condition on the SQL side if there is an in-
dex on the relational column and express it on the XQuery
side if there is an XML index on the XML column.

When two relational tables are to be joined on their XML
values, there are two options: Either extract the values and
express the join in SQL, or pass the XML values into an XM-
LExists function and express the join in XQuery. Query 15
and Query 16, which return the lineitems and the names of
customers who ordered them, illustrate these two alterna-
tives.

Query 15.

SELECT c.name, XMLQuery(’$order//lineitem’

passing o.orddoc as "order")

FROM orders o, customer c,

WHERE XMLCast(XMLQuery(’$order/order/custid’

passing o.orddoc as "order")

as DOUBLE) =

XMLCast(XMLQuery(’$cust/customer/id’

passing c.cdoc as "cust")

as DOUBLE)

As Query 15 expresses the join on the SQL side using the
SQL comparison operator “=”, no XML index is eligible.
A relational index is also not eligible because the join is
between two XML columns. This join can also be expressed
by passing both XML values into an XMLExists function,
as in Query 16. In this case, an XML index on order/custid
on the orddoc column of the orders table can be used to
compute the join. If the join is between two XML columns,
then the join needs to be expressed in XQuery so that XML
indexes on these columns can be employed. Since the data
type of both XML elements are unknown to the XQuery
compiler, explicit type casts are needed.

Query 16.

SELECT c.name, XMLQuery(’$order//lineitem’

passing o.orddoc as "order")

FROM orders o, customer c,

WHERE XMLExists(’$order/order[custid/xs:double(.) =

$cust/customer/id/xs:double(.)]’

passing o.orddoc as "order",

c.cdoc as "cust")

Tip 6. Always express XML joins on the XQuery side.

1123

While SQL/XML [9] enables embedding of XQuery ex-
pressions in SQL, it does not unify their type systems and
the comparison operators. XQuery operates on XML schema
types and has special rules to deal with both typed and un-
typed data. SQL, on the other hand, operates on its own
type system and requires both sides of the comparison to be
strongly typed.

3.4 XQuery Let-Clauses
A let-clause binds its variable to the result of the associ-

ated expression, even when the result of the expression is
an empty sequence [18], unlike a for-clause which does not
produce any iteration for an empty sequence. A FLWOR
expression represents a join (in general a cartesian product)
between the for-bindings, and also an outer-join between the
let-bindings and the for-bindings, where the let-bindings are
the NULL-preserving side of the outer-join. As all values of
the let-bindings need to be returned, we cannot use an XML
index to compute the expression in a LET binding, unless we
can prove certain properties. Consider the following query:

Query 17.
for $doc in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)

for $item in $doc//lineitem[@price > 100]

return <result> {$item} </result>

In this query, we can use the li price XML index as the
result of the query will not contain the orders which do not
have a lineitem with a price greater than 100. However, if we
replace the second for-clause in Query 17 with a let-clause,
then the index can no longer be used.

Query 18.
for $doc in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)

let $item:= $doc//lineitem[@price > 100]

return <result> {$item} </result>

Note that Query 17 and Query 18 are semantically differ-
ent and produce different results. Query 17 returns a result
element for each qualifying lineitem while Query 18 returns
a result element for each order document. If a given order
document contains a lineitem with price greater than 100, it
returns the lineitems of that order which have a price greater
than 100 in a result element. However, if there is no such
lineitem then an empty result element is returned. Since, no
order documents are eliminated with the predicate on price,
and a result element is returned for each order document,
not just the ones that satisfy the predicate, the li price

XML index cannot be used to answer Query 18.
In addition to the explicit let bindings, each step of an

XPath expression, and all XQuery expressions have implied
let semantics [18]. In other words, each XQuery expres-
sion produces a sequence as output. For example, path ex-
pressions in the return-clause of a FLWOR expression have
implied let-semantics. Query 19 produces a result element
for each order element, irrespective of the condition on the
price attribute. In particular, there is an outer-join between
the order documents and the lineitems which have a price
greater than 100. The lineitems sequence is the empty-
preserving side such that empty result elements are returned
for orders that do not have qualifying lineitems with a price
greater than 100. As a result, there is no filtering and thus
no XML indexes can be considered for predicates embedded
in constructors in return-clauses.

Query 19.

for $ord in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/order

return <result>

{$ord/lineitem[@price > 100]}

</result>

Similarly, the path expressions in the where-clause have
implied let semantics. For example, Query 20 and Query 21
are equivalent.

Query 20.

for $ord in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/order

where $ord/lineitem/@price > 100

return <result> {$ord/lineitem} </result>

Query 21.

for $ord in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/order

let $price := $ord/lineitem/@price

where $price > 100

return <result> {$ord/lineitem} </result>

Despite the let semantics in Query 20 and Query 21, we
can consider using an XML index. Because, in the where-
clause an empty sequence evaluates to false and hence elim-
inates binding tuples. It is important to note the difference
between Query 18, where the predicate on price is used to
qualify lineitems, and Query 21, where the predicate on price
is used to eliminate orders. In general, we can consider an
XML index for a let binding when there is a where clause
predicate which eliminates the empty sequence. Also note
that for a for-clause it does not matter whether the pred-
icate is embedded in the path expression, which computes
the for-binding, or is in the where-clause: XML indexes can
be used in both cases.

Although the empty sequence results need to be preserved
in general, there are two other XQuery operations (in addi-
tion to the where-clause) which discard the empty sequences.
First, an iterator produces no result when its input sequence
is an empty sequence. For-clauses of FLWOR expressions,
the in-clauses of quantified expression, and bind-out are
three places where there is an implied iteration. Second,
sequence concatenation also discards empty sequences, as
XQuery does not have nested sequences [19]. If an empty
sequence is to be discarded later on, then we can consider
using an XML index to evaluate the expression that gener-
ates that empty sequence in the first place. For example,
consider the following query:

Query 22.

for $ord in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/order

return $ord/lineitem[@price > 100]

Even though the path expression in the return clause
has outer-join semantics, we can still consider using the
li price XML index to answer Query 22. Because there
is an implied iterator in bind out and empty sequence re-
sults will not be returned to the user. Note the difference
between Query 19 and Query 22. The element constructor
in the return clause of Query 19 creates an empty result
element when there is no satisfying lineitem.

Tip 7. Unless you want an empty element returned for
non-qualifying nodes, do not express predicate conditions in
XPath expressions within element constructors.

1124

3.5 Document versus Element Nodes
While writing path expressions, one also needs to be care-

ful whether the context node is a document node or an el-
ement node. If the context node is a document node, then
the leading slash will evaluate to the document root and
the first step expression will start navigation from the root.
However, if the context node is an element node, then the
navigation starts from that particular element node. Con-
sider the following query:

Query 23.

db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/order/lineitem

In this query, the db2-fn:xmlcolumn function returns doc-
ument nodes. The first step expression, which is child::order,
will match the top-most order elements. However, in
Query 24, the path expression $ord/my order will return
an empty sequence. Because the context node, i.e the $ord
variable, is bound to my order element nodes, and the first
step expression, which is child::my order will not find any
my order element children of the context node.

Query 24.

for $ord in

for $o in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/order

return <my_order> {$o/*} </my_order>

return $ord/my_order

The leading slash in XQuery, which is used to express
absolute path expressions, is a shorthand for fn:root(.) treat
as document-node(). Hence, if the context node is not a
document node, then the leading slash may result in type
errors. For example, the absolute path expression
$order[//customer/name] in Query 25 will result in a type
error, because the $order variable is bound to a new order
element node.

Query 25.

let $order :=

<new_order>

{db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/

order[custid > 1001]}

</new_order>

return $order[//customer/name]

Tip 8. Be careful when writing path expressions and re-
call that there is an extra level of navigation when the con-
text node is a document node. Moreover, do not use absolute
path expressions, if the context node is in a tree rooted by an
element node, such as constructed elements.

3.6 Node Construction
XQuery and SQL/XML provide construction of new nodes

to create new structures and reshape old structures. Ele-
ment construction is the way to group information in XQuery,
like tuples in a relational database, but enriched with nest-
ing and repetition. Thus, construction is the basis for XML
view definitions, which are a staple in relational databases
to hide information for security or to hide the complexity
of relating information. The nearest relational equivalent of
construction is projection, which creates and reshapes tu-
ples.

However, construction is nondeterministic because it gen-
erates distinct node identifiers on each evaluation (e.g.,
<a>5 is <a>5 is false). Node identity defines the
deduplication in path expression and union operations.
Therefore, query transformations that eliminate construc-
tion operations and push down predicates are more difficult
than their relational counterparts.

Construction also affects the interpretation of items placed
inside the node. For example, node construction replaces the
type of atomic values with untypedAtomic, concatenates se-
quences of atomic values into a single space-separated un-
typed string, redefines the node identity of copied nodes
and preserves or erases the type annotations on nodes based
upon the “construction mode”, and raises an error for du-
plicate attribute names. These rules are designed to ensure
that nodes created by XQuery are valid XML data. When
transforming the query to eliminate construction, these se-
mantics must be preserved.

For example, consider Query 26. Someone defined the
variable $view to reshape the order data, expose a limited
subset of the data, and relabel some of the information.
A user of the view selected a small subset of the ordered

elements and project just the price attribute.

Query 26.

let $view :=

for $i in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/

order/lineitem

return <ordered>{

$i/@quantity,

$i/product/@price,

<pid>{ $i/product/id/data(.) }</pid>

}</ordered>

for $j in $view

where $j/pid = ’17’

return $j/@price

From relational systems, users have come to expect that
such selections and projections will be pushed down to sim-
plify the query and improve the performance by enabling in-
dexes. Similarly, XQuery users expect that this query would
be simplified into Query 27.

Query 27.

for $i in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/

order/lineitem

where $i/product/id/data(.) = ’17’

return $i/product/@price

However, many issues arise that can prevent this trans-
formation:

1. If product/id has a numeric type, then Query 27 will
produce an error, but Query 26 will succeed. The rea-
son is the value of the new pid element is untyped-
Atomic, which is comparable to a string, but num-
bers are not. The system must add a cast to preserve
the semantics: where $i/product/id/xdt:untyped-

Atomic(data(.)) = ’17’, but will likely interfere with
index eligibility.

2. If the type of product/id is a long integer, and ’17’ is
replaced with a large long integer value, then Query 26
will convert both values to a double floating-point value,

1125

but Query 27 will compare them as long integers. The
result of the two comparisons differ when large values
are used due to floating point rounding. Again, the
extra cast to untypedAtomic will preserve the seman-
tics, but will likely interfere with index eligibility. Of
course, users may also be surprised by the collisions on
large long values caused by the conversion, but query
rewrites cannot change the semantics of the language.

3. If a product has multiple id children, say <id>p1</id>

and <id>p2</id>, then the value of pid will be the
concatenation of them, <pid>p1 p2</pid>. If we re-
place ’17’ with ’p1 p2’, then Query 26 will produce
a result, but Query 27 will not find a result. Con-
versely, if we use ’p2’, then Query 27 will find a re-
sult, but Query 26 will not. To preserve the semantics,
the transformed query must be where xdt:untyped-

Atomic(string-join($i/product/id/data(.),’ ’))

= ’p1 p2’. Again, these extra conversions are an im-
pediment to index eligibility.

4. If a lineitem has multiple products each with a @price

then Query 26 will produce a duplicate attribute error,
but Query 27 will succeed.

5. If Query 26 is itself a query fragment and its result is
subject to arbitrary further processing, then the sys-
tem must ensure that the node identity semantics are
preserved. For example: $view/@price except

db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/order/lineitem/

product/@price will return all the price nodes. How-
ever, if the system incorrectly simplfies $view/@price

to db2-fn:xmlcolumn(’ORDERS.ORDDOC’)/order/lineitem/

product/@price, then the result is empty.

Similar issues arise at the border between SQL and XQuery.
The data is transformed from SQL types to XQuery types
or vice-versa, and different comparison rules apply. For ex-
ample, SQL string comparison is insensitive to trailing space
characters, but they are significant in XQuery.

There are many conditions that need to be checked before
construction can be safely eliminated. Often a system might
not be able to prove that the transformation can be applied
due to lack of information on one of these conditions. More-
over, the system might know that the transform is not safe,
but the user does not understand why an index is not used
and their query runs so slowly.

Tip 9. Write predicates on the data before any implicit
cast operations: Write queries directly on the base collec-
tion instead of a constructed document whenever possible.
If you are reshaping a document, write the query predicates
before the construction. Avoid using SQL comparison on
XML data and vice-versa.

3.7 XQuery Namespaces
One often overlooked part of an XPath step is the names-

pace. It can be empty, “*” wildcard, or implicitly or ex-
plicitly specified. Index definitions can include namespace
specification just like queries. Of course namespaces have to
be taken into account when determining if an index contains
all documents needed for a query. Consider the following
query with two namespace declarations.

Query 28.

declare default element namespace

"http://ournamespaces.com/order";

declare namespace

c="http://ournamespaces.com/customer";

for $ord in db2-fn:xmlcolumn("ORDERS.ORDDOC")

/order[lineitem/@price > 1000]

for $cust in db2-fn:xmlcolumn("CUSTOMER.CDOC")

/c:customer[c:nation = 1]

where $ord/custid = $cust/id

return $ord

This query looks like it could use index li price defined
in Section 2.2, as well as an index on customer nation codes,
such as:

CREATE INDEX c_nation ON customer(cdoc)

USING XMLPATTERN ’//nation’ AS double

In reality, neither of these indexes is eligible for this query.
Both index definitions do not mention namespaces, which
means that they only store XML elements with empty names-
paces. The query asks for “nation” elements with “cus-
tomer” namespace, which are not in the index. In order to
match this query, an index definition should either include
the correct namespace, or contain namespace wildcards. For
example, any of the following index definitions would do the
trick.

CREATE INDEX c_nation_ns1 ON customer(cdoc)

USING XMLPATTERN ’declare default element namespace

"http://ournamespaces.com/order";

//nation’ AS double

CREATE INDEX c_nation_ns2 ON customer(cdoc)

USING XMLPATTERN ’//*:nation’ AS double

CREATE INDEX li_price_ns ON orders(orddoc)

USING XMLPATTERN ’//@price’ AS double

Notice that default namespaces do not apply to XML at-
tributes, thus index li_price_ns will be eligible for this
query, since it does not include any namespace restrictions.
Contrast this with li price , which does not mention names-
paces, however, by default, restricts the index to price at-
tributes of lineitem elements that only have empty names-
pace.

Tip 10. Make sure that the same namespace definitions
are included in your data, queries and indexes. If you don’t
want to synchronize an index definition with data and queries,
use namespace wildcards on every element step of the index
definition.

3.8 Querying and Indexing XML Text Nodes
There is a difference between an XML text node, and its

element parent. If a leaf element of the XML tree contains
a single text child, the string value of the element and the
text node are the same4. However, in general an element
can contain any number of children text nodes (as well as

4However, typed values of an element and its child text node,
are still different

1126

other nodes). Thus, for the index to be eligible, the /text()

XPath steps in a query and an index definition have to align.
Consider the following index definition and query.

CREATE INDEX PRICE_TEXT ON orders.orddoc

USING XMLPATTERN ’//price’ AS varchar

Query 29.

for $ord in db2-fn:xmlcolumn("ORDERS.ORDDOC")

/order[lineitem/price/text() = "99.50"]

return $ord

The index and query do not match. If every price element
has exactly one text child and nothing else, the index could
be used. However, we cannot guarantee this for every doc-
ument that will ever be inserted into the database. For ex-
ample, the following document satisfies the query condition;
however, its “price” element will be indexed as “99.50USD”
instead of “99.50”. Thus, using the index for this query
would return an incorrect result.

<doc>

<order @id="1003">

<date>January 1, 2003</date>

<lineitem @id="LI100101" @quantity="200">

<price>99.50<currency>USD</currency></price>

<order>

</doc>

Tip 11. For an index to be eligible, make sure that
/text() steps are aligned between a query and the index
definition.

3.9 Attributes and Elements
Users of XPath need to be aware that attribute nodes

can be returned only by XPath steps with an “attribute” or
“self”. Other axes, including “child” and “descendant”, will
not find attributes. Correspondingly, an index defined on
//* or //node() or /descendant::node() will not contain
any attribute nodes, even though the node() test includes
attributes. Recall that the expression //node() is a short-
hand for /descendant-or-self::node()/child::node().
This expression will not match any attribute nodes, due to
the child axis in the second step.

Tip 12. In order to index all attributes in the collection,
use the pattern //@*, or its full notation
/descendant-or-self::node()/attribute::*.

3.10 Between Predicates
XQuery does not have a special function or operator which

is similar to the relational “between” predicate. Further-
more, the existential nature of the XQuery general compar-
ison predicates makes it difficult to express “between”. For
example, lineitem[price > 100 and price < 200], does
not necessarily constitute a between predicate. A lineitem
may have multiple price children. If one price is above 100,
say 250, and another is below 200, say 50, then the lineitem
satisfies the predicate, even though none of the prices are in
the range. Such a predicate cannot be answered with a sin-
gle range scan over the index– it requires an intersection
(ANDing) of the results of two index scans, which may be
significantly more costly.

A pair of range predicates on the same item can be in-
terpreted as a “between”, and evaluated by a single index
range scan, if the system can deduce that the value of the
item is a singleton.This can typically be achieved by using
value comparisons, the self axis, or attributes, as described
below.

If the user is certain that a lineitem can have (and always
will have) at most one price, he can write the query using the
XQuery value comparisons, which require the comparison
operands to be singletons. For example,
lineitem[price gt 100 and price lt 200] can safely be
interpreted as a “between” and evaluated by a single range
scan of the li price index. If a lineitem with more than
one price child element is encountered, the query will fail at
runtime.

As an alternative to the value comparison operators, the
self axis can be used to express a “between” predicate. For
example, the self axis in the predicate
lineitem/price/data()[. > 100 and . < 200]

ensures that both predicates apply to the same price value.
This constitutes a “between” predicate since the self axis
always evaluates to a singleton. This predicate allows a
lineitem to have multiple prices but returns only those of
them that have a value between 100 and 200. Notice the
data() function in the expressions, which is needed to at-
omize the values of list types. If the system can guarantee
that price does not have a list type5, then the following
predicate also constitutes a “between”:
lineitem/price[. > 100 and . < 200].

If the lineitem price is modeled as an attribute then it can
occur at most once per lineitem element. If the system can
guarantee that the attribute does not have a list type, the
predicate in the following query can be answered by a single
index scan.

Query 30.

for $i in db2-fn:xmlcolumn(’ORDERS.ORDDOC’)

//order[lineitem[@price>100 and @price<200]]

return $i

Tip 13. Use value comparisons whenever possible if you
are sure that the arguments will be singletons. Otherwise,
use predicates of form [. > X and . < Y] to express the
between predicates.

4. CONCLUSION

Indexes are of utmost importance for high performance
query processing. This is true for relational queries as well
as for XML queries in XQuery or SQL/XML. However, de-
ciding whether a given index is eligible to evaluate a specific
query predicate is much harder for XML indexes than for re-
lational indexes. Likewise query rewrite and optimization is
more complex for XML queries than for relational queries.
In this paper we presented common semantic issues with
XQuery and SQL/XML statements which can lead to un-
expected query results and prevent index exploitation, in
dynamic schema situations as described in the introduction.
While XQuery is a powerful new language for formulating

5For example, our index implementation prohibits the list
types from occurring in the indexed documents.

1127

XML queries and construction, a lot more attention is re-
quired to ensure compatibility between queries and indexes,
so that indexes are used as expected. We showed how com-
mon pitfalls in XQuery and SQL/XML can be avoided with
careful design of XML index definitions and query predi-
cates. These issues are collected from real-word experiences
with XML database systems, but most of the problems are
implementation independent and inherent in the XQuery
and SQL/XML semantics. Understanding these pitfalls and
how to avoid them is crucial for implementers, researchers
and users of XML databases alike.

Some of the issues that we raised in this paper, should be
revisited in the next version of the XQuery and SQL/XML
standards. For example, adding an explicit “between” func-
tion would solve the issue of Section 3.10. Most other issues
will be harder to address. Small but fundamental changes
in the definition of the typed value and element construc-
tion can alleviate the problems described in Section 3.6 and
Section 3.8. Solving the issues of Section 3.3 would require
the unification of the type systems of XQuery and SQL.

5. REFERENCES

[1] The Atom Publishing Protocol. See
http://www.ietf.org/internet-drafts/

draft-ietf-atompub-protocol-08.txt.

[2] A. Balmin, T. Eliaz, J. Hornibrook, L. Lim,
G. Lohman, D. Simmen, M. Wang, and C. Zhang.
Cost-based optimization in DB2 XML. IBM Systems
Journal, 45(2):271–298, 2006.

[3] A. Balmin, F. Özcan, K. Beyer, R. Cochrane, and
H. Pirahesh. A framework for using materialized
XPath views in XML query processing. In Proc. of
VLDB, Toronto, Canada, 2004.

[4] K. Beyer, R. Cochrane, M. Hvizdos, V. Josifovski,
J. Kleewein, G. Lapis, G. Lohman, R. Lyle, M. Nicola,
F. Özcan, H. Pirahesh, N. Seemann, A. Singh,
T. Truong, R. C. V. der Linden, B. Vickery, C. Zhang,
and G. Zhang. DB2 goes hybrid: Integrating native
XML and XQuery with relational data and SQL. IBM
Systems Journal, 45(2):271–298, 2006.

[5] K. Beyer, R. Cochrane, V. Josifovski, J. Kleewein,

G. Lapis, G. Lohman, B. Lyle, F. Özcan, H. Pirahesh,
N. Seemann, T. Truong, B. van der Linden,
B. Vickery, and C. Zhang. System RX: One part
relational, one part XML. In Proc. of ACM SIGMOD,
Baltimore, Maryland, 2005.

[6] K. Beyer, F. Özcan, S. Saiprasad, and B. van der
Linden. DB2/XML: Designing for evolution. In Proc.
of ACM SIGMOD, Baltimore, Maryland, 2005.

[7] R. Cadenhead, A. Curry, and S. Zellers. RSS history.
See http:

//blogs.law.harvard.edu/tech/rssVersionHistory.

[8] A. Eisenberg and J. Melton. Advancements in
SQL/XML. Sigmod Record, 33(3):79–86, 2004.

[9] International Organization for Standardization (ISO).
Information Technology-Database Language SQL-Part
14: XML-Related Specifications (SQL/XML),
ISO/IEC 9075-14:2006.

[10] Java Content Repository (JCR) Standard. See
http://www.jcp.org/en/jsr/detail?id=170.

[11] R. Murthy, Z. H. Liu, M. Krishnaprasad,
S. Chandrasekar, A.-T. Tran, E. Sedlar, D. Florescu,
S. Kotsovolos, N. Agarwal, V. Arora, and
V. Krishnamurthy. Towards an enterprise XML
architecture. In SIGMOD Conference, pages 953–957,
2005.

[12] M. Nicola and B. V. der Linden. Native XML Support
in DB2 Universal Database. In VLDB, pages
1164–1174, 2005.

[13] F. Özcan, D. Chamberlin, K. Kulkarni, , and J.-E.
Michels. Integration of SQL and XQuery in IBM DB2.
IBM Systems Journal, 45(2):245–270, 2006.

[14] M. Rys. XML and relational database management
systems: inside microsoft SQL Server 2005. In
SIGMOD Conference, pages 958–962, 2005.

[15] E. Sedlar. Managing structure in bits & pieces: the
killer use case for XML. In Proc. of SIGMOD, pages
818–821, New York, NY, USA, 2005. ACM Press.

[16] W3C XML Query Working Group. See
http://www.w3.org/XML/Query.

[17] Web Services. http://www.w3.org/2002/ws.

[18] XQuery 1.0: An XML Query Language, November
2005. W3C Candidate Recommendation, See
http://www.w3.org/TR/xquery.

[19] XQuery 1.0 and XPath 2.0 Data Model, November
2005. W3C Candidate Recommendation, See
http://www.w3.org/TR/xpath-datamodel.

1128

