
Efficient XSLT Processing in Relational Database System

Zhen Hua Liu, Agnuel Novoselsky
Oracle Corporation

400, Oracle Parkway
Redwood Shores, CA 94065

U.S.A
{Zhen.Liu , Anguel.Novoselsky}@oracle.com

ABSTRACT
Efficient processing of XQuery, XPath and SQL/XML on
XML documents stored and managed in RDBMS has been
widely studied. However, much less of such type of work
has been done for efficient XSLT processing of XML
documents stored and managed by the database. This is
partially due to the observation that the rule based template
driven XSLT execution model does not fit nicely with the
traditional declarative query language processing model
which leverages index probing and iterator based pull
mode that can be scaled to handle large size data. In this
paper, we share our experience of efficient processing of
XSLT in Oracle XML DB. We present the technique of
processing XSLT efficiently in database by rewriting XSLT
stylesheets into highly efficient XQuery through partially
evaluating XSLT over the XML documents structural
information. Consequently, we can leverage all the work
done for efficient XQuery/XPath processing in database to
achieve combined optimisations of XSLT with
XQuery/XPath and SQL/XML in Oracle XMLDB. This
effectively makes XSLT processing scale to large size
XML documents using classical declarative query
processing techniques in DBMS.

1. Introduction
XMLType has become a native data type in RDBMS.
Users can create XMLType tables or XMLType columns to
store XML documents. XMLType values can be generated
from relational data via SQL/XML standard generation
functions (such as XMLElement(), XMLAgg()) so that
XMLType views over relational data can be created.
XMLType can be queried using XQuery/XPath embedded
in SQL/XML standard query functions (such as
XMLQuery(), XMLExists()) and extract(), existsNode()

and extractValue() extension functions from Oracle
XMLDB[1,2]. Furthermore, efficient processing of XQuery
and XPath in RDBMS through XPath/XQuery native
rewrite and indexing techniques has been well studied and
applied in industrial settings [3, 4, 11, 12, 17, 18].
However, little of such type of effort has been applied to
XSLT [5] transformation on XML documents stored in or
generated from database.
Since the release of Oracle 9i, Oracle XMLDB has also
supported XMLTransform() SQL/XML function that
enables user to apply XSLT transformation on XMLType
values [2, 16]. However, currently XSLT processing in
XMLTransform() is evaluated functionally. That is, the
XSLT processor views the input XMLType document as a
DOM tree and uses the XMLType DOM API to perform
the transformation, without taking advantage of how the
input XML document is stored, indexed or generated in the
database, nor does it take advantage of schema or DTD
information to which the input XML documents conform.
Intuitively, if we know how the XMLType is stored,
indexed or generated in the database during query
compilation time, then we should be able to use a similar
XQuery/XPath native query rewrite and compilation
technique to efficiently process XSLT without functionally
evaluating XMLTransform().
The technique we will discuss in this paper we call XSLT
rewrite. That is, we rewrite XSLT stylesheet into highly
efficient XQuery query by partially evaluating [14, 15]
XSLT over the input XML document structural
information. Then we leverage the XQuery/XPath native
rewrite techniques [3, 4, 12] to efficiently execute the result
XQuery/Xpath query with the input XMLType values. That
way, the XSLT transformation can be done efficiently in
RDBMS by fully leveraging the underlying storage and
index structures of the input XMLType values.

One of the main design philosophies of Oracle XMLDB
query processing is to treat XQuery, XPath, XSLT,
SQL/XML as different XML processing languages, which
however, are compiled into the same internal representation
(SQL extended with XML operators) and which are
executed on the underlying Oracle SQL/XML engine. Thus
we promote the feasibility of cross language global

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1106

optimisations among these XML query and transformation
languages [4, 11]. This approach enables us to achieve
global optimisations crossing all XML query and
transformation languages over variety of XMLType
physical storage in a systematic way. Figure 1 shows the
architectural diagram of XSLT is transformed into Xquery
which is further optimised over variety of XMLType
physical storage and index models.

Figure 1 - XSLT/XQuery Optimization Over XMLType
Abstraction

The rest of this paper is organized as follows. Section 2
provides motivating examples of using XSLT to transform
XML in Oracle XDB and their optimisation results. Section
3 discusses XSLT to XQuery rewrite general techniques
and various optimisation techniques to generate highly
efficient XQuery based on the structural information of the
input XML information. Section 4 discusses the underlying
partial evaluation. Section 5 discusses performance
experiments. Section 6 discusses related work comparison.
Section 7 discusses future direction and section 8 concludes
the paper with acknowledgement.

2. XSLT Transformation Motivating
Examples

2.1 Optimisation of XSLT transformation over XML
generated from relational tables

Oracle XML DB enables users to create a view of XML
type instances via SQL/XML publishing functions over
relational tables. Consider a classical case of the dept and
emp tables forming master-detail relationship. The content
of the dept and emp tables are shown in Table 1 and Table
2.

deptno Dname loc

10 ACCOUNTING NEW YORK
40 OPERATIONS BOSTON
Table 1 - Table “dept” content

empno ename Job Sal deptno
7782 CLARK MANAGER 2450 10
7934 MILLER CLERK 1300 10
7954 SMITH VP 4900 40
Table 2 - Table “emp” content

To generate XML from the relational tables dept and emp,
we create a view dept_emp (Table 3). This view generates
two rows of XMLType instances as shown in Table 4. For
each row in the dept table, it uses the SQL/XML standard
publishing functions to construct an XMLType instance.
The SQL query containing XMLAgg() is a correlated scalar
subquery that aggregates the XML information from the
emp table. Thus, for each dept row, the relevant emp rows
are retrieved and converted into a collection of employees
elements.

CREATE VIEW dept_emp

AS

SELECT

 XMLElement("dept",

 XMLElement("dname", dname),

 XMLElement("loc", loc),

 XMLElement("employees",

 (SELECT XMLAgg(XMLElement("emp",

 XMLElement("empno", empno),

 XMLElement("ename", ename),

 XMLElement("sal", sal)))

 FROM emp

 WHERE emp.deptno = dept.deptno))) as dept_content

FROM dept

Table 3- SQL/XML constructed XML view dept_emp

Example 1: Consider the example of using XMLTransform
function to generate an HTML document from each XML
document row from dept_emp view using XSLT stylesheet
shown Table 5.
In this example, a SELECT query runs on the dept_emp
view, which has a dept_content XMLType column. For
each row of dept_emp, it fetches an XML document from
the dept_content XMLType column and then it calls the
XMLTransform() function to generate a new XMLType
value. XMLTransform() is Oracle SQL/XML extension
function, which applies a stylesheet on an XML document
and returns the XSLT transformation result. The XSLT
stysheet, in this case, generates HTML, which displays
highly paid employees (employees whose semi monthly
salary is more than 2000) in a department as show in Table
6.

XSLT

XQuery

 CLOB/
BLOB

SQL/XML
View

Object-
Relational

Storage
Tree
Storage

XML Abstraction

1107

<dept>

 <dname>ACCOUNTING</dname>

 <loc>NEW YORK</loc>

 <employees>

 <emp>

 <empno>7782</empno>

 <ename>CLARK</ename>

 <sal>2450</sal>

 </emp>

 <emp>

 <empno>7934</empno>

 <ename>MILLER</ename>

 <sal>1300</sal>

 </emp>

 </employees>
</dept>
 <dept>
 <dname>OPERATIONS</dname>
 <loc>BOSTON</loc>
 <employees>

 <emp>

 <empno>7954</empno>

 <ename>SMITH</ename>

 <sal>4900</sal>

 </emp>

 </employees>
</dept>

Table 4 - Two rows of XMLType instances from dept_emp

A straightforward functional evaluation of the query first
materializes the XML contents of dept_xml by constructing
an XMLType instance from the relational data and then
applies the XSLT transformation on it. This functional
evaluation is sub-optimal because large input XML data
has to be materialized before the actual XSLT
transformation can be performed. Another key observation,
however, is that the optimal evaluation plan should exploit
the fact that one the heavily computed XPath expression:
 /emp[sal > 2000]
actually maps to a predicate on the underlying sal column
of the emp table. This fact can potentially promote index
usage to filter all the rows that do not contribute to the final
result. Also, XSLT stylesheet template bodies can be
inlined all together to construct a single query that builds
the result HTML document from the relational column
data.

SELECT
XMLTransform(dept_emp.dept_content,
'<?xml version="1.0"?><xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="dept">
 <H1>HIGHLY PAID DEPT EMPLOYEES</H1>
 <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="dname">
 <H2>Department name: <xsl:value-of select="."/></H2>
 </xsl:template>
 <xsl:template match="loc">
 <H2>Department location: <xsl:value-of select="."/></H2>
 </xsl:template>
 <xsl:template match="employees">
 <H2>Employees Table</H2>
 <table border="2">
 <td>EmpNo</td>
 <td>Name</td>
 <td>Weekly Salary</td>
 <xsl:apply-templates select="emp[sal > 2000]"/>
 </table>
 </xsl:template>
 <xsl:template match = "emp">
 <tr>
 <td><xsl:value-of select="empno"/></td>
 <td><xsl:value-of select="ename"/></td>
 <td><xsl:value-of select="sal"/></td>
 </tr>
 </xsl:template>
 <xsl:template match="text()">
 <xsl:value-of select="."/>
 </xsl:template>
</xsl:stylesheet>')
FROM dept_emp;

Table 5 - XSLT XMLTransform() example 1

To realize this intuition, we use the XSLT rewrite
technique to rewrite the original user stylesheet with the
XSLT transformation into a SQL/XML query shown in
Table 7.
Note that this rewritten query merely consists of SQL/XML
generation functions, such as XMLConcat(),
XMLElement(), XMLAgg() to construct the resultant XML
from the underlying relational column data. It does not
contain any XSLT or XPath operators at all. The rewritten
query is a relational query on the relational table and the
standard relational optimizer can select the index on the sal
column of the emp table to speed up the query. The XSLT
rewrite technique is accomplished in two steps.
First we rewrite the XSLT stylesheet into an equivalent
XQuery using the input document structural information.
The rewritten XQuery for the stylesheet from Table 5 is
shown in Table 8.

1108

<H1>HIGHLY PAID DEPT EMPLOYEES</H1>
<H2>Department name: ACCOUNTING</H2>
<H2>Department location: NEW YORK</H2>
<H2>Employees Table</H2>
<table border="2">
 <td>EmpNo</td>
 <td>Name</td>
 <td>Weekly Salary</td>
 <tr>
 <td>7782</td>
 <td>CLARK</td>
 <td>2450</td>
 </tr>
</table>
<H1>HIGHLY PAID DEPT EMPLOYEES</H1>
<H2>Department name: OPERATIONS</H2>
<H2>Department location: BOSTON</H2>
<H2>Employees Table</H2>
<table border="2">
 <td> EmpNo</td>
 <td>Name</td>
 <td>Weekly Salary</td>
 <tr>
 <td>7954</td>
 <td>SMITH</td>
 <td>4900</td>
 </tr>
</table>

Table 6 - Result of XSLT transformation from example 1

SELECT XMLConcat(

 XMLElement("H1",'HIGHLY PAID DEPT EMPLOYEES'),

 XMLElement("H2",'Department name: '
||"SYS_ALIAS_4"."DNAME"),

 XMLELement("H2",'Department location:’
||"SYS_ALIAS_4"."LOC"),

 XMLELement("H2",'Employees Table'),

 XMLElement("table",XMLAttributes('2' AS "border"),

 XMLElement("td",

 XMLElement("b",'EmpNo')),

 XMLElement("td",XMLElement("b",'Name')),

 XMLElement("td",XMLElement("b",'Weekly Salary')),

 (SELECT XMLAGG(

 XMLElement("tr",

 XMLElement("td","EMP"."EMPNO"),

 XMLElement("td","EMP"."ENAME"),

 XMLElement("td","EMP"."SAL")))

 FROM EMP

 WHERE SAL > 2000

 AND DEPTNO=DEPT.DEPTNO)))

FROM DEPT

Table 7 - Rewritten query for query example 1

SELECT XMLQuery(

'declare variable $var000 := .;

(: builtin template :)

 (

 let $var002 := $var000/dept

 return

 (: <xsl:template match="dept"> :)

 (

 <H1>HIGHLY PAID DEPT EMPLOYEES</H1>,

 (

 let $var003 := $var002/dname

 return

 (: <xsl:template match="dname"> :)

 <H2>{fn:concat("Department name: ", fn:string($var003))}</H2>,

 let $var003 := $var002/loc

 return

 (: <xsl:template match="loc"> :)

 <H2>{fn:concat("Department location: ",fn:string($var003))}</H2>,

 let $var003 := $var002/employees

 return

 (: <xsl:template match="employees"> :)

 (

 <H2>Employees Table</H2>,

 <table border="2">

 {

 <td>EmpNo</td>,

 <td>Name</td>,

 <td>Weekly Salary</td>,

 (

 for $var005 in ($var003/emp[sal > 2000])

 return

 (: <xsl:template match="emp"> :)

 <tr>

 <td>{fn:string($var005/empno)}</td>

 <td>{fn:string($var005/ename)}</td>

 <td>{fn:string($var005/sal)}</td>

 </tr>

)

 }

 </table>

)

)
)
)' PASSING dept_emp.dept_content RETURNING CONTENT)
FROM dept_emp

Table 8 - XQuery resultant from XSLT rewrite example 1

Next, we further rewrite XQuery into a SQL/XML query
with the input XML construction function using XQuery

1109

rewrite techniques [3,4] to result in the final SQL/XML
query shown in Table 7. The resultant query is very
efficient, because it does not fetch or compute any
unnecessary data that do not contribute to the final
transformation result and because it uses B-tree index to
compute the predicate.

2.2 Combined optimisation of XQuery/XPath
optimisation over XSLT transformation
Since the output of XMLTransform() is another XMLType
value that can be further queried or transformed through
XQuery/XPath or XSLT, we can combine the XSLT
optimization with the next step XQuery/XPath
optimization.

Example 2: We create an XSLT view XSLT_VU shown in
Table 9, which wraps the XSLT transformation from
Example 1.
-- wrap XMLTransform() example 1 as an XSLT_VU.
CREATE VIEW xslt_vu AS
-- XMLTransform() text from example 1 in Table 5
SELECT XMLTransform(dept_emp.dept_content,
 ‘…..’) AS xslt_rslt
FROM dept_emp

Table 9 - XSLT View

After this, we query XSLT_VU via another FLWOR
XQuery using XMLQuery() operator as shown in Table 10.

SELECT
 XMLQuery(‘for $tr in ./table/tr return $tr’
 PASSING xslt_vu. Xslt_rslt RETURNING CONTENT)
FROM XSLT_VU

Table 10 -XQuery query on the result from XSLT
The combined optimisation that applies XSLT rewrite to XQuery
and XQuery rewrite to SQL/XML recursively optimises the query
from Table 10. The final optimal query from XSLT and XQuery
rewrite is shown in Table 11.

SELECT
(SELECT XMLAgg(XMLElement("tr",
 XMLElement("td",empno),
 XMLElement("td",ename),
 XMLElement("td", sal)))
FROM emp
WHERE sal > 2000
AND deptno = d.deptno)
FROM dept d

Table 11 - Optimal SQL/XML Query from combined
optimization of XSLT, XQuery, SQL/XML.

3. XSLT to XQuery Rewrite
As shown in the previous examples, the key step is to
rewrite XSLTstylesheet into an equivalent XQuery. XSLT
and XQuery share the same XPath and many functions and

operators as a common core. They both have similar
language XML node creating constructs, iterations with
sort, conditional testing and variable access. So the
translation between these constructs is straightforward. The
main difference is however, that XSLT templates are
activated as a result of dynamic pattern matching while
XQuery functions are invoked explicitly. This is the biggest
challenge of rewriting XSLT into XQuery.

3.1 General XSLT Rewrite to XQuery Technique

Generally speaking, an XSLT stylesheet is composed of a
collection of templates provided by the user and the default
built-in template. Each template can be translated into an
XQuery user defined function and each XSLT instruction
in the template body can be converted into its
corresponding XQuery expression. The challenging aspect
here is to how to translate <apply-templates/> instruction,
which implicitly demands the template pattern matching.
The idea proposed in [9] is to compile XSLT <apply-
templates/> instruction into a combination of XQuery's
conditional expressions where the expression conditions
literally model the template pattern matching and the
expression bodies contain function calls that invoke the
corresponding XQuery function that translated from the
XSLT template. This approach essentially converts the
pattern matching and template selection normally carried
by the XSLT processor to explicit XQuery conditional
expressions executed by the XQuery processor. However,
this straightforward compilation approach usually
results in an inefficient execution. This is because the
XSLT processor might internally provide aggressive
optimisations of locating the right template (via internal
hash tables for example), whereas the translated XQuery
query uses a large number of conditional expressions to
sequentially test which template to instantiate [9].
Therefore, we have to apply aggressive optimisations in
order to get an efficient query. In the absence of the input
XMLType structural information, this straightforward
compilation approach is appropriate. However, in the
context of RDBMS, we can derive that structural
information and use that to rewrite XSLT into XQuery. In
particular, using the partial evaluation technique to create a
specialized XQuery query from XSLT stylesheet can
results in highly efficient XSLT transformation.

3.2 Exploiting XML Structural Information

In the database environment, we can typically obtain the
XMLType structural information from the database meta-
data information.

• If the input XMLType is from XMLType table or
columns with XML schema or DTD information,
we can use XML schema and DTD to get the
XML structural information.

1110

• If the input XMLType is generated from relational
or object-relational data as example 1, we can get
the XML structural information from the
underlying relational or object relational schema.

• If the input XMLType is computed from another
XQuery/XPath, then we can derive the structural
information based on the static typing result of the
XQuery.

• If the input XMLType is computed from another
XSLT transform as in example 2, we rewrite the
XSLT into XQuery recursively first and then
derive the structural information of the XSLT
result based on the static typing result of the
equivalent XQuery query.

• If the input XMLType is from view column, we
can trace the view column that is built on top of
the above cases.

We use the XML structural information during the XSLT
to XQuery translation when we apply optimal XSLT to
XQuery rewrite techniques such as: template instantiation
inlining; children template instantiation with leveraging
children model group and cardinality information;
removing unnecessary backward XPath testing; removing
unused templates, all of which are discussed in sections 3.3
to 3.7. This results in an XQuery that is significantly
simpler than the one from the straightforward approach
proposed in [9]. We will go over each rewrite technique in
following sections. The key point is that although each one
of the rewrite technique alone is quite simple, however
their combined optimisation effect is drastic.
In summary, our approach attempts to generate efficient
XQuery by aggressively exploiting the structural
information of the input XMLType and does optimisations
as much as possible based on that information. This
approach makes sense because XSLT transformation in
database is usually applied to a set of large number of input
XML documents, each of which is either stored as a row in
an XMLType table or column conforming to one or a
collection of XML schemas that are registered to RDBMS
or generated from object relational data. One common such
use case is that XSLT transformation is used to transform a
set of XML documents conforming to schema S1 to another
XML documents conforming to schema S2 due to non-
compatible XML schema (S1 and S2 are not compatible as
they are defined by different organizations).
In the case that the set of XML documents conform to a
collection of XML schemas (say S1, S2,.. Sn), however, we
can rewrite the XSLT transformations into multiple optimal
SQL/XML queries based on S1, S2,.. Sn respectively,
during query compile-time. Then during run time,
depending on the actual target XML schema, we execute its
corresponding optimal SQL/XML query plan.

3.3 Template instantiation inline

This technique inlines the body of the activated templates
directly in the caller, which either calls the template
explicitly through <call-template/> instruction or calls the
template implicitly through <apply-templates/> instruction.
For example, there are two <apply-templates/> instructions
in the XSLT templates shown in Table 5. The first one
matches "dept" element and the other one matches
"employees" element:

<xsl:template match="dept">
 …
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="employees">
 …
 <xsl:apply-templates select="emp[sal > 2000]"/>
 …
</xsl:template>

As a result of the partial evaluation step we know that the
current nodes for the first <apply-templates> instruction
are the elements “dname”, “loc” and “employees”, while
for the second <apply-templates> instruction it is the
element “emp”. We replace the first <apply-templates>
with the template bodies activated by “dname”, “loc” and
“employees”. For the second template, which is the
activated template for element (employees), we recursively
apply the same algorithm but with “emp” as a current
element. The inlining effect is shown in Table 8.

3.4 Children template instantaion based on model group
and cardinality information

This technique utilizes the children model group
information in order to explicitly arrange the inline
template body. For example, the XML schema specifies
that the children model group can be one of the following:
sequence, choice, or all. Model information allows us to
inline the XQuery expressions for children elements more
efficiently, especially for the most common models of
sequence and choice.
In example 1, if we only knew that there are three children
elements "dname", "loc" and "employees" under element
"dept", but we did not know in what order they appear, then
we would have to rewrite the XSLT into XQuery as shown
in Table 12.
However, if we knew that the children model group is
“choice”, that is, "dept" element has only one child
element, which can be either "dname", or "loc" or
"employee" element, then we could inline them by
removing the explicit FLWOR for each node() access as
shown in Table 13.
Finally, if the three children elements model group is
“sequence”, that is, "dept" element has "dname", "loc" and
"employee" child elements in order, then we can inline

1111

them by removing all the conditional tests completely as
shown in Table 14.
Another optimisation we can do is to generate FLWOR
clause based on the cardinality information of the child
element. For example, we use FOR clause to iterate
through each ‘emp’ element because it has multiple
occurrences under ‘employee’ element. We use LET clause
to access ‘dname’ element because it has at most one
occurrence under ‘dept’ element. This is shown in Table
15.

declare variable $var000 := .;
 (
 let $var002 := $var000/dept
 return
 for $var003 in $var002/node()
 return
 (
 if ($var003 instance of element(dname)) then
 inlined xquery from template for "dname",
 else if ($var003 instance of element(loc)) then
 inlined xquery from template for "loc" ,
 else if ($var003 instance of element(employee)) then
 inlined xquery from template for "employee"
)
)

Table 12 - inline templates for the “all” model group
declare variable $var000 := .;
 (
 let $var002 := $var000/dept
 return
 if ($var002/dname) then
 inlind xquery from template for "dname"
 else if ($var002/loc) then
 inlined xquery from template for "loc"
 else if ($var002/employee) then
 inlined xquery from template for "employee"
)

Table 13 - inlined templates for the “choice” model group
declare variable $var000 := .;
 (
 let $var002 := $var000/dept
 return
 (
 let $var003 := $var002/dname
 inlined xquery from template for "dname",
 let $var003 : = $var002/loc then
 inlined xquery from template for "loc"
 let $var003 := $var002/employee then
 inlined xquery from template for "employee"
)
)

Table 14 - inline templates for the “sequence” model group
let $var005 := $var003/dname
 inlined xquery from template for “dname”

let $var003 := $var002/employees
 return
 for $var005 in ($var003/emp[sal > 2000])
 inlined xquery from template for “emp”

Table 15 - inline based on cardinality

3.5 Removing unnecessary backward XPath Step
Testing

The XPath P used in the pattern matching of a template can
have multiple XPath steps with predicates. The conceptual
definition of pattern matching implies finding the existence
of parent node such that when evaluating XPath P with that
parent node as a context node yields the result containing
the testing node to which template is applicable. Because
the pattern matching based on the conceptual definition is
quite inefficient, an efficient XSLT processor usually
evaluates the XPath expression by reversing the pattern as
proposed in [6] and illustrated in [9]. However, with the
XML structural information, we can remove some of the
unnecessary backward XPath testing in the translated
XQuery.
Consider the template in Table 16, which uses Xpath with
multiple steps for matching condition

<xsl:template match = "emp/empno">

Table 16 - multi-step XPath in matching condtion

Without knowing that "empno" element has only one parent
element "emp", we would have to generate using XQuery
conditional expression testing shown in Table 17.

(($var instance of element(empno)) and fn:exists($var/parent::emp))

Table 17 - Parent Axis XPath test

However, from the SQL/XML generation function, we can
infer that "empno" element has only one "emp" parent
element, this fn:exists() testing with parent axis of "emp"
element can be eliminated.
On the other hand, if we have two templates, one of them
with an XPath predicate, as shown in Table 18.

<xsl:template match = "emp/empno[. = 3456]">
 …
<xsl:template match = "emp/empno">
 …

Table 18 – multi-step XPath having predicate

then we can not remove the conditional expression testing.
However, we can still simplify the pattern by removing the
parent axis check as shown in Table 19.

if ($var instance of element(empno)) and (empno[. = 3456])) then
 …
else if ($var instance of element(empno)) then
 …

Table 19 - Parent Axis Removed

3.6 Built-in template Only Optimisations

If we find that all nodes of an XML document (it can be the
entire XML document) use the built-in templates, then we
can generate a more compact XQuery code without
explicitly iterating through each node of the subtree from
top to bottom. For example, if the XSLT template applied
in example is shown in Table 20, then we can just generate
the a compact Xquery shown in Table 21.

1112

 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

</xsl:stylesheet>

Table 20 – Empty stylesheet

In this case, the template applies built-in template for each
node of the XML document, the translated XQuery uses //
to select all the self and descendant text nodes and
concatenate all the fn:string() value of each text node
together.

declare variable $var000 := .;
(: builtin template :)
 fn:string-join(
 for $var002 in $var000//text()
 return fn:string($var002), " ")

Table 21 - Compact XQuery with built-in template only

3.7 Removed non-instantiated template

We also keep track of all the templates that might be
instantiated based on the input XML structural information.
For those templates, which are not instantiated, we don’t
generate corresponding XQuery for it.

4. XSLT Partial Evaluation

4.1 Rationale of using partial evaluation

To be able to use various techniques discussed above to
generate efficient XQuery, we have leveraged partial
evaluation techniques. Although one can use data flow
analysis to optimise the straightforward translated XQuery ,
we found that it is more efficient and easier to generate
optimised XQuery by partially evaluating the XML
structural information. In fact, many XQuery optimisations
based on static type analysis can be conceptually modelled
as if doing XQuery partial evaluation on the input XML
static type tree.
Partial evaluation technique is not new and has been well
studied in the past [14,15]. An application can benefit from
partial evaluation if:
The application computation can be described as a
function F(X,Y), where X changes less frequently than Y,
and where a significant part of F’s computation depends
only on X.

The key observation is that: if we let the function F to be
the XSLT stylesheet itself and if we decompose the input
XML document into a structural information part (X)
and an actual content data (Y), then we can see that
partial evaluation has a perfect application in the context of
XSLT. Since pattern matching in a typical XSLT stylesheet
is primarily on the input XML document structure and the
actual content data testing is usually in the XPath predicate,
so we can significantly simplify the XSLT based on the

partial evaluation on the structural information of the input
XML. The expression that depends on the actual content
data, such as XPath predicate, is then left in the residual
XQuery and can typically be efficiently processed via index
probe in the database environment. Furthermore, the
default built-in template is solely based on input XML
document structure and can be inlined multiple times via
partial evaluation with different nodes in the document as
input parameters instead of being recursively called as a
function via straightforward translation of XSLT to
XQuery approach.
When applying the partial evaluation in the context of
XSLT prcessing, we first construct a special sample XML
document, which captures all the structural information
from the input XMLType but not the actual content values.
Then we invoke the XSLTVM [13], enhanced with special
trace instructions to get the execution trace information,
such as, the list of actually instantiated templates for each
<apply-template/> instruction etc. We also build a
template call execution graph, which models the exact
sequence of template activations.
Note that since we don't know the actual value of the text
node, we have to be conservative during the partial
evaluation and assume that the result of matching pattern
with a predicate, such as: emp[empno = 3456] is always
true for an 'emp' element node with a child element
“empno”.

4.2 Sample XML document generation

Based on the input XML schema, DTD, or relational
schemas, we can generate a sample XML document that
captures the structural information.
To denote XML schema model groups, such as choice, all,
or data type information, we annotate elements with a
special attribute belonging to predefined Oracle XDB
namespace.

4.3 Partial Evaluation

The partial evaluation step consists of two phases. During
the first one we compile the stylesheet into XSLTVM byte-
code along with the special 'trace-instructions' for
collecting the run time information. We build a template-
table for each template listed in the stylesheet. It contains
important template information, including the template
formal parameters (if any). We also build a trace-table,
where each table-entry maps to an <apply-templates>
instruction used in the stylesheet. The entry has a trace-
call-list with the run-time instantiated template and the
actual parameters, along with the matching XML nodes
that cause the template activation.
Next, the XSLTVM is invoked to transform the sample
XML document. The trace-instructions, when executed,
send the actual information to the Execution Graph Builder,
which builds the template execution graph. Each template
instantiation creates a new graph state (unless there is a

1113

recursion), which corresponds to the activated template and
a transition arch representing the current node. The first
graph transition corresponds to the first template activation
with the sample XML document root node.

4.4 XQuery Generation

Based on the template execution graph and the trace-call-
list, we can generate the target XQuery using the efficient
XQuery translation techniques we have discussed in section
3.3 to 3.7. Currently, we support two rewrite modes: non-
inline mode and inline mode.
If the template execution graph contains at least one
recursion, then we are in non-inline mode. In that case we
generate the result query as a list of XQuery functions, each
one corresponding to an invoked template traced from
partial evaluation. We scan the template-table and compile
each instantiated template into an XQuery function. The
main query merely calls the first instantiated template. For
<xsl:apply-templates/> instruction, we scan the trace-call-
list and generate a conditional function call for each call-
entry.

If the template call execution graph is not recursive, then
this is the inline mode. We generate only a main query
without any functions. All stylesheet template bodies are
inlined into the main query body. We scan the template call
execution graph states and for each state, we inline the
state-template body. In this mode each <xsl:apply-
templates> element is equivalent to a state transition. We
scan the <xsl:apply-templates> trace-call-list and generate
a conditional function call only for call-entries, whose
current node is the same as the transition-node .Then we
shift to the new state and inline the new state-template body
recursively.

Although we currently have only two modes: inline or non-
inline, that is, we use non-inline mode as soon as we see
one recursive function call, we can always enhance it to do
partial inline mode as well. In our experimental assessment
discussed below, however, we find that even with just the
current approach, more than 50% of the XSLT cases can
benefit from the full inline mode.

5. Experimental Assessment
We used XSLTMark [19] tests to measure the effectiveness
of XSLT rewrite. It is an XSLT benchmark suite, which
uses forty test cases designed to assess important functional
areas of an XSLT processors. We store XML documents
object relationally with various indexes created for efficient
predicate evaluation.
The first performance objective is to compare the
performance of XSLTquery going through the rewrite
versus not going through the rewrite. The XSLT rewrite

approach rewrites the XSLT into XQuery and the XQuery
is further rewritten into SQL/XML query over the
underlying object relational storage tables with index
access. The XSLT no rewrite approach constructs the XML
documents from the storage tables as DOM object and then
XSLT runs on top of the DOM object.
Figure 2 shows performance comparison between XSLT
rewrite versus XSLT no rewrite for ‘dbonerow’ test case
from XSLTMark. ‘dbonerow’ XSLT uses XPath value
predicate to select one qualified node. The X-axis indicates
the size of XML documents to which XSLT is applied
while the Y-axis indicates the time taken to perform the
XSLT transformation on the XML documents with and
without rewrite. We measured four cases with size of XML
document as 8M, 16M, 32M and 64M. As Figure 2 shows,
the XSLT rewrite approach performs much better than
XSLT without rewrite approach consistently. Furthermore,
the time taken for XSLT no rewrite approach increases
quickly in response to the increase size of XML document
whereas the time taken for the XSLT rewrite approach
grows slowly due to the use of B-tree index to process the
predicate.
Figure 3 shows the performance comparison between
XSLT rewrite and XSLT no rewrite for the ‘avts’, ‘chart’,
‘metric’, ‘total’ test cases from XSLTMark. These are test
cases that there is no XPath value predicate so that there is
no value index to be used to filter nodes. The X-axis shows
the test cases and the Y-axis indicates the time taken to
perform the XSLT transformation for each case with or
without XSLT rewrite. Again the XSLT optimised through
rewrite outperforms those without XSLT rewrite.

0

1000

2000

3000

4000

5000

6000

7000

8M 16M 32M 64M

Rewrite
No-Rewrite

Figure 2 - Performance comparison between XSLT rewrite

versus XSLT no rewrite for few nodes selection

For both ‘avts’ and ‘metric’ cases, the XSLT essentially
constructs new XML nodes with conditional expression.
The resultant SQL/XML query from XSLT rewrite can be
efficiently executed by the top-stream evaluation of
SQL/XML publishing function [2]. For ‘chart’ and ‘total’
test cases from XSLTMark, the XSLT uses count() and
sum() aggregate function. The resultant SQL/XML query
from XSLT rewrite has these common aggregate functions

1114

which can be efficiently executed by the underlying
RDBMS aggregation process in parallel manner.

0

200

400

600

800

1000

1200

avts
case

chart
case

metric
case

total
case

No-Rewrite
Rewrite

Figure 3 - XSLT rewrite Vs XSLT no-rewrite Performance

Comparison

Our second objective was to measure how effective the
XSLT to XQuery inline generation mode is. We found that
23 out of 40 XSLTMark test cases can be completely
inlined into an efficient XQuery query without any function
calls. So more than 50% of XSLT use cases in the
benchmark can benefit from inline translation of XSLT to
XQuery without containing any XQuery function calls.

6. Related Work Comparisons
Ideas of efficient processing of XSLT in the database
context have been proposed in the past. G. Moerkotte in
[6] has proposed to compile XSLT into an internal algebra
that can be integrated with the rest of the relational engine.
The paper [6] concluded that future research would be on
combined optimisations of queries constructing XML
documents and XSLT processing them and also alternative
ways to incorporate XSLT processing into database
engines. Instead of rewriting XSLT into some private
algebra, our work shows that one of the appealing
alternatives of incorporating XSLT processing into
RDBMS is to use XQuery as an intermediate language into
which XSLT is translated and then further optimise the
XQuery by taking advantage of how the XML is stored,
indexed or generated in RDBMS. This approach can
leverage all the XQuery and SQL/XML processing and
optimisations work done so far because processing of
XQuery and SQL/XML on database engine have been far
more widely studied than that of XSLT. Furthermore, this
XSLT to XQuery rewrite approach enables cross-language
global optimisations of combined XQuery, XSLT and
SQL/XML invocations in one query as shown in example 2
of section 2.2.
S. Jain etc [7] and Chengkai Li etc [8] have proposed
algorithms of translating XSLT into efficient SQL over
input XMLType view generated from relational tables.
They describe optimisation strategies of XSLT processing
of XML publishing views over relational data. This
essentially falls into the category of combined

optimisations of XSLT processing queries constructed
XML documents. Their goal is achieved via extensive
XSLT stylesheet analysis, followed by special
optimisations and resulting into a generation of efficient
SQL query.
We believe that our approach of using XQuery as an XML
storage independent intermediate language has advantages
over ideas discussed in paper [7] and [8] because it clearly
divides the XML language processing into language
specific and storage specific optimisation phases. During
the first phase we use partial evaluation to compile and
optimise the input XSLT stylesheets into XQuery. Next, we
use XQuery as the common language and leverage XQuery
rewrite framework to perform XML storage and index
model specific optimisations in RDBMS.
Rewriting XSLT into XQuery has been recently proposed
in [9]. However, it is a straightforward translation and the
resultant query is full of recursive functions and large
conditional branch expressions. It is inefficient and may not
yield any performance benefits compared with just
evaluating the original XSLT stylesheet directly. In order to
obtain optimal performance the result query has to be
aggressively optimised but along with the structural
information of the input XML document.
Our approach, on the other hand, leverages the fact that we
can obtain the input XMLType structural meta-data
information, such as the XML Schema, DTD or the
underlying relational schema, so we can generate a highly
efficient XQuery from XSLT. By partially evaluating the
input XMLType structural information during query
compilation time, we can inline XSLT templates and
eliminate many unnecessary XQuery conditional
expressions. That results in an efficient and easily
optimisable query. This is not surprising because the partial
evaluation can help us to do aggressive optimisations of
XSLT through combination of constant folding, function
and variable inlining and cross-function optimisation
propagation applied to the input XML nodes. This is what
is genuinely needed for XSLT optimisation in general.
Furthermore, our approach can deal with XML schema
evolution as the XSLT can be recompiled based on the new
version of XML schema. In fact, this recompilation process
is automated because the XSLT query has dependency on
the XML schema whose change is tracked by the database
system.

7. Open Issues and Future Directions

7.1 XSLT constructs

Certain XSLT constructs are hard to translate into XQuery.
In particular, handling XSLT 2.0 [21] grouping construct,
<xsl:for-each-group>, will be challenging as the group by
construct needs to be part of the XQuery as illustrated in
[20].

1115

7.2 Partial Evaluation

For XSLT partial evaluation, we currently do not handle
recursive XML document structure. We will need to add
special attribute annotation to denote recursive structures in
the sample XML document and enhance the partial
evaluation to handle recursive case. For XQuery
compilation from XSLT, we will work on partial inline
mode.

7.3 XML Schema Evolution

The other direction is to study the XSLT to XQuery rewrite
based on a set of XML schemas that are similar, for
example, evolving from the same parent schema. This is
common for XMLType storage table with evolving XML
schemas.

7.4 XML storage Model

Furthermore, we will need to study the XSLT performance
for different physical XML storage and index models
(object relational storage, CLOB or BLOB storage with
path/value index, tree storage with path/value index)
through XSLT to XQuery rewrite so that we know what
type of storage is ideal for what type of XSLT query.

8. Conclusion
In this paper, we show that optimising XSLT
transformation over XML documents stored in or generated
from the database is feasible despite the fact that XSLT is a
highly declarative template-based language. Our approach
is to rewrite XSLT stylesheets into optimised XQuery and
then apply XQuery database optimisations. However, it is
crucial that we take into account the input XML document
structural information by partially evaluating it. The end
result shows that XSLT processing over large XMLType
documents managed by RDBMS can enjoy the same
performance benefits as that of XQuery or SQL/XML
query. The classical declarative query language processing
techniques, such as indexing probe, iterator based
execution model [10] with parallel aggregation and sorting
can be fully leveraged and applied to the XSLT
transformations as well.

9. Acknowledements
We gratefully acknowledge the contributions of all the
members of the Oracle XML DB development and product
management teams. In particular, we thank Muralidhar
Krishnaprasad who have provided ideas and insights for
this project.

10. References
[1] I.O. for Standardization (ISO). Information Technology-

Database Language SQL-Part 14: XML-Related
Specificaitons (SQL/XML)

[2] M. Krishnaprasad, Z. H. Liu, A. Manikutty, J. Warner, V.
Arora. “Towards an industrial strength SQL/XML
infrastructure”. ICDE 2005

[3] M. Krishnaprasad, Z.H. Liu, A. Manikutty, J. Warner, V.
Arora, S. Kotsovolos. “Query rewrite for XML in Oracle
XMLDB”. VLDB 2004

[4] Z.H.Liu, M.Krishnaprasad, V.Arora, “Native XQuery
Processing in Oracle XMLDB”. SIGMOD 2005

[5] XSLT 1.0: http://www.w3.org/TR/xslt.
[6] G. Moerkotte, "Incorporating XSL Processing Into Database

Engines", VLDB 2002
[7] Jain, R. Mahajan, D. Suciu, "Translating XSLT Programs to

Efficient SQL Queries", In Proc of the Eleventh Int'l
Conference on World Wide Web, pages 616-626, 2002.

[8] C. Li, P. Bohannon, H. F. Korth, P.P.S. Narayan,
"Composing XSL Transformations with XML Publishing
Views", SIGMOD 2003.

[9] A Fokoue, K Rose, J. Simeon, L. Villard, "Compiling XSLT
2.0 into XQuery 1.0", Proceedings of the 14th international
conference on Word Wide Web Publishing, May 2005.

[10] G. Graefe. "Query evaluation techniques for large
databases". ACM Computing Surveys. 25(2), June 1993

[11] R. Murthy, Z. Hua Liu, M. Krishnaprasad, S. Chandrasekar,
A. Tran, E. Sedlar, D. Florescu, S. Kotsovolos, N. Agarwal,
V. Arora, V. Krishnamurthy: Towards An Enterprise XML
Architecture , SIGMOD 2005

[12] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, J.
Funderburk. “Querying XML Views of Relational Data.”
VLDB 2001

[13] A Novoselsky, “The Oracle XSLT Virtual Machine”, XTech
2005, Amsterdam, Netherlands.
http://www.idealliance.org/proceedings/xtech05/papers/04-
02-01/

[14] C. Consel and O. Danvy. “Tutorial Notes on Partial
Evaluation”. In ACM Symposium on Principles of
Programming Languages, pages 493-501, 1993.

[15] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Englewood Cliffs, NJ:
Prentice Hall, 1999.

[16] Oracle XML DB Developer’s Guide: Oracle 9iR2. See
http://otn.oracle.com/tech/xml/xmldb

[17] K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein, G.
Lapis, G. Lohman, B. Lyle, F. Ozcan, H. Pirahesh, N.
Seemann, T. Truong, B. Linden, B. Vickery, C. Zhang:
“System RX: One Part Relational, One Part XML”. In
SIGMOD 2005.

[18] S. Pal, I. CSeri, O. Seeliger, M. Rys, G. Schaller, P. Kukol,
W. Yu, D. Tomic, A. Baras, C. Kowalczyk, B. Berg, D.
Churin, E. Kogan: “XQuery Implementation in a relational
database system”. In VLDB 2005.

[19] XSLT benchmark tests
http://www.datapower.com/xmldev/xsltmark.html

[20] K.Beyer, D. Chamberlin, L. Colby, F. Ozcan , H. Pirahesh ,
Y. Xu: Extending XQuery for Analytics, SIGMOD 2005.

[21] XSLT 2.0: http://www.w3.org/TR/xslt20

1116

