
Mapping Moving Landscapes by Mining Mountains of
Logs: Novel Techniques for Dependency Model Generation

Mirko Steinle‡, Karl Aberer‡, Sarunas Girdzijauskas‡, Christian Lovis†

‡Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland

†Geneva University Hospitals
(HUG), Geneva, Switzerland

ABSTRACT
Problem diagnosis for distributed systems is usually diffi-
cult. Thus, an automated support is needed to identify root
causes of encountered problems such as performance lags or
inadequate functioning quickly. The many tools and tech-
niques existing today that perform this task rely usually on
some dependency model of the system. However, in complex
and fast evolving environments it is practically unfeasible to
keep such a model up-to-date manually and it has to be cre-
ated in an automatic manner. For high level objects this is
in itself a challenging and less studied task. In this paper,
we propose three different approaches to discover dependen-
cies by mining system logs. Our work is inspired by a re-
cently developed data mining algorithm and techniques for
collocation extraction from the natural language processing
field. We evaluate the techniques in a case study for Geneva
University Hospitals (HUG) and perform large-scale experi-
ments on production data. Results show that all techniques
are capable of finding useful dependency information with
reasonable precision in a real-world environment.

1. INTRODUCTION

1.1 Background and Problem Statement:
Mapping Moving Landscapes

By now, it is generally recognized that web services are
a great means for system integration in heterogenous and
dynamic environments. Furthermore, distributed architec-
tures with loose coupling allow for simplified reuse of busi-
ness logic and, by their modularity, promise to be less sen-
sitive to local problems in components. On the downside,
problems encountered, such as performance lags or inade-
quate functioning, are often difficult to detect and diagnose.
Failures tend to be related to the component’s interactions
rather than to implementation errors in one specific com-
ponent. Hence, there is need for an automated support
to quickly track failures, functional errors and performance
degradations. This problem, known as root cause analysis

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

or fault localization, has been addressed by many research
projects and plenty of industrial solutions have been pro-
posed. Most of them rely on a dependency model providing
representation of the dependencies between system compo-
nents (see the review paper [31]). Beyond being a support
for both manual and automated fault localization, a depen-
dency model has various useful applications including fault
detection [12], impact prediction and service availability re-
quirements determination and constitutes in itself a valuable
documentation and support for architectural decisions.

For complex and fast evolving environments, e.g. con-
stantly moving landscapes, obtaining dependency informa-
tion to create a dependency model in the absence of detailed
management data is in itself a challenging task. Manual
tracking of the dependency structure is practically unfea-
sible. While the problem of computation of dependencies
is reasonably well mastered for the networking layer, where
management protocols (like SNMP) are widely supported,
the situation is very different in the case of dependencies
between high level objects such as applications, web ser-
vices and databases. Unfortunately, only relatively few re-
search results exist that are applicable to a heterogenous
and mission-critical system. Most do either fail to capture
the dynamic nature of dependencies because they rely on
compile-time data such as configuration files or software
repositories [7], or they are intrusive and require applica-
tion or middleware instrumentation [20, 24, 23, 27, 10], re-
spectively perturbation of system operation [5, 11]. Only
recently some commercial products have entered the market
addressing the problem with more or less success [8].

In this paper we address the problem of deriving depen-
dency models dynamically from data obtained in runtime.
We are aiming at large-scale and mission-critical environ-
ments, such as hospitals or banks. Therefore the solutions
have to be non-intrusive, scalable and easy to implement
and maintain. The solutions we will propose have been de-
veloped in a real-world context, the information system in-
frastructure of a large university hospital, which we describe
next.

1.2 The Geneva University
Hospitals Environment

The Geneva University Hospitals (HUG) is a consortium
of hospitals in four campuses and more than 30 ambula-
tory facilities in the state, comprising more than 2000 beds,
5000 care providers, over 45000 admissions and 750000 out-
patients visits each year. It covers the whole range of in-
and outpatient care, from primary to tertiary facilities. The

 1093

HUG is the major public healthcare facility in the Geneva
region and the near France. The in-house developed Clin-
ical Patient Record (CPR) is used in the complete HUG
and runs on more than 4500 PCs. More than 20000 records
are opened every day, 7 days a week, around the clock with
never less than 200 records accessed each hour. The system
is used by around 3000 care providers from all functions,
including physicians, nurses, medical secretaries, social care
providers, physiotherapists, nutritionists, music therapists,
etc. In addition, the CPR is used for many other purposes
than care, such as admission clerks, billing, resource man-
agement, epidemiology, and clinical research, amongst oth-
ers. It is closely linked to the hospital information system
and various third-party solutions that solve specific clinical
tasks such as a radiology information system or an intensive
care clinical system.

The Service for Medical Informatics of HUG has started
to use HTTP/SGML services in the early nineties, before
the establishment of standards like SOAP, WSDL or UDDI.
Today, the multi-tiered clinical system is not only service-
but also notification-oriented. The clinical system is critic
for direct patient care and must be available around-the-
clock, 7 days a week, throughout the year. As discussed
in section 1.1 tremendous advantages can be drawn from a
dependency model for problem diagnosis and architectural
processes. An attempt to document the interdependencies
between the many components manually has failed – an au-
tomated detection of dependencies is thus needed. The ex-
istence of a centralized logging system used by virtually all
of the predominant in-house applications and most of the
third-party solutions that have been integrated generated
the idea of using log-based techniques as a particularly at-
tractive alternative to static solutions. At the time of writ-
ing about 10 million of log messages are recorded per day,
demanding more than 1 Terabyte of storage per year.

1.3 Contributions: Mining Mountains of Logs
In this paper we present three non-intrusive and scalable

techniques to discover component interdependencies at run-
time by mining system logs. In a first method, logs are
regarded as simple activity statements of a given log-source
at a given time, the sole information that has to be provided
in a structured way. This is a very weak requirement and
fulfilled by virtually all logging protocols. The technique
is based on a recently published algorithm for mining tem-
poral patterns from event logs [25] that we have adapted
for our specific purpose. For the second technique, we view
logs again as a simple activity statement but now within the
context of a user session. Here, some structure or external
information source is needed in order to identify the session
logs are belonging to. We then mine these log sessions with
a statistical procedure that is used for collocation extraction
from document collections in the natural language process-
ing field [17]. Finally, we take into account the free-text, e.g.
unstructured part of the messages and exploit the existence
of a service directory to identify logs related to invocations.
The last technique needs as structured information only the
log-source, but makes some assumptions about the content
of messages. The assumptions should however hold for most
environments where communication is based on http/xml
services with a directory system.

We have implemented all techniques and studied their per-

formance in the production environment of the Geneva Uni-
versity Hospitals. To objectively measure and quantify the
performance of our techniques, we compare them in a first
step against a reference model that has been created in a
collective effort with the help of numerous system experts,
and improved by detailed analysis of differences between the
manually created model and the output of the algorithms.
We show that all techniques are capable of finding valuable
dependency information with reasonable precision in a, nat-
urally noisy, real-world environment. The third technique in
particular turns out to be very reliable. In a second step, to
account for the dynamic nature of runtime dependencies, we
validate the first two techniques against the third one and
study the influence of system load on their performance.

To the best of our knowledge, this work is the first one
to investigate the use of logs as information source for ac-
complishing dependency model creation in detail and, while
experiments on relatively small benchmark applications ([1,
11]) or subjective evaluation on a production system ([16])
have been reported, it is also the first one to provide a per-
formance study in a real-world environment of considerable
size with objective criteria.

We have identified mainly two approaches to automated
dependency model generation that meet the requirements of
being dynamic and non-intrusive that hold for any critical
production system. Ensel, in [15, 16], has proposed a very
interesting neural network based technique applicable on a
great variety of data. Unfortunately, the neural network has
to be trained in a supervised manner, a laborious process,
making the practical application of the technique expensive.
Agrawal et al. in [1] have designed techniques based only on
information about activity periods of the monitored objects.
The techniques are non-intrusive in the sense that they rely
only on data that is often, but not always available from ex-
isting monitoring infrastructure. As the authors show, it is
nevertheless intrusive in the sense that enabling monitoring
usually adds additional load and slows the system down. We
provide in section 2 a more elaborate discussion of related
work.

1.4 Paper Organization
The remainder of this paper is structured as follows. In

the next section, we review related research and existing
commercial solutions for the automated generation of de-
pendency models. Then, in section 3 we present the ap-
proaches we have designed or adapted and evaluated in the
production environment of Geneva University Hospitals, as
reported in section 4. We discuss our results and future work
in section 5 and conclude in section 6.

2. RELATED WORK

2.1 Automated Generation of
Dependency Models

Approaches to automated generation of dependency mod-
els can be classified according to their capturing dependen-
cies using static or dynamic (runtime) information [2].

Static approaches, such as [7], rely on analyzing system
configuration, installation data, or application code to com-
pute dependencies.

Approaches that operate at runtime can be classified ac-
cording to their degree of intrusiveness into the managed

 1094

system. Many works use some kind of instrumentation of
the managed objects themselves and are thus highly intru-
sive (f.ex. [20, 24, 23, 27]). Other, somewhat less intrusive
approaches such as [10] use instrumentation of middleware
only.

Both, static or intrusive dynamic approaches are difficult
and sometimes impossible to apply in heterogeneous envi-
ronments built with different commercial applications. Nev-
ertheless, instrumentation is likely to become a very power-
ful and viable approach as soon as standards, such as JMX
[22] or, language independent, ARM [13], are widely sup-
ported.

An interesting approach that does not require code mod-
ification is taken by [5] and [11]. Operation of components
is actively disturbed, revealing dependencies in error con-
ditions and allowing for characterization of their criticality.
The authors report good empirical results, but it is obvi-
ously a very delicate, often impossible affair to deliberately
introduce faults into a production system.

Conscious of the value of non-intrusive techniques, En-
sel, in [15, 16], has attempted to decide on the existence
of a dependency between objects based on time series of
measurements of their activity only. Data, like for example
CPU-Usage or TCP/IP communication activity, is collected
by a system of monitoring agents and the decision on de-
pendency is taken by an artificial neural network. Because
the approach uses fairly general data, it can be applied in
various settings making it very attractive. Ensel also men-
tions the possibility of using logs as an activity measure,
but doesn’t report any experience with doing so. Unfortu-
nately, the neural network has to be trained in a supervised
manner, a laborious and delicate process, making the prac-
tical application of the technique expensive. Furthermore, a
study of the technique’s performance, be it of theoretical or
empirical nature, has to the best of our knowledge not been
published.

Agrawal et al. in [1] have designed techniques for both
synchronous and asynchronous systems based on informa-
tion about activity periods of the monitored objects. In the
asynchronous, more difficult case, the authors observe that
for SQL queries executed during EJB transactions, the de-
lay between the start of a transaction and an independent
query appears to be completely random, while the delay for
a dependent query shows some typical values. To exploit
this feature, one builds histograms of delays and performs a
χ2 test to measure the deviation from a uniformly random
distribution. Experiments show that accuracy and precision
of the technique are inversely proportional to the degree of
parallelism (number of users) in the system and performs
well under low load. The technique is non-intrusive in the
sense that it relies only on information that is often, though
not always and in particular not at HUG, available from
existing monitoring infrastructure. As the authors show, it
is nevertheless intrusive in the sense that enabling monitor-
ing usually adds additional load and slows the system down.
It depends on the particular environment, whether logs or
monitoring data on activity periods are easier to obtain and
consolidate.

2.2 Log Mining
The problem of mining logs to find dependencies between

objects might appear to be closely related to workflow min-

ing, also known under the name of business process mining,
which aims at constructing models of a process given logs of
its execution (see cite [29] for a recent example). However, it
differs in two important aspects from our task. First of all,
in workflow mining it is assumed that each log tells us the
specific execution of a specific process it belongs to, while
system logs are usually content to identify their source, such
as an application module. Even if it is possible to identify
the user session a log belongs to, there is still no reason to
assume that each session is produced by the same process
model. Hence, the initial situation is much more chaotic for
our task. Second, there is a difference in the model to be
discovered. Commonly made assumptions, though reason-
able in the context of workflow mining, do clearly not hold
for a dependency model of a distributed system, nor do they
seem fitting for a single user session. On the other hand, we
are a priori not interested in an entire flow of execution and
such tricky issues as mutual exclusion or repetition.

Other works, from the domain of system management, ad-
dress problems that are closer to ours. [28] develops Hidden
Markov Model (HMM)-based monitoring of syslog streams
that permits online detection of anomalous log sequences,
identifying emerging or disappearing patterns of logging be-
havior and finding offline dynamic correlations between events
in case of failure. [26] examines how unstructured messages
can be categorized using text mining techniques associated
with HMM to take temporal information into account. They
also propose visualization techniques. [30] is also mainly
concerned with creating classes of messages comparing an
algorithm from bioinformatics (Teiresias) to SLCT, an algo-
rithm developed by Vaarandi [32]. [25] proposes a window-
free detection of dependent events. [19] describes a method-
ology to automatically validate, complete, and construct
Event Relationship Networks, which are used in the action-
oriented analysis (AOA) paradigm for event management
developed by IBM and presented in [21].

2.3 Commercial Solutions
A recent study [8] compares five vendor solutions that

provide some dependency mapping functionality. Three of
them rely completely on scanning configuration data, that is,
take a strictly static approach with the limitations discussed
above. A fourth one operates at the network level, com-
bining traffic analysis and agent-less scanning of TCP/IP
ports. The last product, winning the comparative study,
places agents on machines that hook into kernel I/O, gath-
ering information on processes communicating in real-time.
All examined products use a kind of template library to iden-
tify mainstream business applications and well-known ser-
vices and protocols. Nevertheless, in an environment with
many non-standard solutions, a very thorough configuration
effort is still needed, for example, by manually identifying
what physical process or service uniquely identifies a custom
application.

3. APPROACH TO DEPENDENCY MODEL
MINING

In this section, we present the techniques to discover de-
pendencies between system components by mining logs, that
we have designed and evaluated.

 1095

3.1 Approach L1 : Viewing Logs as an Activity
Measure

Motivation and Key Ideas. Being aware of the value of
an approach relying on very generic data, as also advocated
in Ensel’s work ([15, 16]), we have designed a technique re-
lying on statistical techniques. In contrast to techniques
relying neural networks as used by Ensel, such an approach
does not require supervised training. Our approach is mo-
tivated by the observation that the activity of interacting
objects is often correlated. As activity measure we can use
the logging events. Indeed, at the very least, a log entry
provides information about its origin and the time of its
creation. The minimal semantic content of such a log entry
is hence source S has been active at time t. For illustration,
consider figure 1 that shows the logging activity of two in-
teracting applications. The first one, DPIFormidoc, calls the
second one, DPIPublication, to publish medical documents.
One can clearly see that periods of high and low activity are
correlated.

630 640 650 660 670 680 690 700
0

5

10

15

20

25

Logs of DPIFORMIDOC

630 640 650 660 670 680 690 700
0

5

10

15

20

25

30

35

Logs of DPIPUBLICATION

Figure 1: Number of logs (y-axis) per second (x-
axis) for two interacting applications

Visual exploration of an important number of (dependent
and independent) application pairs convinced us of the po-
tential information content of logging activity data.

Technique. Let A and B be the sequences of timestamps
of logs emitted by applications AppA and AppB . Let the
distance of a timestamp, or point, t to a log sequence A be
the smallest absolute value of the differences between t and
any point in A, that is:

dist(t, A) = min
a∈A

|a − t| (1)

We compare the typical distance of random points r to A
to the typical distance of points b ∈ B to A. More pre-
cisely, we create a sample Sr of values dist(r, A), where r

is random and a sample Sb of values dist(b, A), with b ∈ B
(subsampling of B). Then, we compute confidence intervals
CIr and CIb for the median of respective samples using a
robust order statistics method (explained among others in
[9]) making as sole hypothesis independence. If the upper
bound of CIb is below the lower bound for CIr, we conclude
that the logs of AppB are closer to the logs of AppA than
random and we conclude that there is a dependence between
the two applications.

dist(r, A) dist(b, A)

0

1

2

3

4

5

V
al

ue
s

[s
]

AppA = DPIPublication, AppB = DPIFormidoc

dist(r, A) dist(b, A)

0

0.5

1

1.5

2

V
al

ue
s

[s
]

AppA = DPIFormidoc, AppB = DPIPublication

Figure 2: Boxplots.

For illustration, consider figure 2, which displays results
obtained for the same data as in figure 1. The left graph
shows two boxplots for the case where DPIPublication is
playing the role of AppA and DPIFormidoc the one of AppB .
The first boxplot is for sample Sr and the second for Sb.
The dashed line is for the median, the solid lines for the
upper and lower bound of the 95-level confidence interval,
and the dotted lines for the bounds of the 99-level confidence
interval. In the right figure the roles of the applications
are inverted. In both cases, the upper bounds of both the
95 and 99 level confidence intervals for Sb are below the
lower bound of the confidence interval for Sr and we would
correctly conclude that the two applications are dependent.

The test is similar to the one developed by Li and Ma
[25] as part of an algorithm for mining temporal dependen-
cies between event types, which, in turn, has been inspired
by results from geo-spatial statistics ([6]). Instead of a test
for a difference of the mean, we use a robust test for the
median. While the test is two-sided in [25] so as not to ex-
clude temporal relationships of considerable length, our test
is one-sided, e.g. we are testing if the median of Sb is smaller
than the one for Sr. Furthermore, while [25] considers the
distance to the next arrival in A from a given point b in B,
we consider the distance to the nearest arrival (equation 1).

Underlying Variables and Scaling When applying this
test on longer intervals, one encounters an additional diffi-
culty. Indeed, even applications that are not directly related
expose some large-scale correlation due to their dependency
on a common variable, which is the overall load of the sys-
tem, itself dependent on time. Even though hospitals are
working round the clock, there is still much more activity
at usual office hours. A solution to this problem is to apply
the test locally on periods that are sufficiently short to make
the large scale dependency on time insignificant, and then

 1096

combine the local results into a global one. But then, it is
important to have enough logs to make our test meaningful.

Based on this observation, we let n be the total number
of time slots, and the number p of slots for which the test
(with a 95 percent level confidence interval) is positive in
both directions. We skip any slot where one of the two
applications has fewer than minlogs logs, and call support
s the number of slots that have not been skipped. Let pr
be the percentage of positive tests among the possible time
slots pr = p

s
.

Then, to make the final decision, we define a threshold
for the percentage of positive tests thpr, as well as a support
threshold ths and say a pair to be dependent if both pr ≥
thpr and s ≥ ths.

3.2 ApproachL2: Co-occurrence Statistics and
User Sessions

Motivation and Key Ideas. The previous approach
has used as little information from the logs as possible in
order to preserve maximal generality. A main difficulty for
the interpretation of logging data is the parallelism of the
system, overshadowing the sequence of execution that could
otherwise be learned from the logs by looking at their times-
tamp and source. Using structured information about the
user and/or client machine at the origin of a transaction, we
can identify logs that stem from the same user session and
eliminate parallelism induced by the simultaneous activity
of users. Parallelism due to asynchronous communication,
however remains. The fact that both, a machine can be
shared by different users, and a user might be active on dif-
ferent machines, makes session creation a challenging task.

Once sessions have been created, we still restrict ourselves
to use only information on the log’s source and time of cre-
ation. In other words, a session is treated as an ordered
sequence of activity statements by different applications.
A (very short) excerpt of a session is given in figure 3.
There is one controlling application, A2, corresponding to
a lightweight client, that calls first A1 and then twice A3,
which in turn calls A4.

In many cases, it is quite easy to identify interactions
from the log sequence, because, as in our example, logs of
the caller usually immediately precede and/or follow logs of
the callee. Intuitively, one expects that pairs of applications
whose logs follow each other frequently are interacting. To
give ”frequently” a more precise meaning, we rely on co-
occurrence statistics.

Technique. Because the problem of session creation is
specific to our particular environment, we do not give the de-
tails on our algorithms here. The procedure for mining the
sessions, once they have been created, includes two inde-
pendent steps. First, one builds contingency tables for pair
types. Then, a hypothesis test for association is performed
on these tables. For the first step, we start by extracting all
pairs of immediately succeeding logs from sessions and call a
bigram the corresponding pair (a, b) with a and b being the
applications having authored the first, respectively the sec-
ond log. We ignore bigrams where a = b. For our example
session from figure 3, we would get, in that order: (a2, a1),
(a1, a2), (a2, a3), (a3, a4), (a4, a2), (a2, a3), (a3, a4), (a4, a2).
Then, we create a contingency table for each type (A, B) of
bigrams we have observed, which are in the running exam-
ple (A1, A2), (A2, A1), (A2, A3), (A3, A4) and (A4, A2). For

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A_1

A_2

A_3

A_4

A
pp

lic
at

io
ns

time [s]

Excerpt of a User Session

Figure 3: An excerpt of a user session. y-axis: dif-
ferent applications, that is, log sources. x-axis: time
in seconds since the timestamp of the first log.

a given type, a contingency table provides a classification of
all bigrams into four categories. Figure 4 illustrates this for
the type (A, B) = (A2, A3) in the running example.

a = A2 a �= A2

b = A3 2 0
b �= A3 1 5

Figure 4: Contingency table for bigram type (A, B) =
(A2, A3) in the running example (figure 3).

In some cases, there is an important delay between two
subsequent logs, for example, if they are triggered by differ-
ent user actions. To deal with this, we introduce a timeout,
that is, if the gap in time between some subsequent logs is
higher than a given threshold, we do not use them to form
a bigram. In our example, for instance, the last bigram
(A4, A2) would be ignored for any timeout value between 0
and 0.5 seconds.

In the second step, we apply a test for association on the
contingency tables. Several well-known tests exist for that
task. We opted for a test based on a log-likelihood statistics
following asymptotically a χ2 distribution, which has been
proposed by Dunning ([14]) and empirically shown to have
a more desirable behavior for heavily skewed tables than the
more common test by Pearson. The PERL implementation
of the method uses UCS, a toolkit for the statistical analysis
of cooccurrence data offered to the community by Stefan Ev-
ert [17, 18]. Terminology, too, has been taken from Evert’s
work.

3.3 Approach L3 : Analyzing Free Text
The third method is based on the following observation.

Invocation of a remote service is an event an application’s
developer usually decides to log. Normally, the way of doing
this is not standardized. To detect such logs one might
try to search for keywords like call, remote or invoke, or to

 1097

apply more powerful algorithms such as those contributed
by the authors’ of [26]. But then, even if invocation logs
are identified, we still need more processing of the contents
to determine the specific service or method that has been
invoked.

Alternatively, in the case of communication via web ser-
vices based on a directory system, we can approach the prob-
lem the other way round. Indeed, although the detailed way
a remote service invocation is logged is peculiar to each piece
of code, respectively the code’s author, it is extremely likely
that some element provided by the directory system is men-
tioned in the log entry, as this kind of information is crucial
for debugging and tracing purposes. Therefore, we can di-
rectly look for citations of directory entries in the free text
part of a log and infer a dependency of the log’s source on
the directory entry it refers to.

At HUG, for mainly historical reasons, the directory in use
is basically an XML file indicating the root URL of groups
of functionally related services. All service groups have an
identifier, as well as information related to replication issues.

Decision on a dependency is then straightforward: If, and
only if, there are logs from application A that are referring
to service group S, A is dependent on S.

For illustration, consider the invocation of a service notify
belonging to the group DPINOTIFICATION and located on
server myserver by some application. The free text field
of a log of this interaction might look as follows:

Invoke externalService [fct [notify]

server [myserver.hcuge.ch:9999/myurl]]

Or, if the developer has decided to mention only the ser-
vice group id:

(DPINOTIFICATION) notify($myparams)

Stop Patterns. Often, a given call to server S from a
client application C is not only logged by C, but also by S.
To deal with the resulting problem of reversed dependency
directions, we introduce stop patterns. A log that would oth-
erwise be interpreted as a client’s log is ignored if it matches
the pattern.

4. CASE STUDY
We report in this section on the extensive empirical eval-

uations of the three different methods that were performed
in the HUG environment.

4.1 Test Data
We have used data from 7 days, making a total of 56.8 mio

logs. Given the constant evolution of the system, in order
to facilitate the creation of a valid reference model, we have
chosen days from a short a period as possible, i.e. a single
week (see table 1).

day [dec 05] 06 07 08 09 10 11 12
#logs [mio] 10.3 9.4 9.4 9.9 3.7 3.4 10.7

Table 1: Days in test period with number of logs.
10th and 11th of December 2005 fall on a weekend.

4.2 Clock Synchronization Issues
Both L1and L2 rely on the temporal information provided

by the logs. In HUG’s logging system, log entries carry two

timestamps that both have a resolution of 1 msec. The first
one marks the creation of the message on client side, while
the second one is defined by the log server on reception.
Due to client-side buffering for performance reasons, we can
not use the latter timestamp. Hence, we have to pose the
question how clock synchronization is handled. Unix server
clocks are synchronized via the standard Network Time Pro-
tocol (NTP) against external reference servers and can be
expected to deviate less than 1 msec. Alternatively, the
clocks of Windows NT servers, as well as those of client ma-
chines are only synchronized within their own NT domain
and not against a reference clock. As for the NT servers, we
have verified that deviation with respect to the Unix servers
is less than 1 sec. In our experiments we use the timestamp
values as they are, and do not undertake any correction or
rounding and so the algorithms had to operate and work
with slightly imprecise values.

4.3 Reference Model
To obtain a reference model we have meticulously con-

sulted all available system experts and developers of the re-
spective applications or services. For method L1 and L2 the
model consists of pairs of log sources (applications in our
case), which are said to be dependent if they are directly
interacting. We do not consider the direction of the inter-
action here. For method L3 , the model is a set of pairs
composed by an application (or log source) and a service
directory entry this application is using. In the first model
there are 54 applications, resulting in 1431 ((542 − 54)/2)
different pairs, among which 178 are known to be depen-
dent. In the latter one, we consider 52 applications and 47
service directory entries. 177 dependencies are known. The
slight difference in the number of applications stems from
the fact that we were forced to ignore a few cases where it
has been difficult to obtain sufficiently precise information
on the type of dependency considered. The closeness of the
number of dependencies is a consequence of the fact that the
mapping between applications and service directory entries
is often one-to-one.

4.4 Strategy
In a first step, we perform experiments for methods L1 ,

L2 and L3 individually. We apply the techniques for each
day independently, which allows us to quantify the accuracy
of our observations by computing confidence intervals using
the robust order statistics method from [9]. To validate the
results of our algorithms, we use the reference model elab-
orated with the experts. Note, however, that the reference
model is static, that is, they tell us about the potential ex-
istence of an interaction and not if it has really taken place,
while the techniques are dynamic by nature. To solve this
issue, in a second step, we use method L3 , which turns out
to be very reliable in general, to evaluate the other two tech-
niques on much shorter periods of one hour each and study
the influence of the overall load the system is experiencing.

4.5 Results for Approach L1

We divided each day into 24 periods of one hour (n =
24) and skipped applications that have fewer than 100 logs
in a given period (minlogs = 100). Results are given for
threshold values thpr = 0.6 and ths = 0.3. Parameter values
have been defined after preliminary experience with data
lying outside the test period.

 1098

The algorithm detects between 30 and 46 true dependen-
cies at the expense of between 11 and 22 false positive de-
cisions (figure 5). A confidence interval for the median of
the percentage of true dependencies among the positive de-
cisions with level 0.984 is [0.63, 0.73]. While the number
of false positives might seem high at first sight, the classi-
fication error in the case of unrelated pairs is actually low.
Given that the test has been applied on 1253 unrelated pairs,
a number of 25 false positives would result in an error rate of
only 2%. On the other hand, it is clear that many dependent
pairs have not been detected.

20051206 20051207 20051208 20051209 20051210 20051211 20051212
0

20

40

60

80

0.73171 0.7037 0.68254 0.67742 0.67647 0.68182 0.62712

Figure 5: Positive decisions for method L1 with
thpr = 0.6 and ths = 0.3 for all days in observation pe-
riod. Lower area: true positives. Upper area: false
positives. Numbers: ratio of true positives.

A detailed analysis of false positive decisions shows that
virtually all of them are due to the difference between the
semantics of correlation and interaction dependency, rather
than to an erroneous detection of association between the
logging activity. Indeed, in case of a transitive interaction
dependency, or a frequent concurrent use of applications,
it is obvious that the activity of the applications is corre-
lated. This happens for example if the creation of a view
in a GUI application requires to combine information pro-
vided by different components, such as laboratory results
and administrative patient history.

4.6 Results for Approach L2

The session creation algorithm produced about 4000 ses-
sions for week days and about 1000 on Saturday or Sunday.
The percentage of logs that can be assigned to a session
varied between 7.5 and 11% on the different days. With a
timeout value of 1 second, co-occurrence analysis identified
between 62 and 74 correct dependencies on week days, 51 on
Saturday and 52 on Sunday, at the expense of between 21
and 25 false positives on week days and 19, respectively 21
for the week-end. The borders of the 98.4% level confidence
interval for the median true positive ratio are 0.71 and 0.78.

1206 1207 1208 1209 1210 1211 1212
0

20

40

60

80

100

0.74444 0.75862 0.72093 0.7191 0.71233 0.72857 0.77895

Figure 6: Positive decisions for method L2 with
timeout = 1 for all days in observation period. Lower
area: true positives. Upper area: false positives.
Numbers: ratio of true positives.

While the creation of user sessions eliminates parallelism
due to multiple users, it does not solve the issue of con-

currency introduced by asynchronous communication. The
analysis of false positives by manually decoding numerous
sessions, shows that this kind of concurrency is clearly the
major cause for that type of error. Indeed, all of the about
25 pairs we have analyzed turned out to be either transi-
tively interacting or, more often, to be used concurrently in
some frequently occurring situations where communication
is asynchronous.

4.7 Influence of the Timeout
As explained in §3.2 we have introduced a timeout with

the goal of improving the accuracy of the technique. Figure
7 shows the positive results for one day for different timeout
values. We observe that the introduction of a timeout value
that is neither too small nor too big increases the percentage
of correct decisions among the positive ones. However, it
also seems that the absolute number of correctly detected
dependencies is slightly reduced as compared to not using
timeout values.

0.05 0.1 0.2 0.3 0.4 0.6 0.8 1 2 5 10 999999
0

20

40

60

80

100

120

0.73333 0.75 0.78261 0.7766 0.77419 0.78947 0.77895 0.78495 0.78351 0.75258 0.72816 0.72222

Figure 7: Positive decisions for L2 on 12.12.2005 for
different timeout values (x-axis, in seconds).

To confirm this observation, we perform the following test:
For all days in the observation period, we computed the true
positive ratio tprto and the absolute number tpto of true
positives for timeout values to = 0.3, 0.6, 0.8 and 1.0 as well
as infinity. Then, for each combination between a finite
and the infinite timeout value, we do a median test for the
difference of the respective values. That is, we compute a
0.98 level confidence interval and, if it is strictly positive,
respectively negative, we reject the hypothesis of a zero or
negative, respectively zero or positive median. In addition,
we perform a signed wilcoxon rank sum test for all samples
for a null hypothesis of zero median for the difference.

tprto − tprinf tpto − tpinf

to = 0.3 5.4 (1.9, 9.3) -7 (-13, -4)
to = 0.6 4.5 (2.0, 6.8) -5 (-9, -3)
to = 0.8 4.5 (2.3, 5.7) -4 (-8, -3)
to = 1.0 5.1 (1.7, 6.3) -5 (-7, -3)

Table 2: Median values with confidence interval
bounds (between parentheses) for timeout influ-
ences in L2 .

The p-value of the signed wilcoxon rank sum test is 0.0156
for any two samples of size 7, such that the values of the
one are always below the corresponding value of the other,
and thus the same in all cases. Combined with the results
depicted in table 2, for each timeout to = 0.3, 0.6, 0.8, 1.0, we
have to reject both the hypothesis that its introduction does
not increase the true positive ratio and the hypothesis that
is does not decrease the absolute number of true positives.

 1099

In other words, while the introduction of a timeout re-
duces the total amount of positive decisions, it eliminates
proportionally more false positives than true positives and
can thus contribute to improve the quality of the algorithm’s
output.

4.8 Results for Approach L3

Applying the algorithm separately on all days in the ob-
servation period, we observe between 141 and 152 true pos-
itive decisions on week days and 116, respectively 117 on
the weekend. With 10 stop patterns, the number of false
positives is between 7 and 11 on week days and 5 on the
weekend. A 0.984 level confidence interval for the median
percentage of true positives among all positives is given by
0.93 and 0.96.

1206 1207 1208 1209 1210 1211 1212
0

50

100

150

200

0.95364 0.94194 0.94631 0.93548 0.95902 0.95868 0.93252

Figure 8: Positive decisions for method L3 with stop
patterns for all days in observation period. Lower
area: true positives. Upper area: false positives.
Numbers: ratio of true positives.

On week days, between 28 and 39 known dependencies
have not been discovered. To know which of them are really
false negatives in the sense that the interaction did take
place but has not been discovered, and which simply did not
happen, we combine the results from all days and analyze
false negatives in detail.

There are 16 false negatives in total (e.g. 161 dependen-
cies have been detected). 6 of them are used extremely sel-
dom according to the developers’ knowledge, but are logged
in a way that would allow their discovery. Therefore, we
can conclude that they did not take place and hence are
in fact true negatives. 7 interactions are not logged by the
applications and 3 are logged but under a wrong name (for
example, the service directory id UPSRV is used instead of
the newer version of the same service UPSRV2).

False positives for all seven days, being the union of in-
dividual results, come in a number of 19. 2 of them are
inverted dependencies caused by server side logs, 5 are tran-
sitive dependencies due to the log of an exception stack trace
returned by the intermediary, 7 are due to coincidence (a
patient having the same name as a given service id, for in-
stance), and 5 are a consequence of the usage of a similar,
but erroneous, service group id by the application. Without
stop patterns, the number of inverted dependencies due to
server side logs increases to 24.

4.9 Influence of the System’s Load
In the preceding experiments, we observe that both, L2and

L3 detect less dependencies on the weekend than on work-
days, which reflects the real situation. Alternatively, method
L1 seems to detect more dependencies on the weekend. Intu-
itively, this can be explained by the fact that the higher the
system’s load, the more parallelism there is, which disturbs
the analysis of association between logging activity. Method
L2 should be sensitive only to the noise induced by concur-

rency in a given user session and not in the overall system.
To verify the hypothesis that technique L1 performs better
in periods of low load than in periods of high load, while L2 is
not affected by the system’s load, we conduct the following
experiment:

For each hour of all seven days, we use technique L3 to
identify realizations of dependency relationships. We elimi-
nate 4 applications which do not log all of their invocations
to increase reliability of the output of L3 . Then, we com-
pute the percentages p1 and p2 of these dependencies that
can be found by methods L1 and L2 respectively. We use the
number of logs as a measure of the system load and show the
percentage of correctly identified dependencies as a function
of the number of logs. We perform a linear regression and
check if the confidence interval for the linear factor is strictly
negative in case of L1 , respectively includes zero in the case
of L2 . Furthermore, we plot the values of the variables as a
function of time and visually inspect it.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 d

et
ec

te
d

de
pe

nd
en

ci
es

 /
ho

ur

hours since Dec 06, 0 a.m.

0 5 10

x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

%
 d

et
ec

te
d

de
pe

nd
en

ci
es

 /
ho

ur

#logs per hour

#Logs (rescaled)
Approach L

1

Approach L
2

Figure 9: Left graph: Number of logs (rescaled to
fit between 0 and 1), p1 and p2 as a function of
time. Right graph: p1 (crosses) and p2 (circles) as a
function of the number of logs with regression lines
(dashed for L1 , solid for L2).

On the left graph in figure 9, we can clearly observe that
the curve for p1 behaves inversely to the curve for the num-
ber of logs, while such behavior is not evident in the curve for
p2. The confidence interval for the linear factor in the case
of p1 is strictly negative (delimited by -0.284 and -0.215),
while it includes 0 in the other case (-0.025, 0.002). The
validity of the regression model is verified by the means of
normal qqplots for the residuals.

The percentage of false positives among all positives does
not seem to be influenced by the system’s load for both
methods, as the confidence interval for the linear factor in
the regression model includes zero in both cases.

4.10 Solution for HUG
As a result of our experiments we could show that in par-

ticular L3is a very effective solution for the automated gener-
ation of a dependency model of HUG’s clinical system which
satisfies the requirements of being completely non-intrusive
and low-cost.

5. DISCUSSION AND FUTURE WORK
We will discuss the techniques according to four criteria:

the quality of their output, the scope of their applicability,

 1100

their impact on performance and security of the managed
system, and the amount of effort needed for implementation
and maintainance.

Unsurprisingly, we can observe a negative correlation be-
tween scope of applicability and accuracy and precision of
the output: based on very general information, L1 is applica-
ble on virtually any type of logs, but its findings have been
less precise than both those of L2 and L3 in the conducted
experiments. L2 exploits and requires additional contextual
information, and thus narrows the scope down. There are
however plenty of settings imaginable where session infor-
mation needs to be logged in order to have a complete trace
of user activity, an online banking application for example.
The best results have been obtained with L3 by taking into
account the message of the log and using as additional in-
formation source the service directory. With the spread of
SOA, more and more systems will fulfill the requirement of
the existence of a service directory.

Naturally, any technique for automated dependency model
generation should cause less damage than doing good, e.g.
should have only minimal impact on the system’s perfor-
mance. In the same spirit, it should also save more time and
management effort than needed to set it up and to maintain
it. For log-based techniques, we need to distinguish between
the collection and consolidation phase and the actual appli-
cation of the algorithm. It is clear that the second phase
should neither impact the system in a negative way, nor
should it be difficult to implement and maintain. Note in
particular that all algorithms scale linearly with respect to
the number of logs. Collection and consolidation is more
critical. Nevertheless, by making only little assumptions on
the logs’ structure, consolidation effort is kept low. As for
collection of logging data from decentralized storage loca-
tions, it does not impact applications directly, but consumes
some server resources nonetheless. Here, an important ad-
vantage is the possibility to interrupt collection in periods
of high load without information loss.

In their current state, neither L1 nor L2 are able to dis-
cover the direction of an invocation dependency. This is a
drawback, but we should not forget that the direction of
an invocation not necessarily corresponds to the direction
of the functional dependency. In the case of the frequently
encountered push update scheme for instance, it is the callee
that relies on the information provided by the caller, while
the latter has a priori no need for the former in order to
operate fine.

Nevertheless, it would be useful to improve our techniques
to detect directionality. For L1 , we do have little hope, as
neither visual exploration of the activity graphs did allow
our human brain to draw any conclusion, nor did Ensel suc-
ceed with the artificial neural network approach. For L2 , the
problem stems from asynchronous communication seman-
tics, as well as from the fact that callers usually log both,
before and after an invocation. Given a dependent pair type
(A, B), one could try counting the number of times the first
element of the first pair of the given type is an instance of A,
respectively B, in a sequence of logs that is not interrupted
by a pause of at least the length of the timeout parameter.

Another direction for improvement is to apply algorithms
like the ones presented in [1, 3, 25] to analyze typical delays
between logs. In case of L2 , this might help to distinguish
frequent co-occurrences due to concurrency from those that

are causally related.
There are at least two approaches to improve the han-

dling of the stationarity issue in L1 . First, one could create
time slots adaptively by measuring the degree of stationarity
with existing statistical tests. Second, instead of comparing
the distance to B of logs in A with a homogenous process,
we could use a non-homogenous process whose intensity is
proportional to the total number of logs. In addition, works
like [4] propose more rigorous, but computationally expen-
sive, ways of testing locally for global association of point
processes. One could also study the benefit of classifying
log messages of a given application in a preprocessing step,
using algorithms mentioned in §2.2. Last but not least, we
are currently evaluating techniques based on packet capture
and protocol analysis.

6. CONCLUSIONS
We have developed non-intrusive and scalable techniques

to discover dependencies between components of a distributed
system by mining logs. An evaluation in a complex real-
world production environment has shown that all of them
provide useful results, with a performance that is propor-
tional to the amount of semantic content of log messages
considered.

Acknowledgements First of all, we would like to thank Alexan-

der J. Lamb, head of the group developing HUG’s logging sys-

tem, for skillful management of the organizational aspects of

the project, and, together with Florian Fischer, for interesting

lunchtime-talks on related and unrelated matters. Sincere thanks

go to Gilles Cohen, Jeremy Llewellyn and Michael I. Schumacher

for reviewing and inspiring discussions. We gratefully acknowl-

edge the diverse contributions of numerous members of Geneva

University Hospital’s IT staff, in particular to the creation of the

reference model, including, but not limited to, Pierre-Antoine

Arnet, David Bandon, Jérôme Billet, Eric Burgel, Nicolas Cas-

soni, Emmanuel Durand, Florian Fischer, Arnaud Garcia, Chris-

tian Girard, Dominique Guérin, Damien Grauser, Monique Long,

Laura Remondino, Georges Robin, Frédéric Rybkowski, Paul Seed,

Stéphane Spahni, Jean-Christophe Staub, Sébastien Tuet, Julien

Vignali, and Anne-Marie Zogg.

7. REFERENCES
[1] Manoj K. Agarwal, Manish Gupta, Gautam Kar,

Anindya Neogi, and Anca Sailer. Mining activity data
for dynamic dependency discovery in e-business
systems. Technical report, IBM Research Division,
2004.

[2] Manoj K. Agarwal, Manish Gupta, Anindya Neogi,
and Gautam Kar. Discovering dynamic dependencies
in enterprise environments for problem determination.
In Marcus Brunner and Alexander Keller, editors,
DSOM, volume 2867 of Lecture Notes in Computer
Science, pages 221–233. Springer, 2003.

[3] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L.
Wiener, Patrick Reynolds, and Athicha
Muthitacharoen. Performance debugging for
distributed systems of black boxes. In SOSP’03,
October 2003.

[4] Denis Allard, Anders Brix, and Joel Chadoeuf.
Testing local independence between two point
processes. Biometrics, 57:508–517, June 2001.

 1101

[5] S. Bagchi, J.L. Hellerstein, and G. Kar. Dependency
analysis in distributed systems using fault injection:
Application to problem determination in an
e-commerce environment. In 12th Intl. Workshop on
Distributed Systems: Operations & Management, 2001.

[6] Mark Berman. Testing for spatial association between
a point process and another stochastic process.
Appplied Statistics, 35(1):54–62, 1986.

[7] U. Blumenthal, G. Kar, and A. Keller. Classification
and computation of dependencies for distributed
management. In Proceedings of the Fifth IEEE
Symposium on Computers and Communications
(ISCC), pages 78 – 83, July 2000.

[8] Bruce Boardman. Map quest.
http://www.networkcomputing.com/showitem.

jhtml?articleID=169600209, September 2005.

[9] Jean-Yves Le Boudec. Performance evaluation of
computer and communication systems. Swiss Federal
Institute of Technology Lausanne, March 2005.
Version 2.0.Beta.1. Available at
http://icalwww.epfl.ch/perfeval.

[10] E. Brewer, M. Chen, A. Fox, E. Fratkin, and
E. Kiciman. Pinpoint: Problem determination in
large, dynamic, internet services. In International
Conference on Dependable Systems and Networks
(IPDS Track), Washington D.C., 2002.

[11] A. Brown, G. Kar, and A. Keller. An active approach
to characterizing dynamic dependencies for problem
determination in a distributed environment. In
Seventh IFIP/IEEE International Symposium on
Integrated Network Management, 2001.

[12] Haifeng Chen, Guofei Jiang, Cristian Ungureanu, and
Kenji Yoshihira. Failure detection and localization in
component based systems by online tracking. In KDD
’05: Proceeding of the eleventh ACM SIGKDD
international conference on Knowledge discovery in
data mining, pages 750–755, New York, NY, USA,
2005. ACM Press.

[13] OpenGroup consortium. Systems management:
Application response measurement (arm). OpenGroup
Technical Standard C807, UK ISBN 1-85912-211-6,
1998.

[14] Ted Dunning. Accurate methods for the statistics of
surprise and coincidence. Computational Linguistics,
19(1):61–74, 1993.

[15] C. Ensel. A scalable approach to automated service
dependency modeling in heterogeneous environments.
In Proceedings of the Fifth IEEE International
Enterprise Distributed Object Computing Conference,
pages 128–139, Seattle, WA, US, 2001.

[16] C. Ensel. Abhaengigkeitsmodellierung im
IT-Management: Erstellung eines neuen, auf
Neuronalen Netzen basierenden Ansatzes. PhD thesis,
Ludwig-Maximilians-Universitaet Muenchen, 2002.

[17] Stefan Evert. The Statistics of Word Cooccurrences:
Word Pairs and Collocations. PhD thesis, University
of Stuttgart, 2004.

[18] Stefan Evert. www.collocations.de. Web resources for
collocation mining and coocurrence statistics, 2005.

[19] G. Grabarnik, J. Hellerstein, S. Ma, C.-S. Perng, and
D. Thoenen. Data-driven validation, completion and
construction of event relationship networks. In
Proceedings of SIGKDD’03, 2003.

[20] Peer Hasselmeyer. Managing dynamic service
dependencies. In 12th International Workshop on
Distributed Systems: Operations & Management
(DSOM 2001), Nancy, France, pages 141–150, 2001.

[21] J.L. Hellerstein, J. Riosa, and D. Thoenen. Event
relationship networks: A framework for action oriented
analysis for event management. In International
Symposium on Integrated Network Management, 2001.

[22] Java management extensions (jmx).
http://java.sun.com/products/JavaManagement/.

[23] M.J. Katchabow. Making distributed applications
manageable through instrumentation. Journal of
Systems and Software, 45, 1999.

[24] F. Kon and R.H. Campbell. Dependence management
in component-based distributed systems. IEEE
Concurrency, 8(1):26–36, 2000.

[25] Tao Li and Sheng Ma. Mining temporal patterns
without predefined time windows. In ICDM, pages
451–454, 2004.

[26] Tao Li, Sheng Ma, and Wei Peng. Mining logs files for
computing system management. SIGKDD
Explorations, 2005.

[27] V. Machiraju, J. Ouyang, A. Sahai, and K. Wurster.
Message tracking in soap-based web services. In
Proceedings of the Network Operations and
Management Symposium, 2002. NOMS 2002. 2002
IEEE/IFIP, pages 33– 47, 2002.

[28] Yuko Maruyama and Kenji Yamanishi. Dynamic
syslog mining for network failure monitoring. In
Proceedings of SIGKDD ’05, 2005.

[29] Ricardo Silva, James G. Shanahanand, and Jiji Zhang.
Probabilistic workflow mining. In KDD ’05:
Proceeding of the eleventh ACM SIGKDD
international conference on Knowledge discovery in
data mining, pages 275–284, New York, NY, USA,
2005. ACM Press.

[30] Jon Stearley. Towards informatic analysis of syslogs.
In Proceedings of IEEE International Conference on
Cluster Computing, September 2004.

[31] M. Steinder and A. Sethi. The present and future of
event correlation: A need for end-to-end service fault
localization. In Proc. IIIS SCI: World Multi-Conf.
Systemics Cybernetics Informatics, Orlando, FL, 2001.

[32] Risto Vaarandi. A clustering algorithm for mining
patterns from event logs. In Proc. of 2003 IEEE
Workshop on IP Operations and Management
(IPOM2003), 2003.

 1102

