
Adaptive Self-Tuning Memory in DB2

Adam J. Storm
IBM Canada

ajstorm@ca.ibm.com

Christian Garcia-Arellano
IBM Canada

cmgarcia@ca.ibm.com

Sam S. Lightstone
IBM Canada

light@ca.ibm.com

Yixin Diao
IBM TJ Watson
Research Center

diao@us.ibm.com

M. Surendra
IBM TJ Watson
Research Center

suren@us.ibm.com

ABSTRACT
DB2 for Linux, UNIX, and Windows Version 9.1 introduces the

Self-Tuning Memory Manager (STMM), which provides adaptive

self tuning of both database memory heaps and cumulative

database memory allocation. This technology provides state-of-

the-art memory tuning combining control theory, runtime

simulation modeling, cost-benefit analysis, and operating system

resource analysis. In particular, the novel use of cost-benefit

analysis and control theory techniques makes STMM a

breakthrough technology in database memory management. The

cost-benefit analysis allows STMM to tune memory between

radically different memory consumers such as compiled statement

cache, sort, and buffer pools. These methods allow for the fast

convergence of memory settings while also providing stability in

the presence of system noise. The tuning model has been found in

numerous experiments to tune memory allocation as well as

expert human administrators, including OLTP, DSS, and mixed

environments. We believe this is the first known use of cost-

benefit analysis and control theory in database memory tuning

across heterogeneous memory consumers.

1. INTRODUCTION
 This paper describes the technology in the latest IBM® DB2® for

Linux®, UNIX®, and Windows® product release (DB2 V9.1) that

automates, and as a result simplifies, database memory tuning. For

decades, memory management has been a significant challenge in

physical database design and tuning for large enterprise systems.

This new memory tuning technology is part of IBM’s ongoing

strategic effort in Autonomic Computing, which has delivered

several self-managing technologies in database tuning, automated

physical design, self-healing and self-configuring systems

[7][12][20]. The new feature, called the Self-Tuning Memory

Manager (STMM), provides adaptive tuning of database memory.

The feature addresses the following main obstacles to end user

performance tuning:

1. Inadequate knowledge of the product’s memory use – The

documentation for a database product as sophisticated as DB2

V9.1 can seem overwhelming to an inexperienced database

administrator (DBA). In fact, even database product developers

and technical leaders are frequently at a loss about how to allocate

database memory, apart from the traditional trial-and-error

approach. With this new functionality in DB2 V9.1, the DBA will

be relieved of the need to invest time in understanding how the

database uses memory before tuning can begin.

2. Uncertain memory requirements for a given workload – In

some cases, even experienced DBAs can find it difficult to tune a

database’s memory because the workload characteristics are

unknown. With the introduction of this new feature, the system

will now be able to continuously monitor database memory usage

and tune when necessary to optimize performance based on the

workload characteristics. As a result, the user will require no

knowledge of their workload for the memory to be tuned well.

3. Changing workload behavior – For many industrial

workloads, no single memory configuration can provide optimal

performance because, at different points in time, the workload can

exhibit dramatically different memory demands. If STMM is

running and the workload's memory demands shift, the system

will recognize the changing needs for memory and adapt the

memory allocation accordingly. As a result, the user will rarely

(if ever) need to manually change the affected memory

configuration parameters to enhance performance.

4. Performance tuning is time-consuming – Tuning a database’s

memory to achieve high levels of performance is extremely costly

and can take days or weeks of experimentation. STMM solves

this problem by iterating towards the optimal memory distribution

as the workload runs. As a result, the user will no longer be

required to collect and analyze monitor output from workload

runs. This should save a great deal of time and effort on the part

of the DBA while at the same time achieving performance levels

similar to that of an expertly tuned system. The net effect is a

reduction in the product’s total cost of ownership.

To further motivate the problem, we first discuss memory tuning

of a relational database management system (RDBMS) that does

not have automatic memory tuning functionality.

1.1 Manually Tuning Database Memory
Tuning a relational database’s memory for high performance can

be a daunting task. However, the performance benefit of tuning is

well known in the industry to provide dramatic benefits,

sometimes measured in orders of magnitude [7][12].

When systems are tuned for OLTP (e.g., TPC-C) or Decision

Support (e.g., TPC-H) benchmarks [25], a great deal of time goes

into the memory tuning of the system. The tuning, performed

manually by performance specialists, usually begins with an initial

configuration based on prior knowledge of the workload and

extensive knowledge of database memory performance tuning.

Starting with this initial configuration, the workload is run several

times, and after each run, monitor output is collected and analyzed

to determine how well each configuration parameter has been

tuned. If it is determined that one or more configuration

parameters are sub-optimally tuned, changes are made to the

configuration and the workload is run again. This continues

incrementally until the system is well tuned or the desired

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and

its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to

post on servers or to redistribute to lists, requires a fee and/or special

permission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1081

performance numbers are achieved. This process can be

prohibitively time-consuming (taking days or weeks) and clearly

demands a high level of skill both in terms of deep knowledge of

the DBMS and the workload.

While manual tuning for benchmark publication may be difficult,

the problem of performance tuning is even more pronounced in

industrial settings. While some enterprise customers may have

DBAs skilled in the art of detailed performance tuning, these

skills are less likely found in small and medium businesses

(SMBs). In SMBs, companies often do not employ a full-time

DBA but rather a "System Administrator" who is expected to

maintain the DBMS as one of many systems within the IT

infrastructure. In such environments, deep skill in performance

tuning is uncommon; however, maintaining a reasonably well

tuned system remains critical to achieving acceptable database

performance.

Once the system has been properly tuned, a second issue arises.

Customer workloads tend to be unpredictable in that they can

change their demands for memory rapidly. For instance, it is not

uncommon for customer workloads to shift at night to generating

batch reports. When the generation of batch reports begins, the

current memory distribution will likely be far from optimal for

this new workload. This is just one example that illustrates a

prevalent problem. Generally, most workloads have naturally

changing demands for memory that are difficult to predict even

for an experienced DBA.

When faced with a workload with changing memory demands

(and in the absence of a self-tuning memory subsystem), a user

who requires optimal performance will have to manually adjust

the memory distribution at run time, a task that is extremely

difficult even when undertaken by the most experienced DBA,

and is almost never performed in practice. More commonly, a

single configuration must be found that satisfies the memory

demands of the entire workload, even though demands for

memory may vary considerably over the course of time (morning

to evening, or weekday to weekend, etc.). This single

configuration must, by definition, result in suboptimal memory

allocation.

An adaptive self-tuning memory management system such as

STMM solves these problems in the following ways:

Self tuning total database memory usage – Adapting the total

amount of memory available to any database.

Finding an optimal memory distribution – Determining a near

optimal distribution of the memory for key memory areas in DB2

V9.1 including memory for sort, hash join, compiled SQL cache,

lock memory, one or more buffer pools, compilation memory,

statistics memory, etc., based on workload characteristics

observed at run time.

Fast Convergence – Converging to an appropriate configuration

in a reasonable amount of time. We consider the following times

reasonable: approximately 1 hour for an OLTP workload, and

some small multiple (~40) of the workload’s longest-running

transaction for DSS and OLAP workloads.

A memory tuner with these characteristics not only significantly

improves system performance, but also dramatically reduces the

skill requirement to achieve the desired memory distribution.

The scope of STMM prohibits a detailed discussion of its many

aspects in a single paper. As a result, we focus on the

characteristics of STMM that differentiate it from previous

solutions to the automated memory tuning problem.

In the next section, we give an overview of the previous

automated memory tuning literature. Section 3 provides an

overview of the approach used to tune memory in DB2 V9.1.

Section 4 describes experimental results achieved through the use

of STMM. Finally, Sections 5 and 6 outline future work and our

conclusions.

2. BACKGROUND
A considerable amount of research has been conducted on

memory tuning for database systems. In general, this research can

be broadly divided into two categories: academic and industrial.

In this section, we examine both of these categories and outline

how our approach differs from each of the existing methods.

2.1 Academic Approaches
The academic investigation of the database memory tuning

problem has produced many interesting papers. The papers,

however, suffer from two problems that prevent their

implementation in a commercial database product.

The first problem with many of these papers is that their

approaches are not practical enough to be implemented in

industrial database products. For example, in the research focused

on buffer pool tuning, many of the approaches require the user to

set response time goals on sets of queries [1][2][4][16][22].

While this is reasonable in theory, in practice, the task of setting

response time goals may be just as difficult as manually tuning the

database’s memory.

The previous buffer pool research is also problematic because it

relies on heuristic hit rate estimation [2][16][22][24]. In cases

where the hit rate estimation is incorrect, suboptimal tuning will

occur. Compounding the problem is the fact that even if hit rate

estimation is accurate, hit rates alone fail to account for the

potentially uneven cost of page misses. Depending on the disk

from which the page must be read, certain page reads may be

dramatically more expensive than others since page reads from

hotly contested disks will take longer than page reads from idle

disks.

The second problem with the academic approaches is that, to our

knowledge, they all deal with only one aspect of the memory

tuning problem. For instance, a great deal of work has been done

on approaches to buffer pool tuning [1][2][4][16][22]. Similarly,

there is a considerable amount of research into optimizing the sort

and hash join memory usage of a database system

[6][14][17][19][26]. The trouble with these approaches is that

there is no clear method of integrating the separate components

into a comprehensive database memory tuning system that can

optimize all (or even most) of the database’s memory.

2.2 Industrial Approaches
The industrial research on memory tuning is more difficult to

assess than the academic research. In general, cutting-edge work

is first built into a commercial product, and publication usually

occurs years later, if ever. For that reason, it is difficult to

determine the algorithms behind the currently released

technology. As a result, we are forced to evaluate the technology

based on product documentation.

1082

From product documentation and Oracle-published white papers,

it is evident that Oracle 10g has an automated memory tuning

feature [21]. The Oracle Automatic Shared Memory

Management feature is able to determine values for several

configuration parameters including the “Shared Pool”, the “Buffer

Cache”, and the “Java Pool”. It also is advertised that the feature

works adaptively to modify memory distribution based on

workload characteristics.

There are two main functional differences between the IBM Self-

Tuning Memory Manager (STMM) feature and the Oracle

Automatic Shared Memory Management (ASMM) feature. The

primary difference is that ASMM requires the user to put a limit

on the total amount of shared memory that the database can

consume, a task that can be non-trivial in the presence of multiple

databases running on the same machine. STMM, on the other

hand, is able to adaptively determine the proper amount of

memory that each database should consume, thus alleviating the

need for the user to calculate a total memory value for every

database. The second difference is that ASMM is unable to tune

two critical memory consumers that are automatically configured

by STMM. These consumers are sort and any buffer pools that

store pages larger than 4KB.

As with Oracle, Microsoft’s memory tuning in SQL Server is also

difficult to evaluate. In the product documentation for SQL

Server 2000 [23], it is clear that there is some amount of memory

tuning; however, most of their documentation focuses on tuning

the total amount of memory for the database rather than the

distribution of the memory once it is allocated to the database.

The lack of clear documentation makes it difficult to evaluate if

SQL Server contains any sophisticated memory distribution

algorithms aimed at optimizing the distribution of memory to

improve the performance.

To our knowledge, the approach presented in this paper is the only

industrially implemented approach that combines total database

memory tuning and a comprehensive memory distribution

algorithm with cost-benefit analysis and control theory

techniques.

3. DESIGN OVERVIEW
The principal component of the Self-Tuning Memory Manager

feature is the memory controller. During each tuning cycle, the

memory controller (or memory tuner) evaluates the memory

distribution and determines if system performance can be

enhanced through the redistribution of the database memory. To

do this, the controller uses cost-benefit data as input into a control

model whose output is an improved memory distribution. The

control model also determines an appropriate tuning frequency,

typically between 30 seconds and 10 minutes, based on the

workload characteristics (as defined through the input cost-benefit

data).

In the remainder of this section, we first discuss STMM’s cost-

benefit analysis. We then discuss how STMM classifies memory

and describe the control algorithms that are used to prevent tuning

oscillation. Finally, we discuss STMM’s memory transfer

algorithm, how it tunes total database memory usage and

determines the tuning frequency.

Figure 1. STMM Overview

3.1 Cost-benefit analysis
One of the main obstacles to developing a database-wide memory

tuning algorithm is that each of the memory consumers (i.e., sort,

buffer pool, etc.) has a different use for memory. For instance, the

buffer pools use memory to cache data, index, and temporary

pages. When buffer pool memory is insufficient, pages are

evicted from the cache and must be reread upon the next access.

A common performance metric used to track buffer pool

performance is the cache hit ratio, which indicates the ratio of

page accesses that require disk reads. Conversely, for the

compiled SQL cache, which also uses hit ratios as its performance

metric, misses incur a CPU penalty when evicted queries must be

recompiled. The difference between these two seemingly similar

metrics makes comparing their need for memory difficult.

Clearly, if there were a common metric for all memory

consumers, trading memory would be much simpler.

Since the database memory is predominantly used to increase

system performance either by reducing latency, decreasing I/O, or

decreasing contention, all of which can be expressed as a time

benefit, we chose as our common metric saved system time per

unit memory. Determining how much disk and/or CPU time a

given amount of memory would save each of the consumers

produces a common metric that can then be used to determine

relative need for memory across all of the consumers. For the rest

of this document, the cost-benefit time/unit memory metric will

often be referred to only as the cost benefit (or the cost-benefit

metric).

The STMM memory model varies dramatically from other

database memory tuning strategies in the published literature

[5][18][23] because it models the cost benefit on a system-wide

level over the course of a time interval. The cost benefit is

accumulated as savings in processing time for each memory

consumer with which a database agent (the OS process

performing the query operation) interacted during query

processing. The aggregation of agent time savings implicitly

models concurrency, since the time savings are directly measuring

saved system time within the current observation window (tuning

interval), and are subject to agent interactions and inefficiencies

caused by system concurrency.

Space constraints prohibit a detailed description of how the

benefit data is obtained through simulation for each memory area.

Very briefly, a distinct method was created for each memory

consumer. These methods are all based on runtime simulations of

cost. In subsections 3.1.2 and 3.1.3, we describe two of the

STMM Controller

DATABASE_MEMORY
Sort Memory

(sorts, hash joins, etc) Locking memory

Compiled SQL
cache Buffer pool 1 Buffer pool N …

New sizes for memory heaps
and DATABASE_MEMORY

Cost/benefit for each heap
and/or minSize

• Determine new allocation
levels

• Avoids oscillation
• Filters noise
• Determines tuning
frequency (how often to
adjust)

1083

benefit data collection algorithms employed to illustrate how they

can differ even for similar memory consumers. While a detailed

description of each benefit data collection algorithm does not

currently exist in the literature today, the authors hope to publish

papers in the future with this information.

3.1.1 Cost determination
In the following subsections we only discuss benefit

determination algorithms. While we do not describe the cost

determination algorithms in this paper, it should be evident that

the cost of decreasing the size of each consumer can also be

determined through similar simulation techniques.

In some cases, however, where cost determination negatively

impacts performance, or is algorithmically challenging, a cost

value is not generated. In these cases, the memory tuner assumes

that the cost of decreasing a consumer is diametrically opposite to

the consumer’s benefit. More directly, if a consumer does not

report a cost and reports a benefit of 0.001 seconds per page of

additional memory, the memory tuner will presume that

decreasing the consumer will incur a cost of 0.001 seconds per

page.

3.1.2 Benefit determination for buffer pools
The objective of the benefit model is to determine, with

reasonably accuracy, the amount of agent processing time that

would be saved if additional memory were allocated to the

memory consumer. In the case of the buffer pool, this saving is

almost exclusively a saving in I/O. The algorithm to determine

the benefit does the following tasks:

� Maintains some extra space, which we will refer to as the

simulated buffer pool extension (SBPX). The SBPX is large

enough to store a significant percentage (10% or more) of the

page identifiers of the buffer pool. Since the page identifiers

are only 128 bytes long, and pages in the buffer pools are

4KB, 8KB 16KB, or 32KB, the SBPX represents at most a

3% memory overhead per simulated page.

� When a page is victimized from the buffer pool, its identifier

is stored in the SBPX and a page identifier is removed from

the SBPX using a victimization algorithm similar to that of

the actual buffer pool.

� When a new logical page read occurs, the following events

take place:

� If the page is not found in the buffer pool, the SBPX is

consulted. This searching of the SBPX is very efficient

since its page identifiers are stored in the buffer pool

and marked accordingly.

� If the page was not found in the buffer pool but was

found in the SBPX, then we can say that if the SBPX

were actual pages and not just simulated pages, the page

miss being incurred would have been a hit.

� Once it is determined that a disk access is necessary, a

victim page in the buffer pool is chosen, the victimized

page is moved into the SBPX, and the desired page is

read into the buffer pool from disk. This operation

(victimizing the buffer pool page and bringing the

desired page in from disk) is timed so that we will know

the total time penalty that is due to the page miss. This

time is then added to the “cumulative saved time” for

the given buffer pool. Timing the operation is critical to

the method since disk read times may vary dramatically

if the load across all disks is not uniform.

� At the end of the tuning interval, the cumulative saved time

is then normalized by the number of pages in the SBPX

(since this is the maximum number of additional pages

required to save the disk read) to determine the benefit/page

metric.

The algorithmic details reveal the two major differences between

our approach and previously proposed hit rate estimation

approaches. The first difference is that while in the past, hit rates

have been estimated, in our approach we precisely simulate the

page read behavior that will arise when memory is added to the

buffer pool. Furthermore, our approach explicitly times the reads

that will be saved, which allows for increased accuracy in the

presence of non-uniform disk load.

Figure 2. Estimating buffer pool benefit

In Figure 2, we see an example of the above-described process

where pages 1, 2, and 3 have been read from disk at various times.

The read of page 3 resulted in the victimization of page 1, at

which point page 1’s identifier was transferred to the SBPX.

When a read request occurs for page 1 at a future time, the page is

not found in the buffer pool but is found in the SBPX. We,

therefore, know that had the buffer pool been larger the I/O to

read page 1 would have been avoided.

3.1.3 Benefit determination for the compiled SQL

statement cache
The system time saved by increasing the size of the compiled SQL

cache is different from that of the buffer pools. In the case of the

buffer pools, the savings were predominantly I/O time reductions,

whereas growth in the compiled SQL cache yields a reduction in

the number of query compilations, which saves CPU time.

To produce a benefit value for the compiled SQL cache, we use a

cache simulation model similar to what was described for the

buffer pool in Section 3.1.2, where a simulation area holds

identifiers for victimized objects. The following differences apply:

� Compiled statements in the Simulated SQL Cache Extension

(SSCX) are represented by a generated checksum that

uniquely identifies the SQL statement.

� When a cache miss occurs, but the statement is found in the

SSCX, the statement compilation is timed, and added to the

cumulative saved time for the SQL Cache.

� The benefit data is normalized to benefit/page based on the

number of pages that would be required to store the compiled

statements in the SSCX. This is different from the buffer

pool computation since compiled statements vary in size

while buffer pool pages for a given buffer pool are of a

constant size.

2

2

Buffer pool SBPX

Disk

1

1

0.00026ms

Cumulative
saved time

3 The “ simluated
Buffer pool
extension” (SBPX)
holds a percentage
of victimized page
identifiers.

3

1084

The resulting benefit metric measured in seconds/page is directly

comparable to the benefit metric calculated for the buffer pool,

even though the former represents savings due to reduced I/O

processing and the latter represents savings in CPU processing.

3.2 Memory controller
For each memory consumer, in most cases, the saved system time

decreases when the amount of memory allocated to the consumer

increases. Additionally, at some point, when the memory

consumer has a sufficient amount of memory, the addition of

more memory produces no more saved system time.

For example, adding more memory for the buffer pools will see

diminishing returns when the whole database, or the set of active

pages, fits in memory or when the data accesses, beyond the set

that is kept in memory, are random. Alternatively, for sort, the

diminishing returns occur when there is enough memory to

perform all sorts in memory.

This nonlinear relationship can be modeled as an exponential

function ()iiub

ii eax
−−= 1 , where xi is the saved system time for

memory consumer i and ui is the memory size for memory

consumer i. The constants ai and bi are model-specific

parameters. We define the tuning objective as maximizing the

total saved system time over all memory consumers, given the

constraint that the total memory size is fixed.

For a total of N memory consumers, the tuning objective is:

∑
=

=
N

i

ixf
1

max
 subject to

∑
=

=
N

i

i Uu
1

where U is the size of total available memory. According to

constrained optimization theory (i.e., Karush-Kuhn-Tucker

conditions), the maximum total saved system time can be

achieved when the partial derivative for each memory size is

equal, that is,

ji u

f

u

f

∂
∂

=
∂
∂

where i,j = 1..N. This results in our memory tuning objective,

namely, to equalize the cost-benefit metrics for all memory

consumers.

3.2.1 Varying the memory transfer limits
To achieve the memory tuning objective without excessive

oscillations, the memory tuner varies the amount of memory by

which each consumer can increase or decrease in a given interval.

To compute these amounts, the memory tuner uses the following

two algorithms:

MIMO controller – The multi-input multi-output (MIMO)

controller uses a model-based control theory approach to

determine the direction and step size of memory tuning. A MIMO

model is first constructed (and continually revised to capture

system and workload changes) to model the relationship between

the memory size and the benefit value. After the model quality is

verified, the MIMO control algorithm uses this model

information, and the integral control law, to determine the proper

tuning actions required to equalize the benefits for all memory

consumers.

Oscillation Dampening controller – When a MIMO model is not

available (i.e., before the first model can be constructed), a fixed

step algorithm is used. In the fixed step algorithm, all memory

resizes are sized using a fixed percentage of the consumer’s size,

regardless of the benefit value. Since this can lead to significant

size oscillation, an oscillation avoidance algorithm is introduced

to reduce the memory tuning size once oscillating patterns are

observed. The fixed step tuning combined with the oscillation

reduction is referred to as the Oscillation Dampening controller

(or OD controller).

Figure 3 shows the STMM controller and the interaction between

the MIMO and OD controllers.

Figure 3. STMM Controller

The OD controller is used in only two scenarios: a) when a

database is starting up and lacks a tuning history, and b) in the

presence of large system noise. Because of space constraints, we

have chosen to describe only the MIMO controller in detail since

it is the algorithm that is most often used. The complete MIMO

control technique used in STMM is described in detail in

previously published work [8][9][10], and is only summarized

here.

3.2.2 The MIMO control algorithm
The MIMO controller applies a model-based approach that

provides fast convergence and good overall system stability.

Central to the MIMO controller is the integral control law, which

can be rigorously analyzed using control theory and is widely

used in engineering disciplines in order to maintain system

stability and control performance. The MIMO controller has three

steps:

1. Building the model

2. Checking the model’s accuracy

3. Applying the integral control law (the gain control model).

3.2.2.1 Building the MIMO model
Building the MIMO model involves calculating the slope of the

memory benefit curve generated from each of the consumers. The

benefit_slope is a measure of the rate at which the cost-benefit for

a given heap changes as the heap size changes. The algorithm

computes the benefit_slope by fitting a line to the historic data: the

data pairs of memory consumer size and benefit value. This curve

fitting is done using the batch least squares model, a statistical

regression technique. Specifically, we assume a local linear

relationship between the i-th memory consumer size (sizei) and its

benefit (benefiti) at time interval k, that is:

)()()(_)(koffsetksizekslopebenefitkbenefit iiii +×=

Note that benefit_slope is negative because the larger the memory

consumer size, the smaller the benefit of saved system

seconds/page. Also note that benefit_slope may vary over time

DB 2 Engine

DB2 Clients

Memory
 Statistics
 Collector

Saved System Time Benefit

MIMO
 Control Algorithm

Fixed
 Step

Oscillation
 Dampening

 Model
 Builder

Entry Size

Entry
Size

Memory Tuner

Greedy
(Constraint)

Ac curate

Y

N

1085

with workload fluctuations. As a result, the model must be rebuilt

frequently to maintain accuracy over potentially changing

workloads. The model is rebuilt every interval using a sliding

window of data collected in the last n intervals, where n = 40.

Since, as described in 3.2.2.3, the system is designed to converge

in 18 intervals, a 40 interval history provides enough data for

accurate model calculation even if workload fluctuation causes the

convergence time to double.

Before we compute the benefit_slope value, we first compute the

sample mean of the memory pool size mean_sizei (k), then the

sample mean of the benefit mean_benefiti (k). Once these values

are determined, the benefit_slope can be computed using the least

squares regression equation:

()()

()∑

∑

+−=

+−=

−

−−

=
k

nkj

ii

k

nkj

iiii

i

ksizemeanjsize

kbenefitmeanjbenefitksizemeanjsize

kslopebenefit

1

2

1

)(_)(

)(_)()(_)(

)(_

which generates a best fit to the data in the moving window.

3.2.2.2 Checking the model’s accuracy
After the benefit_slope value is calculated, it must be verified to

ensure accuracy before it can be used to generate the integral

controller. This accuracy test is done by examining all the slope

values for each of the consumers and then performing two tests.

First, the model can only be valid if it passes the null hypothesis

test. The null hypothesis test determines if the obtained model

reflects the relationship between the memory consumer size and

its benefit. Specifically, the F-test statistic is computed and the

larger the statistic, the more confidence we have that a model can

be derived from the data [3]. If the null hypothesis test is not

satisfied (i.e., the model is null), the newly built model will not be

used and the controller will continue to operate in its previous

mode (using the OD controller or a MIMO controller with

previously obtained model). If the null hypothesis test is satisfied

(i.e., the model is not null), the second test is performed.

The second test involves testing the sign of the calculated slope.

A negative slope value is considered acceptable because, as

previously stated, when memory for a given consumer increases,

the benefit should decrease. If the slope is negative, the model is

acceptable and will be used in the next stage to build the integral

controller. If however, the slope is positive, we consider the

model to be unacceptable (although the data may be accurate), and

we use a previously constructed MIMO model, or the OD

controller, if a MIMO model has yet to be constructed. A model

with a zero slope is also deemed acceptable. This can occur when

the memory consumer benefit data suggests that adding additional

memory will not provide any saved time. In these cases, we

assign a very small negative slope instead of using the zero slope.

This small negative slope will cause memory to be taken from the

consumer provided that the cost to do so is relatively small.

Memory is taken from consumers with no benefit based on the

assumption that total system memory is insufficient and as a

result, at the optimal memory configuration, all consumers will

continue to show some benefit for additional memory.

3.2.2.3 Applying the integral control law
The final, and most important, stage in the MIMO algorithm is to

apply the integral control law. The term integral control refers to

the fact that the controller output is proportional to the integral of

all past errors; this leads to accurate control performance without

steady-state error [13]. The integral control law determines how

aggressively STMM should be in resizing a given memory

consumer. Typically, in control theory, an integral control law is

used to regulate the measured output to a desired reference value.

However, for the memory tuning problem, this reference value

does not exist because we do not know in advance what each

consumer’s benefit value should be when the system is in the

optimal state. Instead, we compute the average benefit of N

memory consumers, and construct the measured output as the

difference between the individual consumer’s benefit and average

benefit.

To size the memory consumers the integral control law uses the

following two equations for the i-th consumer, which are based in

classical control theory modeling:

)(_

)(
)(

kslopebenefit

p
kgain

i

i

1−
=

())(_)(*)()()(kbenefitaveragekbenefitkgainksizeksize iiii −+−= 1

The first equation computes the control gain that will be used in

the second equation. The second equation defines the integral

control law for our controller. The value p is a constant (between

0 and 1) chosen at design time and specifies the desired

convergence time in intervals. In classical control theory, p is

called the pole. When the pole increases the system will take

longer to converge but will be less susceptible to noise and spikes

and therefore more stable. For a linear system, the convergence

time can be computed from the value of pole using this equation:

-4/ln(p)

This term comes from linear control theory based on the transient

system response model. For example, if p=0.8, then the

convergence time is -4/ln(0.8) = 17.9 intervals. The value chosen

for p in our case is 0.8, which specifies that the system will reach

convergence after 18 tuning intervals. The gain is then plugged

into the second equation, the integral control law, to compute the

new size of memory consumer i. The second equation takes the

benefit of added memory for consumer i and compares that with

the average benefit over all of the memory consumers. The result

of the second equation is the target size for the given consumer

from which we can easily generate the amount of memory to

transfer in the current interval.

3.3 Memory transfer
Once the MIMO controller algorithm and the OD controller are

used to determine the magnitude of the potential memory resize,

the memory must be reallocated based on each consumer’s

relative benefit. This is done through the use of a greedy

algorithm.

The greedy algorithm ensures that total memory is unchanged by

resizing consumers in pairs (i.e., decreasing memory from one

consumer and increasing memory for another consumer by the

same amount). Furthermore, the greedy algorithm uses the

computed benefit values to take memory greedily from the

memory consumer that is least in need of memory (and has the

lowest cost in giving up memory) and give it to the one that is

most in need of memory.

The complete STMM memory transfer algorithm is as follows:

1086

1. First, the memory consumers are separated into two groups:

those larger than the average benefit, and those equal to or

smaller than the average benefit. The memory consumers are

then sorted as follows:

• Based on their expected benefit, if their benefit is larger

than the average benefit (group B, for benefit)

• Based on their expected cost, if their benefit is smaller

than the average benefit (group C, for cost).

2. Then, using the memory transfer limits computed using the

MIMO or OD tuning algorithm, pages are taken from the

memory consumer in group C with lowest expected cost and

given to the memory consumer from Group B with largest

benefit, provided that the benefit of the recipient is greater

than the cost of the donor. (The consumers are not actually

resized at this stage but instead the resize amount is recorded

for use later.)

3. When the memory transfer limit is reached such that the

memory consumer from group B with highest expected

benefit can grow no larger, pages are then added to the

memory consumer with the next highest expected benefit.

Conversely, when the memory consumer from group C with

the lowest expected cost can shrink no more, pages are taken

from the memory consumer with the next lowest cost.

4. Memory trading continues until no more memory can be

transferred. This occurs when there is no consumer left in

group C with pages to give or, there is no consumer left in

group B that can receive pages.

5. At this point, the new size is known for each of the memory

consumers and the actual resizes can occur. The resizes are

ordered such that all decreases are performed first, followed

by the increases. This prevents memory over-allocation

while the memory is being transferred.

6. Once the memory has been transferred, the benefit collection

counters are reset and the memory controller sleeps for some

time before beginning again at step 1.

3.3.1 Memory transfer limits
Since the goal of the memory tuner is to converge to an optimal

allocation after several intervals (and not in a single interval),

there are limits placed on the amount of memory transferable in

any tuning interval. As described above, the control algorithms,

both MIMO and OD, are used to determine the number of pages

transferable to or from a consumer in a given interval. These

algorithms, however, are further limited to preserve system

stability in the presence of rapidly fluctuating workloads.

When increasing the size of consumer i, the maximum increase

amount maxInci is 0.5*sizei. The maximum decrease size

maxDeci will be limited to 0.2* sizei. These asymmetrical limits

reflect the fact that decreasing a consumer’s size is always more

risky than increasing its size. In addition to these restrictions

placed on the maximum amount of memory that can be

transferred in a given interval, the resizes are restricted to be at

least 0.5% of each consumer’s current size. This restriction helps

to prevent the tuner from undertaking insignificant resizes that

will likely have little effect on overall performance.

In addition to the above restrictions, each consumer can optionally

provide a minSize value, which, when reached, will prevent

further decreases.

3.3.2 Minimum required memory -“minSize”
In many cases, if a memory consumer is not given enough

memory, the implications can be severe. Insufficient memory can

result in failed transactions or utilities, essentially making the

database appear off-line. In an attempt to mitigate out-of-memory

conditions, each consumer can optionally specify the minimum

amount of memory that the consumer requires. These minimum

size calculations are specific to each consumer and a description

of the algorithms is omitted here because of space constraints.

The memory tuner then uses these minimum sizes to ensure that

each consumer has at least the minimum amount of memory

necessary. Satisfying the minimum size involves increasing the

size of the consumer if it is already below its minimum size, or

preventing a further decrease if the consumer is at its minimum

size.

3.3.3 Categorization of memory
Within STMM, memory consumers (heaps) are divided into two

major categories:

• Performance-related memory consumers (PMCs) have

the strong potential to affect system performance, but

not usually query success or failure, by the amount of

memory they are allocated.

• Functional memory consumers (FMCs) require memory

to store data or database operations will fail.

Examples of PMCs include: buffer pools, sort, hash join, and

compiled statement cache. Examples of FMCs include memory

for internal control blocks, SQL/XQUERY compilation memory,

statistics collection memory, and (by design choice) lock

memory1. PMCs produce cost-benefit data, as described above,

which indicates the time saved for each unit of memory

transferred to the memory consumer. Conversely, FMCs do not

produce cost-benefit data.

Since a lack of sufficient memory in FMCs results in failed

database operations, producing meaningful cost-benefit data for

these consumers is not feasible since there is no reasonable way to

evaluate the cost of a failed transaction. As a result, FMCs strictly

communicate a minSize value to the memory controller. This

minSize value represents the minimum amount of memory

required by the consumer to avoid all consumer-related failures.

A PMC is permitted, but not required, to submit a minSize value

to the consumer along with its cost-benefit data, as previously

described in Section 3.3.2.

3.4 Determining the tuning interval
Determining how frequently to tune is a key consideration for a

memory controller. An OLTP workload with thousands of short-

running transactions can reasonably be tuned every few seconds,

while a complex query environment may require several minutes

or hours before a representative window of activity has occurred

1 Lock memory poses an interesting design consideration. This consumer is in

principle a PMC, since insufficient locking memory results in lock escalation, which

can severely impact database performance. In the majority of cases, however, the

performance impact of lock escalation is prohibitively high because of its negative

effect on concurrency. As a result, if additional lock memory will help avoid lock

escalations, the cost/benefit generated for the lock memory consumer is dominant

when compared with the cost-benefit for other consumers like buffer pools and sort.

For this reason, we chose to model lock memory as an FMC rather than a PMC.

1087

in order to make informed tuning decisions. The range of

reasonable tuning rates varies by orders of magnitude depending

on the system workload. To our knowledge, no research team or

vendor has yet published a technique for determining the tuning

rate for memory allocation in an RDBMS. The few publications

that discuss this topic used fixed time intervals.

STMM determines the tuning interval by observing the signal to

noise ratio in the benefit data from the memory consumers and

finding a time interval over which the signal to noise ratio is

within 70%. The sample interval is determined by considering the

confidence of the benefit data. Using P measured benefit samples

benefit(i), i=1, 2, …, P, a sample mean, mean_benefit, and a

sample standard deviation std_benefit are computed. The desired

sample interval size is then calculated using the following

equation:

ervalsamplecurrent
rangeconfidencedesired

benefitstdT
int__*

__

_*
2










where desired_confidence_range is an accuracy measure on the

desired maximum difference between the measured sample

benefit and the statistically “real” mean benefit, and

current_sample_interval is the sample interval that is currently

used to collect benefit data. Intuitively, the desired sample interval

would be large if the benefit data is noisy but the accuracy

requirement is high. Note that the variable (benefit -

mean_benefit)/std_benefit follows the student distribution, which

is different from the normal distribution, because mean_benefit

and std_benefit are estimated and may not be entirely accurate.

The constant T is used to compensate for the estimated benefits

and is selected from the student distribution table. Its value

depends on two factors, the desired confidence level (for which

we use 70% in this design) and the number of measured benefit

samples (where T=1.156 if 5 measured benefit samples are used,

and T=1.093 if 10 samples are used).

3.5 Determining a value for total database

memory
By tuning the DATABASE_MEMORY configuration parameter,

STMM tunes, in a conservative way, the amount of memory given

to each DB2 V9.1 database. This optimization has the goal of

giving memory to the database as long as it will see benefit from

this memory. Additionally, the memory is allocated with the

consideration that the database must coexist on the server

gracefully with other applications and middleware, and with other

DB2 V9.1 databases. The free memory target, which specifies the

amount of physical memory that the memory tuner attempts to

leave free on the system at any one time, is determined based on

server size. On smaller servers, a higher percentage of free

memory is left for other applications and middleware. On larger

servers, a smaller percentage (but larger amount) of memory is

left free. The amount of free memory is re-examined at each

STMM tuning interval, and DATABASE_MEMORY is adjusted

accordingly.

The tuning of DATABASE_MEMORY also allows memory to be

accurately tuned between multiple DB2 V9.1 databases on the

same server. When the benefit values are calculated for each of

the memory components, a weighted average across all

components for a given database is computed and this new value

will be considered the benefit value for the whole database. The

weighted average for a given database is calculated using the

following equation:

or simply, the sum of all benefits, weighted based on the

consumer’s size relative to the other consumers in the database.

The weighted average benefit is used to avoid the case where one

very small consumer skews the database’s average benefit value.

Once the weighted average benefit (wBen) is calculated, the

maximum of these benefit values (wBenmax) over all databases is

stored in a shared memory segment, which each memory tuner is

able to access. A given database i can calculate its relative need

for memory using wBenmax and wBeni, and then scale its memory

usage accordingly using minfree and maxfree (respectively, the

minimum and maximum amount of physical memory left free for

other applications). This is done through the following equation:

(wBeni / wBenmax) * (maxfree –minfree) + minfree

which ensures that the available memory will be allocated to the

database most in need.

3.6 Usability considerations
Users may reasonably want to disable memory tuning on specific

memory consumers (i.e., set the size of a given memory consumer

to a constant value), and/or similarly set the total amount of

memory available to the database. To support this ability, every

memory consumer, as well as the total database memory

allocation, can be set to AUTOMATIC, in which case STMM is

enabled. If the DBA wishes to disable STMM, they may

alternatively set any or all of the memory consumers to a specific

value, in which case STMM is disabled. For example, it is

possible for a user to set total database memory, sort, and locking

memory to AUTOMATIC, while setting buffer pool memory and

the memory for compiled SQL objects to fixed values.

To maximize usability, DB2 V9.1 sets all consumers to

AUTOMATIC on newly created databases so that all memory is

self tuned by default. Migrated databases, created with an earlier

version of DB2, maintain their prior allocation levels on the

assumption that they were properly set by the DBA. The DBA

may change the state of heaps, to and from AUTOMATIC, online

(i.e., without requiring a database deactivation/reactivation).

4. EXPERIMENTAL RESULTS
In this section, we discuss three experimental results that show

different aspects of STMM tuning. In the first experiment, we

compare STMM to a benchmark configuration of an industry

standard transaction processing workload. Through this

experiment, we show how well STMM can tune a system with a

static workload. In the second test, we test STMM on a system

undergoing dramatic changes to its memory requirements. These

tests show how STMM is able to adapt to changing memory

requirements in a single database. In the last experiment we show

how STMM is able to tune the total amount of memory used by

multiple databases sharing the same machine. This test shows how

STMM is able to properly handle the memory requirements of

multiple databases simultaneously.

∑

∑
=

=
 








 







N

i
N

j
j

i i

size

size benefit

1

1

*

1088

4.1 Tuning From the Default Configuration
In evaluating a database memory tuning feature, the most

convincing result would be to show that the tuner is able to take

an “out of the box” configuration and tune it to an “optimal”

configuration in a reasonable amount of time. The main problem

with conducting such a test is that typically, there is no easy way

to determine the optimal memory configuration for a given

workload. The difficulty in determining a suitable experiment to

test the efficacy of an automated memory tuner has been noted in

the previous work on memory tuning.

For instance, Martin et al. test their goal-based buffer pool tuning

algorithm by measuring how long the tuning system takes to

satisfy the predetermined goals, but they state in their paper that

setting reasonable response time goals was difficult [16]. Tian et

al. take an alternative experimental approach by comparing the

performance of two different memory tuning algorithms while

making no claims on each configuration’s proximity to an

optimally configured system [24]. Finally, in the only recent

industrial paper on memory tuning, Dias et al. claim that the best

method for evaluating their performance enhancing feature is to

survey customers using the feature [11].

In the absence of any standard metric for evaluating an automated

memory tuning feature, we propose one here. In the database

community, industry standard benchmark results produce the most

highly tuned memory configurations. For these results, database

vendors often spend weeks manually tuning the memory

configuration to produce database performance, which may place

their result ahead of their competitors by only 2 or 3 percent.

These configurations can truly be thought of as “optimal” in the

majority of cases. As a result, we consider a memory tuner to be

exceptional if it can tune system performance to within a

reasonable threshold of a benchmark system, and truly exceptional

if it can surpass the benchmark system’s configuration2.

To test STMM using this new metric, we conducted experiments

on an industry standard transaction processing benchmark. The

test system was configured to use 14 buffer pools and we started

each buffer pool at 1000 pages, which is the default size for newly

created buffer pools in DB2 V9.1. For these tests, sort, lock

memory, and SQL query cache memory were not tuned since they

are not relevant for this benchmark as its transactions are small

(i.e., use very little locking memory), have no sorts, and require

very little package cache memory to run. When publishing a

benchmark on this workload, it is always the buffer pool

configuration that is most difficult to derive and it usually takes

weeks of hand tuning to finalize.

For these experiments, we ran the workload on an IBM p5-570

system with 4x1.6 GHz processors and 128 GB of physical

memory. Housing the 1.95 TB database were 3 FAStT900

storage systems each comprising 160x36 GB disks configured

using RAID-5. The database logs were stored on a FAStT600

2
 We use this definition in part because it is difficult to test one memory tuning

system against another since most often the memory tuning system is tightly coupled

to the accompanying DBMS and as a result, performance differences may not be the

result of the memory tuning algorithm. As a result, we argue that a memory tuning

system should be compared to the best possible hand-tuned configuration on the

related DBMS. Of course, even this definition is troublesome because, with the

advance of automated memory tuners, hand-tuned results will become less and less

common. However, presently, when automated memory tuners are in their infancy,

this definition is relevant.

storage system with 14x36 GB disks and were also configured

using RAID-5.

0

2

4

6

8

10

12

14

16

18

20

22

23
:2
4:
51

23
:2
9:
08

23
:3
3:
58

23
:4
4:
39

23
:5
7:
26

0:
05
:5
8

0:
24
:0
0

0:
41
:5
5

1:
13
:3
8

2:
14
:0
2

2:
43
:4
5

3:
00
:3
0

3:
16
:2
2

3:
37
:5
6

3:
53
:4
0

4:
05
:3
8

4:
23
:1
9

4:
38
:0
6

4:
49
:0
6

4:
57
:5
8

5:
08
:0
7

5:
21
:2
2

5:
31
:4
8

5:
39
:5
8

5:
47
:0
2

Time

B
P
 S
iz
e
 i
n
 M
il
li
o
n
s
 o
f
4
K
 P
a
g
e
s

BP 1 BP2 BP3 BP4 BP 5 BP 6

Phase 1 Phase 2 Phase 3

Figure 4. Sizes of the six largest buffer pools during

transaction processing workload

Figure 4 shows the tuning effect on the sizes of the six largest

buffer pools during execution of the workload. The figure shows

three phases of tuning. In the first phase, STMM takes the system

from the default configuration to a configuration within 10% of

the hand-tuned result. In the second phase of tuning, the buffer

pools are finely tuned to arrive at the desired final configuration.

Finally, in the third phase, STMM makes only very minor

adjustments to the system.

The performance of the system, as shown in Figure 5, can be seen

in the same three phases. In the first phase, STMM takes the

system from 47,029 transactions per minute to 139,110

transactions per minute. In the second phase, while STMM is

fine-tuning the configuration, performance oscillates around

140,000 transactions per minute. Finally, in the third phase,

performance stabilizes at 143,141 transactions per minute. This

shows the dramatic impact that STMM can have on a workload,

improving performance in this case by over 300%, most of which

is achieved in the first hour and a half of tuning.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

22
:5
4:
42

23
:0
7:
34

23
:2
0:
24

23
:3
3:
14

23
:4
6:
04

23
:5
8:
54

0:
11
:4
4

0:
24
:3
5

0:
37
:2
5

0:
50
:1
5

1:
03
:0
5

1:
15
:5
5

1:
28
:4
5

1:
41
:3
6

1:
54
:2
6

2:
07
:1
6

2:
20
:0
8

2:
32
:5
8

2:
45
:4
9

2:
58
:3
9

3:
11
:2
9

3:
24
:1
9

3:
37
:0
9

3:
49
:5
9

4:
02
:5
0

4:
15
:4
0

4:
28
:3
0

4:
41
:2
0

4:
54
:1
0

5:
07
:0
0

5:
19
:5
0

5:
32
:4
1

5:
45
:3
1

Time

In
 T
h
o
u
s
a
n
d
s
 o
f
T
ra
n
s
a
c
ti
o
n
s
 P
e
r
M
in
u
te

Phase 1 Phase 2 Phase 3

Figure 5. System performance during STMM tuning

To determine how close the final configuration was to the hand-

tuned result, we performed a second run using the final memory

configuration and turning STMM off (also removing any small

effect that tuning might have on the system). In this second run,

we found that the STMM-generated configuration resulted in an

average transaction rate of 145,391 transactions per minute

compared to the baseline configuration of 145,156 transactions

per minute (a difference of 0.16%, which is within the inter-run

1089

variability of the workload on the test machine). The results of

this second run illustrate how STMM is able to converge to the

optimal configuration when started from an out of the box

configuration. The results also shows that even with STMM

actively tuning a system, the performance can be within 1.4% of a

hand-tuned result.

4.2 Dramatic Workload Shift
One common problem with memory tuning arises from the fact

that memory demands are not uniform throughout a typical day

(as described above). For example, during regular business hours,

a database server may be processing simple transactions. Then,

once the business day ends, the database will spend the next 8

hours running complex decision-support queries to provide data to

be used for the next business day. This presents a challenge for an

automated memory tuning system as the tuner must be able to

quickly shift the memory to where it is most needed.

To simulate such an environment, we conducted an experiment

where the database began by running one type of query and then,

once the memory configuration stabilized, the workload shifted to

more complex queries. The tests were run on an IBM p650 server

with 8x1.4 GHz processors and 32 GB of physical memory, using

a 15 GB database. At first we ran 16 concurrent streams of TPC-

H query 13, a decision-support query with low requirements for

sort memory. Then, once the memory configuration stabilized,

we changed the workload to 16 concurrent streams of TPC-H

query 21, which is substantially more complex, contains multiple

sub-queries and has much higher requirements for sort memory.

This shift from query 13 to query 21 places considerable pressure

on the sort memory and should force the memory to be

dramatically reallocated.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
u
m
b
e
r
o
f
4
K
B
 P
a
g
e
s
 (
in
 m
il
li
o
n
s
)

BUFFER POOL 2 SORT MEMORY BUFFER POOL 1

Q13 - 16 streams - No Sort Workload Q21 - 16 streams - Sort Intensive Workload

Figure 6. Workload Shift - Memory Distribution

In Figure 6, we can see the memory distribution shift over the

course of the run. Once the streams of query 13 stop and query 21

starts running, we see a dramatic increase in the amount of sort

memory allocated to the database. By the time the system has

converged, the database has reserved more than 8 GB of memory

for sorting. As is illustrated in Figure 7, this memory distribution

shift has a dramatic effect on the workload performance.

Figure 7. Workload shift query performance

Figure 7 shows the workload performance during the run. In the

first stage of the run, we can see that the memory distribution is

stable as the 16 streams of query 13 complete consistently in

about 280 seconds. Once the workload shifts, however, it is clear

that the system’s memory is not properly configured for query 21.

At this point, STMM begins redistributing the database memory

and the resultant dramatic effect on performance can be observed

as quickly as the second run of the queries, at which point

performance has already improved by 74%. After several more

runs, the query response time stabilizes and a performance

improvement of 254% can be observed when compared to the first

execution of query 21. This not only shows how critical sort

memory can be to a database system, but also how effective

STMM can be at supplying the sort memory when necessary.

4.3 Tuning multiple databases
One difficult issue database administrators face when tuning

memory is determining the total amount of system memory to

dedicate to a given database. The problem is compounded when

the system administrator is dealing with multiple databases, each

of which may run at different periods of time in a single 24 hour

window. If each database is configured with a static amount of

memory, which is commonly the case, a good portion of the

system memory will be unutilized during periods where one or

more of the databases are not active. This is especially

problematic in SMB environments, where administrative skill can

be low, memory is less plentiful, and single systems are often

required to run two or more databases concurrently.

To test STMM in an environment where multiple databases are

competing for a single system’s memory, we conducted an

experiment with two identical databases running the same

workload. In building the databases, it was necessary to ensure

that both databases had the same physical design, resided on the

same number of disks and that the disks were of the same speed,

since even the slightest difference in any of these variables could

have skewed the memory requirements for the databases. The

tests were run on an IBM p650 server with 8x1.4 GHz processors

and 32 GB of physical memory. The two databases contained 15

GB of data and were created using 168 disks each. The workload

being run by each of the databases consisted of 4 clients, each

running the 22 queries used in the TPC-H benchmark.

0

2

4

6

8

10

12

14

16

Q13 - No Sort Workload Q21 - Sort Intensive Workload

74%

254%

 1440 s.

826 s.

406 s.

1090

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000 50000 60000

Time in seconds

M
il
li
o
n
s
 o
f
4
K
B
 P
a
g
e
s

 First Database Second Database

Second

Database

Activated

Second Database

Workload Stopped

Figure 8. Total database memory tuning

Figure 8 shows the database memory usage for the two databases

during the 20 hour run. The first database is activated with the

default configuration and the workload is started. In the first hour,

STMM gives all of the system memory to this database as there

are no other applications running on the system. After six hours of

running, the second database is activated with the default

configuration, and begins running the same workload. As

expected, two hours later both databases are sharing the system

memory equally. A few hours after the memory is evenly

distributed, the second database stops running the workload but

remains activated. The dramatic difference in relative database

activity that follows causes STMM to take memory from the

second database and give it back to the first database.

4.4 Summary of Experimental Results
Collectively, these three experiments serve to illustrate the

dramatic effect STMM can have on a database workload.

The “Default Configuration” result shows how STMM can

essentially eliminate the need for hand tuning when running a

stable transaction processing workload. This provides a

significant benefit to users who may otherwise have to spend days

or weeks tuning the database memory before optimal performance

is possible.

Conversely, the “Workload Shift” result shows how STMM can

tune the system in ways that are often not possible when hand

tuning is the only method available. Since STMM constantly

monitors the workload and redistributes memory as needed, the

user is free from having to endlessly monitor system performance

and diagnose memory-related issues. This profound departure

from past tuning techniques ensures improved performance

regardless of the workload demands.

Finally, the “Multiple Databases” result shows how STMM is able

to fully utilize the available system resources at all times. This

allows for improved overall system performance, and can provide

significant cost savings since less system memory is required to

achieve similar performance results.

5. FUTURE WORK
In the future, we plan to expand this work to address the following

issues:

Advanced memory tuning methods for MPPs in a shared-

nothing environment – In this paper, we only discuss the tuning

algorithm for single partition systems; however, DB2 V9.1

supports parallel processing through its Data Partitioning Facility

(DPF). While STMM allows for memory tuning across data

partitions, this functionality could be enhanced.

Feedback of memory impact to the query compiler – In the

course of tuning, STMM gains significant insight into the impact

that memory distribution has on the underlying workload. If the

query optimizer was privy to this data, it could use it to enhance

plan selection. Providing the query optimizer with memory

tuning data and modifying plan selection algorithms to leverage

the information is something we hope to pursue.

6. CONCLUSIONS
STMM combines runtime benefit simulation with a control theory

approach to adaptively optimize memory allocation within a

relational database. This approach is well suited to real-world

scenarios where workload memory requirements can change

dramatically over time. Internal testing has demonstrated the

effectiveness of STMM at tuning database memory in

performance-sensitive environments, with complex workloads,

and in the presence of fluctuating system resource availability. In

the vast majority of cases, even for steady-state workloads,

STMM competes with the best tuning of human administrators

while providing fast convergence time, rapid adaptation, and

stable response to noise.

7. ACKNOWLEDGMENTS
The authors would like to thank the following people who

contributed to this work: Matthew Carroll, Lee Chu, Jerome

Colaco, Liam Finnie, Joseph L. Hellerstein, Matthew Huras,

Merce Pons Crespo, Wojciech Kuczynski, Yun Han Lee, Mick

Legare, Bruce Lindsay, Berni Schiefer, Danny Zilio, and Adriana

Zubiri.

8. REFERENCES

[1] K. P. Brown, M. J. Carey, and M. Livny, Goal-Oriented

Buffer Management Revisited, ACM SIMGOD 1996,

Montreal, Canada, 353-364.

[2] K. Brown, M. Carey, and M. Livny, Managing

Memory to Meet Multiclass Workload Response Time

Goals, VLDB 1993, Dublin, Ireland, 328-341.

[3] R Christensen, Analysis of Variance, Design, and

Regression: Applied Statistical Methods, Chapman &

Hall/CRC, 1996.

[4] J. Chung, D. Ferguson, and G. Wang, C. Nikolaou, and J.

Teng, Goal Oriented Dynamic Buffer Pool Management for

Data Base Systems, IEEE ICECCS, 1995, 191-198.

[5] B. Dageville, M. Zaït, SQL Memory Management in

Oracle9i. VLDB 2002: 962-973, Hong Kong, China.

[6] D. Davison, G. Graefe, Memory Contention Responsive

Hash Join, VLDB, 1994, Santiago, Chile.

[7] DB2 UDB: The autonomic computing advantage,

http://www.db2mag.com/epub/autonomic/

[8] Y. Diao, C. Wah Wu, J. L. Hellerstein, A. J. Storm, M.

Surendra, S. Lightstone, S. Parekh, C. Garcia-Arellano, M.

Carroll, L. Chu, J. Colaco “Comparative Studies of Load

Balancing With Control and Optimization Techniques” 24th

American Control Conference (ACC), June 8-10, 2005,

Portland, Oregon.

[9] Y. Diao, J. Hellerstein, A.Storm, M. Surendra, S. Lightstone,

1091

S. Parekh, C. Garcia-Arellano. “Incorporating Cost of

Control Into the Design of a Load Balancing Controller”,

IEEE Real-Time and Embedded Technology and Application

Systems Symposium, March 1, 2004.

[10] Y. Diao, J. Hellerstein, A.Storm, M. Surendra, S. Lightstone,

S. Parekh, C. Garcia-Arellano “Using MIMO Linear Control

for Load Balancing in Computing Systems”, American

Control Conference, 2004.

[11] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, G.

Wood, Automatic Performance Diagnosis and Tuning in

Oracle, CIDR 2005.

[12] C. M. Garcia-Arellano, S. Lightstone, G. Lohman, V. Markl,

A.Storm, “Autonomic Features of the IBM DB2

Universal Database for Linux, UNIX, and Windows.”,

IEEE Transactions on Systems, Man and Cybernetics special

issue on Engineering Autonomic Systems, 2006.

[13] J. L. Hellerstein, Y. Diao, S. Parekh, D.M. Tilbury,

Feedback Control of Computing Systems, ISBN 0-471-

26637-X John Wiley & Sons 2004.

[14] P. Larson, G. Graefe, Memory Management During Run

Generation in External Sorting, SIGMOD, 1998, Seattle,

Washington, U.S.A.

[15] S. Lightstone, A.Storm, C. Garcia-Arellano, M. Carroll, J.

Colaco , Y. Diao, M. Surendra “Self tuning memory

management in a relational database system” Fourth Annual

Workshop on Systems and Storage Technology, December

11, 2005, IBM Research Lab, Haifa University campus,

Mount Carmel, Haifa, Israel.

[16] P. Martin, H. Li, M. Zheng, K. Romanufa, and W. Powley,

Dynamic Reconfiguration Algorithm: Dynamically Tuning

Multiple Buffer Pools, DEXA 2000, 92-101.

[17] M. Mehta, D. DeWitt, Dynamic Memory Allocation For

Multiple-Query Workloads, VLDB, 1993, Dublin, Ireland.

[18] Oracle 9i Memory Management

http://www.oracle.com/technology/products/oracle9i/daily/ap

r15.html

[19] H. Pang, M. Carey, M. Livny, Partially Preemptible Hash

Joins, SIGMOD, 1993, Washington, D.C., U.S.A.

[20] J. Rao, S. Lightstone , G. Lohman, D. Zilio , A. Storm, C.

Garcia-Arellano, S. Fadden. “DB2 Design Advisor:

integrated automated physical database design”, VLDB

2004, Toronto, Canada.

[21] The Self Managing Database: Automatic SGA Memory

Management. Oracle White Paper, November 2003.

http://www.oracle.com/technology/products/manageability/d

atabase/pdf/twp03/TWP_manage_self_managing_database.p

df

[22] M. Sinnwell, and A. C. Konig, Managing Distributed

Memory to Meet Multiclass Workload Response Time

Goals, ICDE 1995, 87-94.

[23] SQL Server Architecture: Memory Architecture

http://msdn.microsoft.com/library/default.asp?url=/library/en

-us/architec/8_ar_sa_4rc5.asp

[24] W. Tian, W. Powley and P. Martin. Techniques for

Automatically Sizing Multiple Buffer Pools in DB2.

CASCON 2003, Toronto, Canada.

[25] “Transaction Processing Performance Council”

http://www.tpc.org.

[26] W. Zhang, P. Larson, Dynamic Memory Adjustment for

External Merge Sort, VLDB, 1997, Athens, Greece.

9. TRADEMARKS

IBM, DB2, DB2 Universal Database, and pSeries are trademarks

or registered trademarks of International Business Machines

Corporation in the United States, other countries, or both.

Windows is a trademark of Microsoft Corporation in the United

States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United

States and other countries.

Linux is a registered trademark of Linus Torvalds in the United

States, other countries, or both.

Other company, product, and service names may be trademarks or

service marks of others.

1092

