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ABSTRACT 
DB2 for Linux, UNIX, and Windows Version 9.1 introduces the 

Self-Tuning Memory Manager (STMM), which provides adaptive 

self tuning of both database memory heaps and cumulative 

database memory allocation. This technology provides state-of-

the-art memory tuning combining control theory, runtime 

simulation modeling, cost-benefit analysis, and operating system 

resource analysis.  In particular, the novel use of cost-benefit 

analysis and control theory techniques makes STMM a 

breakthrough technology in database memory management. The 

cost-benefit analysis allows STMM to tune memory between 

radically different memory consumers such as compiled statement 

cache, sort, and buffer pools. These methods allow for the fast 

convergence of memory settings while also providing stability in 

the presence of system noise. The tuning model has been found in 

numerous experiments to tune memory allocation as well as 

expert human administrators, including OLTP, DSS, and mixed 

environments. We believe this is the first known use of cost-

benefit analysis and control theory in database memory tuning 

across heterogeneous memory consumers.  

1.  INTRODUCTION 
 This paper describes the technology in the latest IBM® DB2® for 

Linux®, UNIX®, and Windows® product release (DB2 V9.1) that 

automates, and as a result simplifies, database memory tuning. For 

decades, memory management has been a significant challenge in 

physical database design and tuning for large enterprise systems. 

This new memory tuning technology is part of IBM’s ongoing 

strategic effort in Autonomic Computing, which has delivered 

several self-managing technologies in database tuning, automated 

physical design, self-healing and self-configuring systems 

[7][12][20]. The new feature, called the Self-Tuning Memory 

Manager (STMM), provides adaptive tuning of database memory. 

The feature addresses the following main obstacles to end user 

performance tuning: 

1. Inadequate knowledge of the product’s memory use – The 

documentation for a database product as sophisticated as DB2 

V9.1 can seem overwhelming to an inexperienced database 

administrator (DBA).  In fact, even database product developers 

and technical leaders are frequently at a loss about how to allocate 

database memory, apart from the traditional trial-and-error 

approach. With this new functionality in DB2 V9.1, the DBA will 

be relieved of the need to invest time in understanding how the 

database uses memory before tuning can begin. 

2. Uncertain memory requirements for a given workload – In 

some cases, even experienced DBAs can find it difficult to tune a 

database’s memory because the workload characteristics are 

unknown.  With the introduction of this new feature, the system 

will now be able to continuously monitor database memory usage 

and tune when necessary to optimize performance based on the 

workload characteristics.  As a result, the user will require no 

knowledge of their workload for the memory to be tuned well.   

3. Changing workload behavior – For many industrial 

workloads, no single memory configuration can provide optimal 

performance because, at different points in time, the workload can 

exhibit dramatically different memory demands. If STMM is 

running and the workload's memory demands shift, the system 

will recognize the changing needs for memory and adapt the 

memory allocation accordingly.  As a result, the user will rarely 

(if ever) need to manually change the affected memory 

configuration parameters to enhance performance. 

4. Performance tuning is time-consuming – Tuning a database’s 

memory to achieve high levels of performance is extremely costly 

and can take days or weeks of experimentation.  STMM solves 

this problem by iterating towards the optimal memory distribution 

as the workload runs.  As a result, the user will no longer be 

required to collect and analyze monitor output from workload 

runs.  This should save a great deal of time and effort on the part 

of the DBA while at the same time achieving performance levels 

similar to that of an expertly tuned system.  The net effect is a 

reduction in the product’s total cost of ownership.   

To further motivate the problem, we first discuss memory tuning 

of a relational database management system (RDBMS) that does 

not have automatic memory tuning functionality.  

1.1 Manually Tuning Database Memory  
Tuning a relational database’s memory for high performance can 

be a daunting task. However, the performance benefit of tuning is 

well known in the industry to provide dramatic benefits, 

sometimes measured in orders of magnitude [7][12]. 

When systems are tuned for OLTP (e.g., TPC-C) or Decision 

Support (e.g., TPC-H) benchmarks [25], a great deal of time goes 

into the memory tuning of the system.  The tuning, performed 

manually by performance specialists, usually begins with an initial 

configuration based on prior knowledge of the workload and 

extensive knowledge of database memory performance tuning.  

Starting with this initial configuration, the workload is run several 

times, and after each run, monitor output is collected and analyzed 

to determine how well each configuration parameter has been 

tuned. If it is determined that one or more configuration 

parameters are sub-optimally tuned, changes are made to the 

configuration and the workload is run again.  This continues 

incrementally until the system is well tuned or the desired 
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performance numbers are achieved. This process can be 

prohibitively time-consuming (taking days or weeks) and clearly 

demands a high level of skill both in terms of deep knowledge of 

the DBMS and the workload.     

While manual tuning for benchmark publication may be difficult, 

the problem of performance tuning is even more pronounced in 

industrial settings.  While some enterprise customers may have 

DBAs skilled in the art of detailed performance tuning, these 

skills are less likely found in small and medium businesses 

(SMBs).  In SMBs, companies often do not employ a full-time 

DBA but rather a "System Administrator" who is expected to 

maintain the DBMS as one of many systems within the IT 

infrastructure.  In such environments, deep skill in performance 

tuning is uncommon; however, maintaining a reasonably well 

tuned system remains critical to achieving acceptable database 

performance. 

Once the system has been properly tuned, a second issue arises.  

Customer workloads tend to be unpredictable in that they can 

change their demands for memory rapidly.  For instance, it is not 

uncommon for customer workloads to shift at night to generating 

batch reports.  When the generation of batch reports begins, the 

current memory distribution will likely be far from optimal for 

this new workload.  This is just one example that illustrates a 

prevalent problem.  Generally, most workloads have naturally 

changing demands for memory that are difficult to predict even 

for an experienced DBA.   

When faced with a workload with changing memory demands 

(and in the absence of a self-tuning memory subsystem), a user 

who requires optimal performance will have to manually adjust 

the memory distribution at run time, a task that is extremely 

difficult even when undertaken by the most experienced DBA, 

and is almost never performed in practice.  More commonly, a 

single configuration must be found that satisfies the memory 

demands of the entire workload, even though demands for 

memory may vary considerably over the course of time (morning 

to evening, or weekday to weekend, etc.).  This single 

configuration must, by definition, result in suboptimal memory 

allocation.   

An adaptive self-tuning memory management system such as 

STMM solves these problems in the following ways:  

Self tuning total database memory usage – Adapting the total 

amount of memory available to any database. 

Finding an optimal memory distribution – Determining a near 

optimal distribution of the memory for key memory areas in DB2 

V9.1 including memory for sort, hash join, compiled SQL cache, 

lock memory, one or more buffer pools, compilation memory, 

statistics memory, etc., based on workload characteristics 

observed at run time. 

Fast Convergence – Converging to an appropriate configuration 

in a reasonable amount of time. We consider the following times 

reasonable: approximately 1 hour for an OLTP workload, and 

some small multiple (~40) of the workload’s longest-running 

transaction for DSS and OLAP workloads. 

A memory tuner with these characteristics not only significantly 

improves system performance, but also dramatically reduces the 

skill requirement to achieve the desired memory distribution. 

The scope of STMM prohibits a detailed discussion of its many 

aspects in a single paper. As a result, we focus on the 

characteristics of STMM that differentiate it from previous 

solutions to the automated memory tuning problem.  

In the next section, we give an overview of the previous 

automated memory tuning literature. Section 3 provides an 

overview of the approach used to tune memory in DB2 V9.1.  

Section 4 describes experimental results achieved through the use 

of STMM.  Finally, Sections 5 and 6 outline future work and our 

conclusions. 

2. BACKGROUND 
A considerable amount of research has been conducted on 

memory tuning for database systems.  In general, this research can 

be broadly divided into two categories: academic and industrial.  

In this section, we examine both of these categories and outline 

how our approach differs from each of the existing methods. 

2.1 Academic Approaches 
The academic investigation of the database memory tuning 

problem has produced many interesting papers.  The papers, 

however, suffer from two problems that prevent their 

implementation in a commercial database product.   

The first problem with many of these papers is that their 

approaches are not practical enough to be implemented in 

industrial database products.  For example, in the research focused 

on buffer pool tuning, many of the approaches require the user to 

set response time goals on sets of queries [1][2][4][16][22].  

While this is reasonable in theory, in practice, the task of setting 

response time goals may be just as difficult as manually tuning the 

database’s memory.   

The previous buffer pool research is also problematic because it 

relies on heuristic hit rate estimation [2][16][22][24].  In cases 

where the hit rate estimation is incorrect, suboptimal tuning will 

occur.  Compounding the problem is the fact that even if hit rate 

estimation is accurate, hit rates alone fail to account for the 

potentially uneven cost of page misses.  Depending on the disk 

from which the page must be read, certain page reads may be 

dramatically more expensive than others since page reads from 

hotly contested disks will take longer than page reads from idle 

disks. 

The second problem with the academic approaches is that, to our 

knowledge, they all deal with only one aspect of the memory 

tuning problem.  For instance, a great deal of work has been done 

on approaches to buffer pool tuning [1][2][4][16][22].  Similarly, 

there is a considerable amount of research into optimizing the sort 

and hash join memory usage of a database system 

[6][14][17][19][26].  The trouble with these approaches is that 

there is no clear method of integrating the separate components 

into a comprehensive database memory tuning system that can 

optimize all (or even most) of the database’s memory.   

2.2 Industrial Approaches 
The industrial research on memory tuning is more difficult to 

assess than the academic research.  In general, cutting-edge work 

is first built into a commercial product, and publication usually 

occurs years later, if ever.  For that reason, it is difficult to 

determine the algorithms behind the currently released 

technology.  As a result, we are forced to evaluate the technology 

based on product documentation.   

1082



From product documentation and Oracle-published white papers, 

it is evident that Oracle 10g has an automated memory tuning 

feature [21].   The Oracle Automatic Shared Memory 

Management feature is able to determine values for several 

configuration parameters including the “Shared Pool”, the “Buffer 

Cache”, and the “Java Pool”.  It also is advertised that the feature 

works adaptively to modify memory distribution based on 

workload characteristics.    

There are two main functional differences between the IBM Self-

Tuning Memory Manager (STMM) feature and the Oracle 

Automatic Shared Memory Management (ASMM) feature.  The 

primary difference is that ASMM requires the user to put a limit 

on the total amount of shared memory that the database can 

consume, a task that can be non-trivial in the presence of multiple 

databases running on the same machine.  STMM, on the other 

hand, is able to adaptively determine the proper amount of 

memory that each database should consume, thus alleviating the 

need for the user to calculate a total memory value for every 

database.  The second difference is that ASMM is unable to tune 

two critical memory consumers that are automatically configured 

by STMM.  These consumers are sort and any buffer pools that 

store pages larger than 4KB. 

As with Oracle, Microsoft’s memory tuning in SQL Server is also 

difficult to evaluate.  In the product documentation for SQL 

Server 2000 [23], it is clear that there is some amount of memory 

tuning; however, most of their documentation focuses on tuning 

the total amount of memory for the database rather than the 

distribution of the memory once it is allocated to the database.  

The lack of clear documentation makes it difficult to evaluate if 

SQL Server contains any sophisticated memory distribution 

algorithms aimed at optimizing the distribution of memory to 

improve the performance.   

To our knowledge, the approach presented in this paper is the only 

industrially implemented approach that combines total database 

memory tuning and a comprehensive memory distribution 

algorithm with cost-benefit analysis and control theory 

techniques. 

 

3. DESIGN OVERVIEW 
The principal component of the Self-Tuning Memory Manager 

feature is the memory controller.  During each tuning cycle, the 

memory controller (or memory tuner) evaluates the memory 

distribution and determines if system performance can be 

enhanced through the redistribution of the database memory.  To 

do this, the controller uses cost-benefit data as input into a control 

model whose output is an improved memory distribution.  The 

control model also determines an appropriate tuning frequency, 

typically between 30 seconds and 10 minutes, based on the 

workload characteristics (as defined through the input cost-benefit 

data).  

In the remainder of this section, we first discuss STMM’s cost-

benefit analysis.  We then discuss how STMM classifies memory 

and describe the control algorithms that are used to prevent tuning 

oscillation.  Finally, we discuss STMM’s memory transfer 

algorithm, how it tunes total database memory usage and 

determines the tuning frequency. 

 

 

 
Figure 1. STMM Overview 

 

3.1 Cost-benefit analysis 
One of the main obstacles to developing a database-wide memory 

tuning algorithm is that each of the memory consumers (i.e., sort, 

buffer pool, etc.) has a different use for memory.  For instance, the 

buffer pools use memory to cache data, index, and temporary 

pages.  When buffer pool memory is insufficient, pages are 

evicted from the cache and must be reread upon the next access.  

A common performance metric used to track buffer pool 

performance is the cache hit ratio, which indicates the ratio of 

page accesses that require disk reads.  Conversely, for the 

compiled SQL cache, which also uses hit ratios as its performance 

metric, misses incur a CPU penalty when evicted queries must be 

recompiled.  The difference between these two seemingly similar 

metrics makes comparing their need for memory difficult.  

Clearly, if there were a common metric for all memory 

consumers, trading memory would be much simpler.   

Since the database memory is predominantly used to increase 

system performance either by reducing latency, decreasing I/O, or 

decreasing contention, all of which can be expressed as a time 

benefit, we chose as our common metric saved system time per 

unit memory.  Determining how much disk and/or CPU time a 

given amount of memory would save each of the consumers 

produces a common metric that can then be used to determine 

relative need for memory across all of the consumers.  For the rest 

of this document, the cost-benefit time/unit memory metric will 

often be referred to only as the cost benefit (or the cost-benefit 

metric). 

The STMM memory model varies dramatically from other 

database memory tuning strategies in the published literature 

[5][18][23] because it models the cost benefit on a system-wide 

level over the course of a time interval. The cost benefit is 

accumulated as savings in processing time for each memory 

consumer with which a database agent (the OS process 

performing the query operation) interacted during query 

processing. The aggregation of agent time savings implicitly 

models concurrency, since the time savings are directly measuring 

saved system time within the current observation window (tuning 

interval), and are subject to agent interactions and inefficiencies 

caused by system concurrency. 

Space constraints prohibit a detailed description of how the 

benefit data is obtained through simulation for each memory area. 

Very briefly, a distinct method was created for each memory 

consumer. These methods are all based on runtime simulations of 

cost.  In subsections 3.1.2 and 3.1.3, we describe two of the 

STMM Controller 

DATABASE_MEMORY 
Sort Memory 

(sorts, hash joins, etc) Locking memory 

Compiled SQL  
cache Buffer pool 1 Buffer pool N … 

New sizes for memory heaps  
and DATABASE_MEMORY 

Cost/benefit for each heap  
and/or  minSize 

• Determine new allocation  
levels 
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• Filters noise 
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benefit data collection algorithms employed to illustrate how they 

can differ even for similar memory consumers.  While a detailed 

description of each benefit data collection algorithm does not 

currently exist in the literature today, the authors hope to publish 

papers in the future with this information. 

3.1.1 Cost determination 
In the following subsections we only discuss benefit 

determination algorithms.  While we do not describe the cost 

determination algorithms in this paper, it should be evident that 

the cost of decreasing the size of each consumer can also be 

determined through similar simulation techniques.   

In some cases, however, where cost determination negatively 

impacts performance, or is algorithmically challenging, a cost 

value is not generated.  In these cases, the memory tuner assumes 

that the cost of decreasing a consumer is diametrically opposite to 

the consumer’s benefit.  More directly, if a consumer does not 

report a cost and reports a benefit of 0.001 seconds per page of 

additional memory, the memory tuner will presume that 

decreasing the consumer will incur a cost of 0.001 seconds per 

page. 

3.1.2 Benefit determination for buffer pools 
The objective of the benefit model is to determine, with 

reasonably accuracy, the amount of agent processing time that 

would be saved if additional memory were allocated to the 

memory consumer. In the case of the buffer pool, this saving is 

almost exclusively a saving in I/O.  The algorithm to determine 

the benefit does the following tasks: 

� Maintains some extra space, which we will refer to as the 

simulated buffer pool extension (SBPX).  The SBPX is large 

enough to store a significant percentage (10% or more) of the 

page identifiers of the buffer pool. Since the page identifiers 

are only 128 bytes long, and pages in the buffer pools are 

4KB, 8KB 16KB, or 32KB, the SBPX represents at most a 

3% memory overhead per simulated page.  

� When a page is victimized from the buffer pool, its identifier 

is stored in the SBPX and a page identifier is removed from 

the SBPX using a victimization algorithm similar to that of 

the actual buffer pool.  

� When a new logical page read occurs, the following events 

take place: 

� If the page is not found in the buffer pool, the SBPX is 

consulted.  This searching of the SBPX is very efficient 

since its page identifiers are stored in the buffer pool 

and marked accordingly. 

� If the page was not found in the buffer pool but was 

found in the SBPX, then we can say that if the SBPX 

were actual pages and not just simulated pages, the page 

miss being incurred would have been a hit.  

� Once it is determined that a disk access is necessary, a 

victim page in the buffer pool is chosen, the victimized 

page is moved into the SBPX, and the desired page is 

read into the buffer pool from disk.  This operation 

(victimizing the buffer pool page and bringing the 

desired page in from disk) is timed so that we will know 

the total time penalty that is due to the page miss. This 

time is then added to the “cumulative saved time” for 

the given buffer pool.  Timing the operation is critical to 

the method since disk read times may vary dramatically 

if the load across all disks is not uniform.   

� At the end of the tuning interval, the cumulative saved time 

is then normalized by the number of pages in the SBPX 

(since this is the maximum number of additional pages 

required to save the disk read) to determine the benefit/page 

metric.  

The algorithmic details reveal the two major differences between 

our approach and previously proposed hit rate estimation 

approaches.  The first difference is that while in the past, hit rates 

have been estimated, in our approach we precisely simulate the 

page read behavior that will arise when memory is added to the 

buffer pool.  Furthermore, our approach explicitly times the reads 

that will be saved, which allows for increased accuracy in the 

presence of non-uniform disk load.   

 
Figure 2. Estimating buffer pool benefit 

In Figure 2, we see an example of the above-described process 

where pages 1, 2, and 3 have been read from disk at various times. 

The read of page 3 resulted in the victimization of page 1, at 

which point page 1’s identifier was transferred to the SBPX. 

When a read request occurs for page 1 at a future time, the page is 

not found in the buffer pool but is found in the SBPX. We, 

therefore, know that had the buffer pool been larger the I/O to 

read page 1 would have been avoided.  

3.1.3 Benefit determination for the compiled SQL 

statement cache 
The system time saved by increasing the size of the compiled SQL 

cache is different from that of the buffer pools. In the case of the 

buffer pools, the savings were predominantly I/O time reductions, 

whereas growth in the compiled SQL cache yields a reduction in 

the number of query compilations, which saves CPU time.  

To produce a benefit value for the compiled SQL cache, we use a 

cache simulation model similar to what was described for the 

buffer pool in Section 3.1.2, where a simulation area holds 

identifiers for victimized objects. The following differences apply:  

� Compiled statements in the Simulated SQL Cache Extension 

(SSCX) are represented by a generated checksum that 

uniquely identifies the SQL statement. 

� When a cache miss occurs, but the statement is found in the 

SSCX, the statement compilation is timed, and added to the 

cumulative saved time for the SQL Cache.  

� The benefit data is normalized to benefit/page based on the 

number of pages that would be required to store the compiled 

statements in the SSCX.  This is different from the buffer 

pool computation since compiled statements vary in size 

while buffer pool pages for a given buffer pool are of a 

constant size.  

2 
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The resulting benefit metric measured in seconds/page is directly 

comparable to the benefit metric calculated for the buffer pool, 

even though the former represents savings due to reduced I/O 

processing and the latter represents savings in CPU processing.  

 

3.2 Memory controller 
For each memory consumer, in most cases, the saved system time 

decreases when the amount of memory allocated to the consumer 

increases.  Additionally, at some point, when the memory 

consumer has a sufficient amount of memory, the addition of 

more memory produces no more saved system time.   

For example, adding more memory for the buffer pools will see 

diminishing returns when the whole database, or the set of active 

pages, fits in memory or when the data accesses, beyond the set 

that is kept in memory, are random.  Alternatively, for sort, the 

diminishing returns occur when there is enough memory to 

perform all sorts in memory.   

This nonlinear relationship can be modeled as an exponential 

function ( )iiub

ii eax
−−= 1 , where xi is the saved system time for 

memory consumer i and ui is the memory size for memory 

consumer i. The constants ai and bi are model-specific 

parameters.  We define the tuning objective as maximizing the 

total saved system time over all memory consumers, given the 

constraint that the total memory size is fixed.  

For a total of N memory consumers, the tuning objective is: 

∑
=

=
N

i

ixf
1

max
  subject to    

∑
=

=
N

i

i Uu
1

 

where U is the size of total available memory. According to 

constrained optimization theory (i.e., Karush-Kuhn-Tucker 

conditions), the maximum total saved system time can be 

achieved when the partial derivative for each memory size is 

equal, that is,  

ji u

f

u

f

∂
∂

=
∂
∂  

where i,j = 1..N.  This results in our memory tuning objective, 

namely, to equalize the cost-benefit metrics for all memory 

consumers. 

 

3.2.1 Varying the memory transfer limits 
To achieve the memory tuning objective without excessive 

oscillations, the memory tuner varies the amount of memory by 

which each consumer can increase or decrease in a given interval.  

To compute these amounts, the memory tuner uses the following 

two algorithms: 

MIMO controller – The multi-input multi-output (MIMO)  

controller uses a model-based control theory approach to 

determine the direction and step size of memory tuning. A MIMO 

model is first constructed (and continually revised  to capture 

system and workload changes) to model the relationship between 

the memory size and the benefit value. After the model quality is 

verified, the MIMO control algorithm uses this model 

information, and the integral control law, to determine the proper 

tuning actions required to equalize the benefits for all memory 

consumers. 

Oscillation Dampening controller – When a MIMO model is not 

available (i.e., before the first model can be constructed), a fixed 

step algorithm is used.   In the fixed step algorithm, all memory 

resizes are sized using a fixed percentage of the consumer’s size, 

regardless of the benefit value.  Since this can lead to significant 

size oscillation, an oscillation avoidance algorithm is introduced 

to reduce the memory tuning size once oscillating patterns are 

observed.  The fixed step tuning combined with the oscillation 

reduction is referred to as the Oscillation Dampening controller 

(or OD controller). 

Figure 3 shows the STMM controller and the interaction between 

the MIMO and OD controllers.   

 

 
Figure 3. STMM Controller 

The OD controller is used in only two scenarios: a) when a 

database is starting up and lacks a tuning history, and b) in the 

presence of large system noise. Because of space constraints, we 

have chosen to describe only the MIMO controller in detail since 

it is the algorithm that is most often used. The complete MIMO 

control technique used in STMM is described in detail in 

previously published work [8][9][10], and is only summarized 

here. 

 

3.2.2 The MIMO control algorithm 
The MIMO controller applies a model-based approach that 

provides fast convergence and good overall system stability. 

Central to the MIMO controller is the integral control law, which 

can be rigorously analyzed using control theory and is widely 

used in engineering disciplines in order to maintain system 

stability and control performance. The MIMO controller has three 

steps:  

1. Building the model 

2. Checking the model’s accuracy 

3. Applying the integral control law (the gain control model). 

 

3.2.2.1 Building the MIMO model  
Building the MIMO model involves calculating the slope of the 

memory benefit curve generated from each of the consumers. The 

benefit_slope is a measure of the rate at which the cost-benefit for 

a given heap changes as the heap size changes. The algorithm 

computes the benefit_slope by fitting a line to the historic data: the 

data pairs of memory consumer size and benefit value.  This curve 

fitting is done using the batch least squares model, a statistical 

regression technique. Specifically, we assume a local linear 

relationship between the i-th memory consumer size (sizei) and its 

benefit (benefiti) at time interval k, that is: 

)()()(_)( koffsetksizekslopebenefitkbenefit iiii +×=  

Note that benefit_slope is negative because the larger the memory 

consumer size, the smaller the benefit of saved system 

seconds/page. Also note that benefit_slope may vary over time 
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with workload fluctuations. As a result, the model must be rebuilt 

frequently to maintain accuracy over potentially changing 

workloads.  The model is rebuilt every interval using a sliding 

window of data collected in the last n intervals, where n = 40.  

Since, as described in 3.2.2.3, the system is designed to converge 

in 18 intervals, a 40 interval history provides enough data for 

accurate model calculation even if workload fluctuation causes the 

convergence time to double.  

Before we compute the benefit_slope value, we first compute the 

sample mean of the memory pool size mean_sizei (k), then the 

sample mean of the benefit mean_benefiti (k). Once these values 

are determined, the benefit_slope can be computed using the least 

squares regression equation: 

( )( )

( )∑

∑

+−=

+−=

−

−−

=
k

nkj

ii

k

nkj

iiii

i

ksizemeanjsize

kbenefitmeanjbenefitksizemeanjsize

kslopebenefit

1

2

1

)(_)(

)(_)()(_)(

)(_

 

which generates a best fit to the data in the moving window.  

 

3.2.2.2 Checking the model’s accuracy  
After the benefit_slope value is calculated, it must be verified to 

ensure accuracy before it can be used to generate the integral 

controller.  This accuracy test is done by examining all the slope 

values for each of the consumers and then performing two tests.  

First, the model can only be valid if it passes the null hypothesis 

test.  The null hypothesis test determines if the obtained model 

reflects the relationship between the memory consumer size and 

its benefit. Specifically, the F-test statistic is computed and the 

larger the statistic, the more confidence we have that a model can 

be derived from the data [3].  If the null hypothesis test is not 

satisfied (i.e., the model is null), the newly built model will not be 

used and the controller will continue to operate in its previous 

mode (using the OD controller or a MIMO controller with 

previously obtained model).  If the null hypothesis test is satisfied 

(i.e., the model is not null), the second test is performed.  

The second test involves testing the sign of the calculated slope.  

A negative slope value is considered acceptable because, as 

previously stated, when memory for a given consumer increases, 

the benefit should decrease.  If the slope is negative, the model is 

acceptable and will be used in the next stage to build the integral 

controller.  If however, the slope is positive, we consider the 

model to be unacceptable (although the data may be accurate), and 

we use a previously constructed MIMO model, or the OD 

controller, if a MIMO model has yet to be constructed.  A model 

with a zero slope is also deemed acceptable. This can occur when 

the memory consumer benefit data suggests that adding additional 

memory will not provide any saved time.  In these cases, we 

assign a very small negative slope instead of using the zero slope.  

This small negative slope will cause memory to be taken from the 

consumer provided that the cost to do so is relatively small.  

Memory is taken from consumers with no benefit based on the 

assumption that total system memory is insufficient and as a 

result, at the optimal memory configuration, all consumers will 

continue to show some benefit for additional memory.   

 

3.2.2.3 Applying the integral control law  
The final, and most important, stage in the MIMO algorithm is to 

apply the integral control law.  The term integral control refers to 

the fact that the controller output is proportional to the integral of 

all past errors; this leads to accurate control performance without 

steady-state error [13]. The integral control law determines how 

aggressively STMM should be in resizing a given memory 

consumer.  Typically, in control theory, an  integral control law is 

used to regulate the measured output to a desired reference value. 

However, for the memory tuning problem, this reference value 

does not exist because we do not know in advance what each 

consumer’s benefit value should be when the system is in the 

optimal state. Instead, we compute the average benefit of N 

memory consumers, and construct the measured output as the 

difference between the individual consumer’s benefit and average 

benefit.  

To size the memory consumers the integral control law uses the 

following two equations for the i-th consumer, which are based in 

classical control theory modeling: 
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The first equation computes the control gain that will be used in 

the second equation. The second equation defines the integral 

control law for our controller.  The value p is a constant (between 

0 and 1) chosen at design time and specifies the desired 

convergence time in intervals.  In classical control theory, p is 

called the pole.  When the pole increases the system will take 

longer to converge but will be less susceptible to noise and spikes 

and therefore more stable. For a linear system, the convergence 

time can be computed from the value of pole using this equation: 

-4/ln(p) 

This term comes from linear control theory based on the transient 

system response model. For example, if p=0.8, then the 

convergence time is -4/ln(0.8) = 17.9 intervals. The value chosen 

for p in our case is 0.8, which specifies that the system will reach 

convergence after 18 tuning intervals. The gain is then plugged 

into the second equation, the integral control law, to compute the 

new size of memory consumer i.  The second equation takes the 

benefit of added memory for consumer i and compares that with 

the average benefit over all of the memory consumers.  The result 

of the second equation is the target size for the given consumer 

from which we can easily generate the amount of memory to 

transfer in the current interval.  

3.3 Memory transfer 
Once the MIMO controller algorithm and the OD controller are 

used to determine the magnitude of the potential memory resize, 

the memory must be reallocated based on each consumer’s 

relative benefit.  This is done through the use of a greedy 

algorithm.   

The greedy algorithm ensures that total memory is unchanged by 

resizing consumers in pairs (i.e., decreasing memory from one 

consumer and increasing memory for another consumer by the 

same amount). Furthermore, the greedy algorithm uses the 

computed benefit values to take memory greedily from the 

memory consumer that is least in need of memory (and has the 

lowest cost in giving up memory) and give it to the one that is 

most in need of memory.   

The complete STMM memory transfer algorithm is as follows: 
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1. First, the memory consumers are separated into two groups: 

those larger than the average benefit, and those equal to or 

smaller than the average benefit.  The memory consumers are 

then sorted as follows: 

• Based on their expected benefit, if their benefit is larger 

than the average benefit (group B, for benefit)  

• Based on their expected cost, if their benefit is smaller 

than the average benefit (group C, for cost). 

2. Then, using the memory transfer limits computed using the 

MIMO or OD tuning algorithm, pages are taken from the 

memory consumer in group C with lowest expected cost and 

given to the memory consumer from Group B with largest 

benefit, provided that the benefit of the recipient is greater 

than the cost of the donor. (The consumers are not actually 

resized at this stage but instead the resize amount is recorded 

for use later.) 

3. When the memory transfer limit is reached such that the 

memory consumer from group B with highest expected 

benefit can grow no larger, pages are then added to the 

memory consumer with the next highest expected benefit.  

Conversely, when the memory consumer from group C with 

the lowest expected cost can shrink no more, pages are taken 

from the memory consumer with the next lowest cost. 

4. Memory trading continues until no more memory can be 

transferred. This occurs when there is no consumer left in 

group C with pages to give or, there is no consumer left in 

group B that can receive pages. 

5. At this point, the new size is known for each of the memory 

consumers and the actual resizes can occur.  The resizes are 

ordered such that all decreases are performed first, followed 

by the increases.  This prevents memory over-allocation 

while the memory is being transferred. 

6. Once the memory has been transferred, the benefit collection 

counters are reset and the memory controller sleeps for some 

time before beginning again at step 1. 

 

3.3.1 Memory transfer limits 
Since the goal of the memory tuner is to converge to an optimal 

allocation after several intervals (and not in a single interval), 

there are limits placed on the amount of memory transferable in 

any tuning interval.  As described above, the control algorithms, 

both MIMO and OD, are used to determine the number of pages 

transferable to or from a consumer in a given interval.  These 

algorithms, however, are further limited to preserve system 

stability in the presence of rapidly fluctuating workloads.   

When increasing the size of consumer i, the maximum increase 

amount maxInci is 0.5*sizei.  The maximum decrease size 

maxDeci will be limited to 0.2* sizei. These asymmetrical limits 

reflect the fact that decreasing a consumer’s size is always more 

risky than increasing its size.  In addition to these restrictions 

placed on the maximum amount of memory that can be 

transferred in a given interval, the resizes are restricted to be at 

least 0.5% of each consumer’s current size. This restriction helps 

to prevent the tuner from undertaking insignificant resizes that 

will likely have little effect on overall performance.  

In addition to the above restrictions, each consumer can optionally 

provide a minSize value, which, when reached, will prevent 

further decreases.   

 

3.3.2 Minimum required memory -“minSize”  
In many cases, if a memory consumer is not given enough 

memory, the implications can be severe.  Insufficient memory can 

result in failed transactions or utilities, essentially making the 

database appear off-line. In an attempt to mitigate out-of-memory 

conditions, each consumer can optionally specify the minimum 

amount of memory that the consumer requires.  These minimum 

size calculations are specific to each consumer and a description 

of the algorithms is omitted here because of space constraints.  

The memory tuner then uses these minimum sizes to ensure that 

each consumer has at least the minimum amount of memory 

necessary.  Satisfying the minimum size involves increasing the 

size of the consumer if it is already below its minimum size, or 

preventing a further decrease if the consumer is at its minimum 

size. 

 

3.3.3 Categorization of memory 
Within STMM, memory consumers (heaps) are divided into two 

major categories:  

 

• Performance-related memory consumers (PMCs) have 

the strong potential to affect system performance, but 

not usually query success or failure, by the amount of 

memory they are allocated.  

• Functional memory consumers (FMCs) require memory 

to store data or database operations will fail.  

Examples of PMCs include: buffer pools, sort, hash join, and  

compiled statement cache. Examples of FMCs include memory 

for internal control blocks, SQL/XQUERY compilation memory, 

statistics collection memory, and (by design choice) lock 

memory1. PMCs produce cost-benefit data, as described above, 

which indicates the time saved for each unit of memory 

transferred to the memory consumer.  Conversely, FMCs do not 

produce cost-benefit data. 

Since a lack of sufficient memory in FMCs results in failed 

database operations, producing meaningful cost-benefit data for 

these consumers is not feasible since there is no reasonable way to 

evaluate the cost of a failed transaction.  As a result, FMCs strictly 

communicate a minSize value to the memory controller.  This 

minSize value represents the minimum amount of memory 

required by the consumer to avoid all consumer-related failures.  

A PMC is permitted, but not required, to submit a minSize value 

to the consumer along with its cost-benefit data, as previously 

described in Section 3.3.2.   

3.4 Determining the tuning interval 
Determining how frequently to tune is a key consideration for a 

memory controller. An OLTP workload with thousands of short-

running transactions can reasonably be tuned every few seconds, 

while a complex query environment may require several minutes 

or hours before a representative window of activity has occurred 

                                                 
1 Lock memory poses an interesting design consideration. This consumer is in 

principle a PMC, since insufficient locking memory results in lock escalation, which 

can severely impact database performance. In the majority of cases, however, the 

performance impact of lock escalation is prohibitively high because of its negative 

effect on concurrency. As a result, if additional lock memory will help avoid lock 

escalations, the cost/benefit generated for the lock memory consumer is dominant 

when compared with the cost-benefit for other consumers like buffer pools and sort. 

For this reason, we chose to model lock memory as an FMC rather than a PMC.  
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in order to make informed tuning decisions. The range of 

reasonable tuning rates varies by orders of magnitude depending 

on the system workload. To our knowledge, no research team or 

vendor has yet published a technique for determining the tuning 

rate for memory allocation in an RDBMS. The few publications 

that discuss this topic used fixed time intervals.  

STMM determines the tuning interval by observing the signal to 

noise ratio in the benefit data from the memory consumers and 

finding a time interval over which the signal to noise  ratio is 

within 70%. The sample interval is determined by considering the 

confidence of the benefit data. Using P measured benefit samples 

benefit(i), i=1, 2, …, P, a sample mean, mean_benefit,  and a 

sample standard deviation std_benefit are computed.  The desired 

sample interval size is then calculated using the following 

equation: 

ervalsamplecurrent
rangeconfidencedesired

benefitstdT
int__*

__

_*
2








  

where desired_confidence_range is an accuracy measure on the 

desired maximum difference between the measured sample 

benefit and the statistically “real” mean benefit, and 

current_sample_interval is the sample interval that is currently 

used to collect benefit data. Intuitively, the desired sample interval 

would be large if the benefit data is noisy but the accuracy 

requirement is high. Note that the variable (benefit - 

mean_benefit)/std_benefit follows the student distribution, which 

is different from the normal distribution, because mean_benefit 

and std_benefit are estimated and may not be entirely accurate. 

The constant T is used to compensate for the estimated benefits 

and is selected from the student distribution table. Its value 

depends on two factors, the desired confidence level (for which 

we use 70% in this design) and the number of measured benefit 

samples (where T=1.156 if 5 measured benefit samples are used, 

and T=1.093 if 10 samples are used).  

3.5 Determining a value for total database 

memory 
By tuning the DATABASE_MEMORY configuration parameter, 

STMM tunes, in a conservative way, the amount of memory given 

to each DB2 V9.1 database. This optimization has the goal of 

giving memory to the database as long as it will see benefit from 

this memory.  Additionally, the memory is allocated with the 

consideration that the database must coexist on the server 

gracefully with other applications and middleware, and with other 

DB2 V9.1 databases. The free memory target, which specifies the 

amount of physical memory that the memory tuner attempts to 

leave free on the system at any one time, is determined based on 

server size.  On smaller servers, a higher percentage of free 

memory is left for other applications and middleware.  On larger 

servers, a smaller percentage (but larger amount) of memory is 

left free.  The amount of free memory is re-examined at each 

STMM tuning interval, and DATABASE_MEMORY is adjusted 

accordingly.  

The tuning of DATABASE_MEMORY also allows memory to be 

accurately tuned between multiple DB2 V9.1 databases on the 

same server.  When the benefit values are calculated for each of 

the memory components, a weighted average across all 

components for a given database is computed and this new value 

will be considered the benefit value for the whole database.  The 

weighted average for a given database is calculated using the 

following equation: 

 

or simply, the sum of all benefits, weighted based on the 

consumer’s size relative to the other consumers in the database.  

The weighted average benefit is used to avoid the case where one 

very small consumer skews the database’s average benefit value. 

Once the weighted average benefit (wBen) is calculated, the 

maximum of these benefit values (wBenmax) over all databases is 

stored in a shared memory segment, which each memory tuner is 

able to access.  A given database i can calculate its relative need 

for memory using wBenmax and wBeni, and then scale its memory 

usage accordingly using minfree and maxfree (respectively, the 

minimum and maximum amount of physical memory left free for 

other applications).  This is done through the following equation: 

(wBeni / wBenmax) * (maxfree –minfree) + minfree 

which ensures that the available memory will be allocated to the 

database most in need. 

3.6 Usability considerations 
Users may reasonably want to disable memory tuning on specific 

memory consumers (i.e., set the size of a given memory consumer 

to a constant value), and/or similarly set the total amount of 

memory available to the database. To support this ability, every 

memory consumer, as well as the total database memory 

allocation, can be set to AUTOMATIC, in which case STMM is 

enabled.  If the DBA wishes to disable STMM, they may 

alternatively set any or all of the memory consumers to a specific 

value, in which case STMM is disabled. For example, it is 

possible for a user to set total database memory, sort, and locking 

memory to AUTOMATIC, while setting buffer pool memory and 

the memory for compiled SQL objects to fixed values.   

To maximize usability, DB2 V9.1 sets all consumers to 

AUTOMATIC on newly created databases so that all memory is 

self tuned by default. Migrated databases, created with an earlier 

version of DB2, maintain their prior allocation levels on the 

assumption that they were properly set by the DBA. The DBA 

may change the state of heaps, to and from AUTOMATIC, online 

(i.e., without requiring a database deactivation/reactivation).  

4. EXPERIMENTAL RESULTS 
In this section, we discuss three experimental results that show 

different aspects of STMM tuning.  In the first experiment, we 

compare STMM to a benchmark configuration of an industry 

standard transaction processing workload.  Through this 

experiment, we show how well STMM can tune a system with a 

static workload.  In the second test, we test STMM on a system 

undergoing dramatic changes to its memory requirements.  These 

tests show how STMM is able to adapt to changing memory 

requirements in a single database. In the last experiment we show 

how STMM is able to tune the total amount of memory used by 

multiple databases sharing the same machine. This test shows how 

STMM is able to properly handle the memory requirements of 

multiple databases simultaneously. 
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4.1 Tuning From the Default Configuration 
In evaluating a database memory tuning feature, the most 

convincing result would be to show that the tuner is able to take 

an “out of the box” configuration and tune it to an “optimal” 

configuration in a reasonable amount of time.  The main problem 

with conducting such a test is that typically, there is no easy way 

to determine the optimal memory configuration for a given 

workload.  The difficulty in determining a suitable experiment to 

test the efficacy of an automated memory tuner has been noted in 

the previous work on memory tuning.   

For instance, Martin et al. test their goal-based buffer pool tuning 

algorithm by measuring how long the tuning system takes to 

satisfy the predetermined goals, but they state in their paper that 

setting reasonable response time goals was difficult [16].  Tian et 

al. take an alternative experimental approach by comparing the 

performance of two different memory tuning algorithms while 

making no claims on each configuration’s proximity to an 

optimally configured system [24].  Finally, in the only recent 

industrial paper on memory tuning, Dias et al. claim that the best 

method for evaluating their performance enhancing feature is to 

survey customers using the feature [11]. 

In the absence of any standard metric for evaluating an automated 

memory tuning feature, we propose one here.  In the database 

community, industry standard benchmark results produce the most 

highly tuned memory configurations.  For these results, database 

vendors often spend weeks manually tuning the memory 

configuration to produce database performance, which may place 

their result ahead of their competitors by only 2 or 3 percent.  

These configurations can truly be thought of as “optimal” in the 

majority of cases.  As a result, we consider a memory tuner to be 

exceptional if it can tune system performance to within a 

reasonable threshold of a benchmark system, and truly exceptional 

if it can surpass the benchmark system’s configuration2.   

To test STMM using this new metric, we conducted experiments 

on an industry standard transaction processing benchmark.  The 

test system was configured to use 14 buffer pools and we started 

each buffer pool at 1000 pages, which is the default size for newly 

created buffer pools in DB2 V9.1.  For these tests, sort, lock 

memory, and SQL query cache memory were not tuned since they 

are not relevant for this benchmark as its transactions are small 

(i.e., use very little locking memory), have no sorts, and require 

very little package cache memory to run.  When publishing a 

benchmark on this workload, it is always the buffer pool 

configuration that is most difficult to derive and it usually takes 

weeks of hand tuning to finalize.   

For these experiments, we ran the workload on an IBM p5-570 

system with 4x1.6 GHz processors and 128 GB of physical 

memory.  Housing the 1.95 TB database were 3 FAStT900 

storage systems each comprising 160x36 GB disks configured 

using RAID-5.  The database logs were stored on a FAStT600 

                                                 
2
 We use this definition in part because it is difficult to test one memory tuning 

system against another since most often the memory tuning system is tightly coupled 

to the accompanying DBMS and as a result, performance differences may not be the 

result of the memory tuning algorithm.  As a result, we argue that a memory tuning 

system should be compared to the best possible hand-tuned configuration on the 

related DBMS.  Of course, even this definition is troublesome because, with the 

advance of automated memory tuners, hand-tuned results will become less and less 

common.  However, presently, when automated memory tuners are in their infancy, 

this definition is relevant. 

storage system with 14x36 GB disks and were also configured 

using RAID-5. 
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Figure 4. Sizes of the six largest buffer pools during 

transaction processing workload 

Figure 4 shows the tuning effect on the sizes of the six largest 

buffer pools during execution of the workload. The figure shows 

three phases of tuning.  In the first phase, STMM takes the system 

from the default configuration to a configuration within 10% of 

the hand-tuned result.  In the second phase of tuning, the buffer 

pools are finely tuned to arrive at the desired final configuration.  

Finally, in the third phase, STMM makes only very minor 

adjustments to the system.   

The performance of the system, as shown in Figure 5, can be seen 

in the same three phases.  In the first phase, STMM takes the 

system from 47,029 transactions per minute to 139,110 

transactions per minute.  In the second phase, while STMM is 

fine-tuning the configuration, performance oscillates around 

140,000 transactions per minute.  Finally, in the third phase, 

performance stabilizes at 143,141 transactions per minute.  This 

shows the dramatic impact that STMM can have on a workload, 

improving performance in this case by over 300%, most of which 

is achieved in the first hour and a half of tuning.  
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Figure 5. System performance during STMM tuning 

To determine how close the final configuration was to the hand-

tuned result, we performed a second run using the final memory 

configuration and turning STMM off (also removing any small 

effect that tuning might have on the system).  In this second run, 

we found that the STMM-generated configuration resulted in an 

average transaction rate of 145,391 transactions per minute 

compared to the baseline configuration of 145,156 transactions 

per minute (a difference of 0.16%, which is within the inter-run 
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variability of the workload on the test machine).  The results of 

this second run illustrate how STMM is able to converge to the 

optimal configuration when started from an out of the box 

configuration.  The results also shows that even with STMM 

actively tuning a system, the performance can be within 1.4% of a 

hand-tuned result. 

4.2 Dramatic Workload Shift 
One common problem with memory tuning arises from the fact 

that memory demands are not uniform throughout a typical day 

(as described above).  For example, during regular business hours, 

a database server may be processing simple transactions.  Then, 

once the business day ends, the database will spend the next 8 

hours running complex decision-support queries to provide data to 

be used for the next business day.  This presents a challenge for an 

automated memory tuning system as the tuner must be able to 

quickly shift the memory to where it is most needed. 

To simulate such an environment, we conducted an experiment 

where the database began by running one type of query and then, 

once the memory configuration stabilized, the workload shifted to 

more complex queries.  The tests were run on an IBM p650 server 

with 8x1.4 GHz processors and 32 GB of physical memory, using 

a 15 GB database.   At first we ran 16 concurrent streams of TPC-

H query 13, a decision-support query with low requirements for 

sort memory.  Then, once the memory configuration stabilized, 

we changed the workload to 16 concurrent streams of TPC-H 

query 21, which is substantially more complex, contains multiple 

sub-queries and has much higher requirements for sort memory.  

This shift from query 13 to query 21 places considerable pressure 

on the sort memory and should force the memory to be 

dramatically reallocated.   
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Figure 6. Workload Shift - Memory Distribution 

In Figure 6, we can see the memory distribution shift over the 

course of the run.  Once the streams of query 13 stop and query 21 

starts running, we see a dramatic increase in the amount of sort 

memory allocated to the database.  By the time the system has 

converged, the database has reserved more than 8 GB of memory 

for sorting.  As is illustrated in Figure 7, this memory distribution 

shift has a dramatic effect on the workload performance. 

 

Figure 7. Workload shift query performance 

Figure 7 shows the workload performance during the run.  In the 

first stage of the run, we can see that the memory distribution is 

stable as the 16 streams of query 13 complete consistently in 

about 280 seconds.  Once the workload shifts, however, it is clear 

that the system’s memory is not properly configured for query 21.  

At this point, STMM begins redistributing the database memory 

and the resultant dramatic effect on performance can be observed 

as quickly as the second run of the queries, at which point 

performance has already improved by 74%.  After several more 

runs, the query response time stabilizes and a performance 

improvement of 254% can be observed when compared to the first 

execution of query 21.  This not only shows how critical sort 

memory can be to a database system, but also how effective 

STMM can be at supplying the sort memory when necessary. 

4.3 Tuning multiple databases 
One difficult issue database administrators face when tuning 

memory is determining the total amount of system memory to 

dedicate to a given database. The problem is compounded when 

the system administrator is dealing with multiple databases, each 

of which may run at different periods of time in a single 24 hour 

window.  If each database is configured with a static amount of 

memory, which is commonly the case, a good portion of the 

system memory will be unutilized during periods where one or 

more of the databases are not active. This is especially 

problematic in SMB environments, where administrative skill can 

be low, memory is less plentiful, and single systems are often 

required to run two or more databases concurrently. 

To test STMM in an environment where multiple databases are 

competing for a single system’s memory, we conducted an 

experiment with two identical databases running the same 

workload.  In building the databases, it was necessary to ensure 

that both databases had the same physical design, resided on the 

same number of disks and that the disks were of the same speed, 

since even the slightest difference in any of these variables could 

have skewed the memory requirements for the databases.  The 

tests were run on an IBM p650 server with 8x1.4 GHz processors 

and 32 GB of physical memory.   The two databases contained 15 

GB of data and were created using 168 disks each.  The workload 

being run by each of the databases consisted of 4 clients, each 

running the 22 queries used in the TPC-H benchmark. 
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Figure 8. Total database memory tuning 

Figure 8 shows the database memory usage for the two databases 

during the 20 hour run. The first database is activated with the 

default configuration and the workload is started.  In the first hour, 

STMM gives all of the system memory to this database as there 

are no other applications running on the system. After six hours of 

running, the second database is activated with the default 

configuration, and begins running the same workload. As 

expected, two hours later both databases are sharing the system 

memory equally.  A few hours after the memory is evenly 

distributed, the second database stops running the workload but 

remains activated. The dramatic difference in relative database 

activity that follows causes STMM to take memory from the 

second database and give it back to the first database.   

4.4 Summary of Experimental Results 
Collectively, these three experiments serve to illustrate the 

dramatic effect STMM can have on a database workload.   

The “Default Configuration” result shows how STMM can 

essentially eliminate the need for hand tuning when running a 

stable transaction processing workload.  This provides a 

significant benefit to users who may otherwise have to spend days 

or weeks tuning the database memory before optimal performance 

is possible.   

Conversely, the “Workload Shift” result shows how STMM can 

tune the system in ways that are often not possible when hand 

tuning is the only method available.  Since STMM constantly 

monitors the workload and redistributes memory as needed, the 

user is free from having to endlessly monitor system performance 

and diagnose memory-related issues.  This profound departure 

from past tuning techniques ensures improved performance 

regardless of the workload demands. 

Finally, the “Multiple Databases” result shows how STMM is able 

to fully utilize the available system resources at all times.  This 

allows for improved overall system performance, and can provide 

significant cost savings since less system memory is required to 

achieve similar performance results. 

5.  FUTURE WORK 
In the future, we plan to expand this work to address the following 

issues: 

Advanced memory tuning methods for MPPs in a shared-

nothing environment – In this paper, we only discuss the tuning 

algorithm for single partition systems; however, DB2 V9.1 

supports parallel processing through its Data Partitioning Facility 

(DPF).  While STMM allows for memory tuning across data 

partitions, this functionality could be enhanced. 

Feedback of memory impact to the query compiler – In the 

course of tuning, STMM gains significant insight into the impact 

that memory distribution has on the underlying workload.  If the 

query optimizer was privy to this data, it could use it to enhance 

plan selection.  Providing the query optimizer with memory 

tuning data and modifying plan selection algorithms to leverage 

the information is something we hope to pursue. 

6.  CONCLUSIONS 
STMM combines runtime benefit simulation with a control theory 

approach to adaptively optimize memory allocation within a 

relational database. This approach is well suited to real-world 

scenarios where workload memory requirements can change 

dramatically over time. Internal testing has demonstrated the 

effectiveness of STMM at tuning database memory in 

performance-sensitive environments, with complex workloads, 

and in the presence of fluctuating system resource availability. In 

the vast majority of cases, even for steady-state workloads, 

STMM competes with the best tuning of human administrators 

while providing fast convergence time, rapid adaptation, and 

stable response to noise. 
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