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ABSTRACT
We explore and compare the performance behavior of lock proto-
cols to be used in XML DBMSs (XDBMSs, for short) supporting
typical XML document processing interfaces. In this paper, we out-
line 11 protocols proposed in the literature, highlight essential im-
plementation concepts of our XDBMS and realize all of them in the
same DBMS environment using so-called meta-synchronization.
We design a framework for XML benchmarks including read and
update transactions, run extensive empirical experiments which fo-
cus on the locking performance, and compare the results using var-
ious performance metrics. As a consequence, we can propose a
group of protocols which won this practical contest under identical
conditions. 

1. MOTIVATION
A growing number of application developers believe XML
and XQuery should be treated as primary data structure and
access pattern [8], for example, to support XML document
preprocessing (XDP) in a collaborative way. If you run today
an experiment on existing DBMSs with collaborative XML
documents, you may experience a "performance catastro-
phe" meaning that most transactional operations are pro-
cessed in strict serial order. The challenge for database sys-
tem development is to provide adequate and fine-grained
management for these documents enabling efficient and con-
current read and write operations. Therefore, future XML
DBMSs will be judged according to their ability to achieve
high transaction parallelism.

Currently, stream-oriented, navigational and declarative lan-
guage models are used to process XML documents. Because
they are already available as standards like SAX, DOM,
XPath, and XQuery [18] and used as typical XDP interfaces,

XDBMSs should be able to run concurrent transactions sup-
porting all these interfaces simultaneously and, at the same
time, guarantee ACID properties [9] for all of them.

Although predicate locking of XQuery statements [19]—
and, in the near future, XUpdate-like statements—would be
powerful and elegant, its implementation rapidly leads to se-
vere drawbacks such as undecidability problems and the
need to acquire large lock granules for simplified predi-
cates—a lesson learned from the (much simpler) relational
world. Beyond, tree locks or key-range locks [9] are not suf-
ficient to support fine-grained locking for concurrently eval-
uating stream-, navigation- and path-based queries. Hence,
to provide for an acceptable solution, we necessarily have to
map XQuery operations to a navigational access model to
accomplish fine-granular concurrency control. Such an ap-
proach implicitly supports other XDP interfaces mentioned
because their operations correspond more or less directly to
a navigational access model. Our primary goal is to identify,
compare, and evaluate XML concurrency control protocols
being most suitable for the task outlined.

A survey of the (hardly) existing literature on locking meth-
ods tailored to fine-grained read and write operations on
XML documents disclosed some unfit concepts [5, 6]. The
use of timestamped snapshots for reading and copies of sub-
trees for updates is applied in SystemRX [2]. For high trans-
action throughput, this requires the maintenance of several
copies affecting clustered XML store and enforces blocking
of even larger parts to enable document re-clustering. The re-
maining approaches led us to essentially three groups of pro-
tocols whose performance will be explored and compared in
an extensive empirical study. The first group of protocols
(Section 2.1) was developed in the context of the Natix sys-
tem [13], the second one (Section 2.2) is a straightforward
extension of the well-known protocols for multi-granularity
locking (MGL) in classical (e.g., relational) DBMSs [9],
whereas we have designed the remaining protocols for our
native XDBMS called XTC (XML Transaction Coordina-
tor). These protocols called the taDOM* group (Section 2.3)
were steadily refined along with its progress and experience
gained from performance measurements [11].
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In this paper, Section 2 gives a coarse characterization of
these groups of protocols representing 11 individual con-
currency control methods. The aspects of our testbed sys-
tem XTC essential for an empirical study are outlined in
Section 3, before we describe our experimental setting in-
cluding the framework TaMix for XML benchmarks and
the context of the measurements. In Section 5, extensive
comparisons and interpretations of the performance results
reveal the strengths and weaknesses of the protocol groups
and allows to name a group of protocols superior to the
competitors. Finally, we wrap up with conclusions.

2. APPROACHES TO XML 
CONCURRENCY CONTROL

Due to space limitations, it is impossible to describe all 11
rather complex XML concurrency control protocols in de-
tail. Instead, we content ourselves with brief sketches of the
main ideas behind the protocols and refer the careful reader
to the original publications. All protocols are designed to
achieve isolation level repeatable read for concurrent op-
erations on XML trees.1 For this reason, they not only have
to lock the nodes either accessed by navigation or by direct
jumps, e.g., via getElementByID(), but they also have to
automatically protect their ancestor path by adequate
means (typically intention locks). Furthermore, they have
to isolate the edges traversed to guarantee identical naviga-
tion paths on repeated traversals. Navigational steps are is-
sued by DOM operations getFirstChild(), getLastChild(),
getPreviousSibling(), and getNextSibling(). To protect
each of these operations, a corresponding logical naviga-
tion edge (which may not correspond to a physical edge in
the tree representation) has to be introduced, for example,
by locking the adjacent nodes.

2.1 Node2PL and its Followers
Let us begin with the first group denoted *-2PL. The pri-
mary objective of Node2PL is synchronization of transac-
tions concurrently performing navigation and modification
operations on the document tree. Starting from the docu-
ment root, so-called structure locks are used in Node2PL to
appropriately lock the parent (typically an element node) of
the context node to which the navigation or update opera-
tion is applied—as illustrated in Figure 1, the assumed read
navigation to the context node leaves T (traverse) locks on
its path from the root. 

Furthermore, Node2PL strictly distinguishes structure-
based and content-based accesses using different lock
types. Hence, to change a node’s content (e.g., of a text
node), so-called content locks are used. In addition, a third
lock type is introduced to protect direct jumps to nodes. A
transaction directly jumping to a node addressed by an ID
attribute acquires for it a special read or write lock (IDR,
IDX). If the related subtree is to be deleted, IDX locks on
all elements owning ID attributes must guarantee that no
other transaction jumping into this subtree reads or updates
it. As we will see, this may imply a very expensive proce-
dure. Such a penalty is especially performance-critical, be-
cause direct jumps may be rather frequent, for example, if
query processing uses indexes.

Note, when the context node in the example of Figure 1 is
to be updated later, lock conversion (to the M (modify)
mode) on the parent node is mandatory. Such conversions
are a source of deadlocks in all protocols; this danger may
only be alleviated by tailored intention locks. For the de-
tails of lock conversion, we refer to [13].

Node2PL is unnecessarily restrictive because, by locking
the parent, it blocks the entire level of the context node, and
not only its direct neighborhood. As a refinement of
Node2PL’s structure locks, NO2PL locks in case of up-
dates only the nodes reachable from the context node there-
by reducing its blocking granularity. Further optimizations

1. Isolation level serializable is offered by the taDOM* group, but
is not used in our experiments to enable comparison with the
remaining protocols which don’t support this isolation level.
Declarative index-based access to XML documents would need
some kind of key range locking to prevent phantoms.

Figure 1.  Node2PL sample protocol and compatibilities for the different lock types

rootT

T parent

context node

structure locks
T M

T + -

M - -

locks for direct jumps
IDR IDX

IDR + -

IDX - -

content locks
S X

S + -

X - -

1070



are offered by a third variant OO2PL locking for navigation
operations only the traversed edges and for update opera-
tions only the affected navigation edges (again see [13]).

2.2 Multi-Granularity Locking for XML Trees
As we will show in Section 5, the *-2PL group has some se-
rious practical disadvantages; the most critical ones are
handling of direct jumps by special lock modes IDR/IDX,
missing modes for locking entire subtrees, and missing
support for some operations, e.g., direct jumps to indexed
element nodes not owning any ID attribute. For these rea-
sons, we tried to avoid these drawbacks by adapting the
well-known MGL protocols [9]—originally introduced for
tables—to XML trees. As compared to classical MGL, a
main difference is the double role of intention locks to in-
dicate read/write operations deeper in the tree and to lock
nodes (without locking the attached subtrees). Another dif-
ference are the much more complex conversion rules.
When applied to the context node, the locks on its entire an-
cestor path have to be converted, too. Furthermore, we
have combined the protocols with a lock depth parameter,
the importance of which we have experienced in our mea-
surements (see Section 5)2.

In this way, we have derived a group of MGL protocols
based on a general intention lock (IRX), on separate inten-
tion locks for read/write (IRIX), and finally an IRIX proto-
col enhanced by RIX and U modes [9] called URIX in Fig-
ure 2. Special edge locks as introduced in [12] complement
the node locks shown for the URIX protocol. As an exam-
ple, assume no further locks are present in the protocol of
Figure 2, then a lock conversion of the context node to X

can be performed by converting IR to IX on the ancestor
path and R to X on the context node. In contrast to the *-
2PL group, direct jumps must be protected by locking the
entire ancestor path in suitable mode. This is very efficient
when using SPLIDs (see Sect. 3.2) for node identification 

To optimize a protocol of the *-2PL group and to make it
comparable to all other protocols explored, we have added
the concept of intention locks borrowed from URIX with
which the ancestor path to nodes accessed by direct jumps
were protected. Furthermore, we have integrated a param-
eter for lock depth which, in turn, implied the introduction
of subtree locks. Because the resulting protocol focuses on
the parent of the context node, we called it Node2PLa; it
served as a representative for the *-2PL protocols in our ex-
periments and, therefore, provided a kind of direct perfor-
mance comparison (simulating the best-case *-2PL behav-
ior) with the MGL* and taDOM* groups. 

2.3 Protocols for DOM operations on XML Trees
The taDOM* group of protocols [11, 12] distinguishes
node and edge locks and is a consequent optimization w.r.t.
the DOM operations (covering level 2 and level 3) starting
from the URIX protocol. Intention locks (IR, IX) are com-
plemented by a read lock for individual nodes (NR)3.
Whenever a context node is locked, its entire ancestor path
is protected by appropriate locks. Definitely new lock
modes are the so-called level locks (LR, CX) which, placed
on the context node, lock all its children in the appropriate
mode. Especially these two lock modes together with suit-
able conversion rules help to increase operation parallelism
on trees and count for substantial improvement of transac-
tion throughput. Hence, they make the difference of the ta-
DOM* group as compared to *-2PL and MGL* groups.

2. Lock depth n determines that, while navigating through the
document, individual locks are acquired for existing nodes up
to level n. If necessary, all nodes below level n are locked by a
subtree lock at level n.

3. IR and NR modes show the same compatibilities in Figure 3a;
they will be differentiated when the taDOM protocol is refined.

rootIR

IR parent

context nodeR

lock compatibility matrix
IR IX R RIX U X

IR + + + + - -
IX + + - - - -
R + - + - - -

RIX + - - - - -
U + - + - - -
X - - - - - -

lock conversion matrix
IR IX R RIX U X

IR IR IX R RIX U X
IX IX IX RIX RIX X X
R R RIX R RIX R X

RIX RIX RIX RIX RIX X X
U U X U X U X
X X X X X X X

Figure 2.  URIX protocol: compatibilities and conversion rules
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An LR lock mode (level read) locks the context node to-
gether with its direct-child nodes for shared access. For ex-
ample, the method getChildNodes() only requires an LR
lock on the context node and not individual NR locks for all
child nodes. Similarly, an LR lock, requested for an at-
tributeRoot node (see Section 3.1), locks all its attributes
implicitly (to save lock requests for the getAttributes()
method). A CX lock mode (child exclusive) on context
node c indicates the existence of an X lock on some direct-
child node and prohibits inconsistent locking states by pre-
venting LR and SR lock modes. In contrast, it does not pro-
hibit other CX locks on c, because separate direct-child
nodes of c may be exclusively locked by concurrent trans-
actions. Furthermore, we can use subtree locks on a context
node which implicitly lock the entire subtree in read mode,
update mode, or exclusive mode (SR, SU, SX). 

Figure 3b represents a cutout of the taDOM tree depicted in
Figure 5 and illustrates the resulting lock protocol using
lock depth 4 for the following example: Transaction T1
(TAqueryBook, see Section 4.2) uses an index and jumps
to the book node in Figure 3b to read all descendents of the
book. in document order. It sets an NR lock on book and IR
locks on all ancestors up to the root. Then, it navigates to
the first child and, because lock depth 4 is reached, it places
an SR lock on title, reads the nodes of the subtree, and pro-
ceeds to the author node setting again an SR lock. In this
situation, T2 (TAlendandReturn, see Section 4.2) enters the
system, also uses index-based access to the same book
node, and locks it by NR and its ancestors by IR. After-
wards it forwards to the last child and locks the entire sub-
tree history by SR (lock depth 4). Assume it decides to lend
this book; then it has to attach an additional subtree lend’
with attributes person and return under the history element.
For this reason, a lock conversion to SX on history is need-
ed which is propagated to the root by converting NR on

book to CX and the remaining IR locks to IX, as shown as
T2conv in Figure 3b. 

Although this example is very simple, it reveals a certain
kind of complexity to be anticipated in XML lock proto-
cols. Our example also nicely demonstrates the effect of
lock depth. If we would have chosen lock depth 3, T1
would have set an SR lock on book. This lock, because in-
compatible with CX, would have prohibited the lock con-
version. Hence, fine-grained locking supported by the lock
depth parameter enhances concurrency.

The compatibility matrix shown in Figure 3a describes the
compatibility of locks acquired on the same node by sepa-
rate transactions. If a transaction T already holds a lock and
requests a lock in a more restrictive or incomparable mode
on the same node, we would have to keep two locks for T
on this node. In general, k locks per transaction and node
are conceivable. This proceeding would require longer lists
of granted locks per node and a more complex run-time in-
spection algorithm checking for lock compatibility. There-
fore, we replace all locks of a transaction per node with a
single lock in a mode giving sufficient isolation. The corre-
sponding rules are specified by the lock conversion matrix
in Figure 4, which determines the resulting lock for context
node c, if a transaction already holds a lock (matrix header
row) and requests a further lock (matrix header column) on
c. A lock l1 specified by an additional subscripted lock l2
(e. g., CXNR) means that l1 has to be acquired on c and l2
has to be acquired on each direct-child node of c. 

In particular, conversion of the level locks becomes much
more complex; its handling requires specialized locks to
preserve the elegance and optimality of the new concept.
An example for this conversion is as follows: Assume, a
user starts a transaction requesting all child nodes of c
which results in acquiring an LR lock on c. LR mode locks
c and all direct-child nodes in shared mode. After that, the

Figure 3.  Node locking for the taDOM tree (taDOM2 protocol)

- IR NR LR SR IX CX SU SX

IR + + + + + + + - -

NR + + + + + + + - -

LR + + + + + + - - -

SR + + + + + - - - -

IX + + + + - + + - -

CX + + + - - + + - -

SU + + + + + - - - -

SX + - - - - - - - -

a) Compatibility matrix b) Locking example
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T1: IR
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user wants to delete one of the previously determined child
nodes. Therefore, the transaction acquires an SX lock on
the corresponding child node and—applying the locking
protocol—this requires the acquisition of a CX lock on c
which already holds the LR lock. Using rule CXNR speci-
fied in Figure 4, the transaction has to convert the existing
LR lock on c to a CX lock and to acquire an NR lock on
each direct-child node of c (except the child node which is
already locked for deletion by an SX lock).

So far, we have sketched the taDOM2 protocol covering all
operations of the standard DOM2, whereas taDOM2+ op-
timizes certain situations which may occur during lock
conversions. Therefore, the four lock modes LRIX/SRIX
(level/subtree read intention exclusive) and LRCX/SRCX
(level/subtree read child exclusive) are provided in addi-
tion. Together with a lock compatibility matrix the related
conversion rules have to be derived. The DOM3 standard
introduces new operations, e.g., the renaming of nodes.
Hence, the taDOM3 protocol offers tailored and dedicated
lock modes for the enhanced DOM standard and taDOM3+
additionally supports conversion in an optimal way. Be-
cause all taDOM* protocols are absolutely complex—
taDOM3+ includes 20 lock modes and three modes for
edges together with the related compatibilities and conver-
sion rules—the reader will understand that we cannot “just
quickly” cover them or repeat them for comprehension. We
have described and compared the protocols of the taDOM*
group and proven their correctness in [11]. As for all other
protocols referenced, they are not visible to the program-
mer; in contrast, they are automatically applied by the lock
manager when protecting the actual DOM operation or the
corresponding operation issued when a higher level request
(e.g., XQuery or XPath) is mapped to the operations of the
access system.

3. SYSTEM ASPECTS OF XTC
High degrees of parallelism for read and write operations
are a prime objective of each concurrency control protocol.
As a prerequisite, fine-grained storage and management of

XML documents has to be achieved. We have learnt that
the location of node IDs together with the determination of
their ancestor node IDs are of outmost importance for any
locking protocol. These key tasks should be performed
without accessing the nodes in the document itself, because
references to external memory for locking purposes should
be avoided to the extent possible. For these reasons, the de-
sign of the storage model together with labeling and index-
ing schemes play a performance-critical role in our context.

3.1 taDom Storage Model
In XTC, we have implemented the regular DOM storage
model [18] for the disk representation of XML documents.
Efficient processing and concurrent operations on XML
trees, however, are greatly facilitated, if we use a slight ex-
tension as internal representation. Therefore, the lock man-
ager virtually expands the attribute and text nodes, as illus-
trated in Figure 5, to reduce some blocking situations. In
contrast to DOM trees, we do not directly attach attributes
to their element node, but introduce separate attribute roots
which connect the attribute nodes to the resp. elements.
String nodes are used to store the actual content of an at-
tribute or a text node. Via the DOM API, this separation en-
ables access of nodes independently of their value. Our rep-
resentational enhancement does not influence the user op-
erations and their semantics on the XML document, but is
solely exploited by the lock manager to achieve specific
optimizations. In summary, our storage mechanism offers
an extensible file structure as a container of single XML
documents such that updates (by IUD operations) can be
performed on any of its nodes. We showed that a very high
degree of storage occupancy (> 96%) for DOM trees is
achieved for a variety of different update workloads [12].

3.2 Labeling and Indexing Schemes
Fast access to and identification of all nodes of an XML
document is mandatory to enable effective indexing prima-
rily supporting declarative queries, e.g., by structural join
operations, and efficient processing of direct-access meth-
ods (e.g., getElementById()) as well as navigational meth-
ods (e.g., getNextSibling()). Furthermore, we have ob-
served very early in our XTC project that, for fine-grained
locking, it is indispensable to rely on an immutable labeling
scheme4 which provides, when accessing a node, the node
labels (identifiers) of all ancestors without accessing the
XML document.

Note, we cannot tolerate dynamic node labeling schemes
which modify labels on the fly, because the lock manager
uses these labels as node identifiers and, on the other hand,
an application may keep such a label for later direct access
to a tree node. Therefore, we have compared and empirical-

- IR NR LR SR IX CX SU SX

IR IR IR NR LR SR IX CX SU SX

NR NR NR NR LR SR IX CX SU SX

LR LR LR LR LR SR IXNR CXNR SU SX

SR SR SR SR SR SR IXSR CXSR SR SX

IX IX IX IX IXNR IXSR IX CX SX SX

CX CX CX CX CXNR CXSR CX CX SX SX

SU SU SU SU SU SU SX SX SU SX

SX SX SX SX SX SX SX SX SX SX

Figure 4.  Lock conversion matrix

4. Indeed, we have replaced our initial scheme based on sequen-
tially allocated labels.
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ly evaluated all known dynamic schemes; in [10] we rec-
ommend prefix-based schemes using Dewey Decimal
Classification. Refining the original ORDPATH proposal
[16] (used in MS SQL Server), a number of similar labeling
schemes were developed differing in some aspects such as
overflow technique for dynamically inserted nodes, at-
tribute node labeling, or encoding mechanism. Because all
of them are adequate and equivalent for our processing re-
quirements, we prefer to use the substitutional name stable
path labeling identifiers (SPLIDs) for them.

General properties are the following (see Figure 5): Each
node label contains the label of its parent node as a prefix.
A node label consists of a sequence of so-called divisions.
Odd division values indicate a level transition whereas
even division values provide an overflow mechanism.
Upon initial document storage, only odd division values
are assigned, e.g., d1=1.3.3 and d2=1.3.5 label two consec-
utive nodes at level 3. A later insertion of a node at level 3
before d2 receives the label d3=1.3.4.3, which allows for
correct level identification by counting simply the number
of odd values, order preservation, node label comparison
(e.g., d3<d2), and ancestor determination (e.g., 1.3 and 1)
without relabeling the nodes. Division value 1 at levels > 1
is used to label attribute nodes (where order does not mat-
ter). An effective way to handle later insertions protracting
the overflow mechanism is to provide for gaps in the label-
ing space, that is, to initially assign the division values
dist+1, 2*dist+1, etc. where the parameter dist governs the
gap size. The minimum value dist=2 should be applied to
almost static XML documents whereas larger dist values
avoid resorting too frequently to overflow values; however,
large dist values increase the storage space needed for the
SPLIDs encoding.

Here we can only summarize the benefits of the SPLID
concept; for details, see [10]. It provides holistic system
support. Existing SPLIDs are immutable, that is, they allow
the assignment of new IDs without the need to reorganize
the IDs of nodes present. In theory, SPLIDs are free of
maintenance under arbitrary insertions. Yet, implementa-
tion restrictions (e.g., key length < 128B in B-trees) may
enforce subtree relabeling, either by exclusive reorganiza-
tion or dynamically by a concurrent transaction (potentially
aborting the violating one before). All SPLID properties
are preserved and (equally important) relabeling only con-
cerns the subtree.

Comparison of two SPLIDs allows ordering of the related
nodes in document order. As opposed to competing
schemes, SPLIDs easily provide the IDs of all ancestors to
enable intention locking of all nodes in the path up to the
document root without any access to the document itself.
Declarative queries are supported by the efficient evalua-
tion—that is, computation without the need to access the
document on disk—of all axes frequently occurring in
XPath or XQuery path expressions. Even sequential docu-
ment processing and navigational operations to parent/
child/sibling nodes from the context node are facilitated in
combination with the storage structures outlined below.

Figure 6a illustrates the basic structures—consisting of
document index and document container as a set of chained
pages—sketching a sample XML document, which is
stored in document order; the key-value pairs within the
document index are referencing the first SPLID stored in
each container page. In additional to the storage structure
of the actual document, an element index is created consist-
ing of a name directory with all element names occurring
in the XML document (Figure 6b). For each specific ele-

bib
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Figure 5.  A sample taDOM tree of a library document labeled with SPLIDs
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ment name, in turn, a node-reference index may be main-
tained which addresses the corresponding elements using
their SPLIDs. In all cases, support of variable-length
SPLIDs in their roles as keys and pointers is mandatory;
additional functionality for prefix compression is very ef-
fective. Because of reference locality in the B*-trees while
processing XML documents, most of the referenced tree
pages (at least in upper tree layers) are expected to reside in
DB buffers—thus reducing disk accesses to a minimum. 

A further advantage using SPLIDs can be exploited for the
manipulation of an XML document. An inserted node at an
arbitrary position is always arranged in sequential order
with respect to already existing sibling nodes. In this way,
a single B*-tree is sufficient for storing the entire XML
document in left-most depth-first order, where an entry is
formed by the byte representation of the SPLID as the key
part and the byte representation of the actual node as the
value part. Efficient SPLID encoding based on Huffman
trees consumed in the average 5 to 10 bytes for tree depths
up to 38. This could be drastically improved by applying
prefix compression to them. The document order   in the
B*-tree greatly favored our approach: storing a SPLID only
consumed 2-3 bytes in the average [10]. Stored tree nodes
are additionally compressed by a vocabulary. Instead of
storing their names, surrogates (<= 2 bytes) are used to
identify them within a related tree data structure. 

3.3 Meta-Synchronization
For our task, a system is needed capable of running concur-
rency control experiments using different locking protocols
in the same physical environment. As a prerequisite, we
had developed during the last three years our XTC prima-
rily as a testbed for empirical concurrency control. The key
idea to really enable cross-protocol comparison was the ap-

propriate isolation of the XTC lock manager as a kind of
abstract data type. It accepts the locking requests from the
XTC node manager (and other components) in a more ab-
stract form as so-called meta-lock requests including 

• node locks (shared, update, exclusive)
• shared level locks
• tree locks (shared, update, exclusive)
• edge locks (shared, update, exclusive) for previous sib-

ling, next sibling, first child, and last child.
• as well as release locks at commit for isolation level re-

peatable read or at end of operation for isolation levels
uncommitted read and committed read.

When using this meta-synchronization, XTC has to map
the meta-lock requests to the actual locking algorithm
which is achieved by the lock manager’s interface. Hence,
exchanging the lock manager’s interface implementation
exchanges the system's complete XML locking mecha-
nism. In this way, we could run XTC in our experiments
with 11 different lock protocols. At the same time, all ex-
periments were performed on the taDOM storage model
which is optimized for fine-grained management of XML
documents by using a refined node structure and SPLIDs.

All mandatory concepts of a lock manager are introduced
in [9]. Our implementation including lock requests, lock
conversions, and lock waits is described in [11].

4. EXPERIMENTAL SETTING
So far, we have sketched the characteristics of all ap-
proaches known to us which focus on fine-grained XML
concurrency control. By looking at their features or lock
compatibilities alone, it is impossible to gain sufficient in-
sight into their relative performance. Simulation of such
complex protocols reflecting practical XML document
structures and workloads just evaluates the underlying pro-
cessing model—not necessarily close to a real environ-
ment—and can, therefore, not reveal unknown bottlenecks
or genuine “performance surprises”. Therefore, we need a
series of controlled empirical experiments to determine the
protocols’ relative strengths in typical applications. To
compare the results in the most accurate way, it is indis-
pensable to run all experiments in the same XDBMS set-
ting using the same database and the same workload. 

4.1 Existing XML Benchmarks
The suitable selection of benchmarks is critical to the qual-
ity of the results drawn from experiments, because bench-
marks should, in the first place, reflect mulation of such
complex protocols reflecting practical the most important
characteristics of the application domain. According to Jim
Gray [7], general properties of benchmarks include design
towards the application domain, relevance, portability,
scalability, and simplicity. In particular, design mirroring
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the application domain and relevance requiring the use of
typical operation mixes of it are the key properties of data-
base benchmarks. Because concurrency control is in the fo-
cus of our explorations, the scope of the benchmark must
be directed towards stretching the lock manager’s behavior
and must therefore include multi-user operations and con-
tain a varying degree of update operations to be useful.

Unfortunately, existing benchmarks do not match all these
requirements. XMacmulation of such complex protocols
reflecting practical h-1 [3], for example is designed for
scalable, multi-user Web applications, but targets the
XDBMS behavior, in general, without mulation of such
complex protocols reflecting practical scope of XMark
[17] is the XML query processor and concentrates on sin-
gle-user mode only. XOO7 [4] also targets on the query
processor as its scope and has no particular application ori-
entation. Hence, benchmarks for our specific needs are
missing—primarily, because so far XDBMS research was
strongly focused on retrieval only. Therefore, we had to de-
sign tailored benchmarks together with an automated mea-
surement environment. Thus, we could specifically realize
the following performance metrics for each experiment:

• number of committed and aborted transactions for a pre-
specified lock depth and isolation level

• average, maximal, and minimal duration of a transaction
of a given type

• number and type of deadlocks for a lock protocol.

4.2 Framework TaMix for XML Benchmarks
To support expressive transaction runs and to observe at the
same time the mentioned guidelines, we have designed and
implemented the framework TaMix fmulation of such
complex protocols reflecting practical urthermore, in coop-
eration with the XTCdeadlockDetector, it collects data in
case of deadlocks about the number of active transactions,
the locks held, the state of the wait-for-graph, etc. Thus, we
are able to analyze deadlock events precisely, e.g., whether
it was caused by lock conversion (frequent occurrence) or
by lock requests in separate subtrees (rather rare cases). 

Here we can give only a brief overview of the transaction
types emulating a library application, before we describe
the specific transaction mixes for our experiments:

• TAqueryBook selects a book element by random ID and
provides details of the book. It uses a direct jump via an
ID attribute into the tree (using an index) and traverses
the subtree by navigational read operations.

• TAchapter: same operational read profile followed by
an update of a text node.

• TAdelBook: same operational read profile, but on a ran-
dom topic element followed by a deletion of a book sub-
tree.

• TAlendAndReturn: direct location of a randomly cho-
sen book element followed by complex navigational
steps with updates, deletions, and insertions of ele-
ments.

• TArenameTopic locates a topic element by a random ID
and renames it.

As any concurrency protocol, all XML lock protocols try to
maximize throughput. The role of the reader transactions
(TAqueryBook) is to provide a continuous system load un-
der which the remaining IUD transactions have to compete
for data sources. They provoke together with the readers
wait relationships and deadlocks, which, in turn, determine
the transaction throughput. 

4.3 Composition of TaMix
Evaluation of concurrency control protocols is very com-
plex because of the huge parameter space (fan-out and
depth of XML trees, mix of transactional operations, spe-
cific application domains, degree of application concurren-
cy, optimization of protocols, etc.) and the timing condi-
tions (arrival and blocking times, transaction duration,
etc.). Therefore, it is not well amenable to analytical meth-
ods. On the other hand, there are no perfect benchmarks for
XDP processing on document trees either. However, by
running experiments in a real XDBMS environment we
gain accuracy of what is going on and we hope to derive
first indicative results.

All transactions are composed to so-called clusters and op-
erate on a bib document (see Figure 5) which itself can be
configured to the size desired; it is highly scalable and may
range from a few Kbytes to several hundred Mbytes. For all
subsequently reported results on lock performance compar-
isons, bib was composed in the following way:

• 1000 person elements and 100 author elements
• 2000 book elements equally distributed across 100 topic

elements (20 per topic)
• each book owns 5 to 10 chapter elements
• a history element owns with equal probability 9 or 10

lend elements.
Because of space restrictions we concentrate on two cluster
evaluations providing the most expressive results for the
performance comparisons of the lock protocols.
CLUSTER1 specifies a continuous workload for each of
the 3 TaMix clients as follows (hence, TaMix Coordinator
keeps 72 transactions active during a benchmark run):

• 9 transactions of type TAqueryBook and 5 of type TA-
chapter

• 2 transactions of type TArenameTopic and 8 of type
TAlendAnd Return

The TaMix-specific parameters for CLUSTER1 character-
izing the variation of the test runs were as follows: 
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• isolation levels: none, uncommitted, committed, repeat-
able

• lock depths where applicable: 0 to 7
• number of runs per isolation level and lock depth: 4
• run duration: 5 mins, waitAfterCommit: 2500 ms, wait-

AfterOperation: 100 ms
• random wait before executing the first operation of a

transaction: 0 to 5000 ms
In contrast to CLUSTER1, we planned a very specific ex-
periment with CLUSTER2 which reveals remarkable
weaknesses of locking performance in some protocols. It
only consists of a single execution of TAdelBook in single-
user mode, however, using isolation level repeatable.
Hence, the metrics of CLUSTER1 cannot be used in the ex-
periment, because transaction parallelism, etc. are not in-
dicative. Here, transaction duration is very expressive and
characterizes the amount of locking overhead necessary.

Our testbed environment consists of a server machine and
a number of workstations. The server is equipped with 4 In-
tel XEON processors (1.50 GHz each), 4 GB memory, and
an IDE disk with 280 GB. The TaMix clients run on sepa-
rate workstations (1.70 GHz Intel Celeron processor, 256
MB memory, and 100 Mbit ethernet connection to the serv-
er).

5. RESULTS AND INTERPRETATION
After the consolidated description of the TaMix framework
and the workloads on the bib document, we first discuss
(out of numerous measurements) our most important find-
ings running CLUSTER1, before we add a remark on the
results of CLUSTER2.

5.1 Influence of the Isolation Level
The stronger the isolation level5, the higher the consistency
guarantees of the XDBMS, but the less transaction

throughput has to be achieved, in general. To confirm this
expectation, our first experiment concentrates on the influ-
ence of the isolation level on the performance behavior. We
have chosen, as we will see later, the best overall protocol
taDOM3+ to characterize the influence of isolation level
and locking depth on transaction throughput. On the other
hand, the relative behavior of all other protocols supporting
lock depth is similar such that we can cover the principal
behavior by considering a single protocol. Figure 7 illus-
trates the behavior expected in its characteristic aspects.
Note, lock depth 0 corresponds to the use of document
locks, which explains the low performance. The higher the
lock depth parameter, the smaller are the subtrees locked.
Because the transaction types of CLUSTER1 mostly oper-
ate in diverse subtrees, from lock depth 2 the number of
conversion deadlocks strongly decreases. As a conse-
quence, throughput rapidly increases to a level where fur-
ther refinement does not enhance anymore parallelism. The
only surprise is the unexpected ordering of protocols for
isolation level committed and uncommitted at depth 0 and
1. Closer inspection explains this special behavior [15].

5.2 Results for Isolation Level repeatable
To include the *-2PL group of protocols (having no lock
depth parameter) into our evaluation, we compare them as
a separate group only using transaction throughput. Figure
8 visualizes the throughput gained for CLUSTER1 count-
ing all transactions and considering the individual transac-
tion types. Although also producing a higher number of
aborted transactions (deadlocks), the throughput of OO2PL
is higher than that of NO2PL and that again is higher than
that of Node2PL. Such a behavior can be anticipated, be-
cause Node2PL locks the entire level of the context node
for any IUD operation, whereas NO2PL and OO2PL only
lock its neighborhood. As compared to its group competi-
tors, OO2PL implies the acquisition of finer and, therefore,
a larger number of locks; the advantage of higher parallel-
ism, however, clearly outweighs this processing overhead
of the lock manager.

5. While none acquires no locks at all, all others need long write
locks; uncommitted means no read locks, committed and repeat-
able short and long read locks, respectively.
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As already explained, we have optimized the idea underly-
ing the *-2PL group protocols, added lock depth, and in this
way derived Node2PLa which turned out to be generally
superior to the remaining group members. Therefore, we
have chosen Node2PLa as a representative for the *-2PL
group used in further comparisons.

With these explanations we can illustrate all results of
CLUSTER1 obtained for isolation level repeatable in Fig-
ure 9. The first impression concerns the clear gaps separat-
ing the various protocol groups (*-2PL, MGL*, taDOM*),
which highlights the relative performance advantages. As
compared to the *-2PL group, we obtain in the average
~50% and ~100% throughput gain for the MGL* group and
taDOM* group, respectively, while less deadlocks are pro-
voked by them (particularly in cases of lower lock depths).
Furthermore, it nicely illuminates the average performance
gain accomplished by fine-grained locks tailored to the ef-
fects of the operations to be isolated. However, detailed ex-
planations of the locking behavior are impossible for these
aggregated CLUSTER1 results. Of course, there is the low
transaction throughput at locking depth 0 and 1, which is
caused by the high number of transaction aborts at these
levels which, in turn, are attributed to deadlocks. Higher
lock depths mean that the nodes at upper tree levels carry
intention locks, whereas locks are set on deeper tree levels
dramatically reducing the blocking and deadlock potential
(see Figure 9).

Closer inspections of the separate transaction types allow
us to refine the result interpretation. Figure 10 illustrates
the throughput separated by transaction type. Analyzing
read transactions of type TAqueryBook, it immediately be-
comes clear that they (without any aborts) almost exclu-
sively contribute to the CLUSTER1 throughput at level 0
and 1. Looking at the corresponding results of write trans-
actions of type TAChapter, TAlendAnd Return, and TAre-
nameTopic confirms this observation. These three writer
transaction types together produced all deadlocks at level 0
and 1, whereas the reader transaction type did not contrib-
ute to transaction aborts. The course of the deadlock graphs
of the writers (not shown here) again exhibits the same
characteristic behavior than that of Figure 9.

Fine-granular locking comes into play at depth levels > 1,
where the three update transactions begin to compete with
the readers of type TAqueryBook. The graphs nicely show
that Node2PLa begins to react a level deeper (depth level >
2) to enable true reader/writer competition. This is due to
the overly restrictive parent locking when processing the
context node. Furthermore, Node2PLa fails to succeed al-
most completely with type TArenameTopic, because it is
not prepared to the specific operation and has to use very
large lock granules.

Although the MGL* group can keep up very well with the
best protocols in some depth ranges, it has to experience
strong drawbacks in other situations. For example in pro-

Figure 8.  Running CLUSTER1 under the *-2PL group: transaction throughput (left) and deadlocks (right)
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cessing TArenameTopic, it cannot separate the name from
the content of a topic and can, therefore, not optimize lock-
ing in such situations. As a result, the MGL* group ends up
in the middle position when drawing the average perfor-
mance over all transaction types.

Finally, when considering the superior group, we can clear-
ly identify the additional gain caused by specialized han-
dling of lock conversions. However processing transaction
types TAchapter and TAlendAndReturn, read locks for
getChildNodes() together with a specialized operation for
subtree access (in our case, getFragment nodes() [15]) and
subsequent conversions needed for updates deeper in the
subtree caused blocking situations which degraded the per-
formance of taDOM2 and taDOM3 (as well as IRIX and
URIX) in levels > 4. Tailored locks and their conversions
prevented such a penalty.

5.3 Direct Jumps Unprotected by Intention 
Locks

Because CLUSTER2 only contains a single transaction of
type TAdelBook, we here use as a performance metric its
execution time under the various lock protocols. This ex-
periment primarily revealed that all protocols using inten-
tion locks effectively handle all situations where large sub-
trees have to be deleted. In contrast, it uncovered the pon-
derous behavior of the *-2PL group to cope with such
situations. Because they set aside the use of intentions to
protect the paths to the nodes directly accessed, these pro-
tocols—before removing a subtree—need to search the en-
tire subtree for elements owning ID attributes. Setting IDX

locks on these nodes in the subtrees guarantees that other
transactions do not reference anymore nodes in the subtree
to be deleted. The necessary location steps have to be per-
formed via the node manager and may include accesses to
disks. Therefore, the cost of such deletions may be very
high; it critically depends on the size of the related subtree.
In our experiment with CLUSTER2, e. g., the *-2PL group
roughly consumes for the deletion twice as much time than
all other protocols considered (see Figure 11). 

6. CONCLUSIONS
Specialization of concurrency control protocols matters.
We have obtained convincing results that tailoring the pro-
tocol behavior to the properties of XML documents and the
related navigational model delivers substantial operational
benefit. Note, a blindly applied relational protocol would
achieve the throughput at depth 0 in all our throughput
graphs.

We have experienced that adequate edge locks and node
locks—including intention, level, and subtree locks—and
their conversion rules are mandatory to accomplish high
transaction throughput. Lock depth itself is at least in the
upper document layers a performance-critical parameter.
We believe that the use of SPLIDs is of paramount impor-
tance for the lock protocol overhead and, in turn, for the en-
tire performance of concurrency control in XML trees. All
ancestor node IDs and most other IDs needed for locking
navigation steps can be derived from them (using indexes
and Dewey order) without traversing the document itself.
Queries specified by declarative languages are frequently
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processed via indexes which will require a large number of
direct jumps. On the other hand, SPLIDs allow structural
joins and set-theoretic operations such that they become
more useful than TIDs in relational DBMSs. 

In our XTC project, we use taDOM trees as an internal rep-
resentation model for XML documents. This proceeding
improves the behavior of our lock protocols by removing
some blocking situation when navigation touches attribute
or text nodes. Our taDOM* protocols, however, can be ap-
plied to DOM trees [18] as well. 

The more the locks are adjusted to the tree structure and its
operations, the more complex is the resulting protocol (up
to 20 lock modes in taDOM3+)—but the substantially
higher is the transaction throughput. Figure 9 confirms that
the performance gain of the best protocols (taDOM*) as
compared to the optimized *-2PL group may be in the or-
der of 100%. For some transaction types favored by special
properties of taDOM*, the performance gain may be
~200% (see Figure 10d). Because the relative performance
differences within the taDOM* group are rather minimal
while all of them have revealed their quality, we can claim
that each of them can be applied in an XDBMS guarantee-
ing satisfactory performance. The selection of an individu-
al protocol of the taDOM* group may be driven by the
trade-off of optimization overhead and extra benefit in spe-
cific applications.
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Figure 11.  Transaction execution times for all protocols on CLUSTER2
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