

The Making of TPC-DS

Raghunath Othayoth
Hewlett-Packard Company

20555 Tomball Parkway
Houston, TX-77070, USA

281-518-2748

raghunath.othayoth@hp.com

Meikel Poess
Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA-94107, USA
650-633-8012

meikel.poess@oracle.com

ABSTRACT
For the last decade, the research community and the industry have
used TPC-D and its successor TPC-H to evaluate performance of
decision support technology. Recognizing a paradigm shift in the
industry the Transaction Processing Performance Council has de-
veloped a new Decision Support benchmark, TPC-DS, expected to
be released this year. From an ease of benchmarking perspective it
is similar to past benchmarks. However, it adjusts for new tech-
nology and new approaches the industry has embarked on in recent
years. This paper describes the main characteristics of TPC-DS,
explains why some of the key decisions were made and which per-
formance aspects of decision support system it measures.

1. INTRODUCTION
The origins of Decision Support Systems (DSS) reach as far back
as the 1960s when model-oriented DSS systems were developed.
At that time, emphasis was on building Management Information
Systems as “integrated, man/ machine system for providing in-
formation to support the operations, management, and decision-
making functions in an organization” [2]. In 1981 Bonczek,
Holsapple, and Whinston created a theoretical framework for un-
derstanding the issue associated with designing knowledge-
oriented Decision Support Systems [1]. Advocated by Bill Im-
mon and Ralph Kimball, Relational Database systems have been
increasingly used to build DSS systems starting in 1990 [6] [7].

Recognizing the need for a standard benchmark to measure
the performance of DSS systems, the Transaction Processing Per-
formance Council (TPC) released its first data warehouse bench-
mark, TPC-D, in April 1994. For the technology available at that
time, TPC-D imposed many challenges both on hardware and on
DBMS systems. It implemented a data warehouse using a 3rd
Normal Form (3NF) schema consisting of 8 tables. Anticipating
the data explosion of data warehouses in the industry, TPC-D was
developed to scale from 1 gigabyte to 3 terabytes (TB) of raw data

pushing IO subsystems to their limit. Benchmarks used pre-
determined sizes, namely, scale factors. Each scale factor corre-
sponded to the raw data size of the data warehouse. 17 complex
and long running queries combined with 2 data maintenance func-
tions (insert and delete) confronted most query optimizers with
hefty problems. 6 of the 8 tables grew linearly with the scale fac-
tor and were populated with data that was uniformly distributed.
The development of aggregate/summary structures (e.g. join indi-
ces, summary tables, materialized views, etc.) that are automati-
cally maintained and transparently used by the query optimizer
via query rewrite was spurred by TPC-D because this technology
decreased query elapsed times resulting in an over proportional
increase in the main performance metric. As a result the TPC de-
cided that TPC-D was effectively broken and spun off two modi-
fied versions of TPC-D, namely TPC-H and TPC-R in April 1999.

Using the same schema, the same data generator with an ad-
ditional scale factor of 10 TB, the same data distributions and 6
more queries, TPC-H - an ad-hoc decision support benchmark,
and TPC-R - a business reporting decision support benchmark are
nearly identical to TPC-D. The difference between TPC-H and
TPC-R is the prior knowledge of the workload that they assume.
TPC-H represents an environment where database administrators
do not know which queries will be executed against a database
system; hence, knowledge about its queries and data may not be
used to optimize the DBMS system. In TPC-R, pre-knowledge of
the queries is assumed and may be used for defining aggre-
gate/summary structures. Since TPC-R never attracted any nota-
ble attention, it was decommissioned in January 2006.

It is without doubt that the family of decision support bench-
marks, the TPC has released over the last decade, satisfied the
need for data warehouse benchmarking. It spurred competition,
improved system performance and motivated manufacturers to
push technology to the limits. Numerous research papers using
the TPC-H data generator and its query set [9] and the large body
of published TPC-H results vouch for it. Last December the com-
bined number of results has surpassed 200. In contrast, one has to
admit that the requirements and implementations of today’s deci-
sion support systems differ quite significantly from the original
benchmark ideas that were developed for TPC-D and that were
carried over into TPC-H and TPC-R. In an effort to extend the
lifetime of TPC-H, the TPC increased its publishable data vol-
umes by two scale factors, 30,000 and 100,000, equivalent of
30TB and 100TB of raw data.

The differences between today’s decision support systems
and the TPC-H benchmark specification are manifold. The TPC-
H schema, although sufficiently complex to test the early systems,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special
permission from the publisher, ACM.
VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1049

it is not representative of today’s more complex DSS implementa-
tions. Today’s schemas are typically composed of a larger num-
ber of tables and columns. Furthermore, the industry’s choice of
schema implementation has shifted from pure 3NF schemas to
variations of the star schema, such as snowflake schemas. The
purity of TPC-H’s 3NF and the low number of tables and columns
does not fully reveal the differences in indexing techniques and
query optimizers. Since the main tables scale linearly with the da-
tabase size (scale factor), the cardinalities of some tables reach
unrealistic proportions at large scale factors. For instance, at scale
factor 100,000 the database models a retailer selling 20 billion
distinct parts to 15 billion customers at a transaction rate of 150
billion per year - the dream of every CEO, but quite unrealistic.
The database population, consisting of mostly un-skewed and syn-
thetic data imposes little challenges on statistic collection and op-
timal plan generation by the query optimizer. The TPC-H data
maintenance functions (rf1, rf2) merely constrain a potential ex-
cessive use of indexes rather than testing the DBMS’ capability of
performing realistic data maintenance operations, common during
Extraction Transformation and Load (ETL). Data maintenance
functions insert and delete orders randomly rather than ordered by
time. The inserted data is assumed to be clean so that no data
transformations are necessary. Data are loaded and deleted from
2 out of 8 tables. There are relatively few distinct queries in TPC-
H, and since they are known before benchmark execution, engi-
neers can tune optimizers and execution paths to artificially in-
crease performance of the system under test. Also, actual data
warehouses are not subject to the TPC-H benchmark constraints
and will define indexes on non-date and non-key columns as well
as contain summary tables.

Having realized these deficiencies, the TPC has developed its
next generation decision support benchmark, TPC-DS. This paper
serves two purposes. Firstly, it describes the main characteristics
of TPC-DS and explains rationale of the key decisions. Secondly,
it abstracts from the development of TPC-DS to a general ap-
proach on how decision support benchmarks can be developed ef-
ficiently. The first paper about TPC-DS, published in 2002 [8],
outlined the ideas for a new decision support benchmark. It was
followed by several publications about detailed areas of TPC-DS
such as the data and query generators [10] [11]. This paper pre-
sents the current state of the specification as it will be presented
for TPC member company review1.

TPC-DS takes the marvels of TPC-H and TPC-R and fuses
them into a modern DSS benchmark. The main focus areas:
• Multiple snowflake schemas with shared dimensions
• 24 tables with an average of 18 columns
• 99 distinct SQL 99 queries with random substitutions
• More representative skewed database content
• Sub-linear scaling of non-fact tables
• Ad-hoc, reporting, iterative and extraction queries
• ETL-like data maintenance

While TPC-DS may be applied to any industry that must
transform operational and external data into business intelligence,
the workload has been granted a realistic context. It models the
decision support tasks of a typical retail product supplier. The
goal of selecting a retail business model is to assist the reader in
relating intuitively to the components of the benchmark, without
tracking that industry segment so tightly as to minimize the rele-

1 TPC member company review is the final step before voting. During
this phase, the specification will be made available to all TPC Members
and the public for formal review.

vance of the benchmark. The schema, an aggregate of multiple
star schemas, contains essential business information, such as de-
tailed customer, order, and product data for the classic sales chan-
nels: store, catalog and Internet. Wherever possible, real world
data are used to populate each table with common data skews,
such as seasonal sales and frequent names. In order to realisti-
cally scale the benchmark from small to large datasets, fact tables
scale linearly while dimensions scale sub linearly. The bench-
mark abstracts the diversity of operations found in an information
analysis application, while retaining essential performance charac-
teristics. As it is necessary to execute a great number of queries
and data transformations to completely manage any business
analysis environment, TPC-DS defines 99 distinct SQL-99 (with
OILAP amendment) queries and 12 data maintenance operations
covering typical DSS like query types such as ad-hoc, reporting,
iterative (drill down/up) and extraction queries and periodic re-
fresh of the database.

Due to strict implementation rules it is possible to amalga-
mate ad-hoc and reporting queries into the same benchmark, i.e.,
it is possible to use sophisticated auxiliary data structures for re-
porting queries while prohibiting them for ad-hoc queries. Al-
though the emphasis is on information analysis, the benchmark
recognizes the need to periodically refresh the database (ETL).
The database is not a one-time snapshot of a business operations
database, nor is it a database where OLTP applications are run-
ning concurrently. The database must be able to support queries
and data maintenance operations against all tables. Some TPC
benchmarks (e.g., TPC-C and TPC-APP) model the operational
aspect of the business environment where transactions are exe-
cuted on a real time basis, other benchmarks (i.e. TPC-H) address
the simpler, more static model of decision support. The TPC-DS
benchmark, however, models the challenges of business intelli-
gence systems where operational data is used both to support
sound business decisions in near real time and to direct long-range
planning and exploration. The TPC-DS operations address com-
plex business problems using a variety of access patterns, query
phrasings, operators, and answer set constraints.

The following sections detail the cornerstones of TPC-DS.
The first two sections describe the database schema and the data
set that populates it. The following section is about the workload,
both query and data maintenance. While the Execution Rules and
Metric section describes how the queries and data maintenance
operations are run against the schema and how the execution
times form the final metric, which can be used to compare system
performances.

2. LOGICAL SCHEMA CREATION
DSS systems have evolved over time from model oriented, pro-
prietary implementations to systems based on commercial data-
base implementations. TPC-D and its successors, TPC-H and
TPC-R assumed a 3rd Normal Form (3NF) schema. However,
over the years the industry has expanded towards star schema ap-
proaches. Accommodating this development TPC-DS imple-
ments a hybrid schema between a 3NF and a pure star schema,
namely multiple snowflake schemas.

2.1. Snowstorm Schema
A star schema includes a large fact table and several small dimen-
sion (lookup) tables. The fact table stores frequently added trans-
action data such as sales, returns and inventory changes. Each
dimension table stores less frequently changed or added data sup-
plying additional information for fact table transactions, such as
customers who made purchases. An extension to the pure star
schema, the snowflake schema separates static data in the outlying
dimension tables from the more dynamic data in the inner dimen-

1050

sion tables and the fact tables. That is, in addition to their relation
to the fact table, dimensions can have relations to other dimen-
sions.

Conversely, 3NF modeling, being the classical relational-
database modeling technique, minimizes data redundancy through
normalization. When compared to a star schema, a 3NF schema
typically has a larger number of tables due to its normalization
process.

A smart schema design lays the foundation for a good query
set. If the schema does not allow for the designing of queries that
test the performance of all aspects of a DSS, the benchmark has
failed one of its main goals. Choosing a multiple-snowflake
schema allows the TPC-DS to exercise all aspects of commercial
DSS, built with today’s DBMS.

The multiple snowflake-schema approach challenges query
execution of both star schema and 3NF execution paths. Typical
executions in a star schema involve bitmap accesses, bitmap
merges, bitmap joins and conventional index driven join opera-
tions. The access paths in a 3NF DSS system are dominated by
large hash-joins, and conventional index driven joins are also
common. In both systems large aggregations and sort operations
(group by) are widespread. As will be shown in Section Error!
Reference source not found. the query workload uses the charac-
teristics of the snowflake schema to test both star schema and the
3NF executions. This diversity imposes challenges both on hard-
ware and software systems. High sequential I/O-throughput is
very critical to excel in large hash-join operations. At the same
time, index driven queries stress the I/O subsystems ability to per-
form small random I/Os. Additionally, this diversity also chal-
lenges the query optimizer in its decision to either use a star
schema approach, such as star transformation, or a more tradi-
tional approach, such as nested loops, hash-joins etc. This seems
to be an area in which today’s query optimizers have huge defi-
cits.

The size of the schema and its three sales channels allow for
amalgamating both ad-hoc and reporting queries into the same
benchmark. An ad-hoc querying workload simulates an environ-
ment in which users connected to the database system send indi-
vidual queries that are not known in advance. The system's data-
base administrator (DBA) cannot optimize the database system
specifically for this set of queries. Consequently, execution time
for those queries can be very long. In contrast, queries in a report-
ing workload are very well known in advance. As a result, the
DBA can optimize the database system specifically for these que-
ries to execute them very rapidly by using clever data placement
methods (e.g. partitioning and clustering) and auxiliary data struc-
tures (e.g. materialized views and indexes). Amalgamating both
types of queries has been traditionally difficult in benchmark en-
vironments since per the definition of a benchmark all queries,
apart from bind variables, are known in advance. TPC-DS ac-
complishes this fusion by dividing the schema into reporting and
ad-hoc parts. For the reporting part of the schema complex auxil-
iary data structures are allowed, while for the ad-hoc part only ba-
sic auxiliary data structures are allowed. The idea behind this ap-
proach is that the queries accessing the ad-hoc part constitute the
ad-hoc query set while the queries accessing the reporting part are
considered the reporting queries.

Systems (database, OS and hardware) which can perform the
entire spectrum of today’s DSS algorithms, such as bitmap look-
ups, bitmap merges, complex query rewrites, index driven joins,
hash driven joins and large sort operations, will excel in TPC-DS.
2.2. Snowstorm Schema
As mentioned earlier, TPC-DS models the decision support func-
tions of a retail product supplier. The supporting schema contains

vital business information such as customer, order, and product
data. The imaginary retail company sells goods through the three
distribution channels, store, catalog and Internet (web). An inven-
tory fact table is shared between the catalog and the Web channel.
For simplicity and space reasons, Figure 1 shows only an excerpt
of the entire schema. It focuses on the store sales channel. For
the entire schema, please refer to the public release of a prelimi-
nary draft [3].

Figure 1: Store Sales Snow Flake Schema

The store sales channel consists of two fact tables, modeling
sales and return transactions. Each fact table is organized as a
snowflake schema with the traditional dimensions, such as
date_dim, time_dim2, store etc. Customer information is normal-
ized into Customer, Customer Address, Household Demograph-
ics, and Customer Demographics which is further normalized into
Income Band. The same constellation exists for store returns.
Most dimensions are shared between the two fact tables, while the
reason dimension is added only to the Store Return fact table.

This allows for writing challenging queries. For instance,
Customer Address is both referenced from the Store Sales fact ta-
ble and the Customer dimension. Having two relationships allows
expressing both the current address and the address at the time of
the sales transaction. This circular relationship makes it challeng-
ing to identify the optimal star transformation, especially, if a
query references and defines predicates on a Customer Address
table joined to Customer and on a second Customer Address table
joined to Store Sales tables.

The two fact tables, Store Sales and Store Returns are related
through the foreign key combination Ticket Number and Item_sk.
Through this relationship large fact-to-fact table joins are possi-
ble. In the traditional single table star schema this would have
been possible only through a self- join. Other large fact-to-fact
table joins are possible by joining two fact tables from different
sales channels such as store and web sales. Although there is no
primary/foreign key defined between different sales channels,
joins can be performed on mutual dimensions such as Item and
Customer.

Two of the three sales channels, Store and Web constitute the
ad-hoc part, while the Catalog channel constitutes the reporting

2 _dim was added to the date and time dimensions to avoid con-

flicts with vendor specific reserved table names.

1051

part of the schema. Hence, queries referencing3 the Catalog
channel are ad-hoc queries while all other queries are reporting
queries.

Another distinctive characteristic of the TPC-DS schema is
the number of columns in each table. The average number of col-
umns is 18, allowing for a rich query set with predicates on many
columns. Table 1 presents some statistics about the schema, e.g.
number of tables and columns.

Number of fact tables 7
Number of dimension tables 17

min 3
max 34 Number of columns
avg 18

Number of foreign keys 104
min 16
max 317 Row length [bytes]4
avg 136

Table 1: Schema Statistics

3. DATA SET
The design of the data set is not only driven by the needs to chal-
lenge the statistic gathering algorithms and the query optimizer,
but also by the need to challenge data placement algorithms, such
as clustering, vertical or horizontal partitioning. A good data set
design includes proper data set scaling, both domain and tuple
scaling. In TPC-DS we use a hybrid approach of domain and data
scaling (see Section 3.1). The data domain is also of very high
importance. While pure synthetic data generators have great ad-
vantages, TPC-DS follows a hybrid approach of both synthetic
and real world based data domains. Synthetic data sets are well
understood, easy to define and implement. However, following
the TPC’s paradigm to create benchmarks that businesses can re-
late to, a hybrid approach to data set design scores many advan-
tages over both pure synthetic and pure real world data (see Sec-
tion 3.2). Additionally, as will be explained in Section Error!
Reference source not found., it is pertinent for a good workload
design to cover the entire data set. This imposes great challenges
on both the workload generator and the data generator, which re-
sulted in a closely coupling of the two tools.

Similarly to previous decision support benchmarks the data
set for TPC-DS scales in terms of discrete scale factors. These are
100, 300, 1000, 3000, 10000, 3000 and 100000. Benchmark pub-
lications using other scale factors are not valid. Each scale factor
corresponds to the data size in Gigabyte of the data that needs to
be loaded. It is also called the raw-data size. Depending on the
techniques used in the data management software, e.g. compres-
sion, the size of the internal representation of the raw-data can be
different than the raw-data itself.

The following sections introduce and rationalize the deci-
sions of TPC-DS’ approach to data scaling. It further discusses its
impact to decision support system benchmarking. For a detailed
description of the data generator, please refer to [10].

3.1. Data Set Scaling
Scaling within a data set can take on two different characteristics.
In one case, the number of tuples in the dataset is expanded, but
the underlying value sets (the domains) remain static. The busi-
ness analogy here would be a system where the number of items

3 Referencing is well defined in the TPC-DS specification [3].
4 Raw size of flat files as created by the data generator.

remains static, but the volume of transactions per year increases.
In the other case, the number of tuples remains fixed, but the do-
mains used to generate them are expanded. For example, there
could be a new type of store introduced in a retail data set, or it
could cover a longer historical period. Clearly there are valid rea-
sons for both types of scaling within a dataset, just as there are
valid reasons to stress a hardware system to highlight particular
features or concerns, and often a test will employ both approaches
to expanding the dataset.

In the case of TPC-DS, the choice was made to use a hybrid
approach. Most table columns employ dataset scaling instead of
domain scaling, especially fact table columns. Some columns in
small tables employ domain scaling. The domains have to be
scaled down to adjust for the lower table cardinality. For instance
the domain for county is approximately 1800. At scale factor 100
there exist only about 200 stores. Hence the county domain had
to be scaled down for stores.

Fact tables scale linearly with the scale factor while dimen-
sions scale sub-linearly. Consequently, the unrealistic scaling is-
sues that TPC-H is encountering are avoided. Even at larger scale
factors the TPC-DS number of customers, items, etc. remain real-
istic. The following table shows the scaling of some of the fact
tables and dimensions. At scale factor 100, the database contains
approximately 100GB of raw data. That is, 58 Million items5 are
sold per year by 2 Million customers in 200 stores. On average
each shopping card contains 10.5 items. For detailed scaling in-
formation of all tables refer to the public release of the prelimi-
nary draft [3].

Rowcounts
Table

100GB 1TB 10TB 100TB

store_ sales 288M 2.9B 30B 297B
store_ returns 14M 147M 1.5B 15B
store 200 500 750 1,500
customer 2M 8M 20M 100M
Items 200K 300K 400K 500K

Table 2: Table Cardinalities (K=103, M=106)

3.2. Synthetic vs. Real Data Set
Synthetic data sets that are built using well studied distributions
such as the Normal or the Poisson distributions have many advan-
tages. They certainly challenge the optimizer and data placement
algorithms. They are mathematically very well defined and easy
to implement in a data generator. One could even find parameters
for distributions that simulate quite closely real world distribu-
tions, such as sales by season. However, they have one inherent
problem. They do not work very well for decision support bench-
marks that need to dynamically substitute bind variables.

Bind variables are used to make a benchmark less predictable
and to cover the entire dataset as opposed to a subset that is de-
fined by query predicates. Refer to [10] for a detailed explanation
of the benefits of bind variables in a benchmark. Contrary to this
goal is the necessity that the workload be identical every time the
benchmark is run. Otherwise results are not comparable. For
SQL queries, this means that only those substitutions are permis-
sible that keep the following nearly identical:

5 Each row in the sales fact table represents the purchase of one

item.

1052

1. Number of qualifying rows in all tables,

2. Distribution of all primary and foreign keys involved in
joins,

3. Distribution of group by columns and

4. Distribution of order by columns.

The number of qualifying rows must be nearly identical since
it influences the number of rows that need to be fetched. This is
especially important if data is clustered or partitioned using selec-
tivity predicates. The distribution of primary and foreign keys in-
fluences the performance of join algorithms. For instance, the
number of unique keys used for building the hash table determines
the amount of storage (main memory and disk) and potentially the
number of passes over the data. Similarly, the distribution of
group by and order by columns influences performance of sort al-
gorithms. Unfortunately, some of the above goals are conflicting,
if a column participates in more than one role. For instance when
a column participates as a selectivity predicate and as a group by
predicate not both goals can be met. In addition to the above rules
the dataset must not have any correlations between columns. Cor-
relations introduce side effects which make queries incomparable.

Let’s assume the synthetic sales date distribution in Figure 3.
This distribution shows how sales are distributed over time
(weeks): Sales are very low in the first weeks and then ramp up
gradually to peak in Week 28 before they slow down gradually
towards the end of the year. Ignoring the fact that sales tend to
peak right before the holiday season, this distribution captures
quite closely today’s sales behavior.

2

2

2
)(

2
1 σ

µ

πσ

−
−

x

e with µ=200 and σ=50

Figure 3: Synthetic Sales Distribution

Now let’s consider the following SQL query:

SELECT s_date, sum(s_sales)
FROM sales
WHERE s_date between D1 and D2
GROUP BY s_date;

Figure 4: Simple query Q1 with date predicates

In this example the selectivity predicate and a group by
predicates are both on the same column. One can either determine
(D1, D2) pairs such that the number of qualifying rows are identi-
cal or the key distribution.

Following the above rules, TPC-DS for a majority of its data
employs traditional synthetic distributions, yielding uniformly dis-
tributed integers, or word selections with a Gaussian distribution.
For a number of crucial distributions, however, TPC-DS synthe-
sizes real world data to create so called comparability zones. Data
in comparability zones have a uniform distribution. Substitutions
for each of the selectivity, group by, and order by predicates in the
TPC-DS query set, are such that they always pick values from the
same comparability zone.

As an example distribution Figure 2 shows the store sales
distribution for each year as used in TPC-DS. It mimics the cen-
sus sales distribution [12] by defining three comparability zones;
1) January to July; 2) August to October; 3) November to Decem-
ber. The census distribution is indicated by the diamond graph
while the TPC-DS distribution is indicated by the square graph.
Domain values in the first zone occur with a low likelihood in the

data set (low zone), domain values in the second zone occur with
a medium likelihood, and domain values in the third zone occur
with a high likelihood in the dataset. The data generator guaran-
tees that all domain values in one domain have the same likeli-
hood. The query generator is aware of this distribution. For each
query involving predicates on sales date a decision was made
whether a query targets Zone 1, Zone 2 or Zone 3. Based on these
decisions the query generator generates queries such that each
substitution guarantees query comparability.

10,000

15,000

20,000

25,000

30,000

35,000

40,000

1 2 3 4 5 6 7 8 9 10 11 12
Month

S
al

es
 [M

ill
io

n]

Census TPC-DS

Figure 2: Store Sales Distribution

1053

3.3. Specific Multi Dimensional Issues in TPC-
DS’s Data Populations

3.3.1. Hierarchies
The hierarchies defined in the TPC-
DS schema all display simple, sin-
gle-inheritance. That is, there is al-
ways exactly one parent for any
given level in the hierarchy. With
this assurance, and a set cardinality
for each level of a given hierarchy,
the data generation becomes
straightforward. Figure 5 shows the
traditional item hierarchy. In TPC-
DS each Brand belongs to exactly
one Class and each class belongs
exactly to one Category.
3.3.2. Slowly Changing Dimensions
In addition to the transaction-focused fact tables and attribute-
focused dimension tables described above, a typical multi-
dimensional system includes some dimensions whose data
evolves over the life of the system. Referred to as slowly changing
dimensions (SCD), they capture the historical evolution of a data
set. Each entity in a SCD can change attributes. As an example,
consider a system that tracks retail sales over a period of months
or years. During that time, the underlying product line, pricing
structure, sales region geography – virtually every part of a trans-
action’s context – is likely to change. In order for meaningful
analysis to be possible, it is often important that the user of the
data set be able to recreate that context – comparing sales using
the old pricing model with those using the new, for example.
Though there are a number of ways to address this sort of data
within the dimensional data warehouse [6] [7], a common tech-
nique is to include versioning information, often in the form of
begin and end dates, in the dimension tables. A query can then
qualify which revision of a dimension entry should be used to
probe the fact tables. In TPC-DS the initial data population,
meaning before any data maintenance is performed, contains the
effects of previous data maintenance operations. That is, in SCD,
there are up to 3 revisions of any dimension entry. This is impor-
tant as the second performance run, as described in Section
Error! Reference source not found., serves as a repetition of the
first performance and, therefore, ought to have the same data
characteristics.

4. WORKLOAD
TPC-DS benchmark models the two most important components
of any mature decision support system: user queries and data
maintenance. The queries convert operational facts into business
intelligence while the data maintenance operations synchronize
the operational side of a business with the data warehouse. Taken
together, the combination of these two workloads constitutes the
core competencies of any decision support system. The TPC has
carefully evaluated the TPC-DS workload to provide a robust,
rigorous and complete means for the evaluation of systems meant
to provide that competency.

4.1. Query workload
In order to address the enormous range of query types and user
behaviors encountered by a decision support system, TPC-DS
utilizes a generalized query model. This model allows the
benchmark to exercise important aspects of the interactive and it-
erative nature of on-line analytical processing (OLAP) queries,
the longer-running, complex queries of data mining and knowl-

edge discovery, and the more planned behavior of well known re-
port queries. The queries modeled by the benchmark cover:
• Ad-hoc, reporting, iterative OLAP and data mining type

workloads,
• DSS relevant SQL99 functionality,
• A variety of access patterns, query phrasings, operators, and

answer set constraints,
• Possibility of a wide variety to query optimizations,
• The entire data set of all TPC-DS tables and
• Complex DSS business problems.

Amalgamating ad-hoc, reporting, iterative OLAP and data
mining queries into the same benchmark is a difficult task. Ad-
hoc queries per se cannot exist in a benchmark environment be-
cause, for a benchmark to be fair and repeatable, it has to run the
same queries on the same dataset every time it is executed. Con-
sequently, a database administrator (DBA) with the prior knowl-
edge about a benchmark’s queries and dataset can tune the system
to increase performance of the benchmark. In real life, prior
knowledge of a dataset is limited to a certain point in time while
knowledge of a query set is limited to special types of queries. A
DBA can investigate the dataset, but as businesses change, the
dataset, especially distributions are likely to change. Reporting
and data mining queries might be known in advance, while ad-hoc
and iterative OLAP queries can be issued at any time against the
database by online users and, hence, their tuning is limited to gen-
eral assumption of the workload.

TPC’s previous DSS benchmark, TPC-H, prohibits con-
structs and mechanisms that would only realistically be beneficial
in a reporting environment. It does that by prohibiting the exploi-
tation of data and query set characteristics beyond a certain limit.
For instance, no pre-join and pre-aggregation of tables can be
executed and only single column indexes can be defined. Al-
though artificial this method has proven to be very robust. For de-
tailed wording, refer to the TPC-H specification [4], Chapter 1.5
“Implementation Rules”.

TPC-DS applies this technique to a portion of the schema,
dividing it into two parts, an ad-hoc part and a reporting part.
Queries against the ad-hoc part are, per definition, pure ad-hoc
queries, while queries against the reporting part are pure reporting
queries. Queries which reference both parts are considered hybrid
queries. For the specific wording refer to Clause 2.6 “Implemen-
tation Requirements” of the preliminary draft [3]. Iterative OLAP
queries are implemented as a sequence of syntactically independ-
ent, but logically affiliated queries. Data Mining queries are char-
acterized as returning a large output. This output, although not in
the scope of TPC-DS, is intended for feeding data mining tools.
Both Iterative OLAP and Data Mining queries can be classified as
either ad-hoc or reporting.

The TPC-DS query set has been developed to cover most of
the syntax of SQL99 including its OLAP amendment. This in-
cludes:

SQL states the problem rather than defining the exact execu-
tion path of a program. This gives the query optimizer great op-
portunities to find the best possible execution plan, that is, the best
possible execution path, which may vary between hardware plat-
forms. Since a SQL query cannot mandate a certain execution
path, the queries have to be numerous and diverse enough to cover
the entire spectrum of execution paths in today’s DSS. It is out of
the scope of this paper to describe all execution paths. However,
the most important ones are index driven operations (e.g. Bitmap
operations), table scan driven operations (e.g. hash-joins), Sort
and Group By operations. As described in Section 2 the schema
supports both star schema queries as well as the more traditional
3NF operations. The following SQL statements are examples,

Figure 5: Tra-
ditional Item

Hierarchy

Category

Class

Brand

1054

taken from TPC-DS, to demonstrate ad-hoc and reporting queries.
Figure 6 shows Query 52, an Ad-Hoc query computing the sum of
the extended sales price for all items sold in a year, grouped by
brand. It references store_sales, item and date_dim. Figure 7
shows Query 20, a reporting query computing for each item in a
list of given subcategories, during a specific time period, in the
catalog sales channel, the ratio of sales of that item to the sum of
all of the sales in that item's class. It references the catalog_sales,
item and date_dim tables. For a detailed description of the re-
maining queries refer to Appendix A of the preliminary draft [3].

SELECT dt.d_year ,item.i_brand_id brand_id
 ,item.i_brand brand
 ,SUM(ss_ext_sales_price) ext_price
FROM date_dim dt ,store_sales ,item
WHERE dt.d_date_sk = store_sales.ss_sold_date_sk
 AND store_sales.ss_item_sk = item.i_item_sk
 AND item.i_manager_id = 1
 AND dt.d_moy=11
 AND dt.d_year=2000
GROUP BY dt.d_year,item.i_brand,item.i_brand_id
ORDER BY dt.d_year,ext_price desc,brand_id;

Figure 6: Query 52, Ad-Hoc Query Example

SELECT i_item_desc,i_category,
 i_class,i_current_price
 ,SUM(cs_ext_sales_price) AS itemrevenue
 ,SUM(cs_ext_sales_price)*100/
 SUM(SUM(cs_ext_sales_price)) OVER
 (PARTITION BY i_class)AS revenueratio
FROM catalog_sales,item,date_dim
WHERE s_item_sk = i_item_sk
 AND i_category in ('Sports', 'Books', 'Home')
 AND cs_sold_date_sk = d_date_sk
 AND d_date BETWEEN '1999-02-21'AND'1999-03-21'
GROUP BY i_item_id,i_item_desc,i_category
 ,i_class,i_current_price
ORDER BY i_category,i_class,i_item_id

 ,i_item_desc,revenueratio;

Figure 7: Query 20, Reporting Query Example

The query set is designed to cover the entire dataset. This is
guaranteed by a sophisticated query template model. Template-
based queries are defined as sets of one or more pseudo-random,
valid SQL statements produced at the time of benchmark execu-
tion. Template-based queries are intended to model common,
well-understood queries. It is assumed that the precise values or
targets of a given instance of a template-based query is random,
but that the general format and syntax for the query is tightly tied
to a business process and the syntax is therefore largely predict-
able and well-known. A template-based query relies on a query
template by substituting SQL fragments and scalar constants into
the query template to produce a set of one or more valid SQL
statements that are then submitted to the SUT. There are numer-
ous types of substitutions. They include filter predicates, such as
equality, in-list and between predicates. More complex text sub-
stations are also possible, such as exchanging aggregations, such
as max, min. The query generator, responsible for choosing the
substitutions and the data generator are tightly coupled to guaran-
tee query comparability across substitutions. It is expected that
there is some run-to-run variability on a per query basis. How-
ever, since the main metric is an arithmetic mean, it has been
proven that such variability does not result in any significant met-
ric variability. Please refer to [10] for a detailed description of
how the query generator generates executable SQL queries from
query templates.

4.2. Data Maintenance workload
TPC-DS highlights the ability of a system to absorb new database
data as a decision support system grows. Whether the business in-
telligence is drawn from existing operational systems or enhanced
through the integration of external data sources, such as geo-
graphical data, it must be able to respond to additions and modifi-
cations to its underlying data in a timely and cost effective man-
ner. By focusing on the fundamental SQL-based transformations
upon which all data manipulations rely, TPC-DS provides the first
industry-standard evaluation of the ETL process (Extract, Trans-
formation and Load).

A periodic data refresh process is an integral part of the data
warehouse lifecycle inherent to most decision support environ-
ments. In comparison to previous TPC benchmarks, which em-
phasize the data analysis component of decision support systems,
TPC-DS offers a more balanced importance to a realistic refresh
process as part of the benchmark. Decision support database re-
fresh processes usually involve three distinct and important steps:
data Extraction, data Transformation, and data Load (ETL). The
data extract step accomplishes just that; the accurate extraction of
pertinent data from production OLTP databases or other relevant
data sources. In the transformation step, the extracted data are
typically cleansed and massaged into a common format suitable
for assimilation by the decision support database. Lastly, the data
load step performs the actual insertion, modification and deletion
of decision support database table data. In a production system
environment, the data extraction step may be comprised of nu-
merous separate extract operations, executed against multiple
OLTP databases and ancillary data sources. As it is unlikely that
the full compliment of these OLTP data sources reside on the de-
cision support server(s), it is doubtful the measurement of OLTP
data extraction performance would result in a metric appropriate
or meaningful to the scope of the TPC-DS benchmark. In light of
this, the data extraction step of the ETL process (E) is assumed
and represented in the benchmark in the form of generated flat
files.

In addition to a surrogate key, which is the primary key, each
dimension contains a “business key”. The business key resembles
the primary key from the OLTP system. The update data can be
joined with the data warehouse dimensions using the business
key. History keeping dimensions contain two additional fields, a
rec_begin_date and a rec_end_date indicating the date range for
which a specific row is valid. The row containing NULL in the
rec_end_date for a specific business key is the most current row.

The data maintenance workload contains the updating of di-
mension rows, the inserting and the deleting of fact table rows.
Dimensions are categorized in static, non-history keeping and his-
tory keeping dimensions. Static dimensions such as Date_dim,
Time_dim, and Reason are loaded once at the beginning of the
benchmark and are not updated during the data maintenance
phase.

The algorithms in Figure 8 and Figure 9 show how history
and non-history keeping dimensions are maintained. The inten-
tion is to cover the most widely used data maintenance operations.
Requiring both types of history operations, enables the perform-
ance for both insert and update operations to be measured.

for every row to be updated{
 find the row for the business key
 update all changed fields
}

Figure 8: Update non-history keeping dimension

1055

for every row to be updated{
 find the row for the business key and
 with rec_end_date = NULL
 insert current date into rec_end_date
 insert new row with update date and
 set rec_end_date to NULL
}

Figure 9: Update history keeping dimensions

Fact table data are deleted and inserted in a logically clus-
tered fashion. According to a randomly picked data range, fact
table data are deleted and substituted with similar data during the
insert phase. The data are clustered on a date such that perform-
ance of drop partition and data insertion into partitions can be
measured. During the insert of fact table data the business keys
from the input flat files need to be converted into surrogate keys.
In order to find the most up to date surrogate key, the input data
are joined with dimension data. Figure 10 shows the pseudo code
for fact table insert operations. For a detailed description on the
data maintenance operations refer to Chapter 5 of the preliminary
draft [3].

for every row to be inserted{
 for keys to a non-history keeping dimension{
 find the row for the business key
 exchange business key with surrogate key
 }
 for keys to a history keeping dimension{
 find the row for the business key
 and where rec_end_date is NULL
 exchange business key with surrogate key
 }
 insert row into fact table.
}

Figure 10: Fact Table Insert

5. EXECUTION RULES AND METRIC
The execution rules and the metric are two fundamental compo-
nents of any benchmark definition and are probably the most con-
troversial when trying to reach an agreement between different
companies. The execution rules define the way a benchmark is
executed, while the metric emphasizes the pieces that are meas-
ured. We describe them in one section since they are intrinsically
connected to each other and they are equally powerful in how they
control performance measurements. Both components can change
the focus of a benchmark because only those parts of a system that
are executed, as described in the execution rules, can be measured
in the metric. Conversely, even though a part is executed, if it is
not part of the metric, it goes un-noticed. For instance, TPC-H’s
execution rules mandate the measurement of the initial database
load. However, the primary metric (QphH) does not take the load
metric into account. Consequently, little consideration is given to
it when running the benchmark.

5.1. General Metric Considerations
TPC is best known for providing robust, simple and verifiable
performance data. The most visible part of the performance data
is the performance metric and the rules that lead to it. Producing
benchmark results is expensive and time consuming. Hence, the
TPC’s goal is to provide a robust performance metric which al-
lows for system performance comparisons for an extended period
and, thereby, preserving benchmark investments. A performance
metric needs to be simple such that easy system comparisons are
possible. If there are multiple performance metrics (e.g. A, B, C),
system comparisons are difficult because vendors can claim they
perform well on some of the metrics (e.g. A and C). This might
still be acceptable if all components are equally important, but

without this determination, there would be much debate on this is-
sue. In order to unambiguously rank results, the TPC benchmarks
focus on a single primary performance metric, which encompass
all aspects of a system’s performance weighting the individual
components. Taking the example from above the performance
metric M is calculated as a function of the three components A,B
and C (e.g. M=f(A,B,C)). Consequently, TPC’s performance met-
rics measure system and overall workload performance rather than
individual component performance. In addition to the perform-
ance metric, the TPC also includes other metrics, such as price-
performance metrics.

One of the key essentials to the success of a benchmark is a
sound metric. In the process of benchmark development the
measurable components (e.g. query elapsed time) and variables
(e.g. scale factor) were analyzed in respect to their impact to the
metric.

5.2. Execution Rules
The TPC-DS workload is expected to test the upward boundaries
of hardware system performance in the areas of CPU, memory
and I/O subsystem utilization. At the same time it measures the
database software and operating system’s ability to perform vari-
ous complex functions, important to DSS, such as examining
large volumes of data, computing and executing the best execu-
tion plan for queries with a high degree of complexity, efficient
scheduling of a large number of user sessions, and giving answers
to critical business questions.

Figure 11: Benchmark Execution Order

The benchmark test is defined as the execution of a database
load test followed by a performance test (see Figure 11). The
process of building the test database is denoted as database load.
It is the elapsed time to create the tables, load data, create auxil-
iary data structures, define and validate constraints, gather statis-
tics for the test database and configure the system under test as it
will be during the performance test. It is also important to note
that all requirements to assure ACID properties including syn-
chronizing loaded data on RAID devices and the taking of a
backup of the database, if necessary, are part of the load test.
Some portions of a database load are not timed, such as creating
the database, preparing tablespaces and generating the data to be
loaded. However, the intent is to include all activity required to
bring the system under test to the configuration that immediately
precedes the beginning of the performance test.

The performance test consists of two query runs and one data
maintenance run. The first query run (Query Run 1) measures the
query execution power of the system immediately after it is
loaded. The data maintenance run measures the system’s ability
to load, delete and update data and to maintain auxiliary data
structures. The second query (Query Run 2) measures the query
execution power after the system has been updated and auxiliary
data structures have been maintained, thereby, revealing any
query performance changes due to the maintenance of auxiliary
data structures. Without including a second query run it would be
possible to avoid or defer maintenance of auxiliary data structures,
thereby, not including their time in the measured interval.

Each query run executes multiple concurrent query streams.
Concurrent query streams simulate multiple users executing que-

1056

ries against the database concurrently. Each stream simulates one
user. The query mix is designed to provide varying degrees of
workload complexity and the concurrent execution of queries in
query streams emulates typical workload characteristic of many
decision support systems today. The maximum number of
streams is not limited. However, each scale factor requires a
minimum number of streams, denoted in Figure 12. Linking the
minimum number of streams to the scale factor requires that lar-
ger systems not only execute queries on more data, but also serve
more concurrent user.

Scale factor Minimum Number of Streams

100 3
300 5

1000 7
3000 9

10000 11
30000 13

100000 15

Figure 12: Minimum Required Query Streams

5.3. Primary Metrics
TPC-DS defines three primary metrics: Performance Metric
(QphDS@SF), Price-Performance metric, ($/QphDS@SF) and
System availability date. The Performance Metric reflects the ef-
fective query throughput of the benchmarked configuration, de-
fined as:

()TSTTT LoadQRDMQR

SSFSFQphDS
**01.021

1983600@
+++

=

• TQR1: total elapsed time of Query Run 1.
• TQR2: total elapsed time of Query Run 2.
• TDM: total elapsed time of the Data Maintenance run.
• TLoad: total elapsed time of the database load test.
• S: number of streams the benchmark executed.
• SF: scale factor.

The numerator represents the total number of queries exe-
cuted on the system “198 * S”, where 198 is the 99 individual
queries times two query runs. For instance, a 1000 scale factor
benchmark test with minimum number of required query streams
executes 1386 (198 * 7 streams) queries. A 10,000 scale factor
benchmark test with a minimum number of required query
streams of 11 executes 2970 (198 *15) queries. The TPC DS sub-
committee believes that workloads with such a large number of
queries insure an adequate DSS workload for todays and future
high performance systems.

The denominator represents the total elapsed time as the sum
of Query Run1, Data Maintenance Run, Query Run 2 and a frac-
tion of the Load Time. By dividing the total number of queries by
the total elapsed time, this metric represents queries executed per
time period. Unlike previous TPC decision support benchmarks,
this metric does not include a power test. A power test is also
known as single user test. The power metric in previous bench-
marks is defined as the geometric mean of the query response
time of all queries including the time to complete the update func-
tions. The queries and update functions are run sequentially. For
this kind of metric, it is crucial to tune each and every query to get
the best results. A reduction of elapsed time for a query from 6
hours to 2 hours has the same effect on the metric as reducing a
query from 6 seconds to 2 seconds – which is a major weakness of

the metric. We believe that in most real life situations the reduc-
tion of elapsed time of a query from 6 hours to 2 hours is much
more important than from 6 seconds to 2 seconds. In the absence
of a power metric, engineers will concentrate their effort in tuning
long running queries, which matches the business case, because
that is where customers spend most of their tuning resources. It is
important to note that the minimum number of query streams pro-
vides a highly concurrent workload. This ensures that tuning of
just one query does not significantly impact the primary metric,
but only improving the overall system performance will improve
the metric significantly.

The load time is part of the denominator to realistically limit
the use of auxiliary structures without disallowing them. As men-
tioned in earlier sections, the usage of auxiliary data structures is
allowed for one of the sales channels, namely the catalog sales
channel, which represents 25% of the data set. This enables data-
base vendors to showcase their technologies in handling queries
that are primarily reporting in nature. But there is a cost associ-
ated to using these auxiliary data structures. If unlimited auxiliary
structures were allowed without penalty, as it was the case in
TPC-D, the benchmark metric would not grow linearly with the
resources used. This behavior causes a benchmark less interesting
to hardware vendors, who desire to show that higher performance
systems will also have the highest benchmark performance metric.
Consequently, the subcommittee decided to factor the database
load and the data maintenance times into the primary performance
metric. The fraction of the load time is multiplied by the number
of streams. This is necessary to avoid diminishing the impact of
the load time on the metric. Without considering the scale factor
one could decrease the impact of the load time by increasing the
number of streams, thereby diminishing the overhead of creating
auxiliary data structures. A 1000 scale factor benchmark test with
minimum number of required streams will have 10% (0.01*10) of
the database load time added to the total elapsed time. The au-
thors acknowledge that although 10% might sound arbitrary, the
purpose of a benchmark metric is to provide impartial information
that can be used to evaluate and compare the performance of DSS
systems. It is not the intention of a benchmark metric to consti-
tute a perfect simulation of a particular DSS environment.

Finally, the metric is normalized to queries per hour by mul-
tiplying the results by 3600, and on scale factor by multiplying the
metric by the scale factor. Normalization to queries per hour is
necessary since the workload represents both ad-hoc and reporting
queries, which can include very long running queries. A query
per second metric might result in fractional values, which is not
desirable. Normalization by scale factor is done for two reasons;
factoring in the complexity of running the benchmark workload
on a larger data set and increasing the marketability of the bench-
mark. The complexity of the workload in terms of the amount of
data that needs to be scanned as well as the minimum required
query streams increases as the scale factor increases. Marketing
teams would like to see larger benchmark results at larger scale
factors. For example, assuming ideal scalability; if a system per-
forms 100 queries per hour on a 100 scale factor database; the
same setup will only run 10 queries per hour at a 1000 scale factor
database. This is not desired by marketing teams. They would
like to see the same number of queries per hour. As a result, the
metrics are normalized based on scale factors.

The Price-Performance metric is defined as the ratio between
the 3 year total cost of ownership (TCO) of the system and the
primary metric (queries per hour). The 3 year TCO includes
hardware, software and 24 x 7 maintenance with a 4 hour re-
sponse time which customers would pay in a real sales situation
for similarly sized configurations. The price-performance metric
for the benchmark is defined as:

1057

SFQphDS
PSFQphDS

@
@/$ =

P is the 3 year total cost of ownership of the configuration.
Complete pricing guidelines for TPC benchmarks are available
from the TPC web site [5]. This specification guides customers,
vendors implementing a benchmark, and auditors on what is ac-
ceptable pricing for the purposes of publication. These restric-
tions are intended to make publication both tractable and compa-
rable during the lifetime of the publication for the majority of cus-
tomers and vendors.

The third primary metric, the system availability date, is the
date when the system is generally available to any customer.

6. CONCLUSION
The new TPC-DS benchmark is intended to provide a fair and
honest comparison of various vendor implementations to accom-
plish an identical, controlled and repeatable task in evaluating the
performance of DSS systems. The TPC-DS workload is expected
to test the upward boundaries of hardware system performance in
the areas of CPU utilization, memory utilization, I/O subsystem
utilization and the ability of the operating system and database
software to perform various complex functions important to DSS -
examine large volumes of data, compute and execute the best exe-
cution plan for queries with a high degree of complexity, schedule
efficiently a large number of user sessions, and give answers to
critical business questions. In this paper we have introduced the
pivotal parts of the benchmark, such as schema, data set, work-
load, metric and execution rules. We have also explained the rea-
sons behind key decisions made for TPC-DS. For a more com-
prehensive description of the TPC-DS benchmark, the entire
specification can be obtained from the TPC website [3].

The TPC is expected to vote on this benchmark in 2006. In
order to protect investments made in TPC-H benchmarks the TPC
is expected to allow TPC-H benchmark publications until a large
body of TPC-DS results are established, which typically takes one
to two years.

7. ACKNOWLEDGEMENT
The authors would like to acknowledge Mike Nikolaiev, Ray
Glasstone, Umesh Dayal, Ken Jacobs, Tracey Stewart,
Christopher Buss and Ivan Mcphee for their comments and
feedback and all TPC-DS subcommittee members, especially
Susanne Englert, Alain Crolotte, Mary Meredith, Sreenivas
Gukal, Doug Johnson, Lubor Kollar, Murali Krishna, Robert
Lane, Juergen Mueller, Robert Murphy, Doug Nelson, Ernie
Ostic, Haider Rizvi, Kwai Wong, Bryan Smith, Eric Speed,
Cadambi Sriram, Jack Stephens, John Susag, Tricia Thomas,
Dave Walrath, Gene Purdy, Priti Mishra, Anoop Sharma and
Guogen Zhang.

8. REFERENCES
[1] Robert H. Bonczek, Clyde W. Holsapple, and Andrew Whin-

ston: Foundations of Decision Support Systems. Academic
Press, 1981 ISBN 0-12-113050-9

[2] Gordon B. Davis: Management Information Systems: Con-
ceptual Foundations, Structure and Development. McGraw-
Hill, 1974

[3] Public release of TPC-DS (v0.32) preliminary draft:
http://www.tpc.org/tpcds/default.asp.

[4] TPC-H Specification 2.3.0:
http://www.tpc.org/tpch/default.asp

[5] TPC pricing specification.
http://www.tpc.org/pricing/spec/Price_V1.0.1.pdf

[6] William H. Inmon: EIS and the Data Warehouse, Data Base
Programming/Design, November 1992.

[7] Ralph W. Kimball, Warren Thornthwaite, Laura Reeves and
Margy Ross: The Data Warehouse Lifecycle Toolkit, New
York, NY: John Wiley and Sons, 1998

[8] Meikel Pöss, Bryan Smith, Lubor Kollár, Per-Åke Larson:
TPC-DS, taking decision support benchmarking to the next
level. SIGMOD Conference 2002: 582-587

[9] Meikel Pöss, Chris Floyd: New TPC Benchmarks for Deci-
sion Support and Web Commerce. SIGMOD Record 29(4):
64-71 (2000)

[10] Meikel Poess, John M. Stephens: Generating Thousand
Benchmark Queries in Seconds. VLDB 2004: 1045-1053

[11] John M. Stephens, Meikel Poess: MUDD: a multi-
dimensional data generator. WOSP 2004: 104-109

[12] US Census Bureau, Unadjusted and Adjusted Estimates of
Monthly Retail and Food Services Sales by Kinds of Busi-
ness:2001, Department stores (excl.L.D) 4521.
http://www.census.gov/mrts/www/data/html/ nsal01.html

1058

