
Query Processing in the AquaLogic Data Services Platform

Vinayak Borkar, Michael Carey, Dmitry Lychagin,
Till Westmann, Daniel Engovatov, and Nicola Onose

∗

BEA Systems, Inc.
San Jose, CA, USA

ABSTRACT
BEA recently introduced a new middleware product called the Aqua-
Logic Data Services Platform (ALDSP). The purpose of ALDSP is
to make it easy to design, develop, deploy, and maintain a data
services layer in the world of service-oriented architecture (SOA).
ALDSP provides a declarative foundation for building SOA appli-
cations and services that need to access and compose information
from a range of enterprise data sources; this foundation is based
on XML, XML Schema, and XQuery. This paper focuses on query
processing in ALDSP, describing its overall query processing archi-
tecture, its query compiler and runtime system, its distributed query
processing techniques, the translation of XQuery plan fragments
into SQL when relational data sources are involved, and the pro-
duction of lineage information to support updates. Several XQuery
extensions that were added in support of requirements related to
data services are also covered.

1. INTRODUCTION
When relational database management systems were introduced

in the 1970’s, database researchers set out to create a productive
new world in which developers of data-centric applications could
work much more efficiently than ever before. Instead of writing
and then maintaining lengthy procedural programs to access and
manipulate application data, developers would now be able to write
simple declarative queries to accomplish the same tasks. Physical
schemas were hidden by the logical model (tables), so develop-
ers could spend much less time worrying about performance issues
and changes in the physical schema would no longer require cor-
responding changes in application programs. Higher-level views
could be created to further simplify the lives of developers who
did not need to know about all the details of the stored data, and
views could be used with confidence because view rewriting tech-
niques were developed to insure that queries over views were every
bit as performant as queries over base data. This data management
revolution was a roaring success, resulting in relational database

∗Work done while visiting BEA from the Computer Science De-
partment at the University of California, San Diego.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

offerings from a number of software companies. Almost every en-
terprise application developed in the past 15-20 years has used a
relational database for its persistence, and large enterprises today
run major aspects of their operations using relationally-based pack-
aged applications like SAP, Oracle Financials, PeopleSoft, Siebel,
Clarify, and SalesForce.com.

Due to the success of the relational revolution, combined with
the widespread adoption of packaged applications, developers of
data-centric enterprise applications face a new crisis today. Rela-
tional databases have been so successful that there are many dif-
ferent systems available (Oracle, DB2, SQL Server, and MySQL,
to name a few). Any given enterprise is likely to find a number of
different relational database systems and databases within its cor-
porate walls. Moreover, information about key business entities
such as customers or employees is likely to reside in several such
systems. In addition, while most “corporate jewel” data is stored
relationally, much of it is not relationally accessible – it is under the
control of packaged or homegrown applications that add meaning
to the stored data by enforcing the business rules and controlling
the logic of the “business objects” of the application. Meaningful
access must come through the “front door”, by calling the functions
of the application APIs. As a result, enterprise application develop-
ers face a huge integration challenge today: bits and pieces of any
given business entity reside in a mix of relational databases, pack-
aged applications, and perhaps even in files or in legacy mainframe
systems and/or applications. New, “composite” applications need
to be created from these parts – which seems to imply a return to
procedural programming.

Composite application development, once called megaprogram-
ming [1], is the aim of the enterprise IT trend known as service-
oriented architecture (SOA) [2]. XML-based Web services [3] are
a piece of the puzzle, providing a degree of physical normalization
for intra- and inter-enterprise function invocation and information
exchange. Web service orchestration or coordination languages [4]
are another piece of the puzzle on the process side, but are still
procedural by nature. In order to provide proper support for the
data side of composite application development, we need more –
we need a declarative way to create data services [5] for composite
applications.

The approach that we are taking at BEA is to ride the XML
wave created by Web services and associated XML standards for
enterprise application development. We are exploiting the W3C
XML, XML Schema, and XQuery Recommendations to provide a
standards-based foundation for declarative data services develop-
ment [6]. The BEA AquaLogic Data Services Platform (ALDSP),
newly introduced in mid-2005, supports a declarative approach to
designing and developing data services [7]. ALDSP is targeting
developers of composite applications that need to access and com-

1037

Figure 1: ALDSP Data Service – Design View

pose information from a range of enterprise data sources, includ-
ing packaged applications, relational databases, Web services, and
files, as well as other sources. In this paper, we examine the query
processing capabilities of ALDSP in detail, explaining the XML
query processing problems that arise in the context of data services
and the approach taken to address these problems in ALDSP. We
also briefly touch on several related aspects of ALDSP, including
caching, security, and update handling.

The remainder of this paper is organized as follows: Section 2
provides an overview of ALDSP, covering its user model, APIs,
and system architecture. Section 3 begins the exploration of query
processing in ALDSP, describing ALDSP’s use and extensions of
XQuery, the nature and role of metadata in ALDSP, and the steps
involved in query processing; an example is presented that runs
throughout the rest of the paper. Section 4 drills down further
into query compilation, covering error handling, view optimiza-
tion, SQL generation for accessing relational data sources, and sup-
port for inverse functions. Section 5 focuses on query execution in
ALDSP, covering its XML data representation, query plans and op-
erators, and data source adaptors. Also covered in Section 5 is the
ALDSP runtime support for asynchronous execution, caching, and
handling of slow or unavailable data sources. Section 6 explains
how the ALDSP query processing framework supports update au-
tomation. Section 7 explores data security in ALDSP, focusing on
its interplay with the system’s query processing framework. Sec-
tion 8 provides a brief discussion of related work that influenced
ALDSP as well as other related commercial systems. Section 9
concludes the paper.

2. ALDSP OVERVIEW
To set the stage for our treatment of query processing in ALDSP,

it is important to first understand the ALDSP world model and over-
all system architecture. We cover each of these in turn in this sec-
tion.

2.1 Modeling Data and Services
Since it targets the SOA world, ALDSP takes a service-oriented

view of data. ALDSP models the enterprise (or a portion of in-
terest of the enterprise) as a set of interrelated data services [6].
Each data service is a set of service calls that an application can

use to access and modify instances of a particular coarse-grained
business object type (e.g., customer, order, employee, or service
case). A data service has a “shape”, which is a description of the
information content of its business object type; ALDSP uses XML
Schema to describe each data service’s shape. A data service also
has a set of read methods, which are service calls that provide var-
ious ways to request access to one or more instances of the data
service’s business objects. In addition, a data service has a set of
write methods, which are service calls that support updating (e.g.,
modifying, inserting, or deleting) one or more instances of the data
service’s business objects. Last but not least, a data service has a
set of navigation methods, which are service calls for traversing re-
lationships from one business object returned by the data service
(e.g., customer) to one or more business object instances from a
second data service (e.g., order). Each of the methods associated
with a data service becomes an XQuery function that can be called
in queries and/or used in the creation of other, higher-level logical
data services.

Figure 1 shows a screen capture of the design view of a simple
data service. In the center of the design view is the shape of the data
service. The left-hand side of the figure shows the service calls that
are provided for users of the data service, including the read meth-
ods (upper left) and navigation methods (lower left). The objective
of an ALDSP data service architect/developer is to design and im-
plement a set of data services like the one shown that together pro-
vide a clean, reusable, and service-oriented “single view” of some
portion of an enterprise. The right-hand side of the design view
shows the dependencies that this data service has on other data ser-
vices that were used to create it. In this example, which will be
discussed further later on in the paper, the data service shown was
created by declaratively composing calls to several lower-level (in
this case physical) data services.

When pointed at an enterprise data source by a developer, ALDSP
introspects the data source’s metadata (e.g., SQL metadata for a
relational data source or WSDL files for a Web service). This in-
trospection guides the automatic creation of one or more physi-
cal data services that make the source available for use in ALDSP.
Applying introspection to a relational data source yields one data
service (with one read method and one update method) per table
or view. The shape in this case corresponds to the natural, typed

1038

RDBMS XML CSV WS Java

Adaptor framework

runtime

compiler

data
service

metadata

EJB
interface

query
plan

cache

data
cache

GUI

WS
interface

Java mediator interface
(SDO) JDBC

security
metadata

queryable non-queryable functional

ALDSP Server

Figure 2: Overview of ALDSP Architecture

XML-ification of a row of the table. In the presence of foreign
key constraints, introspection also produces navigation functions
(i.e., relationships) that encapsulate the join paths provided by the
constraints. Introspecting a Web service (WSDL) yields one data
service per distinct Web service operation return type. The data
service functions correspond to the Web service’s operations and
the function input and output types correspond to the schema infor-
mation in the WSDL. Other functional data sources are modeled
similarly. The result is a uniform, “everything is a data service”
view of an enterprise’s data sources that is well-suited for further
use in composing higher-level data services using XQuery.

2.2 System Architecture
Figure 2 depicts the overall architecture of ALDSP. At the bot-

tom of the picture lie the various kinds of enterprise data sources
that ALDSP supports. Data source types are grouped into three
categories – queryable sources, non-queryable sources, and func-
tional sources. Queryable sources are sources to which ALDSP
can delegate query processing; relational databases fall into this
category. Non-queryable sources are sources from which ALDSP
can access the full content of the source but which do not sup-
port queries; XML and delimited (a.k.a. comma-separated value)
files belong in this category. Functional sources are sources which
ALDSP can only interact with by calling specific functions with
parameters; Web services, Java functions, and stored procedures
all fall into this category. In the world of SOA, this last source cat-
egory is especially important, as most packaged and home-grown
applications fit here. Also, it is not uncommon for this category of
source to return complex, structured results (e.g., a purchase order
document obtained from a call to an order management system).
For this reason, ALDSP focuses on integrating information from
functional data sources as well as from queryable sources and non-
functional sources. To facilitate declarative integration and data
service creation, all data sources are presented to ALDSP devel-
opers uniformly as external XQuery functions that have (virtual)
XML inputs and outputs.

Sitting above the data source level in Figure 2 is the ALDSP

adaptor framework, which is responsible for connecting ALDSP
to the available data sources. Adaptors have a design-time compo-
nent that introspects data source metadata to extract the information
needed to create the typed XQuery function models for sources.
They also have a runtime component that controls and manages
source access at runtime. Above the adaptor layer is a fairly tradi-
tional (as viewed from 35,000 feet) query processing architecture
that consists of a query compiler and a runtime system. The query
compiler is responsible for translating XQuery queries and function
calls into efficient executable query plans. To do its job, it must re-
fer to metadata about the various data services in the enterprise as
well as to security metadata that controls who has access to which
ALDSP data. Also, ALDSP maintains a query plan cache in or-
der to avoid repeatedly compiling popular queries from the same
or different users. The runtime system is made up of a collection
of XQuery functions and query operators that can be combined to
form query plans; the runtime also controls the execution of such
plans and the resources that they consume. In addition, the ALDSP
runtime is responsible for accepting updates and propagating the
changes back to the affected underlying data sources. Finally, in
addition to the aforementioned query plan cache, ALDSP main-
tains an optional data cache that can be used to cache data service
call results for data services where a performance/currency tradeoff
can be made and is desirable.

The main box in Figure 2 is the ALDSP server. The server
consists of the components described in the previous paragraph
and it has a remote (EJB) client-server API that is shared by all
of ALDSP’s client interfaces. These include a Web service in-
terface, a Java mediator interface (based on Service Data Objects
[8], a.k.a. SDO), and a JDBC/SQL interface. The SDO-based Java
mediator interface allows Java client programs to call data service
methods as well as to submit ad hoc queries. In the method call
case, a degree of query flexibility remains, as the mediator API
permits clients to include result filtering and sorting criteria along
with their request. Currently, the ALDSP server’s client APIs are
all stateless in order to promote server stability; thus, service call
and/or query results are completely materialized in the ALDSP
server’s memory before being returned (despite the fact that the
runtime system is capable of pipelining the processing of queries
and their results). ALDSP also has server-side APIs to allow appli-
cations in the same JVM to consume the results of a data service
call or query incrementally, as a stream, or to redirect them to a file,
without materializing them first. Finally, the ALDSP server also
has two graphical interfaces, a design-time data service designer
that resides in the BEA WebLogic Workshop IDE and a runtime
administration console for configuring logical and physical ALDSP
server resources.

3. QUERY PROCESSING IN ALDSP
We are now ready to begin our examination of ALDSP’s query

processing architecture. We will start by looking at certain salient
aspects of our XQuery language support in ALDSP. We will then
discuss the role of metadata in query processing and the phases
involved in query processing in ALDSP. This section will close
by highlighting ALDSP’s use of XQuery for defining data services
through a small but illustrative example.

3.1 XQuery Support
The language used to define data services in ALDSP is XQuery.

The current release of the ALDSP product, version 2.1, supports the
version of the XQuery 1.0 Working Draft published in July 2004
[9]. An ALDSP data service is defined using a data service file that
contains XQuery definitions for all of the functions associated with

1039

the data service and that refers to one or more XML Schema files
that define the data service’s shape and other relevant XML data
types. Because of its data-oriented nature, ALDSP relies heavily
on the typed side of XQuery. A great deal of type information is
statically obtainable from data source metadata, and most ALDSP
users think in terms of typed data and enjoy the early error detec-
tion/correction benefits of static typing. Most ALDSP users also
appreciate features in the ALDSP XQuery editor, like path com-
pletion, that depend on the presence of static type information. The
approach taken to static typing in ALDSP varies somewhat from
the pessimistic approach taken in the current XQuery specification.
Finally, ALDSP has added several extensions to XQuery that users
find extremely convenient for common use cases. Let us now delve
further into each of these aspects of XQuery in ALDSP.

Static typing as described in the XQuery specification is name-
based. Types are always specified using XML Schema and iden-
tified by name. The notation element(E) denotes the type of an
element named E with content type ANYTYPE, while the notation
schema-element(E) denotes the type of an element named E that
must exist in the current XQuery context (and it is an error if the
type is not found there). In the XQuery specification, when a query
uses an element constructor to create a new named XML element,
the static content type of the new element is ANYTYPE (until it is
explicitly validated).

In applying XQuery to our data-centric use cases, we have found
that a black-and-white, must-explicitly-validate approach to data
typing is not what our users want in terms of the resulting XQuery
experience. To address users’ wants, the ALDSP XQuery compiler
treats element(E) differently: it applies structural typing when an-
alyzing XQuery queries. Unlike the specification, the use of an
element constructor in ALDSP does not result in the element’s
contained data being effectively reverted to an unvalidated state.
Instead, during static analysis, ALDSP computes the type of the
element named E to be the element type with name E and with
a content type that is the structural type of the contained content.
(The type annotation on the element itself at runtime will still be
element(E, ANYTYPE), per the XQuery specification, but the run-
time type annotations on its content will survive construction.) This
eliminates the need for validation in cases where all of the data
flowing into the system is typed, which is the norm in ALDSP.
Moreover, a key feature of ALDSP is its support for views (layers
of XQuery functions). View unfolding is needed (as in relational
database systems) to enable views to be efficient. Structural typing
plays an important role in enabling view unfolding, as structural
typing means that the type of an expression does not change when
an element is constructed around the expression and then subse-
quently eliminated by child navigation.

One syntactic extension that ALDSP has made to XQuery is the
addition of a grouping syntax. For data-centric use cases, grouping
(often combined with aggregation) is a common operation. Our
experience has been that most users find the standard XQuery ap-
proach to grouping unfriendly. It is also hard for a query proces-
sor to discern the user’s intentions in all cases in the absence of
explicit group-by support. For these reasons, ALDSP extends the
XQuery FLWOR expression syntax with a group-by clause (yield-
ing a FLWGOR syntax, where the “G” is silent):

group (var1 as var2)? by expr (as var3)? (, expr (as var4)?)*

The result of grouping after the group-by clause’s point in a FLW-
GOR is the creation of a binding tuple containing var2, var3, var4,
and so on, with the input tuple stream being grouped by the group-
ing expression(s). In the resulting stream, each var2 binding cor-
responds to the sequence of var1 values that were associated with

identical grouping expression values in the input. For example, the
following ALDSP grouping query computes and returns elements
that associate each existing customer last name with the set of cus-
tomer ids of customers with that name:

for $c in CUSTOMER()
let $cid := $c/CID
group $cid as $ids by $c/LAST_NAME as $name
return <CUSTOMER_IDS name="{$name}">{
$ids

}</CUSTOMER_IDS>

Another ALDSP extension to XQuery, which is quite small but
extremely useful for most ALDSP use cases, is the addition of a
syntax for the optional construction of elements and attributes. By
its very nature, XML is all about handling “ragged” data – data
where XML fragments can have various missing elements and/or
attributes. XQuery handles such data well on the input side, but
has no convenient query syntax for renaming and transmitting such
data to the output after element or attribute construction. ALDSP
offers a conditional construction syntax (“?”), applicable to both
elements and attributes, that solves this problem. For example, the
“?”-expression <FIRST_NAME?>{$fname}</FIRST_NAME> is equiva-
lent to:

if (exists($fname))
<FIRST_NAME>{$fname}</FIRST_NAME>
else ()

The result element <FIRST_NAME> is constructed iff the first name
value bound to the variable fname is non-empty, accommodating
this (common) possibility.

3.2 Data Source Metadata
As described earlier, ALDSP introspects data source metadata

in order to generate an XQuery-based model of the enterprise in
the form of physical data services. The pertinent metadata is cap-
tured and the pragma facility in XQuery is used to annotate system-
provided, externally-defined XQuery functions with the informa-
tion that the compiler and runtime need to implement these func-
tions. As described, backend data source accesses are modeled as
XQuery functions with typed signatures. For relational databases,
each table or view is surfaced as a function in the corresponding
ALDSP physical data service; primary and foreign key informa-
tion is captured in the pragma annotations, as is the RDBMS ven-
dor, version, and connection name. In the case of Web services, the
location of the WSDL is captured in the corresponding function
annotations. More detail on ALDSP’s metadata capture approach
can be found in [10]. Once captured, the source metadata is used
by the ALDSP compiler, graphical UI, query optimizer, and run-
time. The compiler, for example, uses the captured native type and
key information to optimize query plans. The runtime relational
database adaptors use the connection names to connect to the asso-
ciated backend database systems.

3.3 Query Processing Phases
Query processing in ALDSP involves the usual series of query

processing stages:

1. Parsing: recognize and validate query syntax.

2. Expression tree construction: translate query into internal
form for further analysis.

3. Normalization: make all query operations explicit.

4. Type checking: perform type checking and inference.

1040

5. Optimization: optimize query based on source info.

6. Code generation: create query plan that can be cached and
executed.

7. Query execution: execute plan and return results.

The first four stages comprise the analysis phase of compilation,
at the end of which the compiler has determined that the query is
both syntactically and semantically valid and has filled in the de-
tails of any implicit operations (such as atomization) implied by
the query. The “secret sauce” occurs in the next stage, optimiza-
tion, where the plan for executing the query is determined based
on the query, the data sources accessed, and the metadata known
about those sources. The code generation stage turns the plan into a
data structure that can be interpreted efficiently at runtime. Finally,
once compiled, the generated query plan can be executed (repeat-
edly, possibly with different parameter bindings each time). In the
remainder of the paper we provide more details on each of these
phases as well as the overall query processing process. Before do-
ing so, however, let us wrap up this overview with an example that
can be used to tie together the discussions later in the paper.

3.4 Running Example
An example of a data service was given in Figure 1. Figure 3

shows the XQuery source for this logical data service, showing how
the first read function of the data service might look when ALDSP
is being used to integrate information from two relational databases
and a Web service.

It is assumed in the figure that one relational database contains
the CUSTOMER and ORDER tables, while a different database
contains the CREDIT CARD table. In addition to these three tab-
ular data sources, a document-style Web service provides a credit
rating lookup capability that takes a customer’s name and social
security number and returns his or her credit rating. The read
method, getProfile(), takes no arguments and returns customer pro-
files for all customers listed in the CUSTOMER table in the first
relational database. Note that the contents of the tables are ac-
cessed via XQuery functions that are called in the body of the
query. For each customer, the ORDER table is accessed to create
the nested <ORDERS> information; here the access is via a navigation
function that ALDSP has automatically created for this purpose
based on key/foreign key metadata. Also for each customer, the
CREDIT CARD table in the other database is accessed, and then
the credit rating Web service is called. The result of this function is
a series of XML elements, one per CUSTOMER, that integrates all
of this information from the different data sources. Finally, once
the integration and correlation of data has been specified in this
function, which is the main (or “get all instances”) function for this
data service, each of the remaining read methods of the data service
becomes trivial to specify, as is also demonstrated in Figure 3.

4. QUERY COMPILATION
We now examine the salient aspects of the ALDSP XQuery com-

pilation process. In addition, we discuss how recently added sup-
port for inverse functions in ALDSP 2.1 enables optimizations and
updates that would otherwise be blocked by commonly occurring
integration-oriented data value transformations.

4.1 Analysis
The first major phase in query compilation is the analysis phase.

Most of what happens in this phase simply implements behaviors
prescribed by the XQuery specification, so we will cover this phase

xquery version "1.0" encoding "UTF8";

(::pragma ... ::)
declare namespace tns=...
import schema namespace ns0=...
declare namespace...

(::pragma function ... kind="read" ...::)
declare function
tns:getProfile() as element(ns0:PROFILE)* {

for $CUSTOMER in ns3:CUSTOMER()
return
<tns:PROFILE>
<CID>{fn:data($CUSTOMER/CID)}</CID>
<LAST_NAME>{
fn:data($CUSTOMER/LAST_NAME)

}</LAST_NAME>
<ORDERS>{
ns3:getORDER($CUSTOMER)

} </ORDERS>
<CREDIT_CARDS>{
ns2:CREDIT_CARD()[CID eq $CUSTOMER/CID]

}</CREDIT_CARDS>
<RATING>{
fn:data(ns4:getRating(
<ns5:getRating>
<ns5:lName>{
data($CUSTOMER/LAST_NAME)

}</ns5:lName>
<ns5:ssn>{
data($CUSTOMER/SSN)

}</ns5:ssn>
</ns5:getRating>)/ns5:getRatingResult)

}</RATING>
</tns:PROFILE>
};

(::pragma function ... kind="read" ...::)
declare function
tns:getProfileByID($id as xs:string)
as element(ns0:PROFILE)* {
tns:getProfile()[CID eq $id]

};

...

(::pragma function ... kind="navigate" ...::)
declare function
tns:getCOMPLAINTs($arg as element(ns0:PROFILE))
as element(ns8:COMPLAINT)* {
ns8:COMPLAINT()[CID eq $arg/CID]

};

...

Figure 3: ALDSP Logical Data Service – XQuery Source

briefly, focusing only on its novel aspects – which have to do with
error recovery and type-checking.

The obvious use of the XQuery compiler occurs at runtime, when
each new query is submitted and needs to be compiled and ex-
ecuted. However, the ALDSP product includes a rich graphical
XQuery editor, and the XQuery compiler helps to support this graph-
ical tool. The ALDSP graphical XQuery editor is interesting in that
its model – i.e., the query representation that it operates upon as the
editing actions occur – is not just any supporting data structure, but
the XQuery itself. A major benefit of this approach (and the reason
for doing it) is that it ensures a robust two-way editing experience
together with ALDSP’s XQuery source editor. However, this archi-
tecture also poses challenges, in that the graphical XQuery editor
relies heavily on the query compiler. This induces requirements in
the areas of error handling and type-checking during the analysis
phase of compilation. This phase actually has two modes – its pol-
icy is to fail on first error when invoked for query compilation on

1041

the server at runtime, but to recover as gracefully as possible when
being used by the XQuery editor at data service design time. A
data service is a (potentially large) collection of XQuery functions,
so the required design time behavior is to locate as many errors
as possible by attempting to analyze as many of the data service’s
functions as possible in the course of a single compilation.

The ALDSP XQuery compiler can recover and continue after a
number of possible errors, including syntax errors in XQuery pro-
log declarations (including function declarations). On encountering
a parsing error, it attempts to skip to the end of the declaration (the
first “;” token) and continue from there. If a function body is in
error, but the signature is error-free, the signature is retained and
still available for use in checking other uses of the function. Dur-
ing the expression tree construction phase, the query compiler can
encounter a variety of errors - e.g., references to non-existent items,
duplicate items, or schema import errors. To recover, the analyzer
substitutes a special error expression that has the same input expres-
sions for the offending expression. Errors found during normaliza-
tion are handled similarly. Finally, errors that are detected during
the type-checking stage lead type inference to assign an error type
to the offending expression. In each stage of analysis, errors are re-
ported, and only error-free functions are retained as candidates for
further stages of analysis.

In terms of type-checking, the ALDSP XQuery compiler does
structural typing, as mentioned earlier. In addition, it takes a more
optimistic approach to typing than that prescribed in the XQuery
specification. XQuery says that f($x) is valid iff the static type of
$x is a subtype of the static type of the parameter of f(). This is very
restrictive, and would force the use of type coercion expressions
to eliminate compile-time type errors. ALDSP modifies the static
type-checking rule to say that f($x) is valid iff the static type of $x
has a non-empty intersection with the static type of the parameter
of f(). Additionally, we introduce a typematch operator to enforce
the correct XQuery semantics at runtime. If it can be shown at
compile-time that $x is indeed a subtype of the static type of f’s
parameter, the typematch operator is not introduced.

4.2 General Optimizations
One of the most important features of ALDSP is that one can cre-

ate data services that service-enable information composed from
multiple data sources – data services that can then be efficiently
reused in queries or in other, more application-specific data ser-
vices. As an example, the running example in Figure 3 shows how
a data service designer might author one “get all” function to encap-
sulate the details of the required data composition/integration logic
and then reuse that function elsewhere, even within the same data
service. If the reuse adds predicates, or doesn’t use a portion of
what the underlying function creates, efficiency demands that the
predicate be pushed into the underlying function and/or that any
unused information not be fetched at all when running the result-
ing query. To this end, ALDSP performs XQuery view optimiza-
tions, involving function inlining and unnesting, that are analogous
to view unfolding optimizations in relational query processing. As
an example of source access elimination, consider the following
XQuery fragment that could easily result from function inlining:

let $x := <CUSTOMER>
<LAST_NAME>{$name}</LAST_NAME>
<ORDERS>...</ORDERS>

</CUSTOMER>
return fn:data($x/LAST_NAME)

The result produced can be replaced with $name without the need
to ever construct the ORDERS, making it unnecessary to even fetch
the data contributing to ORDERS in order to execute this query.

Because views (layers of data services) are common in ALDSP,
it is essential that queries involving views be efficiently compiled
and optimized. To ensure that this is the case, views are actually
optimized using a special sub-optimizer that generates a partially
optimized query plan; this plan can be further optimized in the
context of a particular query. This architecture factors the query
usage-dependent part of view optimization out, making it possi-
ble for the query-independent part to be performed once and then
reused when compiling each query that uses the view. Caching and
cache eviction is used to bound the memory footprint of cached
view plans.

Another important area of query optimization for ALDSP is the
handling of group-by operations. Because of the nested nature of
XML, and the naturalness (and therefore attractiveness) of hierar-
chical schemas as information models for data services, queries that
compose nested results are extremely common in ALDSP. Figure 3
is a typical example, with order and credit card data nested within
each customer. These query patterns mean that ALDSP frequently
needs to perform outer-join and group-by operations on keys in or-
der to bring the data to be nested together. To do this efficiently,
ALDSP aims to use pre-sorted or pre-clustered group-by imple-
mentations when it can, as this enables grouping to be done in a
streaming manner with minimal memory utilization. If a join im-
plementation maintains clustering of the branch whose key is being
used for grouping, no extra sorting is required. In most ALDSP
use cases, a constant-memory group-by can be chosen, without
any explicit clustering operation being needed. In the worst case,
ALDSP falls back on sorting for grouping, which then can possibly
be pushed to the backend (if it is relational).

A third key area of ALDSP query optimization relates to joins
and join processing. The ALDSP query compiler is a descendent of
the original BEA compiler from a “pure, XQuery-for-XML’s-sake”
XQuery processing engine [11]. The original compiler was aimed
at in-memory XML processing, with a focus on stream processing
of large messages, and had no notion of joins or data sources (or,
as a result, of having an opportunity to offload processing to rela-
tional sources). In contrast, due to its data-centric target use cases,
the ALDSP XQuery compiler rewrites expressions into joins where
possible in order to prepare for possible subsequent SQL genera-
tion. Also, even when joins cannot be pushed to a backend, they can
be executed using different implementations that have been studied
for 30+ years in the relational database world.

As a multi-source data composition engine, ALDSP must per-
form distributed joins. Its central distributed join method is a method
referred to internally as PP-k (parameter-passing in blocks of k). In
order to compute A join B if B comes from a relational source,
ALDSP will usually opt to perform a pipelined PP-k join: k tuples
are fetched from source A, a request is issued to fetch from B all
those tuples that would join with any of the k tuples from A, and
then a middleware join is performed between the k tuples from A
and the tuples fetched from B. This is repeated in blocks of k tu-
ples from A until source A is exhausted. The request for B tuples
takes the form of a parameterized disjunctive SQL query with k
parameters (or sets of parameters, in the case of a composite join
predicate, plus any other pushable predicates) that are bound using
A values and executed once per block. For ALDSP use cases, this
method provides an excellent tradeoff between the required mid-
dleware join memory footprint (which is small) and the latency im-
posed by roundtrips to the source B (since it does only 1/k as many
roundtrips as it would if it processed A tuples one-by-one). A small
value of k means many roundtrips, while large k approximates a full
middleware index join; by default, ALDSP uses a medium-sized k
value (20) that has been empirically shown to work well.

1042

4.3 SQL Plan Preparation
A major objective of the ALDSP query compilation process is

ensuring that good SQL pushdown is possible when one or more
of the physical data services in a query are drawn from queryable
relational databases. The SQL pushdown problem is handled in
two steps. The first step is implemented by optimizer rules that
prepare the XQuery expression tree for SQL pushdown analysis.
In this first step, as mentioned earlier, join expressions are intro-
duced. In particular, join expressions are introduced for each “for”
clause in the query. Next, any where conditions and let clauses are
pushed into joins where possible (based on variable dependencies).
At this point, the query expression tree has joins and has its other
operations pushed down; further SQL preparation then occurs as
follows. First, joins that occur inside lets are rewritten as left outer
joins and brought out into the outer FLWR expression containing
the let clause. Next, ordering clauses are optimized based on pre-
sorted prefixes. Finally, clauses are locally reordered based on their
acceptability for pushdown to the backends that produce the data
required for their execution; this also results in some reordering of
adjacent joins to enable more effective SQL pushdown.

4.4 SQL Generation
Once the expression tree has been prepared in this way, the pro-

cess of actual SQL generation begins for portions of the tree that
operate on data that originates from relational sources. In terms of
input data, as described earlier, a relational table or view is modeled
as an external XQuery function that returns a sequence of elements
corresponding to its rows, and the content of each row element is a
sequence of column elements that contain typed data according to
a well-defined set of SQL to XML data type mappings. NULLs are
modeled as missing column elements, so the rows can be “ragged”,
as is most natural for XML.

Pushdown analysis looks at regions of the XQuery expression
tree that involve data that all comes from the same relational database
(which it can determine from the metadata associated with the phys-
ical data service functions). Things considered to be pushable to
SQL include clauses of the query compiler’s extended FLWOR ex-
pressions (e.g., ’for’, ’let’, ’where’, ’order by’, ’join’, ’group-by’),
constant expressions, certain XQuery functions and operators (in-
cluding logical operators, numeric and date-time arithmetic, vari-
ous string functions, comparison operations, aggregate functions,
and the sequence functions subsequence, empty, and exists), type-
cast and type constructor functions, if-then-else expressions, a sub-
set of quantified expressions that can be translated into semi- or
anti-semi-join operations, and filter expressions with numeric pred-
icates. Other expressions can first be evaluated in the XQuery run-
time engine and then pushed as SQL parameters (variables and ex-
ternal variables). Some notable non-pushable expressions include
XQuery node constructors, complex path expressions, expressions
on sequence types (instance of, typeswitch, castable), and explicit
validation. (Fortunately, explicit validation is rarely of interest, as
relational data is already typed upon entry into the ALDSP world.)

Space precludes an in-depth treatment of what happens during
SQL pushdown analysis and SQL generation. However, Tables 1
and 2 show an illustrative subset of the types of pushdowns that
come out of this query compilation phase. In each case, we show
a small XQuery snippet that accesses one or several tables from a
single relational database and we show the SQL that would be gen-
erated for the snippet. Actual SQL syntax generation during push-
down is done in a vendor/version-dependent manner, so in cases
where the syntax depends on that, we show Oracle SQL in the ta-
ble. ALDSP supports SQL generation for the common versions
of Oracle, DB2, SQL Server, and Sybase. For each one, the SQL

pushdown framework knows what functions are pushable (and with
what syntax), how outer joins are supported, where subqueries are
permitted, and so on. There is also a notion of a “base SQL92 plat-
form” – basically any other relational database – for which ALDSP
generates more conservative SQL92 queries. This enables ALDSP
to handle most all relational databases, varying in terms of the ag-
gressiveness of SQL pushdown based on its knowledge about the
specific relational database source in question.

4.5 Inverse Functions
Data services provide an abstraction so that applications can see

data in a clean, canonical, convenient form – quite possibly as
opposed to what might be most direct and efficient form for the
ALDSP layer to query and update. For example, suppose that we
wished to extend the customer information captured in the inte-
grated customer profile example of Figure 3 to include how long
each customer has been one of our customers. Further suppose that
the “customer since” date is stored in the physical customer table as
an integer column SINCE (holding the number of seconds since Jan-
uary 1, 1970) whereas the desired type of the customer profile’s
SINCE element is xs:dateTime to provide consistency with other
parts of the target XML applications. ALDSP allows externally
provided Java functions to be registered for use in queries, so the
data service developer could import an external function int2date

that performs the required data conversion and call it from within
the tns:getProfile() data service function body:

...
<tns:PROFILE>
<CID>{fn:data($CUSTOMER/CID)}</CID>
<LAST_NAME>{
fn:data($CUSTOMER/LAST_NAME)

}</LAST_NAME>
<SINCE>{ns1:int2date($CUSTOMER/SINCE)}</SINCE>
...

<tns:PROFILE>
...

This provides the desired result, but it does so at the expense
of interposing a function call that will be seen as a black box by
the compiler. To see why this is a problem, consider what would
happen to a query that selects customer profiles for those people
who became customers only after a given date $start:

for $c in tns:getProfile()
where $c/SINCE gt $start
return $c

After function inlining, this query would start with

for $c1 in ns3:CUSTOMER()
where ns1:int2date($c1/SINCE) gt $start
return <tns:PROFILE> ... </tns:PROFILE>

and the resulting where clause would not be SQL-pushable due to
the presence of the Java function.

ALDSP provides inverse function support to enable a developer
to declare another function date2int as the inverse of int2date and
register a transformation rule

(gt, int2date) → gt-intfromdate

where the right-hand side is an XQuery function that is imple-
mented as:

declare function f1:gt-intfromdate($x1 as xs:dateTime,
$x2 as xs:dateTime)

as xs:boolean?{
f1:date2int($x1) gt f1:date2int($x2)

};

1043

for $c in CUSTOMER()
where $c/CID eq "CUST001"
return $c/FIRST_NAME

for $c in CUSTOMER(),
$o in ORDER()

where $c/CID eq $o/CID
return
<CUSTOMER_ORDER>{

$c/CID, $o/OID
}</CUSTOMER_ORDER>

for $c in CUSTOMER()
return
<CUSTOMER>{
$c/CID,
for $o in ORDER()
where $c/CID eq $o/CID
return $o/OID

}</CUSTOMER>

↓ ↓ ↓

SELECT t1."FIRST_NAME" AS c1
FROM "CUSTOMER" t1
WHERE t1."CID" = "CUST001"

SELECT t1."CID" AS c1, t2."OID" AS c2
FROM "CUSTOMER" t1
JOIN "ORDER" t2
ON t1."CID" = t2."CID"

SELECT t1."CID" AS c1, t2."OID" AS c2
FROM "CUSTOMER" t1
LEFT OUTER JOIN "ORDER" t2
ON t1."CID" = t2."CID"

(a) simple select-project (b) inner join (c) outer join

for $c in CUSTOMER()
return
<CUSTOMER>{

if $c/CID eq "CUST001"
then $c/FIRST_NAME
else $c/LAST_NAME

}</CUSTOMER>

for $c in CUSTOMER()
group $c as $p by $c/LAST_NAME as $l
return
<CUSTOMER>{

$l,
count($p)

}</CUSTOMER>

for $c in CUSTOMER()
group by $c/LAST_NAME as $l
return $l

↓ ↓ ↓

SELECT CASE
WHEN t1."CID" = "CUST001"
THEN t1."FIRST_NAME"
ELSE t1."LAST_NAME"
END AS c1

FROM "CUSTOMER" t1

SELECT t1."LAST_NAME" AS c1,
COUNT(*) AS c2

FROM "CUSTOMER" t1
GROUP BY t1."LAST_NAME"

SELECT DISTINCT t1."LAST_NAME" AS c1
FROM "CUSTOMER" t1

(d) if-then-else (e) group-by with aggregation (f) group-by equivalent of SQL distinct

Table 1: Pushed Patterns (1)

for $c in CUSTOMER()
return
<CUSTOMER>

$c/CID,
<ORDERS>{

count(
for $o in ORDER()
where $o/CID eq $c/CID
return $o

)
}</ORDERS>

</CUSTOMER

for $c in CUSTOMER()
where

some $o in ORDERS()
satisifes $c/CID eq $o/CID

return $c/CID

let $cs:=
for $c in CUSTOMER()
let $oc := count(
for $o in ORDER()
where $c/CID eq $o/CID
return $o

)
order by $oc descending
return
<CUSTOMER>{
data($c/CID), $oc

}</CUSTOMER>
return
subsequence($cs, 10, 20)

↓ ↓ ↓ Oracle

SELECT t1."CID" AS c1,
COUNT(t2."CID") AS c2

FROM "CUSTOMER" t1
LEFT OUTER JOIN "ORDER" t2
ON t1."CID" = t2."CID"
GROUP BY t1."CID"

SELECT t1."CID" AS c1
FROM "CUSTOMER" t1
WHERE EXISTS(

SELECT 1
FROM "ORDERS" t2
WHERE t1."CID" = t2."CID")

SELECT t4.c1, t4.c2
FROM (
SELECT ROWNUM AS c3, t3.c1, t3.c2
FROM (
SELECT t1."CID" AS c1,

COUNT(t2."CID") AS c2,
FROM "CUSTOMER" t1
LEFT OUTER JOIN "ORDER" t2
ON t1."CID" = t2."CID"
GROUP BY t1."CID"
ORDER BY COUNT(t2."CID") DESC

) t3
) t4
WHERE (t4.c3 >= 10) AND (t4.c3 < 20)

(g) outer join with aggregation (h) semi join with quantified expression (i) subsequence() function

Table 2: Pushed Patterns (2)

1044

Based on this additional information, the optimizer will infer that

int2date(x) gt y ≡ date2int(int2date(x)) gt date2int(y)
≡ x gt date2int(y)

and the SQL pushdown framework will eventually be able to push
the selection condition to the source, e.g. as

SELECT * FROM "CUSTOMER" t1 WHERE (t1."SINCE" > ?)

where the ? parameter is the result of computing date2int($start)

in the ALDSP XQuery engine. User-defined transformations and
inverse functions constitute a powerful tool for such use cases, and
can be used for single- or multi-argument transformations (e.g., full
name versus first name and last name). Inverse functions are im-
portant both for SQL selection pushdown as well as for making
updates possible in the presence of such transformations.

5. QUERY EXECUTION
The basic structure of the ALDSP runtime system is very sim-

ilar to the one described in [11]. For incorporation in ALDSP, it
has undergone changes due to evolution in the XQuery working
draft between 2002 and 2004 (not discussed here) and the more
data-centric, externally-connected world that ALDSP is designed
to serve. Runtime system extensions driven by the new, data service
oriented requirements of ALDSP include improvements in process-
ing for larger volumes of data, more efficient handling of relational
data (as relational data sources are common), and the addition of
various features for handling slow or unavailable data sources. The
latter extensions include support for asynchronous (concurrent) ac-
cesses to external data sources, middle-tier caching to offload back-
end data sources and/or to reduce latency for service calls to slowly
changing sources, and failover support for slow or unavailable data
sources.

5.1 Data Representation
Central to the ALDSP runtime system is the XML token stream

originally described in [11]. The token stream provides an internal
streaming API (like SAX) for query processing that materializes
events (like StAX [12]). Unlike SAX or StAX, it represents the
full XQuery Data Model (not just InfoSet), and in ALDSP we al-
ways use the typed version of the token stream – each data source
adaptor feeds typed tokens into the ALDSP server runtime. More
details about BEA’s XML token stream representation and associ-
ated XML processing architecture can be found in [11].

To streamline the handling of relational data (as well as any other
“flat XML” data), ALDSP has extended the previous runtime with
several new ways to represent tuples. (Note that although XQuery
never actually produces tuples, as they are not XML serializable or
part of the data model, XQuery’s FLWOR variable bindings imply
support for tuples internally in the runtime.) The ALDSP runtime
supports three different tuple representations that are optimized for
specific use cases, and the optimizer decides which version to use
based on the nature of the usage at the point where they are needed.
Figure 4 shows the three different representations being used to
represent sequence of two tuples. The stream representation con-
sists of a (BeginTuple, EndTuple) pair that encloses the tuple con-
tent, and individual fields are separated by FieldSeparator. This
representation has fairly low memory requirements but it implies
expensive processing if some of the content of a tuple is needed
rarely or needs to be skipped over. The single token representation
represents the stream of tokens by a single Token; the stream rep-
resentation has to be extracted from the Token for processing when
needed. This representation has higher memory requirements and

has expensive processing if accessed, but is cheap when content
can be skipped. The array version represents the tuple as an array
of Tokens and is usable when every field can be represented by a
single Token, such as in the case of data entering ALDSP from re-
lational sources. It has higher memory requirements but provides
cheap access to all fields.

5.2 Plans and Operators
As described in [11], all runtime operators are realized as Token

Iterators. Token Iterators consume and produce Token Streams in
an iterative (and, if possible, streaming) way. ALDSP has added
several operators in support of data-centric use cases, with the ma-
jor ones being tuple-handling operators, a set of join operators, and
a grouping operator. Several special-purpose operators were also
added and will be mentioned in later subsections.

The tuple-handling operators that were newly added for ALDSP
are construct-tuple, extract-field, concat-tuples (to join two tuples
as a new, wider tuple), and extract-subtuple (which is essentially the
converse of concat-tuples). Since tuples are not part of the XQuery
Data Model and not visible at the user level, these operators are not
user-accessible. However, they are used heavily internally.

In the original BEA XQuery runtime, joins were expressed as
maps and were always performed via nested loops. The intro-
duction of traditional join operators allowed for easy introduction
of join processing knowledge into the XQuery engine. The cur-
rent join repertoire of ALDSP includes nested loop, index nested
loop, PP-k using nested loops, and PP-k using index nested loops.
(A modular join implementation allows for the use of any exist-
ing join method in PP-k.) It is important to note that SQL push-
down is also a join method of sorts – where possible, as explained
earlier, ALDSP aims to let underlying relational databases do as
much of the join processing as possible for data residing in them,
so the join operators in the runtime system are only for cross-source
joins (with the most performant one being PP-k using index nested
loops).

The ALDSP runtime has just one implementation of the group-
ing operator. The ALDSP grouping operator relies on input that
is pre-clustered with respect to the grouping expression(s). Its job
is thus to simply form groups while watching for the grouping ex-
pression(s) to change, indicating the start of the next group. If the
input would not otherwise be clustered, a sort operator is used to
provide the required clustering.

5.3 Adaptors
The ALDSP runtime supports data source adaptors to relational

sources, Web services, custom Java functions, and XML and delim-
ited files. Within the runtime, data from relational tables, views,
and stored procedures are moved into and out of SQL types us-
ing the JDBC API. For Web services, both document/literal and
rpc/encoded style Web services are supported. Data coming from
Web services is validated according to the schema described in their
WSDL in order to create typed token streams, and some special
processing (e.g., mapping of arrays) is performed for rpc/encoded
style services. For custom Java functions, data is translated to/from
standard Java primitive types and classes, and array support is in-
cluded. Finally, for files, XML schemas are required at file regis-
tration time, and are used to validate the data for typed processing
in ALDSP.

Data source invocation at runtime involves the following steps
for all source types:

1. Establish a connection to the physical datasource.

2. If invocation is parameterized, then translate parameters from

1045

Begin 100 "al" EndSep.

Tup

Begin 100 "al" EndSep.

Tup

100 "al"

Begin 50 "dsp" EndSep.

Tup

Begin 50 "dsp" EndSep.

Tup

50 "dsp"

... ...

...

Stream

Single Token Array

Figure 4: Tuple representations

the XML token stream to the data source data model.

3. Invoke the data source (execute SQL, call a stored procedure,
a Web service, etc.)

4. Translate the result into XML token stream form.

5. Release/close the physical connection.

5.4 Asynchronous Execution
For ALDSP queries, a large part of the overall query execution

time is usually the time to access external data sources. This time
can be spent on the network (e.g., when invoking remote Web ser-
vices) or processing data inside an external data source (e.g., an
RDBMS). To allow large latencies to be overlapped – e.g., to al-
low several independent Web service calls to occur in parallel –
ALDSP extends the built-in XQuery function library with a func-
tion that provides XQuery-based control over asynchronous execu-
tion. With the extension, a query writer can indicate which parts
of his or her query should potentially be executed asynchronously
from the main query execution thread using a built-in function

fn-bea:async($slow-expr as item()*) as item()*

The argument to fn-bea:async is an XQuery expression that can
be executed on another thread.

5.5 Function Cache
Another potential solution for coping with slow (or expensive)

data sources is caching. ALDSP provides data service designers
and administrators with a means to ask the system to cache the re-
sults of selected data service function invocations. A data service’s
designer has the ability to indicate statically, given their knowl-
edge of the nature and the semantics of the data service, whether or
not to permit caching to ever be used on its data service functions.
When allowed, caching can then be enabled administratively with
a specified TTL (time to live) on a selected data service function.
The ALDSP mid-tier cache can be thought of as a persistent, dis-
tributed map that maps a function and a set of arguments values
to the corresponding function result. If a data service function has
caching enabled and the result of a given invocation is found in the
cache and is not stale, it is used; if a cache miss occurs, the function
call occurs and its result is both cached and returned to the caller.

The current cache implementation employes a relational database
to achieve persistence and distribution in the context of a cluster of
ALDSP servers. It is important to notice that ALDSP’s cache is a
function cache – rather like a Web service cache – so it is appropri-
ate for use in turning high latency data service calls (e.g., involving
a slow Web service, a very heavily loaded backend, or some other
expensive computation) into single-row database lookups, which
gives some indication of the use cases where caching may be ap-
propriate. Also, the ALDSP cache is not a queryable, materialized

view – it is a map. Additional caching capabilities are currently
under consideration.

5.6 Failover
In a distributed world, especially in a world with Web services

and potential downtimes or periods of high load, data sources can
sometimes be too slow or unavailable. In such cases, for some ap-
plications, an incomplete but fast query result may be preferable to
a complete but slow query result (or to no query result). Addition-
ally, data sources can sometimes contain redundant information,
so there can be an alternate data source worth trying for missing
information in some applications. As a general means to address
all of these considerations and potential desires, ALDSP provides
XQuery-based control over how long to wait for an expression eval-
uation to finish. Users can thus handle unavailable or too slow data
sources using built-in functions:

fn-bea:fail-over($prim-expr as item()*,
$alt-expr as item()*) as item()*

and

fn-bea:timeout($prim-expr as item()*,
$millis as xs:integer,
$alt-expr as item()*) as item()*

The first function, fn-bea:fail-over, takes two arguments, a pri-
mary expression and an alternate expression, both of which can
be any legal XQuery expression. If the evaluation of $prim-expr

succeeds, its result is returned, but if the evaluation fails at any
point before the end of the query, the result of evaluating the alter-
nate expression $alt-expr is returned instead. The second func-
tion, fn-bea:timeout, is similar, but it takes a time argument as
well. If the evaluation of $prim-expr succeeds in less than $millis

milliseconds, the result is returned, but if the evaluation fails or
takes more than $millis milliseconds, then the result of evalua-
tion $alt-expr is returned instead. The function fn-bea:timeout

is well-suited for handling both slow and unavailable data sources
uniformly, as in any event, when the time is up, the system fails
over to the alternate expression. In both cases, if a partial result is
desired, the empty sequence (()) can be returned as the alternate.

6. UPDATES
ALDSP utilizes Service Data Objects [8] (a.k.a. SDO), to sup-

port updates as well as reads for data obtained from data services.
The ALDSP APIs allow client applications to invoke a data ser-
vice, operate on the results, and then put the data back in order to
capture the changes made after the data was obtained. Figure 5
shows a small ALDSP Java mediator API code fragment to illus-
trate this SDO programming pattern. SDO offers both typed and
untyped client-side programming models for application develop-
ers to use in navigating and updating XML data. When updates

1046

PROFILEDoc sdo = ProfileDS.getProfileById("0815");
sdo.setLAST_NAME("Smith");
ProfileDS.submit(sdo);

Figure 5: Use of SDO in Java

affect an SDO object, such as changing the last name field in the
small example here, the affected SDO object tracks the changes.
When a changed SDO is sent back to ALDSP, what is sent back is
the new XML data plus a serialized “change log” identifying the
portions of the XML data that were changed and what their previ-
ous values were. ALDSP examines the change log and determines
how to propagate the changes back to the underlying physical data
sources. Unaffected data sources are not involved in the update,
and unchanged portions of affected sources’ data are not updated.

Change propagation requires ALDSP to identify where changed
data originated – its lineage must be determined. ALDSP performs
automatic computation of the lineage for a data service from the
query body of the data service function designated by the data ser-
vice designer as being its lineage provider. (By default this is the
first function, and should be the “get all” function if there is one.)
Space precludes provision of much detail here, but the computa-
tion is performed by a specialized rule set driven by the same rule
engine used for the XQuery optimizer. Primary key information,
query predicates, and query result shapes are used together to de-
termine which data in which sources are affected by a given update.
Also, as alluded to earlier, ALDSP includes inverse functions in
its lineage analysis, enabling updates to transformed data when in-
verses are provided. As an example, for the customer profile update
in Figure 5, the SDO object returned to ALDSP will indicate that
only LAST_NAME has changed. Lineage analysis will determine that
the underlying source for LAST_NAME is the CUSTOMER physical data
service, and the update will be propagated only to that source. The
other sources involved in the customer profile view are unaffected
and will not participate in this update at all.

Each data service has a submit method that is called to submit a
changed SDO or set of SDOs back to ALDSP, and the unit of up-
date execution is a submit call. In the event that all data sources are
relational and can participate in a two-phase commit (XA) protocol,
the entire submit is executed as an atomic transaction across the af-
fected sources. Since objects are read in one transaction, operated
on, and then re-submitted later, ALDSP supports optimistic con-
currency options that the data service designer can choose from in
order to have the system decide if a given set of changes can safely
be submitted. Choices include requiring all values read to still be
the same (at update time) as their original (read time) values, requir-
ing all values updated to still be the same, or requiring a designated
subset of the data (e.g., a timestamp element or attribute) to still be
the same. ALDSP uses this in the relational case to condition the
SQL update queries that it generates (i.e., the sameness required is
expressed as part of the where clause for the update statements sent
to the underlying sources). ALDSP also provides an update over-
ride facility that allows user code to extend or replace ALDSP’s
default update handling [13].

7. SECURITY
ALDSP provides a flexible, fine-grained access control model

for data services. Access control is available both on data ser-
vice functions (specifying who is allowed to call what) and on
the schemas of the return types of data service functions (permit-
ting much finer control). Authentication and authorization ser-
vices are provided by the BEA WebLogic Server security frame-

work, which also permits third-party security plug-ins to be uti-
lized. From a query processing standpoint, it is the fine-grained,
element/attribute-level access control functionality of ALDSP that
is the most interesting. For this, an individual subtree in a data
shape returned by a data service may be represented as a labeled
security resource. A security service administrator can then control
the access policy for this resource. Unauthorized accessors will
either see nothing (the data may be silently removed, if the pres-
ence of the subtree is optional in the schema) or they will see an
administratively-specified replacement value.

In terms of query processing and caching, fine-grained security
filtering occur at a fairly late stage of query processing. This is
done so that compiled query plans and function results can still
be effectively cached and reused across different users in ALDSP,
even when fine-grained security is active. Function result caching
is done before security filters have been applied, thereby making
the cache effective across users; security filtering is applied to the
results obtained in the event of a cache hit. In addition to access
control, the ALDSP runtime has a fairly extensive set of auditing
capabilities that utilize an auditing security service. Auditing can
be administratively enabled in order to monitor security decisions,
data values, and other operational behavior at varying levels of de-
tail [13].

8. RELATED SYSTEMS
Too little can be said about related systems in the space remain-

ing, but we point out several of the highlights here. ALDSP’s her-
itage can be traced through many years of work in the database
research community on distributed databases, heterogeneous dis-
tributed databases, federated databases, and multidatabases. It was
actually inspired, however, by watching real users of real commer-
cial integration solutions – mostly of the workflow or process or-
chestration variety – struggle to use those products to create what
amount to distributed query plans by hand in order to serve bits
of data from disparate sources up to applications, such as portals,
that need it in real-time. In terms of the literature, ALDSP is most
closely aligned with the pioneering work on the Functional Data
Model [14] and the MultiBase federated database system [15] that
first used it to solve a similar problem across relational and net-
work databases approximately twenty-five years ago. We differ in
applying modern XML technologies to the problem (XML, XML
Schema, and the functional query language XQuery), which al-
lows us to enjoy a “free ride” on the Web services and SOA waves
that are causing all sorts of applications to be functionally acces-
sible through open standard Web service APIs. Despite these dif-
ferences, however, and the more coarse-grained nature of our ap-
proach, we were definitely influenced by the “everything is a func-
tion” model and its uncanny applicability to today’s SOA universe.

In terms of other commercial systems, ALDSP is loosely related
to virtual relational database based data integration products such
as IBM’s WebSphere Information Integrator [16], the Composite
Information Server from Composite Software [17], and MetaMa-
trix Enterprise [18]. ALDSP is related to these products in that they
are also aimed at composition of data across sources. However, it
is only loosely related to them, as all three have taken a relational
approach to the problem and then glued a degree of service support
on the bottom (to consume data from services) as well as on the top
(to create tagged/nested XML as data is on its way out of the sys-
tem). This relational plus XML/service glue approach is awkward
for modeling services (e.g., an order management system) that re-
turn nested XML documents as results; normalizing rich services
into tabular views causes usability problems in several dimensions.
Also, while the glue approach allows XML results to be returned,

1047

the resulting services are neither efficiently composable nor effi-
ciently queryable when this approach is used to create them. Sev-
eral other vendors offer XQuery-based query engines that can ac-
cess data from multiple sources, e.g., Software AG [19], DataDi-
rect [20], and Ipedo [21], but none offers data service modeling or
supports both reads and updates in the manner that ALDSP does.

9. CONCLUSION
In this paper, we have provided a technical tour of the BEA

AquaLogic Data Services Platform from a query processing per-
spective. We have explained the world model that the product is
based on, provided an overview of its architecture and features,
and then discussed its query compiler, optimizer, and runtime sys-
tem in more detail. The goal of the paper is to raise awareness and
educate our colleagues in academic and industrial research about
BEA’s unique approach to data in the SOA world – i.e., data ser-
vices – and about our extensive use of XQuery as a declarative
foundation to support the creation, optimization, and efficient ex-
ecution of data services. This is essentially a companion paper to
[7]; that paper offers a much broader overview of ALDSP from
a user’s point of view, but contains little information about how it
works inside. In contrast, we hope that the material presented in the
present paper will be of interest and use to XML query processing
enthusiasts in both academia and industry. Readers curious about
performance aspects of ALDSP may be interested in [22].

Like any system, ALDSP is a work in progress. We have a
number of extensions on the roadmap for the ALDSP product. In
the query processing area, future plans include additional work on
query optimization and on support for new data sources. With re-
spect to query optimization, we are starting work on an observed
cost-based approach to optimization and tuning; the idea is to skip
past “old school” techniques that rely on static cost models and
difficult-to-obtain statistics, instead instrumenting the system and
basing its optimization decisions (such as evaluation ordering and
parallelization) only on actually observed data characteristics and
data source behavior. We are also planning support for “hints”,
but not for hints about physical operators; in a world with layers
of abstraction, we need declarative hints that can survive correctly
through layers of views and associated query rewrite optimizations.
Finally, with respect to data source support, we have begun the
creation of an extensible pushdown framework for use in teach-
ing the ALDSP query processor to push work down to queryable
data sources such as LDAP and/or to non-relational mainframe data
sources; support for pushing work to queryable XML data sources
is also on our long-term roadmap.

10. ACKNOWLEDGMENTS
Any large software product is necessarily a team effort. The au-

thors would like to acknowledge the efforts of the entire ALDSP
team at BEA, both present and past, for their contributions to cre-
ating, testing, and documenting the system described here.

11. REFERENCES
[1] G. Wiederhold, P. Wegner, and S. Ceri. Towards

mega-programming. Communications of the ACM,
11(35):89–99, 1992.

[2] M. Huhns and M. Singh. Service-oriented computing: Key
concepts and principles. IEEE Internet Computing,
1(9):75–81, 2005.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services: Concepts, Architectures, and Applications.
Springer-Verlag, Berlin/Heidelberg, 2004.

[4] M. Singh and M. Huhns. Service-Oriented Computing:
Semantics, Processes, Agents. Wiley, West Sussex, England,
2005.

[5] M. Carey. Data services: This is your data on SOA. Business
Integration Journal, Nov/Dec 2005.

[6] V. Borkar, M. Carey, N. Mangtani, D. McKinney, R. Patel,
and S. Thatte. XML data services. International Journal of
Web Services Research, 1(3):85–95, 2006.

[7] M. Carey and the AquaLogic Data Services Platform Team.
Data delivery in a service-oriented world: The BEA
AquaLogic data services platform. In Proc. of the ACM
SIGMOD Conf. on Management of Data, Chicago, IL, 2006.

[8] K. Williams and B. Daniel. An introduction to service data
objects. Java Developer’s Journal, October 2004.

[9] W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/2004/WD-xquery-20040723/, July
2004.

[10] P. Reveliotis and M. Carey. Your enterprise on XQuery and
XML schema: XML-based data and metadata integration.
Proc. of the 3rd Int’l. Workshop on XML Schema and Data
Management (XSDM), April 2006.

[11] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. Carey, and A. Sundararajan. The BEA
streaming XQuery processor. The VLDB Journal,
13(3):294–315, 2004.

[12] R. Benson. JSR 173: Streaming API for XML.
http://jcp.org/en/jsr/detail?id=173.

[13] BEA Systems, Inc. BEA AquaLogic Data Services
PlatformTM 2.1.
http://edocs.bea.com/aldsp/docs21/index.html.

[14] D. Shipman. The functional data model and the data
language DAPLEX. ACM Transactions on Database
Systems, 6(1):140–173, 1981.

[15] U. Dayal. Query Processing in Database Systems, chapter
Query Processing in a Multidatabase System, pages 81–108.
Springer-Verlag, New York, 1985.

[16] L. Haas, E. Tien Lin, and M. Tork Roth. Data integration
through database federation. IBM Systems Journal,
41(4):578–596, 2002.

[17] Composite Information Server.
http://www.compositesoftware.com/products/cis.shtml.

[18] R. Hauch, A. Miller, and R. Cardwell. Information
intelligence: metadata for information discovery, access, and
integration. In Proc. of the ACM SIGMOD Conference on
Management of Data, pages 793–798, Baltimore, Maryland,
U.S.A., 2005. ACM Press.

[19] T. Fiebig and H. Schöning. Software AG’s Tamino XQuery
Processor. In Proc. of the First Int’l. Workshop on XQuery
Implementation, Experience and Perspectives <XIME-P/>,
pages 19–24, 2004.

[20] DataDirect XQuery.
http://www.datadirect.com/products/xquery/.

[21] Ipedo XIP. http://www.ipedo.com/html/ipedo xip.html.
[22] BEA Systems, Inc. BEA AquaLogic Data Services Platform

Performance: A benchmark-based case study.
http://www.bea.com/content/news events/white papers/
BEA ALDSP Perf Study wp.pdf, December 2005.

1048

