
Efficient Discovery of XML Data Redundancies ∗

Cong Yu
Department of EECS
University of Michigan

congy@eecs.umich.edu

H. V. Jagadish
Department of EECS
University of Michigan

jag@eecs.umich.edu

ABSTRACT
As XML becomes widely used, dealing with redundancies in
XML data has become an increasingly important issue. Re-
dundantly stored information can lead not just to a higher
data storage cost, but also to increased costs for data transfer
and data manipulation. Furthermore, such data redundancies
can lead to potential update anomalies, rendering the database
inconsistent.

One way to avoid data redundancies is to employ good
schema design based on known functional dependencies. In
fact, several recent studies have focused on defining the notion
of XML Functional Dependencies (XML FDs) to capture XML
data redundancies. We observe further that XML databases
are often “casually designed” and XML FDs may not be de-
termined in advance. Under such circumstances, discovering
XML data redundancies (in terms of FDs) from the data it-
self becomes necessary and is an integral part of the schema
refinement process.

In this paper, we present the design and implementation of
the first system, DiscoverXFD, for efficient discovery of XML
data redundancies. It employs a novel XML data structure
and introduces a new class of partition based algorithms. Dis-
coverXFD can not only be used for the previous definitions
of XML functional dependencies, but also for a more compre-
hensive notion we develop in this paper, capable of detecting
redundancies involving set elements while maintaining clear
semantics. Experimental evaluations using real life and bench-
mark datasets demonstrate that our system is practical and
scales well with increasing data size.

1. INTRODUCTION
Redundant data takes up unnecessary storage, inflates data

transfer cost, and can lead to update anomalies. A central
goal of database design is to ensure that there are no unin-
tended redundancies. As XML databases have become more
common, good design of XML schema has become increas-
ingly important, especially in scientific databases with com-
plex structures. Furthermore, one of the benefits of XML
(whether intended or not) is the ease of generating XML data:
compared with relational data, XML data can be created by
ordinary users (e.g. individual scientists) with minimal train-
ing in database schema design. Such casual design of XML

∗Supported in part by NSF under grant IIS-0438909.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

schema is likely to lead to many data redundancies in the
resulting XML databases1. Discovery of redundancies and
schematic constraints based on the data will provide the crit-
ical first step for analyzing and refining such schemas.

The notion of functional dependency (FD) plays a central
role in defining redundancies [8] in relational databases, and
should play a correspondingly important role in XML databases
as well. Although similar to their relational counterparts, re-
dundancies in XML data have several distinct features due
to the heterogeneous nature of XML data. In consequence,
standard relational FD discovery algorithms are both inef-
ficient and insufficient to find all XML FDs. (This is true
whether we consider classic relational FD discovery algorithms
such as [17], or more recent proposals such as Dep-Miner[16],
TANE[13], and FUN[20]). In this paper, we develop a new
algorithm DiscoverXFD, for efficient discovery of XML FDs
and data redundancies.

The notion of XML functional dependency (XML FD), and
the related notion of XML normal form, have recently be-
come an important research topic. In [3], Arenas and Libkin
adopted a tuple based approach and were the first to formally
define XML FD and Normal Form. In [14, 24], the authors
took a path based approach and built their XML FD notion
in a fashion similar to the XML Key notion proposed in [5].
In this paper, we show that these XML FD notions are insuf-
ficient, and propose a generalized tree tuple based XML FD
notion that can fully capture XML data redundancies with
unambiguous semantics. Our algorithm, DiscoverXFD, can
find all XML FDs in accordance with either of the previous
definitions, or according to our new, more general, definition.

Consider the example XML document in Figure 1, which
maintains information about books sold at various book stores
within a book warehouse, grouped by states. Each store records
its contact information and the books it is selling, and for each
book, the ISBN, author, title, and price are maintained. Two
intuitive constraints, which the example satisfies, are the fol-
lowing: two books with the same ISBN must have the same
title and the same set of authors; and likewise, two books
with the same set of authors and the same title must share
the same ISBN. Both constraints cause some information in
the XML document to become redundant (e.g., the title DBMS
and the set of authors Ramakrishnan and Gehrke are stored
multiple times for ISBN 0072465638, and vice versa). One
important characteristic that distinguishes such XML redun-
dancies from their relational counterparts is the involvement
of set elements: it is the set of authors, rather than an indi-
vidual author, that are being compared and duplicated. This
class of FDs is not covered by the definitions in [3] and [24]. A
third constraint is equally interesting: for any two books sold
at the same store chain (i.e., stores with the same name), if

1Anecdotal examples include some large, heavily used com-
munity resources, such as PIR [1].

103

warehouse[1]

store[12]

book[20]

ISBN[21]=
0072504269

author[22]=
Post

title[23]=
DBMS

price[24]=
126.99

name[14]
=Borders

address[15]=
Seattle

book[30]

author[32]=
Ramakrishnan

title[34]=
DBMS

price[35]=
79.90author[33]=

Gehrke

ISBN[31]=
0072465638

store[42]

book[50]

ISBN[51]=
0072465638

author[52]=
Ramakrishnan

title[54]=
DBMS price[55]=

79.90

name[44]
=Borders

author[53]=
Gehrke

address[45]=
Lexington

…… …

state[10]

store[72]

name[11]
= WA

name[74]
=WH Smith

…

address[75]
= Lexington

book[80]

ISBN[81]=
0072465638

author[82]=
Ramakrishnan

title[84]=
DBMS

 author[83]=
 Gehrke

state[40]

name[41]
= KY

…

contact[13]

…

contact[43]
contact[73]

…

Figure 1: Example XML document (warehouse). Each node is assigned a key in the bracket, and the dashed boxes isolate

data elements that correspond to complex set elements in the schema (Figure 2).

they have the same ISBN, they will be sold at the same price.
The price 79.90 of book 0072465638, therefore, is stored
redundantly for the store chain Borders (one in Seattle
and the other in Lexington). Such a redundancy is special
in that while it is the books on which the comparison is spec-
ified, the constraint actually involves an element (i.e., store
name) that is not a descendant of book.

Main contributions and paper outline: We make the
following main contributions: I. We study the examples of
redundancy-indicating constraints in the XML data model
(Section 2.2) and show that existing XML FD notions are in-
sufficient for capturing certain XML data redundancies (Sec-
tion 2.3). II. We propose a new generalized tree tuple based
XML FD notion, which improves upon the notion introduced
in [3]. We show that more XML data redundancies can now be
effectively captured by interesting XML FDs (Section 3). III.
We design and implement the DiscoverXFD system, which em-
ploys a new XML data structure and several novel partition-
based algorithms that can efficiently discover XML FDs and
detect XML data redundancies (Section 4); IV. We demon-
strate the scalability and practicality of DiscoverXFD using
a benchmark dataset and a variety of real life datasets (Sec-
tion 5). We first present some necessary background.

2. BACKGROUND AND CHALLENGES

2.1 Schema and Data Tree
Figure 2 illustrates the schema of the example XML docu-

ment in Figure 1. It is shown in a nested relational represen-
tation [22] that is used as a common data model to represent
both relational and hierarchical (XML) schemas. Intuitively,
keyword Rcd is used to indicate complex schema elements (i.e.,
elements that have child elements, e.g., contact), and key-
word SetOf is used to indicate set schema elements (i.e., ele-
ments that can have multiple matching data elements sharing
the same parent in the data, e.g., book). A set element is
not necessarily complex: e.g., author is a set element with a
domain of string (str). Formally:

Definition 1 (Schema). A schema is defined to be S =
〈E, T, r〉, where:
− E is a finite set of element labels;
− T is a finite set of element types, and each e ∈ E is asso-

ciated with a τ ∈ T , written as (e : τ), τ has the form:
τ ::= str | int | float | SetOf τ | Rcd[e1 : τ1, ..., en : τn]

| Choice[e1 : τ1, ..., en : τn];
− r ∈ E is the label of the root element, whose associated

element type can not be SetOf τ .

Definition 1 corresponds to the “core” constructs in XML
Schema [25]. Types str, int, and float are system defined simple
types. Rcd and Choice are complex types representing the “all”
and “choice” model-groups in XML, respectively2. Type SetOf
is the set type associated with elements with maxOccurs
greater than one in XML Schema. We ignore element order
and represent the “sequence” model-group as the Rcd type.
For simplicity, we treat attributes and elements in the same
way, with a reserved “@” symbol to indicate attributes. For
mixed-content elements, if there is exactly one textual value,
we store it under a distinct new attribute “@value.” Other-
wise, we ignore the textual values and treat the mixed-content
elements as regular complex elements.

A schema element ek can be identified through a path ex-
pression, path(ek) = /e1/e2/.../ek, where e1 = r, and ei

is associated with type τi ::= Rcd[..., ei+1 : τi+1, ...] for all
i∈[1, k − 1]. Furthermore, if ek is a set element, we call
path(ek) a repeatable path. We do not consider path(ek) to
be a repeatable path if ek is not a set element, even if some
ei(i < k) is a set element. For convenience, we adopt XPath
steps “.” (self) and “..” (parent) to form relative paths with
regard to a given path. For example, if the given path is
/warehouse/state/store, the relative path ../name has
the absolute path /warehouse/state/name.

Definition 2 (Data Tree). An XML database is
defined to be a rooted labeled tree T = 〈N,P,V, nr〉, where:
− N is a set of labeled data nodes, each n ∈ N has a label e

2While the definitions and algorithms throughout the rest of
paper handle both types, we largely omit the “choice” type
for the simplicity of discussion.

104

warehouse: Rcd
state: SetOf Rcd

name: str
store: SetOf Rcd

contact: Rcd
name: str
address: str

book: SetOf Rcd
isbn: str
author: SetOf str
title: str
price: str

Figure 2: Example schema for Figure 1.

and a node key that uniquely identify it in T ;
− nr ∈ N is the root node;
− P is a set of parent-child edges, there is exactly one p =

(n′, n) in P for each n ∈ N (except nr), where n′ ∈ N, n �= n′,
n′ is called the parent node, n is called the child node;
− V is a set of value assignments, there is exactly one v =

(n, s) in V for each leaf node n ∈ N , where s is a value of
simple type.

In Figure 1, node keys are assigned in pre-order traversal
(gaps in the numbering indicate omitted elements), and we
use “@key” to refer to the node keys. Parent-child edges are
represented as directed lines between two data nodes (with
arrow pointing to the child node). Value assignments are rep-
resented as equality between the node label and the value. We
adopt the notion of conformance as defined in [25] and assume
that all given data trees conform to their schemas.

A node (or data element) nk is a descendant of another node
n1 if there exists a series of nodes ni, such that (ni, ni+1) ∈P
for all i∈[1, k-1]. Similar to schema elements, nk can also
be addressed using a path expression, path(nk) = /e1/.../ek,
where ei are labels of ni for all i∈[1, k], n1 = nr, and (ni, ni+1)
∈P for all i∈[1, k-1]. Clearly, it is possible that two distinct
data nodes will have the same path (e.g., node 11 and node
41). Furthermore, nk is called repeatable if ek corresponds
to a set element in the schema. Finally, nk is called a direct
descendant of node na, if nk is a descendant of na, path(nk) =
.../ea/e1/.../ek−1/ek, and ei is not a set element for any i ∈
[1, k-1]. For example, node 21 (ISBN) is a direct descendant
of node 20 (book), but not node 12 (store).

In considering data redundancy, it is also important to de-
termine the equality between the “values” associated with two
data nodes (as proposed in [5]), instead of comparing their
“identities” (as represented by @key):

Definition 3 (Node-Value Equality). Two data
nodes n1 of T1 = 〈N1,P1,V1, nr1〉, and n2 of T2 = 〈N2,P2,
V2, nr2〉 are node-value equal (written as n1 =nv n2) iff:
− n1 and n2 both exist and have the same label;
− There exists a set M of matching pairs: each pair m =

(n′
1, n

′
2) indicates that n′

1 =nv n′
2, where n′

1, n′
2 are child nodes

of n1, n2, respectively. All child nodes of n1 (n2) participate
in M and each child node participates in only one such pair.
− (n1, s)∈V1 iff (n2, s)∈V2, where s is a simple value.

Intuitively, two data nodes (e.g., node 30 and 50) are node-
value equal iff the two subtrees rooted at the two nodes are
identical without considering the order among sibling nodes.
Because data nodes can also be addressed by paths, we define
the path-value equality based on Definition 3:

Definition 4 (Path-Value Equality). Given paths p1

on T1 = 〈N1,P1,V1, nr1〉, and p2 on T2 = 〈N2,P2,V2, nr2〉,
p1, p2 are path-value equal (written as T1.p1 =pv T2.p2) iff:

for T1, for each n1, n1∈N1, path(n1) = p1, there exists corre-
sponding n2, n2∈N2, path(n2) = p2, n1 =nv n2, vice versa for
T2, and the correspondence is one-on-one.

Value equality between two paths is complicated by the fact
that a single path can match multiple nodes in a data tree.
Definition 4 requires that, for two paths to be considered value
equal, each node that is pointed to by one path must have a
corresponding node that is pointed to by the other path, where
the two nodes are node-value equal.

2.2 Example XML Data Redundancies
We now illustrate data redundancies that can be caused

by constraints on the XML data and describe the features of
those redundancy-indicating constraints. All the examples are
based on the data tree in Figure 1.

Constraint 1. Whenever two books (e.g., nodes 30 and
50) agree on their ISBN values, they will have the same title.

It is clear that Constraint 1 leads to redundancies if there
are two distinct books in the data with the same ISBN value:
their titles are redundantly stored. Intuitively, such XML con-
straints consist of three components. First, target elements,
which is the set of data elements (e.g., the books) on which the
constraints are imposed. Second, condition elements, which
are the elements (e.g., ISBN) specified in the condition of the
constraint. Third, implication elements, which are the ele-
ments (e.g., title) whose equality is implied if the condition
is met. It is worth noting that not all constraints correspond
to redundancies. For example, if each distinct book in the
data has a unique ISBN value, then Constraint 1 will not
result in any redundancy. We will explore the properties of
redundancy-indicating constraints later in Section 3.3.

Constraint 1 is straight-forward because both ISBN and title
are subelements of book, and each book has exactly one ISBN
and one title. However, constraints on XML data can become
more complicated. Consider:

Constraint 2. Whenever two books are on sale at stores
with the same name, if they agree on their ISBN values, they
will have the same price.

Again, Constraint 2 indicates redundancies if there exist
two distinct books that share the same ISBN value and that
are being sold at the same store or at two stores with the
same name. More importantly, Constraint 2 illustrates two
important features for XML constraints. First, constraints
can involve elements from multiple hierarchies. In this case,
while the target elements are the set of books, the condition
elements include not only a descendant element of book (i.e.,
title), but also a store name element that is neither ances-
tor nor descendant of book. Second, constraints can involve
missing elements. Often, either the condition elements or the
implication elements can be missing in the data instances. For
example, the price of the book node 80 is not recorded. The
following constraints illustrate yet another important feature
of XML constraints:

Constraint 3. Whenever two books agree on their ISBN
values, they have the same set of authors.

Constraint 4. Whenever two books share the same set of
authors and the same title, they agree on their ISBN values.

Constraints 3 and 4 indicate redundancies if there are two
distinct books (e.g., book nodes 30 and 50) in the data with
either the same ISBN values, or the same title values and the
same set of author values. Most importantly, it is not any
individual author, but rather the set of authors, that are be-
ing compared or redundantly stored because each book has

105

warehouse[1]

store[12]

name[14]
= Borders

address[15]=
Seattle

book[30]

author[32]=
Ramakrisnan

title[34]=
DBMS

price[35]=
79.90

ISBN[31]=
0072465638

state[10]

name[11]
= WA

contact[13]

warehouse[1]

store[12]

name[14]
= Borders

address[15]=
Seattle

book[30]

author[32]=
Ramakrishnan

title[34]=
DBMS

price[35]=
79.90

author[33]=
Gehrke

ISBN[31]=
0072465638

state[10]

name[11]
= WA

contact[13]

A B

Figure 3: (A) Original tree tuple example, and (B) Gen-

eralized tree tuple example (book 30 is the pivot node).

a set of authors. The third important feature of XML con-
straints, therefore, is the involvement of set elements: that
each condition or implication element specification can, and
often, resolve to a set of elements.

2.3 Previous Proposals
The above constraints are essentially intuitive forms of func-

tional dependencies (FDs). To capture redundancies indicated
by those constraints, formal definitions of XML FD have been
proposed and follow two main approaches: path based ap-
proach and tuple based approach. They differ in how the tar-
get elements of the constraint are specified: the former implic-
itly encodes the target elements inside the FD specification,
while the latter specifies the target elements independent of
each individual FD specification.

Path based approach: Proposed by Vincent et al, [24]
is representative of the path based approach. An XML FD
is of the form: {Px1 , . . . , Pxn} → Py, where Pxi (also called
LHS) are the paths specifying the condition elements, Py (also
called RHS) is the path specifying the implication element,
and the target elements are implicitly specified as the set of el-
ements pointed to by Py. For example, Constraint 1 can be ex-
pressed as: {/warehouse/ state/store/book/ISBN} →
/warehouse/state/store/ book/title. Without going
into details, the semantics of the FD are intuitively defined
as the following: for any two distinct title nodes in the data
tree, if the ISBN nodes they are associated with have the same
value, then the title nodes themselves have the same value. A
title node and an ISBN node are associated if they are the
descendants of the same book node (book is chosen because
its path is the longest common prefix of both title and ISBN).
For example, the FD is satisfied in Figure 1 because for any
two titles (e.g., title 34 and 54), if their associated ISBNs (e.g.,
ISBN 31 and 51, respectively) share the same value, they have
the same value as well.

Tuple based approach: In [3], Arenas and Libkin pro-
posed the first formal XML FD notion based on the concept
of tree tuples. Instead of specifying target elements from each
individual FD as in [24], a set of tree tuples is defined indepen-
dent of any FD and serves as the target for all FDs. Each tree
tuple is a tree constructed by picking exactly one data node
from the original data tree for each schema element and pro-
jecting away all the other nodes. Figure 3(A) illustrates one
such tree tuple. XML FDs are subsequently defined based on

this tree tuple notion and take a form similar to the one in the
path based approach. For example, Constraint 2 can be ex-
pressed as: {/warehouse/state/store/contact/name,
/warehouse/state/store/book/ISBN}→ /warehouse/
state/store/book/price. The semantics of the FD is de-
fined as the following: for any two tree tuples, if they have the
same values at the nodes specified in the LHS of the FD (i.e.,
the name and ISBN nodes), they will share the same values
at their RHS nodes (i.e., the price nodes). It is worth noting
that, if the original XML data tree is viewed as a set of nested
relations [4], the set of tree tuples is conceptually equivalent
to the set of fully unnested tuples. Compared with path based
approach, tuple based XML FD notion has a semantics that
is closer to the relational FD notion. It also suggests a nat-
ural technique for XML FD discovery: one can convert the
XML data into a fully unnested relation and apply existing
FD discovery algorithms directly.

Discussion: Both [24] and [3] effectively capture multi-
hierarchical constraints like Constraint 2. In the former, ele-
ments from different hierarchies are associated with each other
through the common ancestor node. In the latter, they are
connected by belonging to the same tree tuple. Both propos-
als also adopt a similar semantics for missing elements, which
roughly corresponds to the strong satisfaction of FD over in-
complete relations as defined in [4].

However, neither notion can effectively capture constraints
with set elements. Consider Constraint 3 for Figure 1. The
closest form to which it can be expressed under both [24] and
[3] is the following: {/warehouse/state/store/book/
ISBN} → /warehouse/state/store/book/author. It is
not difficult to see that the semantics of this FD under ei-
ther notion are not the same as the semantics of the original
constraint. The semantics under [24] are that for any two au-
thors, if they are associated with the same ISBN value, their
values are the same. Under this semantics, the FD is violated
since book 30 has two authors of different values and the two
authors are clearly associated with the same ISBN value. The
semantics under [3] are that for any two tree tuples, if their
ISBN nodes share the same value, then they have the same
value for their author nodes. According to the construction
of tree tuple, author 32 and author 33 belong to two different
tree tuples. Since the ISBN nodes of the two tuples have the
same value while the author nodes of the two tuples differ,
the FD is again violated. The original constraint, however,
is satisfied in Figure 1: two books with the same ISBN value
always have the same set of authors. In the next section, we
proposed generalized tree tuple based XML FD notion that
overcomes the semantic limitations the previous notions have
in expressing constraints with set elements.

3. CAPTURING XML DATA REDUNDANCY
While both tuple and path based approaches are valid ways

for defining XML FDs, the tuple based approach has a clearer
semantics and is conceptually similar to the relational FD no-
tion. As such, we choose to follow the tuple based approach.
In Section 3.1, we introduce the notion of generalized tree tu-
ple (GTT), which improves upon the tree tuple notion in [3].
Based on this new tuple notion, we define the GTT-Based
XML FD, as well as the related XML Key. In Section 3.2, we
analyze the general form of XML FDs and show that only a
subset of such XML FDs are considered interesting. Finally,
in Section 3.3, XML data redundancy is defined formally.

3.1 GTT-Based XML FD

106

Definition 5 (Generalized Tree Tuple). A general-
ized tree tuple of data tree T = 〈N,P,V, nr〉, with regard
to a particular data node np (called pivot node), is a tree
tT
np

= 〈N t,Pt,Vt, nr〉, where:

− N t ⊆ N is the set of nodes, np ∈ N t;
− Pt ⊆ P is the set of parent-child edges;
− Vt ⊆ V is the set of value assignments;
− nr is the same root node in both tT

np
and T ;

− n ∈ N t iff 1) n is a descendant or ancestor of np in T ,
or 2) n is a non-repeatable direct descendant of an ancestor of
np in T ;
− (n1, n2) ∈ P t iff n1 ∈ N t, n2 ∈ N t, (n1, n2) ∈ P ;
− (n, s) ∈ V t iff n ∈ N t, (n, s) ∈ V .

Similar to an original tree tuple, a generalized tree tuple is
a data tree projected from the original data tree. However,
instead of separating sibling nodes with the same path at all
hierarchy levels, a generalized tree tuple has an extra param-
eter called a pivot node, and the separation is done only at
subtrees rooted above the pivot node. As a result, ancestor
and descendant nodes of the pivot node, as well as all the
non-repeatable direct descendant nodes (previously defined in
Section 2.1) of those ancestor nodes, are preserved in the tu-
ple. Figure 3(B) illustrates one such generalized tree tuple
with node 30 as the pivot node. Note that both author nodes
of the book are preserved in the tuple, while in Figure 3(A),
only one is kept. Based on the pivot node, we can categorize
all generalized tree tuples into tuple classes:

Definition 6 (Tuple Class). A tuple class CT
p of the

data tree T is the set of all generalized tree tuples tT
n , where

path(n) = p. Path p is called the pivot path.

For example, the generalized tree tuple in Figure 3(B) be-
longs to the tuple class C/warehouse/state/store/book

3. Finally, we
introduce the notion of XML FD based on tuple class:

Definition 7 (XML FD). An XML FD is a triple
〈Cp, LHS, RHS〉, often written as {Pl1, Pl2, ..., Pln} → Pr

w.r.t. Cp, where Cp denotes a tuple class, LHS is a set of
paths (Pli, i = [1, n]) relative to p, and RHS is a single path
(Pr) relative to p.

An XML FD holds on a data tree T (or T satisfies an XML
FD) iff for any two generalized tree tuples t1, t2 ∈ Cp:
− ∃ i∈[1, n], t1.Pli =⊥ or t2.Pli =⊥, or
− If ∀ i∈[1, n], t1.Pli =pv t2.Pli, then t1.Pr �=⊥, t2.Pr �=⊥,

t1.Pr =pv t2.Pr. A null value, ⊥, results from a path that
matches no node in the tuple, and =pv is the path-value equal-
ity defined in Definition 4.

Because generalized tree tuples can be defined at any hier-
archy level, with an appropriate tuple class specification, this
new XML FD notion can effectively capture constraints in-
volving set elements. For example, Constraints 3 and 4 can
now be expressed as:

FD 3: {./ISBN} → ./author w.r.t. Cbook

FD 4: {./author, ./title} → ./ISBN w.r.t. Cbook

with the expected semantics. And the other two example con-
straints (Constraints 1 and 2) can be expressed as:

FD 1: {./ISBN} → ./title w.r.t. Cbook

FD 2: {../contact/name, ./ISBN} → ./price
w.r.t. Cbook.

Remarks: First, missing elements (regarded as being null
values) are treated in the same way as in [24], where they are

3The superscript is often omitted for brevity. The same for
the subscript, which in this case can be abbreviated as book.

considered as different from each other and from all other ex-
isting elements (i.e., each FD must be strongly satisfied [4]).
Second, we note that if we limit tuple classes to only those
with pivot paths corresponding to leaf level elements and con-
solidate all tuple classes into one class, this notion has the
same expressive power as the one proposed in [3]. Third, FDs
involving set elements only on the RHS can also be captured
by incorporating multivalued dependencies (MVD) [10] into
the previous tuple based approach. However, in general, FDs
involving set elements cannot be captured using MVD. For ex-
ample, FD 4 can not be expressed using MVD because the set
of author values must be considered together. Fourth, pre-
vious XML FD notions only consider one element at a time,
and hence do not consider order between elements. Since we
consider sets of elements, we could consider order between sib-
lings, and treat each collection as a list rather than a set. But
then we would miss redundancies where the element order was
changed, something we believe is a common occurrence. As
such, we have chosen to treat our collections as unordered sets,
and to ignore order in XML. The impact of considering order
in our system is discussed in Section 4.5.

When the RHS of an XML FD is ./@key, the LHS then
uniquely identifies each tuple in Cp because the pivot node
(and hence its key) for each tuple is unique. This naturally
leads us to the following XML Key notion:

Definition 8 (XML Key). An XML Key of a data tree
T is a pair 〈Cp, LHS〉, where T satisfies the XML FD 〈Cp,
LHS, ./@key〉.

This new notion of XML Key shares many similarities with
the notion proposed by Buneman et al in [5], which contains
a target path (which identifies a set of nodes) and a set of
key paths (which uniquely identifies each node in the afore-
mentioned set). In fact, our notion extends their notion by
allowing the key paths to be arbitrarily relative to the target
path while ensuring the semantics is still valid.

3.2 Interesting XML FD
The range of XML FDs expressible under the new notion are

quite broad. However, not all expressible FDs are of interest.
For example, some FDs may not be interesting because they
are trivial or redundant with other FDs.

3.2.1 Trivial XML FDs

Definition 9 (Trivial XML FD). An XML FD
〈Cp, LHS, RHS〉 is trivial if 1) RHS ∈ LHS, or 2) for any
generalized tree tuple in Cp, there is at least one path in LHS
that matches no data node.

The definition of trivial XML FDs partly follows the rela-
tional semantics, where an FD is trivial if the LHS contains
the RHS, and partly follows the strong satisfaction semantics,
where an FD is trivial if the LHS always contains at least
one null value. Such a situation can arise, as mentioned in
[3], because of the existence of Choice elements. For exam-
ple, if contact is a Choice element instead of a Rcd element
(i.e., it can have either name or address as its child, but not
both) in Figure 2, then the XML FD {./contact/name,
./contact/address}→ ./@key w.r.t. Cstore is trivial since
no Cstore tuple will have both LHS nodes.

3.2.2 Essential Tuple Classes
Theorem 1. Given a tuple class Cp, if p is not a repeatable

path (see Section 2.1), and there exists tuple class Cp′ , where

107

warehouse[1]

store[12]

name[14]
= Borders

address[15]=
Seattle

state[10]

name[11]
= WA

contact[13]

warehouse[1]

store[12]

name[14]
= Borders

address[15]=
Seattle

book[30]

author[32]=
Ramakrishnan

title[34]=
DBMS

price[35]=
79.90

author[33]=
Gehrke

ISBN[31]=
0072465638

state[10]

name[11]
= WA

contact[13]

A B

book[20]

ISBN[21]=
0072504269

author[22]=
Post

title[24]=
DBMS

price[24]=
126.99

…

Figure 4: Example tuples in Ccontact (A) and Cstore (B).

p′ is the longest repeatable path that is a prefix of p, then each
tuple in Cp corresponds to a distinct tuple in Cp′ .

Proof: Each data node matching p′ has at most one descen-
dant matching p, and therefore each data node matching p has
a distinct ancestor matching p′. Following Definitions 5 and 6,
data nodes matching p and p′ have one-on-one correspondence
to tuples in Cp and Cp′ , respectively. Hence, each tuple in Cp

corresponds to a distinct tuple in Cp′ . �

A direct implication of Theorem 1 is that Cp is no longer
necessary for the purpose of expressing FDs. Consider Fig-
ure 4, which illustrates example tuples in both Ccontact and
Cstore. Each tuple in Ccontact has a distinct corresponding tu-
ple in Cstore. A comparison between two tuples in Ccontact can
also be performed on their corresponding tuples in Cstore, ob-
taining the same result. Therefore, all FDs under Ccontact can
be expressed under Cstore with the same semantics (tuples in
Cstore without contact nodes do not affect this conclusion be-
cause missing elements are treated as unknowns). The reverse,
however, is not true. FDs that are expressible under Cstore

may refer to nodes that do not exist in tuples in Ccontact, and
are therefore not expressible under Ccontact.

We call Cp′ the lowest-repeatable-ancestor tuple class of Cp.
Since only tuple classes with repeatable pivot paths are essen-
tial for fully expressing all (non-redundant) XML FDs, we call
them essential tuple classes. Intuitively, each essential tuple
class corresponds to a unique set schema element.

3.2.3 Structurally Redundant XML FDs

Theorem 2. Let FD = 〈Cp, LHS, RHS〉, if the pivot path
p is not a prefix of any path in LHS and RHS (when they are
converted to absolute paths); then FD holds on a data tree
T iff FD′ = 〈Cp′ , LHS′, RHS′〉 holds on T , where Cp′ is the
lowest-repeatable-ancestor tuple class of Cp, and absolute paths
in LHS′ (and RHS′) are the same as absolute paths in LHS
(and RHS).

This theorem states that if none of the paths in LHS and
RHS of an XML FD matches to a node that is a descendant
node of the tuple pivot node, then that FD is structurally
redundant w.r.t. another FD whose tuple class is at a higher
hierarchy level. For example, the following FD on Figure 1 is
structurally redundant w.r.t. FD 1 in Section 3.1:

FD 5. {../ISBN} → ../title w.r.t. Cauthor

Proof: Each tuple in Cp has a corresponding tuple in Cp′ and
tuples with sibling pivot nodes in Cp correspond to the same

tuple in Cp′ . If FD′ is satisfied, then FD is not violated by two
tuples with non-sibling pivot nodes. Because two tuples with
sibling pivot nodes never violates FD (they share the same
LHS and RHS nodes), FD is satisfied. The reverse direction
can be proved similarly. �

In fact, for the purpose of verifying FD, tuples in Cp with
sibling pivot nodes are redundant w.r.t. each other. Such re-
dundancies are eliminated in FD′, which adopts the lowest-
repeatable-ancestor tuple class. As a result, we consider FDs
like FD 5 as structurally redundant FDs, and uninteresting.

One group of FDs that are related to structurally redundant
FDs are those with an RHS path that does not match descen-
dant node(s) of the tuple pivot node and at least some LHS
paths that do match descendant nodes of the tuple pivot node.
The satisfaction of such FDs normally does not lead to redun-
dancies by itself, because any non-repeatable direct descen-
dant element of a data node is uniform to its repeatable de-
scendant nodes. For example, the satisfaction of {../@key,
./ISBN} → ../contact/name w.r.t. Cbook cannot cause any
redundancy because for any two Cbook tuples with matching
LHS, the RHS will point to the same node. As a result, we
consider those FDs as being uninteresting as well.

3.2.4 Interesting XML FDs
Definition 10 (Interesting XML FD). An XML FD

= 〈Cp, LHS, RHS〉 is interesting if it satisfies the following
conditions:
− RHS /∈ LHS;
− Cp is an essential tuple class;
− RHS path always matches to descendant node(s) of the

tuple pivot node.
In summary, an interesting XML FD is a non-trivial XML

FD with an essential tuple class, and is not structurally redun-
dant to any other XML FD. We note here that Definition 10
focuses on distinguishing interesting XML FDs from uninter-
esting ones based on the FD specification alone. As a result,
the second condition of Definition 9 is not incorporated here:
checking for triviality based on the second condition requires
either examining the schema or checking the data directly.

3.3 XML Data Redundancy
Definition 11 (XML Data Redundancy). A data tree

T contains redundancy iff T satisfies an interesting XML FD
〈Cp, LHS, RHS〉, but does not satisfy the XML Key 〈Cp, LHS〉.

Finally, this notion of XML data redundancy is inspired by
the XML Normal Form (XNF) notion proposed in [3], which
in turn generalizes from BCNF [9]. Intuitively, if 〈Cp, LHS〉 is
not a key for T , then there exist two tuples in Cp that share the
same LHS. Since T satisfies 〈Cp, LHS, RHS〉, the RHS paths
of the two tuples must be value equal. However, according to
Definitions 5 and 10, the RHS paths match distinct nodes (be-
cause they are descendant nodes of two distinct pivot nodes),
which are therefore redundantly stored. For example, the data
tree in Figure 1 contains redundancies due to the satisfaction
of FD 1 and 3, where the book ISBN determines the title and
author, but cannot uniquely identify an individual book in the
set of books.

4. DETECTING XML DATA REDUNDANCY
In this section, we show how data redundancies in XML

data can be efficiently detected through the discovery of satis-
fied interesting XML FDs and Keys. Based on Definition 11,
we design DiscoverXFD, an algorithm to discover interesting
XML FDs with non-key LHSs, and several related algorithms.

108

warehouse state name store contact contact/name contact/address book ISBN author title price
1 10 WA 12 13 Borders Seattle 20 00...269 Post DBMS 126.99
1 10 WA 12 13 Borders Seattle 30 00...638 Rama... DBMS 79.90
1 10 WA 12 13 Borders Seattle 30 00...638 Gehrke DBMS 79.90
...

Figure 5: Example flat tuples in the flat representation of the XML data in Figure 1.

4.1 XML Data Representation
Flat Representation: The XML FD notion proposed in

[3] suggests a natural way of XML FD discovery: the origi-
nal XML data tree can be represented as a single relational
table, and existing relational FD discovery algorithms can be
directly applied. As shown in Figure 5, the flat representation
converts the XML data into a single relation of flat tuples,
where each attribute in the relation corresponds to a distinct
schema element and each tuple is generated by selecting one
data value (or @key) from the data tree for each simple (or
complex) element, following the notion of tree tuple in [3]. For
example, the tuple in Figure 3(A) is represented by the second
tuple in Figure 5.

There are, however, two major issues with applying existing
relational FD discovery algorithms to this flat representation.
First, it is not clear how certain interesting XML FDs (i.e.,
those involving set elements) can be discovered. For exam-
ple, those algorithms cannot discover previously mentioned
XML FDs like FD 3 and FD 4. Second, relational FD discov-
ery algorithms have exponential complexity in the number of
attributes they have to consider. As a result, this implemen-
tation does not scale well when the XML schema is complex:
the more complex the XML schema is, the more attributes
there are in the transformed relational schema. Furthermore,
the number of tuples in the single relation will increase mul-
tiplicatively if the schema contains multiple set elements that
have no ancestor-descendant relationship with each other. For
example, if each book had two review elements, the total num-
ber of tuples in Figure 5 would double.

Hierarchical Representation: Inspired by the notion of
essential tuple class (Section 3.2.2), and the concept of nested
relation [19], a more compact representation of the XML data
can be adopted. As shown in Figure 6, the original XML
data tree can be converted into a set of relations, where each
relation Rp (e.g., Rbook) corresponds to an essential tuple
class Cp (e.g., Cbook). Attributes in each relation match dis-
tinct non-repeatable schema elements, whose longest repeat-
able prefix path is the pivot path of Cp. There are two ad-
ditional attributes: 1) the @key attribute, which matches to
the pivot path itself and serves as the key for the relation
(since each generalized tree tuple has a unique pivot node);
2) the parent attribute, which matches to the pivot path of
Cp’s lowest-repeatable-ancestor tuple class (see Theorem 1).
For example, the parent attribute of Rbook corresponds to the
path /warehouse/state/store since Cstore is the lowest-
repeatable-ancestor tuple class of Cbook. Each tuple (called
essential tuples) in the relations corresponds to a partial gen-
eralized tree tuple in Cp. Any generalized tree tuple of an es-
sential tuple class can be fully reconstructed by joining tuples
from multiple relations (on the parent and @key attributes).
For example, to generate the generalized tree tuple in Fig-
ure 3(B), one can join t10 in Rstate with t12 in Rstore, then
with t30 in Rbook, then with t32 and t33 in Rauthor. We call
Rp1 a parent relation of Rp2, and Rp2 a child relation of Rp1,
if Cp1 is the lowest-repeatable-ancestor tuple class of Cp2. For
example, Rstore is a parent relation of Rbook. We can similarly
define ancestor relation and descendant relation.

Rroot

@key parent
1 ⊥

Rstate

@key parent name
10 1 WA
40 1 KY

Rstore

@key parent contact contact/name contact/addr.
12 10 13 Borders Seattle
42 40 43 Borders Lexington
72 40 73 WHSmith Lexington

Rbook

@key parent ISBN title price
20 12 00...269 DBMS 126.99
30 12 00...638 DBMS 79.90
50 42 00...638 DBMS 79.90
80 72 00...638 DBMS ⊥

Rauthor

@key parent author
22 20 Post
32 30 Ramakrishnan
33 30 Gehrke
52 50 Ramakrishnan
53 50 Gehrke
82 80 Ramakrishnan
83 80 Gehrke

Figure 6: Example essential tuples in the hierarchical rep-

resentation of the XML Data in Figure 1.

Compared with the flat representation, hierarchical repre-
sentation avoids many redundancies because the common part
of different tree tuples is represented only once. For example,
title and price about a single book is stored once (in Rbook)
throughout the entire database, instead of once for each author
as in Figure 5. Therefore, each individual relation in Figure 6
is considerably smaller than the single relation in Figure 5
in terms of both the number of tuples it has and the num-
ber of attributes it maintains. Interesting XML FDs, whose
LHS and RHS paths are in the same relation (e.g., FD 1 in
Section 3.1), can be discovered efficiently by applying exist-
ing relational FD discovery algorithms to individual relations
in isolation. The problem, however, is that not all interest-
ing XML FDs contain only LHS or RHS paths within the
same relation. For example, all the other three FDs (FD 2-
4) in Section 3.1 contain paths that appear in multiple re-
lations. We call XML FDs/Keys that involve a single rela-
tion intra-relation FDs/Keys, and those that involve multiple
relations inter-relation FDs/Keys. The challenge is how to
efficiently discover interesting inter-relation XML FDs/Keys.
In the rest of the section, we present algorithms for discov-
ering inter-relation FDs (Section 4.3) and FDs involving set
elements (Section 4.4) based on the concepts of partition tar-
get and set partition. Section 4.5 analyzes the complexities
of those algorithms. We first briefly describe how relational
algorithms are applied to discover intra-relation FDs.

4.2 Discovering Intra-Relation FDs
The algorithm for discovering intra-relation FDs is adopted

from existing partition-based algorithms, including TANE [13],
Dep-Miner [16], and FUN [20]. There are two main data struc-
tures: attribute partition and attribute set lattice.

109

I T P

ITP

IT IP TP

C N A

CNA

CN CA NA

{} {}

{t20}
{t30,t50,t80}

{t20,t30,
t50,t80}

{t20}
{t30,t50,t80}

{t20}
{t30,t50}

{t80}

{t12}
{t42,t72}{t20}

{t30,t50}
{t80}

{t20}
{t30,t50}
{t80}

{t12}
{t42}
{t72}

{t12,t42}
{t72}

{t12}
{t42}
{t72}

A B

Figure 7: Example attribute set lattices for Rbook (A)

and Rstore (B). I, T, P, C, N, A stand for ISBN, title,
price, contact, contact/name, contact/address, respec-

tively. Shown along selected nodes are the attribute par-

titions. Bold edges correspond to satisfied FDs. Dashed

nodes and edges are those not visited in Algorithms Dis-

coverFD and DiscoverXFD.

Attribute Partition: An attribute partition of an at-
tribute set X (ΠX) is a set of partition groups, where each
group contains all tuples sharing the same values at X. For ex-
ample, in Rbook, Π{ISBN,price} = {{t20}, {t30,t50}, {t80}}45.
We say ΠX is a refinement of ΠY (ΠX ↪→ ΠY) if whenever two
tuples are in the same group in ΠX , they are in the same group
in ΠY , which leads to the following:

Lemma 1. A given intra-relation FD: LHS → RHS w.r.t.
Cp holds iff ΠLHS ↪→ ΠRHS in Rp.

Lemma 2. A given intra-relation FD: LHS → RHS w.r.t.
Cp holds iff ΠLHS∪RHS = ΠLHS in Rp.

Lemma 1 is straightforward and Lemma 2 is true because
ΠX ↪→ ΠY iff ΠX∪Y = ΠX . Intuitively, Lemma 1 and 2
provide a more efficient way of determining the satisfaction of
a given intra-relation FD.

Attribute Set Lattice: An attribute set lattice (in short,
lattice) of relation Rp represents all intra-relation FDs in Rp

(except those involving @key and parent). As shown in Fig-
ure 7, each node in the lattice corresponds to an attribute set,
and an edge goes from node X to node Y if Y contains X and
has exactly one more attribute than X. Each edge, in fact,
corresponds to an intra-relation FD: let Y = X ∪ {A}, edge
(X, Y) corresponds to the intra-relation FD: X → A w.r.t. Cp.

The algorithm DiscoverFD (shown in Figure 8) aims to dis-
cover all intra-relation FDs that are not implied by other intra-
relation FDs (i.e., minimal FDs). It traverses the lattice and
discovers Keys and satisfied minimal FDs by constructing and
comparing the attribute partitions. The lattice is simulated
with queue Q, which produces the nodes from the lattice in
level-order. For each node visited, the algorithm checks: 1)
the associated partition to see if the attribute set is a Key.
An attribute set is a Key if all groups in its partition contain
exactly one tuple (line 11); 2) the set of associated edges to
detect satisfied FDs. An FD corresponding to edge (X, XA) is
satisfied if ΠX = ΠXA (lines 12-14). The algorithm also pro-
duces new partitions by combining input partitions of smaller
attribute sets (lines 9-10, details omitted due to lack of space).

Since the goal is to discover minimal FDs only, the algorithm
adopts several optimization rules to remove certain nodes and
edges from the lattice, which also improves performance be-
cause constructing and comparing partitions is costly. Assume

4All examples are based on the data in Figure 6.
5If a group contains only one tuple, it can be removed from
the partition, resulting in a striped partition [13]. While we
adopt striped partition in the implementation, we continue to
use non-striped partition in the discussion for clarity.

Algorithm DiscoverFD:
Input: Rp with attributes a1, ..., an

1. Generate Π∅, Πa1 , ..., Πan from Rp

2. Init. Keys = ∅, FDs = ∅, Queue Q = ∅, AttributeSet A = ∅;
3. for i = 1, ..., n: Q.enqueue({ai}); // the single attribute nodes
4. while Q �= ∅:
5. A = Q.dequeue();
6. if ΠA does not exist: // ΠA needs to be generated
7. Ls = candidateLHS(A, FDs);
8. if Ls.size==0: continue; // No need to expand A
9. if Ls.size==1: let A1 ∈ Ls: ΠA = ΠA−A1 • ΠA1 ;

10. if Ls.size>=2: let A1, A2 ∈ Ls: ΠA = ΠA1 • ΠA2 ;
11. if ΠA.maxGrpSize==1: Keys.add(A); continue;
12. foreach AL∈ Ls: // AL is the LHS
13. let r = A−AL; // r is the RHS
14. if ΠAL

== ΠA: FDs.add(AL→r);
15. let ak be the last attribute in A;
16. for i = k+1, ..., n:
17. A′ = A∪ai;
18. if there is no K∈Keys, such that K⊂A′: Q.enqueue(A′);
Output: Keys–the set of intra-relation Keys w.r.t. Cp

FDs–the set of intra-relation FDs w.r.t. Cp

Function candidateLHS(A, FDs):
19. Init. Ls = ∅, the set of LHSs to be returned
20. foreach a ∈ A:
21. let AL = A-a;
22. foreach L→r ∈ FDs:
23. if a==r and AL⊂L: continue;
24. else if A⊂L: continue;
25. else Ls.add(AL);
26. return Ls

Figure 8: Algorithm DiscoverFD.

that X, Y are two possibly empty attributes sets, A, B are two
single attributes, A, B /∈ X, A, B /∈ Y , and X ∩ Y = ∅, the
rules are: 1) Edge (XY, XY A) is removed if edge (X, XA)
corresponds to a satisfied FD (line 23), because if X → A
w.r.t. Cp holds, then X ∪Y → A w.r.t. Cp is implied; 2) Edge
(XY A, XY AB) is removed if edge (X, XA) corresponds to
a satisfied FD (line 24). This is because if X → A w.r.t. Cp

holds, then X∪Y ∪{A} → B w.r.t. Cp is implied by X∪Y → B
w.r.t. Cp and thus it would not be minimal. For example, in
Figure 7(A), after visiting edge (I, IT) and detecting {ISBN}
→ ./title w.r.t. Cp is satisfied, edge (IP, ITP) is removed
by the first rule, while edge (IT, ITP) is removed by the sec-
ond rule; 3) If X is detected as an XML Key, the algorithm
removes all nodes XY from the lattice (lines 11, 18). For ex-
ample, in Figure 7(B), nodes CN , CA, and CNA are removed
because C is an XML Key.

4.3 Discovering Inter-Relation FDs
The number of all possible inter-relation FDs is usually sig-

nificantly larger than the number of all possible intra-relation
FDs. Fortunately, the number of minimal inter-relation FDs
is limited as Lemma 3 shows:

Lemma 3. Let fd0 = LHS → RHS w.r.t. Cp be an inter-
relation FD. For a given relation Rp′ , where Rp′ = Rp or Rp′
is an ancestor relation of Rp (Rp is the relation corresponding
to Cp), let LHS′ ⊂ LHS be the set of paths corresponding to
attributes in Rp′ and descendant relations of Rp′ . We have: 1)
If fd1 = LHS′∪{ p′/parent} → RHS w.r.t. Cp does not hold,
then fd0 cannot be satisfied; 2) If FD fd2 = LHS′ → RHS
w.r.t. Cp holds, then fd0 is implied by fd2.

First, if an FD does not even hold for tuples with the same
parent in a relation, any inter-relation FD that is generated
by extending its LHS with attributes from ancestor relations
cannot hold either. This is true because no ancestor attribute
set can distinguish tuples with the same parent in the current
relation. For example, {./title} → ./price w.r.t. Cbook

110

Algorithm DiscoverXFD(Rp, Keys, FDs):
1. Init. curKeys = ∅, curFDs = ∅, Q = ∅, AttributeSet A = ∅;
2. Init. PTs = ∅, resultPTs = ∅; // the set of PartitionTargets
3. Generate Π∅, Πa1 , ..., Πan from Rp; // Attribute Partitions
4. Generate Index IDp mapping @key to parent in Rp;
5. foreach child relation R of Rp:
6. PTs.addSet(DiscoverXFD(R, Keys, FDs));
7. for i = 1, ..., n: Q.enqueue({ai});
8. foreach pt∈PTs: // see Figure 10 for PartitionTarget
9. pt′ = updatePT(IDp, pt, Π∅);

10. if pt′ �= NULL: resultPTs.add(pt′);
11. while Q �= ∅:
12. A = Q.dequeue();

// generate ΠA if needed
13. if ΠA does not exist:
14. Ls = candidateLHS2(A, curFDs);
15. if Ls.size==0: continue; // No need to expand A
16. if Ls.size==1: let A1 ∈ Ls: ΠA = ΠA−A1 • ΠA1 ;
17. if Ls.size>=2: let A1, A2 ∈ Ls: ΠA = ΠA1 • ΠA2 ;

// A is a Key, the FDTarget of all PTs can be satisfied
18. if ΠA.maxGrpSize==1:
19. curKeys.add(A);
20. foreach pt∈PTs:
21. if pt.KeyTarget �= invalid:
22. Keys.add(pt.FD.L∪A w.r.t. pt.FD.C);
23. else // pt.KeyTarget can still be satisfied
24. FDs.add(pt.FD.L∪A → pt.FD.R w.r.t. pt.FD.C);
25. continue;

// not a Key, check if ΠA satisfy any PT from child relations
26. foreach pt∈PTs:
27. if ΠA does not satisfy pt.FDTarget:
28. pt′ = updatePT(IDp, pt, ΠA);
29. if pt′ �= NULL: resultPTs.add(pt′);
30. else if ΠA satisfies pt.FDTarget & pt.KeyTarget:
31. Keys.add(pt.FD.L∪A w.r.t. pt.FD.C);
32. else // ΠA satisfies pt.FDTarget alone
33. FDs.add(pt.FD.L∪A → pt.FD.R w.r.t. pt.FD.C);

// generate potential PTs for parent relation
34. foreach AL∈ Ls: // AL is the LHS
35. if ΠAL

== ΠA: curFDs.add(Al→A−AL); continue;
36. pt = createPT(IDp, ΠAL

, ΠA, Cp); // Cp is Rp’s tuple class
37. if pt �= NULL: resultPTs.add(pt);

// continue the traversal
38. let ak be the last attribute in A;
39. for i = k+1, ..., n:
40. A′ = A∪ai;
41. if there is no K∈curKeys, such that K⊂A′: Q.enqueue(A′);
42. return resultPTs;
Output: Keys–the set of inter-relation Keys under Cp

FDs–the set of inter-relation FDs under Cp

Function candidateLHS2(A, FDs):
same as Function candidateLHS in Figure 8 without line 24.

Figure 9: Algorithm DiscoverXFD.

does not hold for tuples t20 and t30, which share the same
parent t12. No matter what attributes from Rstore and Rstate

are added to the LHS, t20 and t30 will always violate the
resulting FD. Second, if an FD is already satisfied, extend-
ing its LHS with ancestor attributes produces only implied
inter-relation FDs. Therefore, any minimal inter-relation FD
is built upon an intra-relation FD that is satisfied under indi-
vidual parents but not throughout the entire relation.

Algorithm DiscoverXFD is designed based on the above con-
clusions. It treats the entire collection of relations as a tree
with edges corresponding to their parent/child relationships.
It proceeds from leaf level to top level relations (line 5-6: child
relations are visited before the parent relation). At each re-
lation, the algorithm accomplishes two things by employing
the data structure partition target (shown in Figure 10): First,
detecting any intra-relation FD/Key that is satisfied under in-
dividual parents but not the entire relation. Those FDs/Keys
will become candidate partial FDs/Keys. Second, detecting
any attribute set in the relation that can form a satisfied inter-
relation FD/Key with any candidate partial FD/Key from its

Function createPT(IDp, ΠAL
, ΠA, Cp):

1. Init. new PartitionTarget pt;
2. pt.FD = AL→A−AL w.r.t. Cp;
3. pt.FDTarget = ∅; pt.KeyTarget = ∅;
4. foreach g1∈ΠAL

:
5. foreach g2∈ΠA and g2 ⊆ g1:
6. addKeyIneqs(IDp, pt, g2);
7. if g1 �=g2: // need further separation
8. g1 = g1−g2;
9. foreach t1∈g1, t2∈g2:

10. t′1 = IDp.get(t1); t′2 = IDp.get(t2);
11. if t′1==t′2: return NULL; // impossible separation
12. else pt.FDTarget.add(t′1 �=t′2);
13. if g1 �=∅: addKeyIneqs(IDp, pt, g1);
14. return pt

Function updatePT(IDp, pt, ΠA):
15. Init. new PartitionTarget pt′;
16. foreach (t1 �=t2) ∈ pt.FDTarget:
17. if ΠA does not satisfy t1 �=t2:
18. t′1 = IDp.get(t1); t′2 = IDp.get(t2);
19. if t′1==t′2: return NULL;
20. else pt′.FDTarget.add(t1 �=t2);
21. foreach (t1 �=t2) ∈ pt.KeyTarget:
22. if ΠA does not satisfy t1 �=t2:
23. t′1 = IDp.get(t1); t′2 = IDp.get(t2);
24. if t′1==t′2: pt′.KeyTarget = invalid; break;
25. else pt′.KeyTarget.add(t′1 �=t′2);
26. return pt′

Function addKeyIneqs(IDp, pt, g):
27. if g.numTuples==1 or pt.KeyTarget == invalid: return;
28. foreach t1, t2∈g and t1 �=t2:
29. t′1 = IDp.get(t1); t′2 = IDp.get(t2);
30. if t′1==t′2: pt.KeyTarget = invalid; return;
31. else pt.KeyTarget.add(t′1 �=t′2);
32. return

struct PartitionTarget (i.e., PT):
FD: L→R w.r.t. C; // the FD this PT corresponds to
FDTarget; // inequalities needed for inter-relation FD
KeyTarget; // additional inequalities for inter-relation Key

Figure 10: Utility Functions.

descendant relations. A partition target, which is associated
with a candidate partial FD and a candidate partial Key (the
FD’s LHS), contains two sets of inequalities: one corresponds
to the FD satisfaction condition (FDTarget) while the other
corresponds to the Key satisfaction condition (KeyTarget).
The inequalities are constructed from partitions (Function cre-
atePT in Figure 10) and updated as the algorithm moves up
the hierarchies (Function updatePT in Figure 10).

The details of the algorithm are shown in Figure 9 and 10.
We illustrate how it works through a simple example: the dis-
covery of FD 2 {../contact/name, ./ISBN} → ./price
w.r.t. Cbook on data in Figure 6. When visiting Rbook, the al-
gorithm detects that Π{ISBN} is not the same as Π{ISBN,price}
(see Figure 7(A)), which means {./ISBN} → ./price w.r.t.
Cbook is not satisfied. In fact, for this FD to be part of some
inter-relation FD, two inequalities must be satisfied, namely
t30 �=t80 and t50 �=t80. Because these inequalities will have
to be satisfied in the parent relation, tuples in them are con-
verted into their parent tuples, resulting in t12 �=t72 and
t42 �=t72. Often, two tuples in the same inequality are con-
verted into the same parent tuple: the inequality can never be
satisfied and the FD is not considered as a candidate partial
FD. In this case, however, both inequalities can potentially
be satisfied (i.e., the FD holds for tuples sharing the same
parent), therefore, the FD is regarded as a candidate partial
FD. Furthermore, for the LHS of a potential inter-relation
FD to be a Key, the inequality t30 �=t50 must also be satis-
fied, which converts into t12 �=t42. As a result, a partition
target corresponding to {./ISBN} → ./price w.r.t. Cbook

111

Algorithm CreateSetPartition:

Input: Πchild
A , the partition on attribute A in Rchild

ID, the index maps @key to parent in Rchild

1. Init. Πparent
A as a single group of all distinct parents in Rchild

2. foreach g∈Πchild
A :

3. foreach t∈g: t=ID.get(t) // convert @key to parent
4. divide g into a set G of duplicates eliminated groups,

such that t1, t2 ∈ same group iff cnt(t1) = cnt(t2) in g

5. foreach g′∈Πparent
A , g′′∈G:

6. divide g′ into g′
1, g′

2, where g′
1=g′′ and g′

2=g′-g′′

Output: Πparent
A , the set partition on A in Rparent

Figure 11: Algorithm CreateSetPartition.

is created, with its FDTarget being {t12 �=t72, t42 �=t72}
and KeyTarget being {t12 �=t42}. The algorithm then vis-
its Rstore and examines its attribute partitions. In particu-
lar, in Πcontact/name (see Figure 7(B)), t72 is separated from
t12 and t42, which means the FDTarget is satisfied by the
partition. On the other hand, t12 and t42 remain in the
same group in Πcontact/name, which means the KeyTarget is
not satisfied. As a result, {../contact/name, ./ISBN} →
./price w.r.t. Cbook is reported as an inter-relation FD.

4.4 Handling Set Elements
Finally, to discover FDs involving set elements, like FD 3:

{./ISBN} → ./author w.r.t. Rbook, we generate set parti-
tions, which separate tuples according to those set attributes.
We explain Algorithm CreateSetPartition (Figure 11) through
a simple example based on the data in Figure 6. Consider at-
tribute author in Rauthor, Πauthor

author = {{t22}, {t32,t52,
t82}, {t33,t53,t83}}. The initial Πbook

author is set as {{t20,
t30, t50,t80}} (line 1). The first group in Πauthor

author is con-
verted into {t20} (line 3), and since there is only one tu-
ple, no group division is needed (line 4). Applying {t20}
to Πbook

author (line 5-6) results in a refined Πbook
author = {{t20},

{t30,t50,t80}}. Going through the next two groups in
Πauthor

author will not further refine Πbook
author. In a similar way,

Πbook
author can be further turned into Πstore

author = {{t12}, {t42,
t72}}. Each generated set partition, in fact, groups the tu-
ples in the parent relation in the same way as an attribute
partition, and can therefore be directly used in both discov-
ery algorithms to detect satisfied FDs involving set elements.
For example, Πbook

author is added to the attribute set lattice of
Rbook, and FD 3 and FD 4 can be discovered just like any
other interesting FDs.

It is easy to see that, in the worst case, a top-level relation
will have to deal with a large number of set partitions coming
from its descendant relations. In practice, however, this is less
of a concern for the following two reasons: 1) most of the set
partitions quickly become key partitions (the higher the parti-
tion moves, the more likely it becomes a key partition), where
each group in the partition contains only one tuple. As dis-
cussed in Section 4.2, such partitions are optimized and have
little effect on the performance; 2) higher level relations con-
tain significantly fewer tuples and are therefore less impacted
by the increasing number of set partitions.

4.5 Complexity Analysis and Discussion
We briefly analyze the complexities of algorithms Discov-

erFD and DiscoverXFD. For DiscoverFD, the number of edges
in the attribute set lattice and the number of partitions at
each relation R, are bounded by O(Rk2Rk) and O(2Rk), re-
spectively, where Rk is the number of attributes in R. For each
edge visited in the lattice, a scan of the tuples in the relation is
required. As a result, DiscoverFD has a worst case time com-

plexity of O(RnRk2Rk), where Rn is the number of tuples in R.
For DiscoverXFD, at each relation R, partition targets and set
partitions from its descendant relations must be examined for
each partition of R. Since the number of such partition targets
and set partitions can be in the worst case O(Rd2Rd) (where
Rd is the total number of attributes of all descendant relations
of R), the worst case complexity for DiscoverXFD at each re-
lation is O(RnRk2Rk + RnRd2

Rk+Rd). This is in contrast
with the complexity of O(Rn′(Rk + Rd)2Rk+Rd), where Rn′
is the number of tuples in the flat representation, if we adopt
the flat representation and use relational FD discovery algo-
rithms. While the worst case complexity is only slightly better
for DiscoverXFD and still exponential, the pruning strategies
employed by DiscoverXFD can often reduce the number of
partition targets and set partitions to be examined to near
linear (see Section 5), reducing the time cost of DiscoverXFD
close to that of DiscoverFD.

Discussion: First, order can be considered. It simply re-
quires that, for two data nodes to be considered equal, their
positions among the siblings (which can be obtained when
establishing the hierarchical relations), in addition to their
values, must be matched. While this increases the cost of
computing partitions, it is also likely to produce more key
partitions, which can be pruned away. As a result, we do not
expect the impact of considering orders to be significant. We
do not consider order in our system because we believe order-
unaware redundancy is more meaningful in practice. Second,
for XML data stored in native format, our algorithms can not
be applied directly. However, the general pruning principles
as shown in Lemma 3 still apply. Finally, We note here that
FDs really depend on inherent properties of the world being
represented. It is not possible to “prove” that there is an FD
based purely on the data. In this sense, any FD discovery al-
gorithm must be viewed as merely suggesting FDs, which hold
in the current instance of the database, rather than establish-
ing FDs. Some suggested FDs may turn out to be spurious –
artifacts of the current database instance. Where data collec-
tions are large and representative, it is unlikely that too many
spurious FDs will be suggested. Nonetheless, a final manual
verification is often required.

5. EXPERIMENTAL EVALUATION
We implemented DiscoverXFD on top of Berkeley DB [2]

using Java. The main data structures, including attribute par-
titions, partition targets, etc., are stored on disk and fetched
when necessary, and only a single attribute partition of a single
relation is required to fit in memory (for efficient generation of
new partitions). This results in a small memory footprint. All
experiments were conducted on a PC with a 2.0GHz P4 CPU
and 1GB RAM, running Windows XP (SP2) and JRE 1.4.2.
The JVM memory was 512MB and the Berkeley DB cache size
was 128MB. For timing measurements, each experiment was
run three times and the average reading was recorded.

5.1 Real Life Datasets
We first evaluated DiscoverXFD on three available real life

datasets to examine its practicality and to verify the existence
of data redundancies in real world datasets. The datasets in-
clude: the Mondial [18] geography dataset; the human subset
of PIR protein information dataset from Protein Information
Resource [1]; the DBLP [15] bibliography dataset. The statis-
tics of each dataset are shown in Table 1: the schema and tuple
class depth (the latter is usually smaller because of the skip-

112

Mondial PIR DBLP
schema elements 152 114 331

max. schema depth 5 7 4
tuple classes 31 31 73

max. tuple class depth 5 5 3
avg. attributes per relation 4.9 3.7 4.5

max. attributes per relation 17 15 27
data elements (in 000s) 48.7 1001.1 3736.4
document size (in MB) 1.2 31.8 133.8

Table 1: Statistics of real life datasets.

Mondial PIR DBLP

loading time (secs.) 0.6 18.0 55.9
partition time (secs.) 6.0 20.2 79.9
discovery time (secs.) 11.1 253.6 1093.5

intra-relation FDs 21 73 313
intra-relation Keys 98 41 205
inter-relation FDs 9 8 0

inter-relation Keys 25 6 5
redundancy-indicating FDs 30 81 313

Table 2: Performance and results on real life datasets

ping of non-set schema elements) affect the discovery of inter-
relation FDs and Keys, and the average and maximum number
of attributes per relation (in the hierarchical representation)
affect the discovery of both intra-relation and inter-relation
FDs and Keys. While Mondial and PIR datasets are similarly
nested, the DBLP dataset stands out with a relatively flat
structure (tuple class depth of 3) and with more complex rela-
tions (larger average and maximum number of attributes per
relation). The size of each dataset is measured as the number
of data elements (including both elements and attributes) it
contains.

We performed redundancy detection on the datasets and
measured three time costs: the loading time (parsing the doc-
ument and converting it into the hierarchical representation),
the partition time (creating partitions of single attributes for
all the relations), and the discovery time (the time of ac-
tual FD and Key discovery i.e., Algorithm DiscoverXFD). As
shown in the Table 2, redundancies in all datasets can be de-
tected in a reasonable amount of time, ranging from 20 sec-
onds for Mondial to 20 minutes for DBLP, demonstrating the
practicality of the system.

More importantly, data redundancies were detected in all
three datasets, as measured by the number of redundancy-
indicating FDs in Table 2 (it is calculated as the sum of
recorded intra-relation FDs and recorded inter-relation FDs,
including FDs involving set elements, because an FD is recorded
only when its LHS is not a Key). An example redundancy-
indicating FD in Mondial is shown in Figure 12. Here, in Ccity,
the name element of province and the country attribute of city
together determine the province attribute of city, but they are
not an XML Key (e.g, they do not determine the name ele-
ment of city). As a result, the province attribute of city is
stored redundantly: once for each city in the same province.
Furthermore, while the exact number of redundant elements
is unknown, its lower bound can be estimated by checking
only the recorded intra-relation FDs and measuring the av-
erage group size of their LHS partitions. We performed this
estimation on the PIR dataset and found that intra-relation
FDs alone caused 104507 data elements to be stored redun-
dantly, about 10.4% of total data elements. We have proposed
modifications to the PIR schema to avoid these redundancies,
and communicated this to the owners of the database6.

6PIR has been replaced by the new UniProt database, whose
design has taken into consideration our suggestions.

Mondial: Rcd
...

province: SetOf Rcd
name: str
city: SetOf Rcd

name: str
@province: str
@country: str

...

FD: {../name, ./@country} → ./@province w.r.t. Ccity

Figure 12: Partial schema of the Mondial dataset and an

example redundancy-indicating inter-relation FD.

Scale Factor
1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

ec
.)

0

5000

10000

15000

20000

25000

30000

35000

Total

Intra Only

Figure 13: Cost of redundancy detection on XMark

datasets with increasing scale factors.

5.2 Benchmark Dataset
We further evaluated DiscoverXFD on the XMark dataset

to examine its scalability. The XMark schema shares similar
schema characteristics with the nested real life datasets: 327
schema elements with a maximum depth of 9; 117 tuple classes
with a maximum depth of 5; average and maximum number
of attributes per relation at 2.8 and 17, respectively. The
size of each dataset is linearly correlated to the scale factor
used for its generation. At scale factor 1, the dataset con-
tains about 2 million data elements and has a document size
of 100MB. As shown in Figure 13, the total time for redun-
dancy detection (line Total) increases linearly with the scale
factor, indicating that the system scales well with increasing
data size. To investigate whether detection of redundancies
caused by inter-relation FDs is becoming more significant, we
performed the detection for intra-relation FDs only (because
inter-relation FDs cannot be discovered without incurring the
cost of discovering intra-relation FDs). Again, the cost of de-
tecting intra-relation FDs (Figure 13 line Intra Only) increases
linearly to the scale factor and remains between 60-70% of the
total (i.e, the cost of detecting redundancy-indicating inter-
relation FDs stays about 30-40% of the total), indicating that
manipulating partition targets and set partitions is efficient
and does not dominate the overall detection process.

Comparison with relational algorithms: As mentioned
in Section 4.1, XML FDs can also be discovered by applying
relational algorithms on the flat representation of the XML
data. While such an alternative implementation is limited
due to its inability to discover FDs involving set elements, we
nevertheless want to compare our system against it. Towards
this goal, we implemented an alternative redundancy detection
system, which converts XML data into flat representation and
adopts the algorithm FUN [20]7 for FD and Key discovery
(we made minor adjustments to avoid recording un-interesting
FDs). We performed redundancy detection with this system

7FUN is chosen because it improves upon previous algorithms
and is the fastest.

113

S1 S2 S3 XMark (sf=0)
data elements 118 153 192 331

Relational Algorithm 0.9 6.0 128.2 >10000
DiscoverXFD 2.1 2.3 2.5 4.2

Table 3: Time cost (seconds) of redundancy detection

on small XMark datasets using the alternative relational

algorithm implementation and DiscoverXFD.

on all three real life datasets. Not surprisingly, it did not finish
detection (within 24 hours) even on the Mondial dataset. In
fact, redundancy detection using this system took hours for
the smallest XMark dataset (scale factor 0), which contains
only 331 elements. As a result, we created three more datasets
(S1-S3) based on the smallest XMark dataset and compared
the performance of our system against this alternative system
on these. The results are shown in Table 3. As expected, while
the alternative system performs well on very small datasets,
it degrades rapidly as the size increases and performs much
worse than our DiscoverXFD system for larger datasets.

6. RELATED WORK AND FUTURE WORK
Designing XML FDs was first addressed in [14], where the

authors presented an intuitive way of expressing XML FDs.
Formal definitions of XML FDs and Normal Forms were later
proposed in [3] and [24], providing significant improvements
over relational FDs in capturing XML data redundancies. How-
ever, as discussed at length in Section 2.3, both proposals are
limited in their ability to capture redundancies involving set
elements. The redundancy detection problem, one of our two
main contributions, is not addressed in any of the above stud-
ies. Integrity constraints (including keys) in XML were first
studied extensively in [5, 6, 11, 12], which proposed many no-
tions being used here, as well as in many other studies. Their
focus, however, is on reasoning about keys and integrity con-
straints. Furthermore, they do not adopt the tree tuple notion
that we and [3] adopt here.

The hierarchical representation of XML data shares many
similarities with nested relations [4]. In [21, 19], data redun-
dancies in nested relations are characterized using relational
FDs and MVDs. However, as mentioned in Section 3.1, MVDs
cannot fully capture XML redundancies involving set elements
on both sides of the dependency, and a more comprehensive
notion of XML FD is therefore necessary.

Several algorithms [13, 16, 20] have been proposed for re-
lational FD discovery. The intra-relation FD discovery algo-
rithm is an extension of these algorithms, and their notion
of partition is used extensively in the inter-relation FD dis-
covery algorithm. Several recent studies have also focused on
validating known XML Keys and FDs [7, 23], which is a con-
siderably simpler problem than our problem of redundancy
detection through the discovery of FDs and Keys.

While we focus on redundancy detection in this study, we
are aware that defining XML Normal Form based on XML FDs
and Keys, and designing normalization algorithms for schema
refinement are equally important problems. Those problems
were studied in [3, 24]. Future work can be done to improve
upon their solutions based on our new notions and effectively
remove redundancies described in this paper.

7. CONCLUSION
XML data redundancies have a richer semantics than redun-

dancies in the relational context. We proposed generalized tree
tuple based XML FD and Key notions that improve upon pre-

vious XML FD proposals and capture a comprehensive set of
XML data redundancies, including in particular redundancies
involving set elements. We designed and implemented Dis-
coverXFD, the first XML data redundancy detection system
through the discovery of XML FDs and Keys. Experimen-
tal evaluation demonstrates that the system is practical in
detecting redundancies in real datasets and scales well with
increasing dataset size.

8. REFERENCES
[1] PIR International Protein Sequence Database.

http://pir.georgetown.edu/pirwww/search/textpsd.shtml.
[2] Sleepycat Software. http://www.sleepycat.com/.
[3] M. Arenas and L. Libkin. A Normal Form for XML

Documents. TODS, 29(1):195–232, 2004.
[4] P. Atzeni and V. DeAntonellis. Foundations of Databases.

Benjamin Cummings, 1993.
[5] P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C. Tan.

Keys for XML. In WWW, 2001.
[6] P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C. Tan.

Reasoning About Keys for XML. Inf. Syst., 28(8):1037–1063,
2003.

[7] Y. Chen, S. Davidson, and Y. Zheng. XKvalidator: A
Constraint Validator for XML. In CIKM, 2002.

[8] E. F. Codd. A Relational Model of Data for Large Shared
Data Banks. Comm. of the ACM, 13(6):377–387, 1970.

[9] E. F. Codd. Further Normalization of the Data Base
Relational Model. Data Base Systems, 1972.

[10] R. Fagin. Multivalued Dependencies and a New Normal Form
for Relational Databases. TODS, 3:262–278, 1977.

[11] W. Fan and L. Libkin. On XML Integrity Constraints in the
Presence of DTDs. Journal of the ACM, 49(3):368–406, 2002.

[12] W. Fan and J. Simeon. Integrity Constraints for XML. JCSS,
66:2554–291, 2003.

[13] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen.
TANE: An Efficient Algorithm for Discovering Functional
and Approximate Dependencies. The Computer Journal,
42(2), 1999.

[14] M. L. Lee, T. W. Ling, and W. L. Low. Designing Functional
Dependencies for XML. In EDBT, 2002.

[15] M. Ley. DBLP Computer Science Bibliography.
http://dblp.uni-trier.de/.

[16] S. Lopes, J.-M. Petit, and L. Lakhal. Efficient Discovery of
Functional Dependencies and Armstrong Relations. In
EDBT, 2000.

[17] H. Mannila and K.-J. Raiha. Dependency Inference. In
VLDB, 1987.

[18] W. May. Information Extraction and Integration with
Florid: The Mondial Case Study, 1999.
http://www.dbis.informatik.uni-goettingen.de/lopix/lopix-
mondial.html.

[19] W. Y. Mok, Y.-K. Ng, and D. Embley. A Normal Form for
Precisely Characterizing Redundancy in Nested Relations.
TODS, 21(1):77–106, 1996.

[20] N. Novelli and R. Cicchetti. Functional and Embedded
Dependency Inference: A Data Mining Point of View.
Information Systems, 26:477–506, 2001.

[21] Z. M. Ozsoyoglu and L.-Y. Yuan. A New Normal Form for
Nested Relations. TODS, 12(1):111–136, 1987.

[22] L. Popa, Y. Velegrakis, R. Miller, M. Hernández, and
R. Fagin. Translating Web Data. In VLDB, 2002.

[23] M. Vincent and J. Liu. Checking Functional Dependency
Satisfaction in XML. In XSym, 2005.

[24] M. Vincent, J. Liu, and C. Liu. Strong Functional
Dependencies and Their Application to Normal Forms in
XML. TODS, 29(3):445–462, 2004.

[25] W3C. XML Schema. http://www.w3.org/TR/xmlschema-0/.

114

