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Abstract 
Frequently encountered in query processing, empty query results 

usually do not provide users with much useful information. Yet, 

users might still have to wait for a long time before they 

disappointingly realize that their results are empty. To 

significantly reduce such unfavorable delays, in this paper, we 

propose a novel method to quickly detect, without actual 

execution, those queries that will return empty results. Our key 

idea is to remember and reuse the results from previously-

executed, empty-result queries. These results are stored in the 

form of so-called atomic query parts so that the (partial) results 

from multiple queries can be combined together to handle a new 

query without incurring much overhead. To increase our chance 

of detecting empty-result queries with only a limited storage, our 

method (1) stores the most “valuable” information about empty-

result queries, (2) removes redundant information among different 

empty-result queries, (3) continuously updates the stored 

information to adapt to the current query pattern, and (4) utilizes a 

set of special properties of empty results. We evaluate the 

efficiency of our method through a theoretical analysis and an 

initial implementation in PostgreSQL. The results show that our 

method has low overhead and can often successfully avoid 

executing empty-result queries. 

 

1. Introduction 
DBMSs are being used more and more for interactive 

exploration [7, 14, 37], where users keep refining queries based 

on previous query results. Due to the large data set size, users are 

forced to form rather precise queries in order to avoid getting too 

many query results. Unfortunately, this often causes queries to 

return empty result sets, which usually do not provide users with 

much useful information [19, 26]. This is especially true at the 

beginning, when users do not have sufficient knowledge of the 

data set. Even worse, users cannot discover empty result sets until 

query execution finishes, which can take a long time. We call this 

the empty-result problem [19]. 

Empty results are frequently encountered in query processing. 

For example, in a query trace that contains 18,793 SQL queries 

and is collected in a Customer Relationship Management (CRM) 

database application developed by IBM, 18.07% (3,396) queries 

are empty-result ones. In another real estate database application 

developed by IBM, 5.75% SQL queries are discovered to return 

empty result sets. As a third example, [17] and [30] reported that 

the percentages of empty-result queries are 10.53% and 38%, 

respectively. 

One might think that empty-result queries can finish in a short 

amount of time. However, this is often not the case. For example, 

consider a query that joins two relations (possibly after some 

selection and projection). Regardless of whether the query result 

set is empty, the query execution time will be longer than the time 

required to do the join. Even if this query can finish execution in a 

few seconds in a lightly loaded RDBMS, it can last longer than a 

minute in a heavily loaded RDBMS. 

In general, it is desirable to quickly detect empty-result queries. 

Not only does it facilitate the exploration of massive data sets but 

also it provides important benefits to users. First, users can 

quickly realize that they encounter the empty-result problem 

rather than waiting for the empty result. With a much shortened 

latency time, users can quickly go ahead with other trials. Second, 

by avoiding the unnecessary execution of empty-result queries, 

the load on the RDBMS can be reduced, thus further improving 

the system performance. 

In this paper, we propose a novel method for fast detection of 

empty-result queries. To the best of our knowledge, this direction 

of handling the empty-result problem has never been explored 

before. We observe that as users often submit similar queries, the 

probability that they can reuse each other’s query results is usually 

high. For example, among the 3,396 empty-result queries 

collected from the CRM database application at IBM, only 1,287 

queries are distinct. All the other 2,109 queries are repeated ones.  

Hence, we reuse the evaluation results from previously-executed, 

empty-result queries by storing the information about query parts 

in the RDBMS, where each query part is a sub-tree of a query 

plan tree. If such reuse is always successful, the execution of at 

least 11% (=2109/18793) of all the 18,793 queries in the above 

mentioned CRM application can be saved. 

Under a fixed storage budget, to improve our chance of using 

the remembered information to detect whether a new query will 

return an empty result set, four techniques are used. First, from 

previous queries’ execution, only the lowest-level query parts that 

lead to empty result sets, rather than all empty-result query parts, 

are stored. Second, redundancy in the information provided by 

different empty-result queries is removed and only the most 

“valuable” information is stored. Third, as query pattern changes, 

the stored empty-result query parts get continuously updated to 

adapt to the current situation. Fourth, our method utilizes a set of 

special properties of empty result sets so that its coverage 

detection capability is often more powerful than that of the 

traditional materialized view method (e.g., if π(R)=∅, we know 

immediately that R=∅, σ(R)=∅, and R
⋈

S=∅.) 
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Our method works as follows. From previous queries’ 

execution, the lowest-level query parts that lead to empty result 

sets are found. These query parts are decomposed into so-called 

atomic query parts and stored in the RDBMS. In this way, the 

(partial) execution results from multiple, previously-executed, 

empty-result queries can be combined together to handle a new 

query without incurring much overhead. When a new query 

comes, it is decomposed into atomic query parts, which are then 

matched with the remembered ones. If such a match exists for 

each decomposed atomic query part, we know immediately that 

this new query will return an empty result set and thus its 

execution is saved.  

The empty-result problem has been studied in the research 

literature. Existing solutions either explain what leads to the 

empty result set [10, 16, 18, 21, 26, 27] or automatically 

generalize the query so that the generalized query will return some 

answers [7, 18, 19, 27]. For most such solutions, the first step is to 

execute the query and see whether the result set is empty. Our 

method can be used in conjunction with these solutions and 

significantly speed up this first step. 

Throughout this paper, we assume a read-mostly environment 

where periodic batch updates are allowed. This is the case with 

traditional data warehouses. The data sets of all the database 

applications mentioned earlier satisfy this property. When 

relations get updated, our current method is to delete all the 

information in the RDBMS about previously-executed, empty-

result queries. 

We investigate the performance of our fast detection method 

for empty-result queries with a theoretical analysis and an initial 

implementation in PostgreSQL. The results show that our method 

has minor overhead and can often bring significant benefit by 

avoiding executing empty-result queries unnecessarily. 

The rest of the paper is organized as follows. Section 2 

describes our fast detection method for empty-result queries. 

Section 3 investigates the performance of the proposed method. 

We discuss related work in Section 4 and conclude in Section 5. 

 

2. A Fast Detection Method for Empty-Result 

Queries 
In this section, we describe our fast detection method for 

empty-result queries. Unless otherwise specified, we focus on 

select-project-join queries. By select-project-join queries, we 

mean those queries whose logical query plans contain only scan, 

selection, projection, join, sort, and duplicate elimination 

operators. Nested queries that can be rewritten into such a form 

are included while outer join operators are excluded. All the 

operators are physical operators. All the query plans are physical 

query plans. In Section 2.5 below, we show how to extend our 

techniques beyond select-project-join queries. 

Our main observation is that query plans of different queries 

often share some common parts [32, 33, 39]. For example, during 

interactive exploration, users often issue a series of queries. Each 

query is a refinement of the previous one [34]. Also, users often 

submit canned queries by filling parameter values into a pre-

defined template [37]. If for some parameters, different users fill 

in the same values (e.g., certain parts of the data set can be 

frequently accessed), then the query plans of these queries are 

likely to share some common parts. During previous queries’ 

execution, if the RDBMS remembers the query parts that lead to 

empty result sets, then it is likely that the RDBMS can use them to 

tell whether future queries will return empty result sets. The 

details of our method are described in the following subsections. 

 

2.1 Definitions 
 We first introduce some definitions. 

Empty-result-propagating operator. Consider an operator Op 

that has one or more inputs. Op is an empty-result-propagating 

operator if it satisfies the following condition: the output of Op is 

empty if any input of Op is empty.  

Empty-result-propagating query. An empty-result-propagating 

query is a query whose query plan contains only empty-result-

propagating operators.  

A large number of operators (e.g., scan, selection, projection, 

join, sort, duplicate elimination) are empty-result-propagating. As 

a result, empty-result-propagating queries include a large class of 

queries. For example, all the select-project-join queries are empty-

result-propagating queries.  

Query part. A query plan is a tree of operators. Every sub-tree of 

the query plan is called a query part. 

In our discussion, we assume that each relation is used at most 

once in a query part. In the case that the same relation R is used 

multiple times in a query part (e.g., R is joined with itself), the 

first occurrence of R is untouched while each other occurrence of 

R is given a different name. Then our techniques still work. (This 

may reduce the detection capability of our method. However, as 

mentioned in Section 2.6 below, our method wants to achieve a 

balance between efficiency and detection capability.) 

Atomic query part. Each atomic query part is an ordered pair 

(relation names RN, selection condition SC). It represents a 

relational algebra formula that first product joins all the relations 

in RN, and then applies SC. SC is a conjunction of primitive terms, 

where each primitive term is a comparison (e.g., A.a=B.b, 

A.a<B.b+C.c, A.a=100). In the rest of the paper, we do not 

differentiate between an atomic query part and the relational 

algebra formula represented by the atomic query part. 

Cover (selection condition). A selection condition SC1 covers 

another selection condition SC2 iff whenever SC2 is true, SC1 is also 

true. 

Cover (atomic query part). We say that an atomic query part 

P1=(RN1, SC1) covers another atomic query part P2=(RN2, SC2) if 

RN1⊆RN2 and SC1 covers SC2. For example, P1=σA.a<40(A) covers 

P2=σA.a=20∧A.c=B.d(A×B)=(σA.a=20(A))
⋈

A.c=B.dB.  

The following two theorems will be used repeatedly in our 

discussion:  

Theorem 1: Any query part of an empty-result-propagating query 

is an empty-result-propagating query. For an empty-result-

propagating query, if the output of some query part P is empty, 

the output of any higher-level query part that contains P (and thus 

the output of the entire query) is empty.  

Proof. Omitted. 

Theorem 2: Suppose that atomic query part P1 covers atomic 

query part P2. For a given database, if the output of P1 is empty, 

the output of P2 is also empty. 

Proof. Suppose that P1=(RN1, SC1). P2=(RN2, SC2). The output U1 

of P1 is  

)(
1

11 ∏
∈

=
N

C

RR

S
RU σ .  

The output U2 of P2 is  

)(
2

22 ∏
∈

=
N

C

RR

S
RU σ .  

From RN1⊆RN2 and U1=∅, we know that  
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From SC1 covers SC2, we know that U2⊆U3. Hence, we have 

U2=∅.       ∎  

 

2.2 Overview of the Method 
In this section, we give an overview of our fast detection 

method for empty-result queries. The RDBMS keeps a collection 

Caqp of atomic query parts. The output of each atomic query part 

in Caqp is empty. The information about previously-executed, 

empty-result queries is stored in Caqp. For efficiency purposes, 

Caqp is always kept in memory. Initially, Caqp is empty. 

When the execution of a query returns an empty result set, the 

RDBMS does the following two operations: 

Operation O1: Display the query plan to the user. For each 

operator in the query plan, the output cardinality is displayed (the 

output cardinalities of the operators are kept as collected statistics 

during query execution [23]). These output cardinalities can 

facilitate the user to find first the query sub-expression (and the 

reason) that causes the empty result set, and then the right follow-

up queries [10]. The follow-up queries submitted by the user can 

still return empty result sets. This is because after optimizer’s 

rewriting, the query plan often looks very different from the 

original query. The user may not always be able to find the 

genuine cause of the empty result set. Also, there can be multiple 

causes that lead to the empty result set. 

Operation O2: Find the lowest-level query part(s) whose output is 

empty. Each such query part P is broken into one or more atomic 

query parts. Then the atomic query parts are stored in the 

collection Caqp. According to Theorem 1, the output of any higher-

level query part Ph that contains P is empty, while the output of 

any lower-level query part Pl that is contained in P is not empty. 

However, the information about Ph is not stored in Caqp, since this 

information is redundant. This is similar to the technique in [10, 

21] of only presenting the minimal zero results to the user.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. A first query plan example. 

 

For example, consider the query plan in Figure 1. The numbers 

in the square brackets represent the output cardinalities of the 

operators. The subscripts represent the selection conditions. (Join 

conditions are also selection conditions.) Only the query part that 

is represented by the oval is broken into atomic query parts.  

From query execution, the RDBMS can only obtain output 

cardinalities of physical operators in physical query plans [23]. 

Hence, in Operations O1 and O2, our method works with physical 

query plans rather than logical query plans. In contrary, as 

described in Section 2.4 below, when our method uses the 

information stored in Caqp to check whether a new query Q will 

return an empty result set, the logical query plan of Q is used. 

In Operation O2, the query part P is stored in the collection Caqp 

in the form of one or more atomic query parts. This is to facilitate 

the future checking of whether a new query Q will return an 

empty result set, as our method may need to use the (partial) 

execution results from multiple previous queries (see Section 2.4 

below for details). For example, suppose that Q=σA.a=50∨A.a=60(A). 

From previous queries’ execution, the RDBMS knows that both 

queries Q1=σA.a=50∨A.b=30(A) and Q2=σA.a=60∨A.b=40(A) return empty 

result sets. Q1 is broken into two atomic query parts: 

P1=σA.a=50(A) and P2=σA.b=30(A). Q2 is broken into two atomic 

query parts: P3=σA.a=60(A) and P4=σA.b=40(A). Then by using P1 

and P3, our method can tell that Q will return an empty result set. 

A constant Ccost is used to decide whether a query is a low-cost 

query or a high-cost query. When the query plan of a new query Q 

comes, our method first checks whether the optimizer’s estimated 

cost of Q, cost(Q), is bigger than Ccost. There are two possible 

cases: 

(1) If cost(Q)≤Ccost (i.e., Q is a low-cost query), Q is executed.  

(2) If cost(Q)>Ccost (i.e., Q is a high-cost query), our method 

first uses the information stored in the collection Caqp to 

check whether Q will return an empty result set. If not, Q is 

executed. Otherwise the empty result set is returned directly.  

Our heuristics is that low-cost queries can be executed quickly, 

and it takes time to use the information stored in Caqp to check 

whether a query will return an empty result set. Hence, there is no 

need to use the information stored in Caqp to check whether a low-

cost query will return an empty result set. Similarly, we do not 

store the information about low-cost empty-result queries in Caqp. 

Ccost is an empirical number. Its value can be decided based on 

past statistics. For example, how expensive it is to use the 

information stored in Caqp to check whether a query will return an 

empty result set, how likely a query will return an empty result 

set, etc.  

 

2.3 Storing Atomic Query Parts 
In this section, we show how to break a lowest-level query part 

P whose output is empty into one or more atomic query parts and 

then store the atomic query parts in the collection Caqp. Our 

method proceeds in three steps:  

Step 1: P is transformed into a simplified query part Ps.  

Step 2: Ps is broken into one or more atomic query parts. 

Step 3: The atomic query parts are stored in Caqp.  

 

Organization of Caqp 

To facilitate search and save storage space, the collection Caqp 

of atomic query parts is organized as a list of entries. Each entry 

in Caqp represents a set of relation names RN. All the atomic query 

parts with the same relation names RN are stored in the same entry 

as a linked list of selection conditions SC. 

 

 

 

 

 

B (index-scan) B.e<40 ∨ B.e=50 [5000] 

C (table-scan) [20000] 

sort-merge join B.g=C.h [0] 

σC.f<300 [1000] 

π [0] 

sort [0] sort [1000] 

π [0] 

A (table-scan) [40000] 

σ50<A.a<100 ∨ A.b=200 [200] π [5000] 

hash join A.c=B.d [0] 

hash [200] hash [5000] 
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Figure 2. The collection Caqp of atomic query parts. 

 

The number of atomic query parts stored in the collection Caqp 

cannot exceed a constant Nmax (as will be shown in Section 3.1, 

Nmax can be quite large). This is because it is not desirable to let 

Caqp consume too much storage space. Also, as discussed in 

Section 2.4 below, to check whether a new query Q will return an 

empty result set, our method needs to check whether the atomic 

query parts generated from Q are covered by those stored in Caqp. 

The more atomic query parts stored in Caqp, the slower the 

checking.  

Our method only stores in the collection Caqp those atomic 

query parts that are frequently used [38]. To achieve this goal, the 

standard clock algorithm (an approximation of the LRU 

algorithm) is used to manage Caqp. Each time the RDBMS wants 

to store a new atomic query part Pnew in Caqp, 

(1) If the number of atomic query parts stored in Caqp is no more 

than Nmax, Pnew is stored in Caqp directly.  

(2) If the number of atomic query parts stored in Caqp is larger 

than Nmax, the RDBMS uses the clock algorithm to find an 

atomic query part Pold in Caqp that is not frequently used. Pold 

is deleted from Caqp. Then Pnew is stored in Caqp. 

Our method is more dynamic than the method in [2, 40] of only 

keeping the most frequently used materialized views, since 

creating or deleting an atomic query part is cheaper than creating 

or deleting a materialized view and thus can be done more 

frequently. 

 

Step 1: P ⇒⇒⇒⇒ Ps 

When getting a lowest-level query part P whose output is 

empty, the RDBMS converts P into a simplified query part Ps by 

performing the following three transformations: 

Transformation T1: Drop all the operators in P that have no 

influence on the emptiness of the output. These operators include 

projection, hash, sort, and duplicate elimination.  

Transformation T2: Each physical join operator (e.g., hash join, 

sort-merge join, nested-loops join) in P is replaced with a logical 

join operator.  

Transformation T3: Each index-scan operator in P is replaced 

with a table-scan operator followed by a selection operator, where 

the selection condition is the same as the index-scan condition. 

The result of a query is independent of its evaluation method. 

Hence, none of these three transformations has influence on the 

emptiness of the output. Essentially, these three transformations 

convert the “physical” query part P into a “logical” query part − 

the simplified query part Ps. Ps represents a relational algebra 

formula without projection and duplicate elimination. It is more 

“general” than P. This can increase our chance of using the query 

part to detect whether a new query will return an empty result set.  

For example, after applying these three transformations, the 

query part that is represented by the oval in Figure 1 becomes the 

simplified query part in Figure 3. Our method can use this 

simplified query part to tell that the query in Figure 4 will return 

an empty result set (see Section 2.4 below for details). 

 

 

 

 

 

corresponding relational algebra formula: 

(σ50<A.a<100 ∨ A.b=200 (A)) 
⋈

A.c=B.d (σB.e<40 ∨ B.e=50 (B)) 

Figure 3. A simplified query part example. 

 

 

 

 

 

 

 

 

Figure 4. A second query plan example. 

 

Step 2: Ps ⇒⇒⇒⇒ Atomic Query Parts 

Now the simplified query part Ps is broken into one or more 

atomic query parts. Suppose that Ps contains n selection 

conditions. Each selection condition comes from either a selection 

operator or a join operator. Each selection condition is rewritten 

into a disjunctive normal form (DNF). DNF is a disjunction of 

terms, where each term is a conjunction of primitive terms and 

each primitive term is a comparison. During the rewriting,  

(1) Negations on numeric or string attributes are removed by 

using complementary operators. For example, not(A.a<20) is 

rewritten into A.a≥20. not(A.a=20) is rewritten into 

(A.a<20)∨(A.a>20).  

(2) Interval-based comparison is treated as a single primitive 

term. For example, 10<A.a<20 is treated as a single 

primitive term rather than a conjunction of two primitive 

terms 10<A.a and A.a<20. This is to facilitate the later 

checking of whether one atomic query part covers another 

atomic query part. 

After the above rewriting, the combination of all n selection 

conditions in the simplified query part Ps becomes a conjunction 

of n DNFs D1∧D2∧…∧Dn, where each Di (1≤i≤n) is a DNF of a 

selection condition. Then D1∧D2∧…∧Dn is rewritten into another 

DNF PDNF. Each term in PDNF is a selection condition. It is a 

conjunction of n terms, where the i-th (1≤i≤n) term comes from 

Di. Note that the rewriting into the DNF PDNF is an exponential 

step. However, usually this step is not expensive, as selection 

conditions are not very complex. Also, for queries with extremely 

complex selection conditions, our method may not be used.  

Let RN denote the input relations of all the table-scan operators 

in the simplified query part Ps. Each term SC in PDNF, combined 

with RN, is an atomic query part (RN, SC). For example, after 

rewriting, the simplified query part in Figure 3 becomes the four 

atomic query parts in Figure 5. 

 

(σ50<A.a<100 (A)) 
⋈

A.c=B.d (σB.e<40 (B)) 

(σA.b=200 (A)) 
⋈

A.c=B.d (σB.e<40 (B)) 

(σ50<A.a<100 (A)) 
⋈

A.c=B.d (σB.e=50 (B)) 

(σA.b=200 (A)) 
⋈

A.c=B.d (σB.e=50 (B)) 

Figure 5. Atomic query part examples. 

 

It is easy to see that the simplified query part Ps and the 

generated atomic query parts have the following property: 

B (index-scan) B.e<20 

π  

A (index-scan) A.a=75 

sort-merge join A.c=B.d 

sort sort 

π  

selection condition 

selection condition 

selection condition 

selection condition 

selection condition 

relation names 

relation names 

relation names 

… 

… 

B (table-scan)  A (table-scan) 

σ50<A.a<100 ∨ A.b=200 σB.e<40 ∨ B.e=50 

⋈
A.c=B.d 
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Theorem 3: The following three assertions are equivalent to each 

other: 

(a) The output of the query part P is empty. 

(b) The output of Ps is empty. 

(c) The output of each generated atomic query part is empty. 

Proof. Omitted. 

 

Step 3: Storing Atomic Query Parts in Caqp 

For each atomic query part Pa=(RN, SC) generated in Step 2, all 

the atomic query parts that are covered by Pa are removed from 

the collection Caqp. Then Pa is inserted into Caqp. That is, only the 

most “general” atomic query parts are kept in Caqp, since they are 

most useful in deciding whether a new query will return an empty 

result set. This is similar to the materialized view merging 

technique in [2]. 

 

 
 

 

 

 

 

 

 

 

 

Figure 6. An example entry in the collection Caqp of 

atomic query parts. 

 
For example, suppose that the collection Caqp is originally 

empty. Then after inserting the four atomic query parts in Figure 

5, the corresponding entry E in Caqp becomes what is shown in 

Figure 6. 

For an atomic query part Pa=(RN, SC), atomic query parts that 

are covered by Pa can only be contained in those entries of Caqp 

whose relation names form a superset of RN. To find out which 

atomic query parts stored in Caqp are covered by Pa, our method 

only searches in those entries. (The signature method in [31] is 

used to speed up the process of checking set containment.)  

 

Deciding Coverage 

In general, it is computationally expensive to decide precisely 

whether one atomic query part P1 covers another atomic query 

part P2 (many problems are NP-complete) [3, 9, 11, 13, 20, 22, 

28, 36]. In our case, false positives are not allowed while false 

negatives are tolerable. That is, if our method decides that P1 

covers P2, it must be true that P1 covers P2. However, if P1 covers 

P2 but our method fails to detect it, it does not matter except that 

efficiency is sacrificed. For example, storage in the collection Caqp 

is wasted, or a new query Q is executed unnecessarily because our 

method fails to use the information stored in Caqp to detect that Q 

will return an empty result set (see Section 2.4 below for details). 

In deciding whether P1=(RN1, SC1) covers P2=(RN2, SC2), the 

RDBMS uses a method that attempts to achieve a reasonable 

balance between efficiency and detection capability [3, 36]. 

Suppose that SC1=p1∧p2∧…∧pn and SC2=q1∧q2∧…∧qm. Each pi 

(1≤i≤n) is a primitive term. Each qj (1≤j≤m) is a primitive term.  

The method works as follows. The RDBMS decides that SC1 

covers SC2 if they satisfy the following two conditions: 

(1) n≤m. 

(2) For each i (1≤i≤n), the RDBMS decides that pi covers some 

qj (1≤j≤m).  

If one of the following three conditions is satisfied, the RDBMS 

decides that pi covers qj: 

(1) pi=qj. 

(2) Both pi and qj are interval-based comparison on the same 

attribute of the same relation. The interval in pi contains the 

interval in qj. Note that point-based comparison is a special 

form of interval-based comparison. Also, the endpoints of 

some intervals can be plus or minus infinity. For example, pi 

is of the form A.a<50 and qj is of the form 20<A.a<40. As a 

second example, pi is of the form A.a<50 and qj is of the 

form A.a=30. 

(3) The comparisons in pi and qj are on the same attribute of the 

same relation. pi is of the form A.a≠c1. qj is of the form 

A.a=c2. c1≠c2. 

As mentioned in Section 2.1, P1 covers P2 if RN1⊆RN2 and SC1 

covers SC2. 

[9] proposed an algorithm that uses safe substitutions to decide 

whether a materialized view MV can be used to answer a query Q. 

MV “covers” Q if a safe substitution of MV can be used to 

generate an equivalent query of Q. Our method can be regarded as 

a simplified version of the algorithm in [9], where safe 

substitutions are replaced by naive substitutions. This is because 

in generating atomic query parts, all the projection operators are 

dropped (Transformation T1). Hence, there is no “dangling” 

selection condition. The computational overhead of our method is 

lower than that of the algorithm in [9], while in certain cases, the 

coverage detection capability of our method is weaker than that of 

the algorithm in [9]. This results from our design philosophy that 

is explained in Section 2.6. 

 

2.4 Checking Empty Result Set 
In this section, we describe how to use the information stored in 

the collection Caqp to check whether a query Q will return an 

empty result set. Suppose that the logical query plan of Q is Qp. 

Techniques similar to that in Section 2.3 are used to break Qp into 

one or more atomic query parts Pi (i=1, 2, …, m). For each i 

(1≤i≤m), the RDBMS checks whether there exists any atomic 

query part Ai in Caqp that covers Pi. (As explained at the end of 

Step 3 in Section 2.3, our method only needs to search in those 

entries of Caqp whose relation names form a subset of the relation 

names of Pi.) If such an Ai exists, the RDBMS knows that the 

output of Pi is empty (Theorem 2). If the RDBMS can find such 

an Ai for each i (1≤i≤m), it knows that the output of Qp is empty 

(Theorem 3). 

 

2.5 Extension beyond Select-Project-Join 

Queries 
The above discussion focuses on select-project-join queries. In 

certain cases, our techniques can be extended beyond select-

project-join queries. For example,  

(1) Suppose that the root operator of the query plan is an 

aggregate operator (either with or without a group by clause). 

Except for this root aggregate operator, the rest of the query 

plan forms a select-project-join query. Since the root 

aggregate operator has no influence on the emptiness of the 

query output, the RDBMS can ignore it when deciding 

whether the query will return an empty result set. count() 

needs some special handling, as count(∅)=0. 

(A.c=B.d, 50<A.a<100, B.e<40) relation names: (A, B) 

(A.c=B.d, A.b=200, B.e<40) 

 

selection 

condition 

entry 

(A.c=B.d, 50<A.a<100, B.e=50) 

(A.c=B.d, A.b=200, B.e=50) 

 

selection 

condition 

selection 

condition 

selection 

condition 
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(2) Set union is not an empty-result-propagating operator. 

Suppose that the RDBMS wants to check whether the output 

of Q1∪Q2 is empty, where Q1 and Q2 are select-project-join 

queries. The techniques in Sections 2.2~2.4 are used to check 

whether the output of Q1 is empty, and whether the output of 

Q2 is empty. There are three possible cases:  

(a) The checking says that both outputs are empty. Then the 

output of Q1∪Q2 is empty.  

(b) The checking only says that the output of Q1 (or the 

output of Q2) is empty. Then Q2=Q1∪Q2 (or 

Q1=Q1∪Q2) needs to be evaluated. 

(c) The checking says nothing. Q1∪Q2 needs to be 

evaluated. 

(3) Outer join can be handled in a way similar to set union. 

(4) Set difference is not an empty-result-propagating operator. 

Suppose that the RDBMS wants to check whether the output 

of Q1-Q2 is empty, where Q1 is a select-project-join query. 

The techniques in Sections 2.2~2.4 are used to check whether 

the output of Q1 is empty. If so, the output of Q1-Q2 is empty. 

Otherwise Q1-Q2 needs to be evaluated. 

We leave it as an interesting area for future work to investigate 

how to handle other classes of queries. For example, set 

intersection is an empty-result-propagating operator. In the 

presence of set intersection in the query plan, projection operators 

influence the emptiness of the query output – from A∩B=∅, it 

cannot be deduced that π(A)∩π(B)=∅ (the attributes that are 

projected out in A and B can have different values and cause 

π(A)∩π(B)≠∅). As a result, our current method of storing the 

information of empty-result queries in the collection Caqp does not 

work for set intersection. One possible solution is that in the 

presence of set intersection, Transformation T1 does not drop 

projection operators. 

 

2.6 Comparison between Our Method and the 

Traditional Materialized View Method 
Our fast detection method for empty-result queries uses some 

data structure similar to materialized views − each atomic query 

part stored in the collection Caqp can be regarded as a “mini” 

materialized view. However, our method utilizes a set of special 

properties of empty result sets and is different from the traditional 

method of using materialized views to answer queries. 

In deciding whether a query will return an empty result set, our 

method ignores those operators (e.g., projection, duplicate 

elimination) that have no influence on the emptiness of the query 

output. Hence, in certain cases, the coverage detection capability 

of our method is more powerful than that of the traditional 

materialized view method. For example, consider the following 

two queries: Q1=A
⋈

A.c=B.dB and Q2=π((σA.a=100(A))
⋈

A.c=B.dB). 

A.a is projected out by the projection operator in Q2. In general, 

materialized view MV=π(A
⋈

A.c=B.dB) cannot be used to answer 

either Q1 or Q2. However, if the RDBMS knows that query 

Q3=MV returns an empty result set, our method can tell that both 

Q1 and Q2 will return empty result sets. 

Usually, a large number of atomic query parts can be stored in 

the collection Caqp and our method wants to speed up the checking 

process. Therefore, when checking whether a query will return an 

empty result set, our method uses a limited number of approaches 

to check the coverage of atomic query parts. In contrast, the 

traditional materialized view method uses the extensive query 

rewriting approach, which is more capable in certain cases but 

also more expensive. For example, consider query 

Q=σ(50<A.a<90)∧(30<A.b<70)(A). There are three materialized views 

that are all empty: MV1=σ(50<A.a<80)∧(30<A.b<60)(A), 

MV2=σ60<A.a<90(A), and MV3=σ(50<A.a<70)∧(50<A.b<70)(A). The 

traditional materialized view method can rewrite Q into 

Q=σ30<A.b<70(MV1∪MV2∪MV3) and thus tell that Q will return an 

empty result set. In contrast, our method cannot tell that if MV1, 

MV2, and MV3 are all empty, the output of Q is also empty. 

 

 

 

 

 

 

 

To save storage space, the traditional materialized view method 

can merge multiple materialized views together [2]. For example, 

the two materialized views MV1=σ(50<A.a<80)∧(30<A.b<60)(A) and 

MV2=σ(60<A.a<90)∧(40<A.b<70)(A) can be merged into a single 

materialized view MV3=σ(50<A.a<90)∧(30<A.b<70)(A). Then all the 

queries that can be answered by using either MV1 or MV2 are 

answerable by using MV3. However, if both MV1 and MV2 are 

empty, the RDBMS cannot deduce that MV3 is also empty. As a 

result, our method cannot arbitrarily merge multiple atomic query 

parts in the collection Caqp into a single atomic query part.  

 

 

 

 

 

 

 

In general, the design philosophy of our method is to achieve a 

reasonable balance between efficiency and detection capability. 

Our method strives for the detection capability that is both mostly 

needed and easily achievable [3, 36]. It makes up the “loss” in the 

other detection capability by storing a large number of atomic 

query parts in the collection Caqp. 

 

2.7 Summary of Advantages 
Our fast detection method for empty-result queries has the 

following advantages: 

(1) It has small storage and computation overhead. 

(2) A large number of atomic query parts can be stored in the 

collection Caqp. 

(3) As query pattern changes, the atomic query parts stored in 

Caqp get continuously updated to reflect the current situation. 

(4) The hotter an empty-result query Q is (i.e., the more 

frequently users submit this Q), the more likely Q can be 

successfully detected by our method. This is desirable for 

those applications where users care more about hot spots in 

the data set.  

(5) Due to the utilization of a set of special properties of empty 

result sets, its coverage detection capability is often more 

powerful than that of a traditional materialized view method. 

After enough information about previously-executed, empty-result 

queries has been accumulated in Caqp, our method can often 

successfully detect empty-result queries and avoid the expensive 

query execution. This both reduces the load on the RDBMS and 

speeds up the interactive exploration process. 
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3. Performance Evaluation 
In this section, we evaluate the performance of our method, first 

with experiments in PostgreSQL [29], and then with a theoretical 

analysis. 

 

3.1 Evaluation in PostgreSQL 
We first describe experiments we performed with a prototype 

implementation of our techniques in PostgreSQL Version 7.3.4 

[29]. Our measurements were performed with the PostgreSQL 

client application and server running on a Dell Inspiron 8500 PC 

with one 2.2GHz processor, 512MB main memory, one 40GB 

disk, and running the Microsoft Windows XP operating system. 

The default setting of PostgreSQL was used, where the buffer 

pool size is 1,000 pages. (We also tested larger buffer pool sizes. 

The results were similar and thus omitted.) 

The relations used for the experiments followed the schema of 

the standard TPC-R Benchmark relations [35]: 

customer (custkey, nationkey, …), 

orders (orderkey, custkey, orderdate, …), 

lineitem (orderkey, partkey, …). 

 
Table 1. Test data set. 

 number of tuples total size 

customer 0.15×s M 23×s MB 

orders 1.5×s M 114×s MB 

lineitem 6×s M 755×s MB 

 
s is the scale factor of the database. In our experiments, on 

average, each customer tuple matches ten orders tuples on the 

attribute custkey. Each orders tuple matches 4 lineitem tuples on 

the attribute orderkey. 

We used the following two queries: 

Query Q1: Find the information about certain parts that were sold 

on certain days. 

select *  

from orders o, lineitem l 

where o.orderkey=l.orderkey  

and (o.orderdate=d1 or … or o.orderdate=de)  

and (l.partkey=p1 or … or l.partkey=pf);  

Query Q2: Find the information about certain parts that were sold 

to certain customers on certain days. 

select *  

from orders o, lineitem l, customer c 

where o.orderkey=l.orderkey and o.custkey=c.custkey  

and (o.orderdate=d1 or … or o.orderdate=de)  

and (l.partkey=p1 or … or l.partkey=pf)  

and (c.nationkey=n1 or … or c.nationkey=ng);  

We built an index on each selection or join attribute. Before we 

ran queries, we ran the PostgreSQL statistics collection program 

on all the relations. We also tested other database schemas. The 

results are similar and thus not presented here. 

For each query Qi (i=1, 2) we tested, if Qi returns an empty 

result set, the minimal zero result [10, 21] is Qi itself. That is, 

except for the entire Qi, any part of Qi (e.g., selection on a single 

relation) has some non-empty output. For Q1, its combination 

factor is defined as F=e×f. For Q2, its combination factor is 

defined as F=e×f×g. F represents the number of atomic query 

parts that will be generated from the query. 

We performed three experiments. In these experiments, we 

purposely use large N’s to demonstrate good scalability, where N 

is the number of atomic query parts that have already been stored 

in the collection Caqp when the new query comes. As will be 

shown in Section 3.2, our method can often use a much smaller N 

to achieve good detection probability. In each experiment, we 

measured the overhead of our techniques in the following two 

cases: 

Case 1: Only Q1’s are executed. That is, the new query is Q1. 

Also, the information stored in Caqp comes from previous Q1’s.  

Case 2: Only Q2’s are executed. That is, the new query is Q2. 

Also, the information stored in Caqp comes from previous Q2’s. 

For each reported number, the experiment was repeated twenty 

times (twenty runs). Each run used different (and random) di’s 

(1≤i≤e), pj’s (1≤j≤f), and nk’s (1≤k≤g). Unless otherwise specified, 

the reported overhead of our techniques is the largest one 

observed during these twenty runs. The reported query execution 

time is the shortest one observed during these twenty runs. This is 

to approximate the maximum overhead of our techniques and the 

shortest query execution time. In this way, when comparing the 

overhead of our techniques with the query execution time, we 

always do favor to the query execution time. 

 
Caqp Size Experiment 

In this experiment, we fixed F=2 and s=2. We varied N from 

1,000 to 3,000. Recall that N is the number of atomic query parts 

that have already been stored in the collection Caqp when the new 

query comes. 

Figure 7 shows the overhead of our techniques. By “check 

succeeds/fails,” we mean that our method can/cannot use the 

information stored in the collection Caqp to tell that a query will 

return an empty result set. The lines for query Q1 (Q2) represent 

the overhead of our techniques in Case 1 (Case 2). 

 

The overhead of our techniques in Case 2 is larger than that in 

Case 1. This is because query Q2 is more complex than query Q1: 

Q2 joins three relations, while Q1 joins two relations. As a result, 

the atomic query parts generated from Q2 are more complex than 

those generated from Q1. Also, the atomic query part coverage 

checking in Case 2 is more time consuming than that in Case 1. 

The overhead of our techniques increases with N, the number of 

atomic query parts stored in the collection Caqp. This is easy to 

understand. Given a query, Caqp needs to be searched for matching 

atomic query parts. The more atomic query parts stored in Caqp, 

the longer time the search takes. 

When the check succeeds, the collection Caqp only needs to be 

searched once. When the check fails, if the query returns an empty 

result set, Caqp needs to be searched twice. The first time is to 

check whether the query will return an empty result set. The 

second time is to store the information about the empty-result 

Figure  7. O verhead of our techniques (C aqp
 size 
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query into Caqp. Hence, when the check fails, the maximum 

overhead of our techniques is about two times that when the check 

succeeds. 

 
Query Combination Factor Experiment 

In this experiment, we fixed s=2 and N=2,000. We varied the 

query combination factor F from 1 to 8. Figure 8 shows the 

overhead of our techniques. The meaning of the four lines in 

Figure 8 is the same as that in Figure 7. The larger the F is, the 

more atomic query parts the query generated. Then our method 

needs to spend more time on both searching for the matching 

atomic query parts in the collection Caqp, and storing the atomic 

query parts generated from an empty-result query into Caqp. 

Therefore, the overhead of our techniques increases with F. 

 
Database Scale Factor Experiment 

In this experiment, we fixed F=2 and N=2,000. We varied the 

database scale factor s from 1 to 3. The purpose of this experiment 

is to show that the overhead of our techniques is negligible 

compared to the query execution cost.  

 

Figure 9 shows both the overhead of our techniques and the 

query execution time. The lines for “check Q1/Q2” represent the 

overhead of our techniques. The lines for “execute Q1/Q2” 

represent the query execution time. The y-axis uses logarithmic 

scale.  

Our techniques do not examine the data set. Also, our 

techniques only perform fast in-memory operations (recall that the 

entire collection Caqp is kept in memory). Hence, compared to the 

query execution time, the overhead of our techniques is about four 

orders of magnitude smaller.  

The query execution time increases with the data set size. In 

contrary, the overhead of our techniques is independent of the 

data set size, since our techniques do not examine the data set. 

 

3.2 Theoretical Analysis of Detection 

Probability 
We now turn to describe a first-principle mathematical analysis 

on the probability that our method can successfully detect empty-

result queries. The goal of this analysis is to gain insight into the 

main performance trends of our method. For this purpose, our 

analysis picks up several typical cases that are frequently 

encountered in practice (e.g., canned queries). 

We assume that all the queries are of the form 

π(σ
CS (R1

⋈
R2

⋈ … ⋈
Rk)), where SC is the selection condition and 

the join condition is omitted. From previous queries’ execution, N 

atomic query parts have been stored in the collection Caqp. The 

detection probability Dp is defined as the probability that our 

method can successfully detect empty-result queries. That is, in 

the case that the output of a new query Q is empty, with 

probability Dp our method can detect that Q will return an empty 

result set without executing Q. We analyze the following three 

cases. 

 

Case 1: Point-based Comparisons 

Suppose that the selection condition SC is a disjunction of m 

terms, where each term is a conjunction of n primitive terms and 

the i-th (1≤i≤n) primitive term is of the form 
iie

caR
i

=.  (1≤ei≤k). 

Each term can be represented as an n-tuple (c1, c2, …, cn). Assume 

that when m=1, there are totally K such n-tuples that can cause the 

query to return an empty result set. All these K n-tuples form a set 

SK. Each atomic query part stored in the collection Caqp 

corresponds to an n-tuple t∈SK. We say that an n-tuple t∈SK is 

stored in Caqp if the corresponding atomic query part is stored in 

Caqp. Therefore, N n-tuples t∈SK are stored in Caqp.  

Consider a new query Q whose result set is empty. That is, for 

each one of the m terms in the selection condition SC of Q, the 

corresponding n-tuple t∈SK. For a given n-tuple t∈SK, the 

probability that t is stored in Caqp is p=N/K. The detection 

probability Dp is equal to the probability that for each one of the m 

terms in the SC of Q, the corresponding n-tuple t∈SK is stored in 

Caqp. Therefore, Dp=p
m

.  

Figure 10 shows the detection probability Dp of Case 1. For a 

fixed m, Dp increases with p. When p is close to 1, Dp is also close 

to 1. This is easy to understand, since p represents the amount of 

Figure 8. O verhead of our techniques (query 

combination factor experiment).
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information stored in the collection Caqp. In the extreme case that 

p=1, our method can always successfully detect that query Q will 

return an empty result set. 

For a fixed p, the detection probability Dp decreases with m. 

That is, the more terms in the selection condition SC of query Q, 

the less likely our method can detect that Q will return an empty 

result set. This is because only in the case that the information of 

all m terms is stored in the collection Caqp, our method can detect 

that Q will return an empty result set.  

 

Case 2: Unbounded-Interval-based Comparisons 

Suppose that the selection condition SC is a conjunction of n 

primitive terms, where the i-th (1≤i≤n) primitive term is of the 

form 
iei aRc

i
.<  (1≤ei≤k). Assume that ∏

=

n

i

ii VU
1

),(
 is the entire 

empty result space. That is, whenever ci∈(Ui, Vi) for each i 

(1≤i≤n), the query output is empty. Without loss of generality, we 

assume that the entire empty result space has been normalized. 

That is, for each i (1≤i≤n), Ui=0 and Vi=1. 

The information of N empty-result queries is stored in the 

collection Caqp. Essentially, N selection conditions are stored in 

Caqp. For each such selection condition and each i (1≤i≤n), we 

assume that the corresponding ci is uniformly distributed between 

0 and 1. (For simplicity, “merging” atomic query parts in Caqp is 

not considered. In the case that only the most “general” atomic 

query parts are kept in Caqp, our derivation is still valid while the 

number of atomic query parts stored in Caqp can be less than N.)  

Consider a new query Q whose result set is empty. For each i 

(1≤i≤n), the ci of Q is uniformly distributed between 0 and 1. We 

derive the detection probability Dp in the following way: 

(1) Consider any selection condition SC′ stored in the collection 

Caqp. The selection condition SC of Q is covered by SC′ iff for 

each i (1≤i≤n), the ci of SC is bigger than the ci of SC′ (whose 

probability is ½). Hence, the probability that SC is covered by 

SC′ is 1/2
n
.  

(2) The detection probability Dp is equal to the probability that 

the SC of Q is covered by one of the N selection conditions 

stored in Caqp. Therefore, .)2/11(1 Nn

pD −−=  This is 

because: 

(a) Consider any selection condition SC′ stored in Caqp. The 

probability that the SC of Q is not covered by SC′ is 1-

1/2
n
. 

(b) The probability that the SC of Q is not covered by any of 

the N selection conditions stored in Caqp is .)2/11( Nn−  

Figure 11 shows the detection probability Dp of Case 2. For a 

fixed n, Dp increases with N. When N goes to infinity, Dp becomes 

close to 1. This is easy to understand. N represents the amount of 

information stored in the collection Caqp. The more information 

our method has, the more likely it can detect that query Q will 

return an empty result set. 

For a fixed N, the detection probability Dp decreases with n. 

That is, the more primitive terms in the selection condition SC of 

query Q, the less likely our method can detect that Q will return 

an empty result set. This is because only in the case that all n 

primitive terms are “matched” by the information stored in the 

collection Caqp, our method can detect that Q will return an empty 

result set. 

Now suppose that each unbounded-interval-based comparison 

iei aRc
i
.<  (1≤i≤n) is replaced by a bounded-interval-based 

comparison 
iiei daRc

i
<< . . From a similar analysis, we can 

show that in the bounded-interval-based comparison case, the 

detection probability Dp is .)6/11(1 Nn

pD −−=  

 

Case 3: Mixed Case 

Suppose that the selection condition SC is a disjunction of m 

terms, where each term is a conjunction of n primitive terms. 

Among these n=n1+n2+n3 primitive terms, n1 are point-based 

comparisons, n2 are bounded-interval-based comparisons, and n3 

are unbounded-interval-based comparisons.  

Consider a new query Q whose result set is empty. Suppose that 

for any term T of Q and any atomic query part P stored in the 

collection Caqp, the probability that T is “covered” by P is q. Then 

for any term T of Q, the probability that T is covered by some 

atomic query part stored in Caqp is .)1(1
N

q−−  The detection 

probability Dp is .))1(1(
mN

p qD −−=  

Figure 12 shows the detection probability Dp of Case 3. For a 

fixed q and m, Dp increases with N. When N goes to infinity, Dp 

becomes close to 1. This is easy to understand, since N represents 

the amount of information stored in the collection Caqp. 

Only in the case that the information of all m terms is stored in 

Caqp, our method can detect that query Q will return an empty 

result set. Hence, for a fixed q and N, Dp decreases with m. 

For a fixed m and N, Dp increases with q, since q represents the 

probability that an atomic query part stored in Caqp can be used to 

match an empty-result query. 

 

Summary of Experimental Results 

In all the above three cases, when N, the number of atomic 

query parts stored in the collection Caqp, goes to infinity, Dp 

becomes close to 1. As shown in Section 3.1, our method can 

afford to store many atomic query parts in Caqp. This increases our 

Figure 11. The detection probability D p 

(unbounded-interval-based comparisons).
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chance of successfully detecting empty-result queries. In practice, 

we would expect the data set to contain hot spots. Therefore, in a 

large number of cases, after enough information about previously-

executed, empty-result queries has been accumulated in Caqp, we 

would expect Dp to converge to 1. Section 3.1 shows that the 

overhead of our techniques is negligible compared to the query 

execution overhead. Thus, when the check succeeds, our method 

can bring significant performance benefit by avoiding the 

expensive query execution. This benefit increases with the data set 

size. 

 

4. Related Work 
The empty-result problem has been studied in the research 

literature. Existing solutions fall into two categories: 

(1) Explain what leads to the empty result set [10, 16, 18, 21, 26, 

27]. 

(2) Automatically generalize the query so that the generalized 

query will return some answers [7, 18, 19, 27]. 

Both categories can be regarded as an AI approach: letting the 

computer make trials and guess what users want. However, none 

of the existing solutions is completely satisfactory. Some 

solutions require domain specific knowledge that is often not 

available. Some solutions only apply to a restricted form of 

queries. Some solutions require an excessive amount of time. In 

certain cases, some solutions give a large number of reasons why 

the result set is empty. Users do not know which one is the 

genuine reason. Even worse, these reasons may not always 

include the genuine reason. 

For most AI-style solutions, the first step is to execute the query 

and see whether the result set is empty. This is also the default 

step when no specific AI-style solution is used. However, none of 

the existing solutions allows users to reuse each other’s query 

results, which is the focus of our method. For certain applications, 

our method works while the AI approach does not. For example, 

in anomaly detection, users submit queries to detect anomaly. In a 

large number of cases, users would expect that anomaly does not 

exist and hence submitted queries should return empty result sets. 

In this case, empty result sets are not a surprise. There is no need 

to either explain what leads to empty result sets or generalize 

queries so that users can get some answers. Rather, users care how 

soon they can get query results. 

To facilitate interactive exploration of massive data sets, [14] 

proposed providing early approximate answers for aggregate 

queries. In contrast, our method needs to know exactly whether a 

query will return an empty result set. 

There has been a lot of work on using materialized views to 

speed up query processing [12]. In general, it is expensive to 

decide which queries can be answered with which materialized 

views (many problems are NP-complete) [3, 9, 11, 13, 20, 22, 28, 

36]. Our method uses the idea in [3, 36] and focuses on a 

restricted set of ways of using stored query parts to check whether 

a query will return an empty result set. Hence, our solution is 

scalable in the presence of a large number of queries and stored 

query parts. 

[15] proposed using materialized views to answer preference 

queries that maximize a linear function over the relation’s 

attributes. [15] only considers numeric attributes and selection on 

a single relation, while our method needs to handle arbitrary 

attributes and multiple relations. 

[4, 5] proposed using statistics on query expressions to facilitate 

query optimization. Each set of collected statistics S is on an 

attribute r. If r does not appear in a query Q, then S cannot be 

used for the cardinality estimation of Q. In contrast, our method 

does not consider attributes. Rather, it only cares whether or not 

the cardinality is zero. Moreover, [4, 5] only consider select-

project-join queries whose filter expression is a conjunction of 

simple predicates, while our method needs to handle arbitrary 

filter expressions. 

[1, 6] proposed building histograms by analyzing query results 

rather than checking the relation. [1, 6] cannot detect correlation 

among multiple relations, which is a common reason that leads to 

empty result sets. 

Multiple-query optimization [32, 33, 39] allows multiple 

concurrent queries to reuse each other’s intermediate results. 

However, it does not work for non-concurrent queries, which are 

common in our case. 

 

5. Conclusion 
In this paper, we propose a fast detection method for empty-

result queries. Our key idea is to reuse the evaluation results from 

previous empty-result queries. Under a fixed storage budget, our 

method only stores the most valuable and non-redundant 

information, continuously updates the stored information, and 

utilizes a set of special properties of empty result sets to increase 

its coverage detection capability. Our experiments with both a 

theoretical analysis and a prototype implementation in 

PostgreSQL show that our method has low overhead. In a large 

number of cases, our method can bring significant benefit by 

avoiding executing empty-result queries unnecessarily. This can 

both reduce the load on the RDBMS and expedite the interactive 

exploration process. 

Like traditional materialized views, we expect our techniques to 

be most helpful in read-mostly environments. Extending our 

techniques to more update-intensive environment is an interesting 

area for future work. We suspect that many of the techniques used 

in materialized view maintenance for detecting irrelevant updates 

[8, 25] can be modified to be useful in our scenario. That is, Caqp 

keeps those atomic query parts that are not influenced by the 

updates to relations. The atomic query parts used in our 

techniques have the special property that most (or all) updates to 

relations are irrelevant. As a result, we can create in-memory 

filtering relations that summarize the most relevant information in 

the base relations and use them to quickly filter out as many 

irrelevant updates as possible. The details of our current progress 

are available in [24]. 
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