

Efficient Detection of Empty-Result Queries

Gang Luo
IBM T.J. Watson Research Center

luog@us.ibm.com

Abstract
Frequently encountered in query processing, empty query results

usually do not provide users with much useful information. Yet,

users might still have to wait for a long time before they

disappointingly realize that their results are empty. To

significantly reduce such unfavorable delays, in this paper, we

propose a novel method to quickly detect, without actual

execution, those queries that will return empty results. Our key

idea is to remember and reuse the results from previously-

executed, empty-result queries. These results are stored in the

form of so-called atomic query parts so that the (partial) results

from multiple queries can be combined together to handle a new

query without incurring much overhead. To increase our chance

of detecting empty-result queries with only a limited storage, our

method (1) stores the most “valuable” information about empty-

result queries, (2) removes redundant information among different

empty-result queries, (3) continuously updates the stored

information to adapt to the current query pattern, and (4) utilizes a

set of special properties of empty results. We evaluate the

efficiency of our method through a theoretical analysis and an

initial implementation in PostgreSQL. The results show that our

method has low overhead and can often successfully avoid

executing empty-result queries.

1. Introduction
DBMSs are being used more and more for interactive

exploration [7, 14, 37], where users keep refining queries based

on previous query results. Due to the large data set size, users are

forced to form rather precise queries in order to avoid getting too

many query results. Unfortunately, this often causes queries to

return empty result sets, which usually do not provide users with

much useful information [19, 26]. This is especially true at the

beginning, when users do not have sufficient knowledge of the

data set. Even worse, users cannot discover empty result sets until

query execution finishes, which can take a long time. We call this

the empty-result problem [19].

Empty results are frequently encountered in query processing.

For example, in a query trace that contains 18,793 SQL queries

and is collected in a Customer Relationship Management (CRM)

database application developed by IBM, 18.07% (3,396) queries

are empty-result ones. In another real estate database application

developed by IBM, 5.75% SQL queries are discovered to return

empty result sets. As a third example, [17] and [30] reported that

the percentages of empty-result queries are 10.53% and 38%,

respectively.

One might think that empty-result queries can finish in a short

amount of time. However, this is often not the case. For example,

consider a query that joins two relations (possibly after some

selection and projection). Regardless of whether the query result

set is empty, the query execution time will be longer than the time

required to do the join. Even if this query can finish execution in a

few seconds in a lightly loaded RDBMS, it can last longer than a

minute in a heavily loaded RDBMS.

In general, it is desirable to quickly detect empty-result queries.

Not only does it facilitate the exploration of massive data sets but

also it provides important benefits to users. First, users can

quickly realize that they encounter the empty-result problem

rather than waiting for the empty result. With a much shortened

latency time, users can quickly go ahead with other trials. Second,

by avoiding the unnecessary execution of empty-result queries,

the load on the RDBMS can be reduced, thus further improving

the system performance.

In this paper, we propose a novel method for fast detection of

empty-result queries. To the best of our knowledge, this direction

of handling the empty-result problem has never been explored

before. We observe that as users often submit similar queries, the

probability that they can reuse each other’s query results is usually

high. For example, among the 3,396 empty-result queries

collected from the CRM database application at IBM, only 1,287

queries are distinct. All the other 2,109 queries are repeated ones.

Hence, we reuse the evaluation results from previously-executed,

empty-result queries by storing the information about query parts

in the RDBMS, where each query part is a sub-tree of a query

plan tree. If such reuse is always successful, the execution of at

least 11% (=2109/18793) of all the 18,793 queries in the above

mentioned CRM application can be saved.

Under a fixed storage budget, to improve our chance of using

the remembered information to detect whether a new query will

return an empty result set, four techniques are used. First, from

previous queries’ execution, only the lowest-level query parts that

lead to empty result sets, rather than all empty-result query parts,

are stored. Second, redundancy in the information provided by

different empty-result queries is removed and only the most

“valuable” information is stored. Third, as query pattern changes,

the stored empty-result query parts get continuously updated to

adapt to the current situation. Fourth, our method utilizes a set of

special properties of empty result sets so that its coverage

detection capability is often more powerful than that of the

traditional materialized view method (e.g., if π(R)=∅, we know

immediately that R=∅, σ(R)=∅, and R
⋈

S=∅.)

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and

its date appear, and notice is given that copying is by permission of the

Very Large Data Base Endowment. To copy otherwise, or to republish, to

post on servers or to redistribute to lists, requires a fee and/or special

permission from the publisher, ACM.

VLDB ‘06, September 12–15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

1015

Our method works as follows. From previous queries’

execution, the lowest-level query parts that lead to empty result

sets are found. These query parts are decomposed into so-called

atomic query parts and stored in the RDBMS. In this way, the

(partial) execution results from multiple, previously-executed,

empty-result queries can be combined together to handle a new

query without incurring much overhead. When a new query

comes, it is decomposed into atomic query parts, which are then

matched with the remembered ones. If such a match exists for

each decomposed atomic query part, we know immediately that

this new query will return an empty result set and thus its

execution is saved.

The empty-result problem has been studied in the research

literature. Existing solutions either explain what leads to the

empty result set [10, 16, 18, 21, 26, 27] or automatically

generalize the query so that the generalized query will return some

answers [7, 18, 19, 27]. For most such solutions, the first step is to

execute the query and see whether the result set is empty. Our

method can be used in conjunction with these solutions and

significantly speed up this first step.

Throughout this paper, we assume a read-mostly environment

where periodic batch updates are allowed. This is the case with

traditional data warehouses. The data sets of all the database

applications mentioned earlier satisfy this property. When

relations get updated, our current method is to delete all the

information in the RDBMS about previously-executed, empty-

result queries.

We investigate the performance of our fast detection method

for empty-result queries with a theoretical analysis and an initial

implementation in PostgreSQL. The results show that our method

has minor overhead and can often bring significant benefit by

avoiding executing empty-result queries unnecessarily.

The rest of the paper is organized as follows. Section 2

describes our fast detection method for empty-result queries.

Section 3 investigates the performance of the proposed method.

We discuss related work in Section 4 and conclude in Section 5.

2. A Fast Detection Method for Empty-Result

Queries
In this section, we describe our fast detection method for

empty-result queries. Unless otherwise specified, we focus on

select-project-join queries. By select-project-join queries, we

mean those queries whose logical query plans contain only scan,

selection, projection, join, sort, and duplicate elimination

operators. Nested queries that can be rewritten into such a form

are included while outer join operators are excluded. All the

operators are physical operators. All the query plans are physical

query plans. In Section 2.5 below, we show how to extend our

techniques beyond select-project-join queries.

Our main observation is that query plans of different queries

often share some common parts [32, 33, 39]. For example, during

interactive exploration, users often issue a series of queries. Each

query is a refinement of the previous one [34]. Also, users often

submit canned queries by filling parameter values into a pre-

defined template [37]. If for some parameters, different users fill

in the same values (e.g., certain parts of the data set can be

frequently accessed), then the query plans of these queries are

likely to share some common parts. During previous queries’

execution, if the RDBMS remembers the query parts that lead to

empty result sets, then it is likely that the RDBMS can use them to

tell whether future queries will return empty result sets. The

details of our method are described in the following subsections.

2.1 Definitions
 We first introduce some definitions.

Empty-result-propagating operator. Consider an operator Op

that has one or more inputs. Op is an empty-result-propagating

operator if it satisfies the following condition: the output of Op is

empty if any input of Op is empty.

Empty-result-propagating query. An empty-result-propagating

query is a query whose query plan contains only empty-result-

propagating operators.

A large number of operators (e.g., scan, selection, projection,

join, sort, duplicate elimination) are empty-result-propagating. As

a result, empty-result-propagating queries include a large class of

queries. For example, all the select-project-join queries are empty-

result-propagating queries.

Query part. A query plan is a tree of operators. Every sub-tree of

the query plan is called a query part.

In our discussion, we assume that each relation is used at most

once in a query part. In the case that the same relation R is used

multiple times in a query part (e.g., R is joined with itself), the

first occurrence of R is untouched while each other occurrence of

R is given a different name. Then our techniques still work. (This

may reduce the detection capability of our method. However, as

mentioned in Section 2.6 below, our method wants to achieve a

balance between efficiency and detection capability.)

Atomic query part. Each atomic query part is an ordered pair

(relation names RN, selection condition SC). It represents a

relational algebra formula that first product joins all the relations

in RN, and then applies SC. SC is a conjunction of primitive terms,

where each primitive term is a comparison (e.g., A.a=B.b,

A.a<B.b+C.c, A.a=100). In the rest of the paper, we do not

differentiate between an atomic query part and the relational

algebra formula represented by the atomic query part.

Cover (selection condition). A selection condition SC1 covers

another selection condition SC2 iff whenever SC2 is true, SC1 is also

true.

Cover (atomic query part). We say that an atomic query part

P1=(RN1, SC1) covers another atomic query part P2=(RN2, SC2) if

RN1⊆RN2 and SC1 covers SC2. For example, P1=σA.a<40(A) covers

P2=σA.a=20∧A.c=B.d(A×B)=(σA.a=20(A))
⋈

A.c=B.dB.

The following two theorems will be used repeatedly in our

discussion:

Theorem 1: Any query part of an empty-result-propagating query

is an empty-result-propagating query. For an empty-result-

propagating query, if the output of some query part P is empty,

the output of any higher-level query part that contains P (and thus

the output of the entire query) is empty.

Proof. Omitted.

Theorem 2: Suppose that atomic query part P1 covers atomic

query part P2. For a given database, if the output of P1 is empty,

the output of P2 is also empty.

Proof. Suppose that P1=(RN1, SC1). P2=(RN2, SC2). The output U1

of P1 is

)(
1

11 ∏
∈

=
N

C

RR

S
RU σ .

The output U2 of P2 is

)(
2

22 ∏
∈

=
N

C

RR

S
RU σ .

From RN1⊆RN2 and U1=∅, we know that

1016

)(
2

13 ∏
∈

=
N

C

RR

S
RU σ

))())(((
121

11 ∏∏
−∈∈

×=
NNN

CC

RRRRR

SS
RRσσ

))((
12

1 1 ∏
−∈

×=
NN

C

RRR

S RUσ

 ∅= .

From SC1 covers SC2, we know that U2⊆U3. Hence, we have

U2=∅. ∎

2.2 Overview of the Method
In this section, we give an overview of our fast detection

method for empty-result queries. The RDBMS keeps a collection

Caqp of atomic query parts. The output of each atomic query part

in Caqp is empty. The information about previously-executed,

empty-result queries is stored in Caqp. For efficiency purposes,

Caqp is always kept in memory. Initially, Caqp is empty.

When the execution of a query returns an empty result set, the

RDBMS does the following two operations:

Operation O1: Display the query plan to the user. For each

operator in the query plan, the output cardinality is displayed (the

output cardinalities of the operators are kept as collected statistics

during query execution [23]). These output cardinalities can

facilitate the user to find first the query sub-expression (and the

reason) that causes the empty result set, and then the right follow-

up queries [10]. The follow-up queries submitted by the user can

still return empty result sets. This is because after optimizer’s

rewriting, the query plan often looks very different from the

original query. The user may not always be able to find the

genuine cause of the empty result set. Also, there can be multiple

causes that lead to the empty result set.

Operation O2: Find the lowest-level query part(s) whose output is

empty. Each such query part P is broken into one or more atomic

query parts. Then the atomic query parts are stored in the

collection Caqp. According to Theorem 1, the output of any higher-

level query part Ph that contains P is empty, while the output of

any lower-level query part Pl that is contained in P is not empty.

However, the information about Ph is not stored in Caqp, since this

information is redundant. This is similar to the technique in [10,

21] of only presenting the minimal zero results to the user.

Figure 1. A first query plan example.

For example, consider the query plan in Figure 1. The numbers

in the square brackets represent the output cardinalities of the

operators. The subscripts represent the selection conditions. (Join

conditions are also selection conditions.) Only the query part that

is represented by the oval is broken into atomic query parts.

From query execution, the RDBMS can only obtain output

cardinalities of physical operators in physical query plans [23].

Hence, in Operations O1 and O2, our method works with physical

query plans rather than logical query plans. In contrary, as

described in Section 2.4 below, when our method uses the

information stored in Caqp to check whether a new query Q will

return an empty result set, the logical query plan of Q is used.

In Operation O2, the query part P is stored in the collection Caqp

in the form of one or more atomic query parts. This is to facilitate

the future checking of whether a new query Q will return an

empty result set, as our method may need to use the (partial)

execution results from multiple previous queries (see Section 2.4

below for details). For example, suppose that Q=σA.a=50∨A.a=60(A).

From previous queries’ execution, the RDBMS knows that both

queries Q1=σA.a=50∨A.b=30(A) and Q2=σA.a=60∨A.b=40(A) return empty

result sets. Q1 is broken into two atomic query parts:

P1=σA.a=50(A) and P2=σA.b=30(A). Q2 is broken into two atomic

query parts: P3=σA.a=60(A) and P4=σA.b=40(A). Then by using P1

and P3, our method can tell that Q will return an empty result set.

A constant Ccost is used to decide whether a query is a low-cost

query or a high-cost query. When the query plan of a new query Q

comes, our method first checks whether the optimizer’s estimated

cost of Q, cost(Q), is bigger than Ccost. There are two possible

cases:

(1) If cost(Q)≤Ccost (i.e., Q is a low-cost query), Q is executed.

(2) If cost(Q)>Ccost (i.e., Q is a high-cost query), our method

first uses the information stored in the collection Caqp to

check whether Q will return an empty result set. If not, Q is

executed. Otherwise the empty result set is returned directly.

Our heuristics is that low-cost queries can be executed quickly,

and it takes time to use the information stored in Caqp to check

whether a query will return an empty result set. Hence, there is no

need to use the information stored in Caqp to check whether a low-

cost query will return an empty result set. Similarly, we do not

store the information about low-cost empty-result queries in Caqp.

Ccost is an empirical number. Its value can be decided based on

past statistics. For example, how expensive it is to use the

information stored in Caqp to check whether a query will return an

empty result set, how likely a query will return an empty result

set, etc.

2.3 Storing Atomic Query Parts
In this section, we show how to break a lowest-level query part

P whose output is empty into one or more atomic query parts and

then store the atomic query parts in the collection Caqp. Our

method proceeds in three steps:

Step 1: P is transformed into a simplified query part Ps.

Step 2: Ps is broken into one or more atomic query parts.

Step 3: The atomic query parts are stored in Caqp.

Organization of Caqp

To facilitate search and save storage space, the collection Caqp

of atomic query parts is organized as a list of entries. Each entry

in Caqp represents a set of relation names RN. All the atomic query

parts with the same relation names RN are stored in the same entry

as a linked list of selection conditions SC.

B (index-scan) B.e<40 ∨ B.e=50 [5000]

C (table-scan) [20000]

sort-merge join B.g=C.h [0]

σC.f<300 [1000]

π [0]

sort [0] sort [1000]

π [0]

A (table-scan) [40000]

σ50<A.a<100 ∨ A.b=200 [200] π [5000]

hash join A.c=B.d [0]

hash [200] hash [5000]

1017

Figure 2. The collection Caqp of atomic query parts.

The number of atomic query parts stored in the collection Caqp

cannot exceed a constant Nmax (as will be shown in Section 3.1,

Nmax can be quite large). This is because it is not desirable to let

Caqp consume too much storage space. Also, as discussed in

Section 2.4 below, to check whether a new query Q will return an

empty result set, our method needs to check whether the atomic

query parts generated from Q are covered by those stored in Caqp.

The more atomic query parts stored in Caqp, the slower the

checking.

Our method only stores in the collection Caqp those atomic

query parts that are frequently used [38]. To achieve this goal, the

standard clock algorithm (an approximation of the LRU

algorithm) is used to manage Caqp. Each time the RDBMS wants

to store a new atomic query part Pnew in Caqp,

(1) If the number of atomic query parts stored in Caqp is no more

than Nmax, Pnew is stored in Caqp directly.

(2) If the number of atomic query parts stored in Caqp is larger

than Nmax, the RDBMS uses the clock algorithm to find an

atomic query part Pold in Caqp that is not frequently used. Pold

is deleted from Caqp. Then Pnew is stored in Caqp.

Our method is more dynamic than the method in [2, 40] of only

keeping the most frequently used materialized views, since

creating or deleting an atomic query part is cheaper than creating

or deleting a materialized view and thus can be done more

frequently.

Step 1: P ⇒⇒⇒⇒ Ps

When getting a lowest-level query part P whose output is

empty, the RDBMS converts P into a simplified query part Ps by

performing the following three transformations:

Transformation T1: Drop all the operators in P that have no

influence on the emptiness of the output. These operators include

projection, hash, sort, and duplicate elimination.

Transformation T2: Each physical join operator (e.g., hash join,

sort-merge join, nested-loops join) in P is replaced with a logical

join operator.

Transformation T3: Each index-scan operator in P is replaced

with a table-scan operator followed by a selection operator, where

the selection condition is the same as the index-scan condition.

The result of a query is independent of its evaluation method.

Hence, none of these three transformations has influence on the

emptiness of the output. Essentially, these three transformations

convert the “physical” query part P into a “logical” query part −

the simplified query part Ps. Ps represents a relational algebra

formula without projection and duplicate elimination. It is more

“general” than P. This can increase our chance of using the query

part to detect whether a new query will return an empty result set.

For example, after applying these three transformations, the

query part that is represented by the oval in Figure 1 becomes the

simplified query part in Figure 3. Our method can use this

simplified query part to tell that the query in Figure 4 will return

an empty result set (see Section 2.4 below for details).

corresponding relational algebra formula:

(σ50<A.a<100 ∨ A.b=200 (A))
⋈

A.c=B.d (σB.e<40 ∨ B.e=50 (B))

Figure 3. A simplified query part example.

Figure 4. A second query plan example.

Step 2: Ps ⇒⇒⇒⇒ Atomic Query Parts

Now the simplified query part Ps is broken into one or more

atomic query parts. Suppose that Ps contains n selection

conditions. Each selection condition comes from either a selection

operator or a join operator. Each selection condition is rewritten

into a disjunctive normal form (DNF). DNF is a disjunction of

terms, where each term is a conjunction of primitive terms and

each primitive term is a comparison. During the rewriting,

(1) Negations on numeric or string attributes are removed by

using complementary operators. For example, not(A.a<20) is

rewritten into A.a≥20. not(A.a=20) is rewritten into

(A.a<20)∨(A.a>20).

(2) Interval-based comparison is treated as a single primitive

term. For example, 10<A.a<20 is treated as a single

primitive term rather than a conjunction of two primitive

terms 10<A.a and A.a<20. This is to facilitate the later

checking of whether one atomic query part covers another

atomic query part.

After the above rewriting, the combination of all n selection

conditions in the simplified query part Ps becomes a conjunction

of n DNFs D1∧D2∧…∧Dn, where each Di (1≤i≤n) is a DNF of a

selection condition. Then D1∧D2∧…∧Dn is rewritten into another

DNF PDNF. Each term in PDNF is a selection condition. It is a

conjunction of n terms, where the i-th (1≤i≤n) term comes from

Di. Note that the rewriting into the DNF PDNF is an exponential

step. However, usually this step is not expensive, as selection

conditions are not very complex. Also, for queries with extremely

complex selection conditions, our method may not be used.

Let RN denote the input relations of all the table-scan operators

in the simplified query part Ps. Each term SC in PDNF, combined

with RN, is an atomic query part (RN, SC). For example, after

rewriting, the simplified query part in Figure 3 becomes the four

atomic query parts in Figure 5.

(σ50<A.a<100 (A))
⋈

A.c=B.d (σB.e<40 (B))

(σA.b=200 (A))
⋈

A.c=B.d (σB.e<40 (B))

(σ50<A.a<100 (A))
⋈

A.c=B.d (σB.e=50 (B))

(σA.b=200 (A))
⋈

A.c=B.d (σB.e=50 (B))

Figure 5. Atomic query part examples.

It is easy to see that the simplified query part Ps and the

generated atomic query parts have the following property:

B (index-scan) B.e<20

π

A (index-scan) A.a=75

sort-merge join A.c=B.d

sort sort

π

selection condition

selection condition

selection condition

selection condition

selection condition

relation names

relation names

relation names

…

…

B (table-scan) A (table-scan)

σ50<A.a<100 ∨ A.b=200 σB.e<40 ∨ B.e=50

⋈
A.c=B.d

1018

Theorem 3: The following three assertions are equivalent to each

other:

(a) The output of the query part P is empty.

(b) The output of Ps is empty.

(c) The output of each generated atomic query part is empty.

Proof. Omitted.

Step 3: Storing Atomic Query Parts in Caqp

For each atomic query part Pa=(RN, SC) generated in Step 2, all

the atomic query parts that are covered by Pa are removed from

the collection Caqp. Then Pa is inserted into Caqp. That is, only the

most “general” atomic query parts are kept in Caqp, since they are

most useful in deciding whether a new query will return an empty

result set. This is similar to the materialized view merging

technique in [2].

Figure 6. An example entry in the collection Caqp of

atomic query parts.

For example, suppose that the collection Caqp is originally

empty. Then after inserting the four atomic query parts in Figure

5, the corresponding entry E in Caqp becomes what is shown in

Figure 6.

For an atomic query part Pa=(RN, SC), atomic query parts that

are covered by Pa can only be contained in those entries of Caqp

whose relation names form a superset of RN. To find out which

atomic query parts stored in Caqp are covered by Pa, our method

only searches in those entries. (The signature method in [31] is

used to speed up the process of checking set containment.)

Deciding Coverage

In general, it is computationally expensive to decide precisely

whether one atomic query part P1 covers another atomic query

part P2 (many problems are NP-complete) [3, 9, 11, 13, 20, 22,

28, 36]. In our case, false positives are not allowed while false

negatives are tolerable. That is, if our method decides that P1

covers P2, it must be true that P1 covers P2. However, if P1 covers

P2 but our method fails to detect it, it does not matter except that

efficiency is sacrificed. For example, storage in the collection Caqp

is wasted, or a new query Q is executed unnecessarily because our

method fails to use the information stored in Caqp to detect that Q

will return an empty result set (see Section 2.4 below for details).

In deciding whether P1=(RN1, SC1) covers P2=(RN2, SC2), the

RDBMS uses a method that attempts to achieve a reasonable

balance between efficiency and detection capability [3, 36].

Suppose that SC1=p1∧p2∧…∧pn and SC2=q1∧q2∧…∧qm. Each pi

(1≤i≤n) is a primitive term. Each qj (1≤j≤m) is a primitive term.

The method works as follows. The RDBMS decides that SC1

covers SC2 if they satisfy the following two conditions:

(1) n≤m.

(2) For each i (1≤i≤n), the RDBMS decides that pi covers some

qj (1≤j≤m).

If one of the following three conditions is satisfied, the RDBMS

decides that pi covers qj:

(1) pi=qj.

(2) Both pi and qj are interval-based comparison on the same

attribute of the same relation. The interval in pi contains the

interval in qj. Note that point-based comparison is a special

form of interval-based comparison. Also, the endpoints of

some intervals can be plus or minus infinity. For example, pi

is of the form A.a<50 and qj is of the form 20<A.a<40. As a

second example, pi is of the form A.a<50 and qj is of the

form A.a=30.

(3) The comparisons in pi and qj are on the same attribute of the

same relation. pi is of the form A.a≠c1. qj is of the form

A.a=c2. c1≠c2.

As mentioned in Section 2.1, P1 covers P2 if RN1⊆RN2 and SC1

covers SC2.

[9] proposed an algorithm that uses safe substitutions to decide

whether a materialized view MV can be used to answer a query Q.

MV “covers” Q if a safe substitution of MV can be used to

generate an equivalent query of Q. Our method can be regarded as

a simplified version of the algorithm in [9], where safe

substitutions are replaced by naive substitutions. This is because

in generating atomic query parts, all the projection operators are

dropped (Transformation T1). Hence, there is no “dangling”

selection condition. The computational overhead of our method is

lower than that of the algorithm in [9], while in certain cases, the

coverage detection capability of our method is weaker than that of

the algorithm in [9]. This results from our design philosophy that

is explained in Section 2.6.

2.4 Checking Empty Result Set
In this section, we describe how to use the information stored in

the collection Caqp to check whether a query Q will return an

empty result set. Suppose that the logical query plan of Q is Qp.

Techniques similar to that in Section 2.3 are used to break Qp into

one or more atomic query parts Pi (i=1, 2, …, m). For each i

(1≤i≤m), the RDBMS checks whether there exists any atomic

query part Ai in Caqp that covers Pi. (As explained at the end of

Step 3 in Section 2.3, our method only needs to search in those

entries of Caqp whose relation names form a subset of the relation

names of Pi.) If such an Ai exists, the RDBMS knows that the

output of Pi is empty (Theorem 2). If the RDBMS can find such

an Ai for each i (1≤i≤m), it knows that the output of Qp is empty

(Theorem 3).

2.5 Extension beyond Select-Project-Join

Queries
The above discussion focuses on select-project-join queries. In

certain cases, our techniques can be extended beyond select-

project-join queries. For example,

(1) Suppose that the root operator of the query plan is an

aggregate operator (either with or without a group by clause).

Except for this root aggregate operator, the rest of the query

plan forms a select-project-join query. Since the root

aggregate operator has no influence on the emptiness of the

query output, the RDBMS can ignore it when deciding

whether the query will return an empty result set. count()

needs some special handling, as count(∅)=0.

(A.c=B.d, 50<A.a<100, B.e<40) relation names: (A, B)

(A.c=B.d, A.b=200, B.e<40)

selection

condition

entry

(A.c=B.d, 50<A.a<100, B.e=50)

(A.c=B.d, A.b=200, B.e=50)

selection

condition

selection

condition

selection

condition

1019

(2) Set union is not an empty-result-propagating operator.

Suppose that the RDBMS wants to check whether the output

of Q1∪Q2 is empty, where Q1 and Q2 are select-project-join

queries. The techniques in Sections 2.2~2.4 are used to check

whether the output of Q1 is empty, and whether the output of

Q2 is empty. There are three possible cases:

(a) The checking says that both outputs are empty. Then the

output of Q1∪Q2 is empty.

(b) The checking only says that the output of Q1 (or the

output of Q2) is empty. Then Q2=Q1∪Q2 (or

Q1=Q1∪Q2) needs to be evaluated.

(c) The checking says nothing. Q1∪Q2 needs to be

evaluated.

(3) Outer join can be handled in a way similar to set union.

(4) Set difference is not an empty-result-propagating operator.

Suppose that the RDBMS wants to check whether the output

of Q1-Q2 is empty, where Q1 is a select-project-join query.

The techniques in Sections 2.2~2.4 are used to check whether

the output of Q1 is empty. If so, the output of Q1-Q2 is empty.

Otherwise Q1-Q2 needs to be evaluated.

We leave it as an interesting area for future work to investigate

how to handle other classes of queries. For example, set

intersection is an empty-result-propagating operator. In the

presence of set intersection in the query plan, projection operators

influence the emptiness of the query output – from A∩B=∅, it

cannot be deduced that π(A)∩π(B)=∅ (the attributes that are

projected out in A and B can have different values and cause

π(A)∩π(B)≠∅). As a result, our current method of storing the

information of empty-result queries in the collection Caqp does not

work for set intersection. One possible solution is that in the

presence of set intersection, Transformation T1 does not drop

projection operators.

2.6 Comparison between Our Method and the

Traditional Materialized View Method
Our fast detection method for empty-result queries uses some

data structure similar to materialized views − each atomic query

part stored in the collection Caqp can be regarded as a “mini”

materialized view. However, our method utilizes a set of special

properties of empty result sets and is different from the traditional

method of using materialized views to answer queries.

In deciding whether a query will return an empty result set, our

method ignores those operators (e.g., projection, duplicate

elimination) that have no influence on the emptiness of the query

output. Hence, in certain cases, the coverage detection capability

of our method is more powerful than that of the traditional

materialized view method. For example, consider the following

two queries: Q1=A
⋈

A.c=B.dB and Q2=π((σA.a=100(A))
⋈

A.c=B.dB).

A.a is projected out by the projection operator in Q2. In general,

materialized view MV=π(A
⋈

A.c=B.dB) cannot be used to answer

either Q1 or Q2. However, if the RDBMS knows that query

Q3=MV returns an empty result set, our method can tell that both

Q1 and Q2 will return empty result sets.

Usually, a large number of atomic query parts can be stored in

the collection Caqp and our method wants to speed up the checking

process. Therefore, when checking whether a query will return an

empty result set, our method uses a limited number of approaches

to check the coverage of atomic query parts. In contrast, the

traditional materialized view method uses the extensive query

rewriting approach, which is more capable in certain cases but

also more expensive. For example, consider query

Q=σ(50<A.a<90)∧(30<A.b<70)(A). There are three materialized views

that are all empty: MV1=σ(50<A.a<80)∧(30<A.b<60)(A),

MV2=σ60<A.a<90(A), and MV3=σ(50<A.a<70)∧(50<A.b<70)(A). The

traditional materialized view method can rewrite Q into

Q=σ30<A.b<70(MV1∪MV2∪MV3) and thus tell that Q will return an

empty result set. In contrast, our method cannot tell that if MV1,

MV2, and MV3 are all empty, the output of Q is also empty.

To save storage space, the traditional materialized view method

can merge multiple materialized views together [2]. For example,

the two materialized views MV1=σ(50<A.a<80)∧(30<A.b<60)(A) and

MV2=σ(60<A.a<90)∧(40<A.b<70)(A) can be merged into a single

materialized view MV3=σ(50<A.a<90)∧(30<A.b<70)(A). Then all the

queries that can be answered by using either MV1 or MV2 are

answerable by using MV3. However, if both MV1 and MV2 are

empty, the RDBMS cannot deduce that MV3 is also empty. As a

result, our method cannot arbitrarily merge multiple atomic query

parts in the collection Caqp into a single atomic query part.

In general, the design philosophy of our method is to achieve a

reasonable balance between efficiency and detection capability.

Our method strives for the detection capability that is both mostly

needed and easily achievable [3, 36]. It makes up the “loss” in the

other detection capability by storing a large number of atomic

query parts in the collection Caqp.

2.7 Summary of Advantages
Our fast detection method for empty-result queries has the

following advantages:

(1) It has small storage and computation overhead.

(2) A large number of atomic query parts can be stored in the

collection Caqp.

(3) As query pattern changes, the atomic query parts stored in

Caqp get continuously updated to reflect the current situation.

(4) The hotter an empty-result query Q is (i.e., the more

frequently users submit this Q), the more likely Q can be

successfully detected by our method. This is desirable for

those applications where users care more about hot spots in

the data set.

(5) Due to the utilization of a set of special properties of empty

result sets, its coverage detection capability is often more

powerful than that of a traditional materialized view method.

After enough information about previously-executed, empty-result

queries has been accumulated in Caqp, our method can often

successfully detect empty-result queries and avoid the expensive

query execution. This both reduces the load on the RDBMS and

speeds up the interactive exploration process.

A.a

A.b

50 90
30

70

A.a

A.b

50 90
30

70

1020

3. Performance Evaluation
In this section, we evaluate the performance of our method, first

with experiments in PostgreSQL [29], and then with a theoretical

analysis.

3.1 Evaluation in PostgreSQL
We first describe experiments we performed with a prototype

implementation of our techniques in PostgreSQL Version 7.3.4

[29]. Our measurements were performed with the PostgreSQL

client application and server running on a Dell Inspiron 8500 PC

with one 2.2GHz processor, 512MB main memory, one 40GB

disk, and running the Microsoft Windows XP operating system.

The default setting of PostgreSQL was used, where the buffer

pool size is 1,000 pages. (We also tested larger buffer pool sizes.

The results were similar and thus omitted.)

The relations used for the experiments followed the schema of

the standard TPC-R Benchmark relations [35]:

customer (custkey, nationkey, …),

orders (orderkey, custkey, orderdate, …),

lineitem (orderkey, partkey, …).

Table 1. Test data set.

 number of tuples total size

customer 0.15×s M 23×s MB

orders 1.5×s M 114×s MB

lineitem 6×s M 755×s MB

s is the scale factor of the database. In our experiments, on

average, each customer tuple matches ten orders tuples on the

attribute custkey. Each orders tuple matches 4 lineitem tuples on

the attribute orderkey.

We used the following two queries:

Query Q1: Find the information about certain parts that were sold

on certain days.

select *

from orders o, lineitem l

where o.orderkey=l.orderkey

and (o.orderdate=d1 or … or o.orderdate=de)

and (l.partkey=p1 or … or l.partkey=pf);

Query Q2: Find the information about certain parts that were sold

to certain customers on certain days.

select *

from orders o, lineitem l, customer c

where o.orderkey=l.orderkey and o.custkey=c.custkey

and (o.orderdate=d1 or … or o.orderdate=de)

and (l.partkey=p1 or … or l.partkey=pf)

and (c.nationkey=n1 or … or c.nationkey=ng);

We built an index on each selection or join attribute. Before we

ran queries, we ran the PostgreSQL statistics collection program

on all the relations. We also tested other database schemas. The

results are similar and thus not presented here.

For each query Qi (i=1, 2) we tested, if Qi returns an empty

result set, the minimal zero result [10, 21] is Qi itself. That is,

except for the entire Qi, any part of Qi (e.g., selection on a single

relation) has some non-empty output. For Q1, its combination

factor is defined as F=e×f. For Q2, its combination factor is

defined as F=e×f×g. F represents the number of atomic query

parts that will be generated from the query.

We performed three experiments. In these experiments, we

purposely use large N’s to demonstrate good scalability, where N

is the number of atomic query parts that have already been stored

in the collection Caqp when the new query comes. As will be

shown in Section 3.2, our method can often use a much smaller N

to achieve good detection probability. In each experiment, we

measured the overhead of our techniques in the following two

cases:

Case 1: Only Q1’s are executed. That is, the new query is Q1.

Also, the information stored in Caqp comes from previous Q1’s.

Case 2: Only Q2’s are executed. That is, the new query is Q2.

Also, the information stored in Caqp comes from previous Q2’s.

For each reported number, the experiment was repeated twenty

times (twenty runs). Each run used different (and random) di’s

(1≤i≤e), pj’s (1≤j≤f), and nk’s (1≤k≤g). Unless otherwise specified,

the reported overhead of our techniques is the largest one

observed during these twenty runs. The reported query execution

time is the shortest one observed during these twenty runs. This is

to approximate the maximum overhead of our techniques and the

shortest query execution time. In this way, when comparing the

overhead of our techniques with the query execution time, we

always do favor to the query execution time.

Caqp Size Experiment

In this experiment, we fixed F=2 and s=2. We varied N from

1,000 to 3,000. Recall that N is the number of atomic query parts

that have already been stored in the collection Caqp when the new

query comes.

Figure 7 shows the overhead of our techniques. By “check

succeeds/fails,” we mean that our method can/cannot use the

information stored in the collection Caqp to tell that a query will

return an empty result set. The lines for query Q1 (Q2) represent

the overhead of our techniques in Case 1 (Case 2).

The overhead of our techniques in Case 2 is larger than that in

Case 1. This is because query Q2 is more complex than query Q1:

Q2 joins three relations, while Q1 joins two relations. As a result,

the atomic query parts generated from Q2 are more complex than

those generated from Q1. Also, the atomic query part coverage

checking in Case 2 is more time consuming than that in Case 1.

The overhead of our techniques increases with N, the number of

atomic query parts stored in the collection Caqp. This is easy to

understand. Given a query, Caqp needs to be searched for matching

atomic query parts. The more atomic query parts stored in Caqp,

the longer time the search takes.

When the check succeeds, the collection Caqp only needs to be

searched once. When the check fails, if the query returns an empty

result set, Caqp needs to be searched twice. The first time is to

check whether the query will return an empty result set. The

second time is to store the information about the empty-result

Figure 7. O verhead of our techniques (C aqp
 size

experiment).

0

0.002

0.004

0.006

0.008

1000 2000 3000

N

o
v

e
rh

e
a
d

 (
se

c
o

n
d

)

Q1, check succeeds

Q1, check fails

Q2, check succeeds

Q2, check fails

1021

query into Caqp. Hence, when the check fails, the maximum

overhead of our techniques is about two times that when the check

succeeds.

Query Combination Factor Experiment

In this experiment, we fixed s=2 and N=2,000. We varied the

query combination factor F from 1 to 8. Figure 8 shows the

overhead of our techniques. The meaning of the four lines in

Figure 8 is the same as that in Figure 7. The larger the F is, the

more atomic query parts the query generated. Then our method

needs to spend more time on both searching for the matching

atomic query parts in the collection Caqp, and storing the atomic

query parts generated from an empty-result query into Caqp.

Therefore, the overhead of our techniques increases with F.

Database Scale Factor Experiment

In this experiment, we fixed F=2 and N=2,000. We varied the

database scale factor s from 1 to 3. The purpose of this experiment

is to show that the overhead of our techniques is negligible

compared to the query execution cost.

Figure 9 shows both the overhead of our techniques and the

query execution time. The lines for “check Q1/Q2” represent the

overhead of our techniques. The lines for “execute Q1/Q2”

represent the query execution time. The y-axis uses logarithmic

scale.

Our techniques do not examine the data set. Also, our

techniques only perform fast in-memory operations (recall that the

entire collection Caqp is kept in memory). Hence, compared to the

query execution time, the overhead of our techniques is about four

orders of magnitude smaller.

The query execution time increases with the data set size. In

contrary, the overhead of our techniques is independent of the

data set size, since our techniques do not examine the data set.

3.2 Theoretical Analysis of Detection

Probability
We now turn to describe a first-principle mathematical analysis

on the probability that our method can successfully detect empty-

result queries. The goal of this analysis is to gain insight into the

main performance trends of our method. For this purpose, our

analysis picks up several typical cases that are frequently

encountered in practice (e.g., canned queries).

We assume that all the queries are of the form

π(σ
CS (R1

⋈
R2

⋈ … ⋈
Rk)), where SC is the selection condition and

the join condition is omitted. From previous queries’ execution, N

atomic query parts have been stored in the collection Caqp. The

detection probability Dp is defined as the probability that our

method can successfully detect empty-result queries. That is, in

the case that the output of a new query Q is empty, with

probability Dp our method can detect that Q will return an empty

result set without executing Q. We analyze the following three

cases.

Case 1: Point-based Comparisons

Suppose that the selection condition SC is a disjunction of m

terms, where each term is a conjunction of n primitive terms and

the i-th (1≤i≤n) primitive term is of the form
iie

caR
i

=. (1≤ei≤k).

Each term can be represented as an n-tuple (c1, c2, …, cn). Assume

that when m=1, there are totally K such n-tuples that can cause the

query to return an empty result set. All these K n-tuples form a set

SK. Each atomic query part stored in the collection Caqp

corresponds to an n-tuple t∈SK. We say that an n-tuple t∈SK is

stored in Caqp if the corresponding atomic query part is stored in

Caqp. Therefore, N n-tuples t∈SK are stored in Caqp.

Consider a new query Q whose result set is empty. That is, for

each one of the m terms in the selection condition SC of Q, the

corresponding n-tuple t∈SK. For a given n-tuple t∈SK, the

probability that t is stored in Caqp is p=N/K. The detection

probability Dp is equal to the probability that for each one of the m

terms in the SC of Q, the corresponding n-tuple t∈SK is stored in

Caqp. Therefore, Dp=p
m

.

Figure 10 shows the detection probability Dp of Case 1. For a

fixed m, Dp increases with p. When p is close to 1, Dp is also close

to 1. This is easy to understand, since p represents the amount of

Figure 8. O verhead of our techniques (query

combination factor experiment).

0

0.004

0.008

0.012

0.016

0.02

1 2 3 4 5 6 7 8

F

o
v

e
rh

ea
d

 (
se

c
o

n
d

)

Q1, check succeeds

Q1, check fails

Q2, check succeeds

Q2, check fails

Figure 9. Q uery execution time vs. overhead of

our techniques (database scale factor experiment).

0.001

0.01

0.1

1

10

100

1000

1 2 3

s

ex
ec

u
ti

o
n

 t
im

e
 o

r

o
v

er
h

ea
d

 (
se

co
n

d
)

execute Q1

check Q1

execute Q2

check Q2

Figure 10. The detection probability D p
 (point-

based comparisons).

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
p=N/K

D
p

m=1
m=2
m=3

1022

information stored in the collection Caqp. In the extreme case that

p=1, our method can always successfully detect that query Q will

return an empty result set.

For a fixed p, the detection probability Dp decreases with m.

That is, the more terms in the selection condition SC of query Q,

the less likely our method can detect that Q will return an empty

result set. This is because only in the case that the information of

all m terms is stored in the collection Caqp, our method can detect

that Q will return an empty result set.

Case 2: Unbounded-Interval-based Comparisons

Suppose that the selection condition SC is a conjunction of n

primitive terms, where the i-th (1≤i≤n) primitive term is of the

form
iei aRc

i
.< (1≤ei≤k). Assume that ∏

=

n

i

ii VU
1

),(
 is the entire

empty result space. That is, whenever ci∈(Ui, Vi) for each i

(1≤i≤n), the query output is empty. Without loss of generality, we

assume that the entire empty result space has been normalized.

That is, for each i (1≤i≤n), Ui=0 and Vi=1.

The information of N empty-result queries is stored in the

collection Caqp. Essentially, N selection conditions are stored in

Caqp. For each such selection condition and each i (1≤i≤n), we

assume that the corresponding ci is uniformly distributed between

0 and 1. (For simplicity, “merging” atomic query parts in Caqp is

not considered. In the case that only the most “general” atomic

query parts are kept in Caqp, our derivation is still valid while the

number of atomic query parts stored in Caqp can be less than N.)

Consider a new query Q whose result set is empty. For each i

(1≤i≤n), the ci of Q is uniformly distributed between 0 and 1. We

derive the detection probability Dp in the following way:

(1) Consider any selection condition SC′ stored in the collection

Caqp. The selection condition SC of Q is covered by SC′ iff for

each i (1≤i≤n), the ci of SC is bigger than the ci of SC′ (whose

probability is ½). Hence, the probability that SC is covered by

SC′ is 1/2
n
.

(2) The detection probability Dp is equal to the probability that

the SC of Q is covered by one of the N selection conditions

stored in Caqp. Therefore, .)2/11(1 Nn

pD −−= This is

because:

(a) Consider any selection condition SC′ stored in Caqp. The

probability that the SC of Q is not covered by SC′ is 1-

1/2
n
.

(b) The probability that the SC of Q is not covered by any of

the N selection conditions stored in Caqp is .)2/11(Nn−

Figure 11 shows the detection probability Dp of Case 2. For a

fixed n, Dp increases with N. When N goes to infinity, Dp becomes

close to 1. This is easy to understand. N represents the amount of

information stored in the collection Caqp. The more information

our method has, the more likely it can detect that query Q will

return an empty result set.

For a fixed N, the detection probability Dp decreases with n.

That is, the more primitive terms in the selection condition SC of

query Q, the less likely our method can detect that Q will return

an empty result set. This is because only in the case that all n

primitive terms are “matched” by the information stored in the

collection Caqp, our method can detect that Q will return an empty

result set.

Now suppose that each unbounded-interval-based comparison

iei aRc
i
.< (1≤i≤n) is replaced by a bounded-interval-based

comparison
iiei daRc

i
<< . . From a similar analysis, we can

show that in the bounded-interval-based comparison case, the

detection probability Dp is .)6/11(1 Nn

pD −−=

Case 3: Mixed Case

Suppose that the selection condition SC is a disjunction of m

terms, where each term is a conjunction of n primitive terms.

Among these n=n1+n2+n3 primitive terms, n1 are point-based

comparisons, n2 are bounded-interval-based comparisons, and n3

are unbounded-interval-based comparisons.

Consider a new query Q whose result set is empty. Suppose that

for any term T of Q and any atomic query part P stored in the

collection Caqp, the probability that T is “covered” by P is q. Then

for any term T of Q, the probability that T is covered by some

atomic query part stored in Caqp is .)1(1
N

q−− The detection

probability Dp is .))1(1(
mN

p qD −−=

Figure 12 shows the detection probability Dp of Case 3. For a

fixed q and m, Dp increases with N. When N goes to infinity, Dp

becomes close to 1. This is easy to understand, since N represents

the amount of information stored in the collection Caqp.

Only in the case that the information of all m terms is stored in

Caqp, our method can detect that query Q will return an empty

result set. Hence, for a fixed q and N, Dp decreases with m.

For a fixed m and N, Dp increases with q, since q represents the

probability that an atomic query part stored in Caqp can be used to

match an empty-result query.

Summary of Experimental Results

In all the above three cases, when N, the number of atomic

query parts stored in the collection Caqp, goes to infinity, Dp

becomes close to 1. As shown in Section 3.1, our method can

afford to store many atomic query parts in Caqp. This increases our

Figure 11. The detection probability D p

(unbounded-interval-based comparisons).

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200
N

D
p

n=1
n=2
n=3

Figure 12. The detection probabil ity D
p

 (mixed case).

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200
N

D
p

q=0.02, m=1
q=0.02, m=2
q=0.01, m=1
q=0.01, m=2

1023

chance of successfully detecting empty-result queries. In practice,

we would expect the data set to contain hot spots. Therefore, in a

large number of cases, after enough information about previously-

executed, empty-result queries has been accumulated in Caqp, we

would expect Dp to converge to 1. Section 3.1 shows that the

overhead of our techniques is negligible compared to the query

execution overhead. Thus, when the check succeeds, our method

can bring significant performance benefit by avoiding the

expensive query execution. This benefit increases with the data set

size.

4. Related Work
The empty-result problem has been studied in the research

literature. Existing solutions fall into two categories:

(1) Explain what leads to the empty result set [10, 16, 18, 21, 26,

27].

(2) Automatically generalize the query so that the generalized

query will return some answers [7, 18, 19, 27].

Both categories can be regarded as an AI approach: letting the

computer make trials and guess what users want. However, none

of the existing solutions is completely satisfactory. Some

solutions require domain specific knowledge that is often not

available. Some solutions only apply to a restricted form of

queries. Some solutions require an excessive amount of time. In

certain cases, some solutions give a large number of reasons why

the result set is empty. Users do not know which one is the

genuine reason. Even worse, these reasons may not always

include the genuine reason.

For most AI-style solutions, the first step is to execute the query

and see whether the result set is empty. This is also the default

step when no specific AI-style solution is used. However, none of

the existing solutions allows users to reuse each other’s query

results, which is the focus of our method. For certain applications,

our method works while the AI approach does not. For example,

in anomaly detection, users submit queries to detect anomaly. In a

large number of cases, users would expect that anomaly does not

exist and hence submitted queries should return empty result sets.

In this case, empty result sets are not a surprise. There is no need

to either explain what leads to empty result sets or generalize

queries so that users can get some answers. Rather, users care how

soon they can get query results.

To facilitate interactive exploration of massive data sets, [14]

proposed providing early approximate answers for aggregate

queries. In contrast, our method needs to know exactly whether a

query will return an empty result set.

There has been a lot of work on using materialized views to

speed up query processing [12]. In general, it is expensive to

decide which queries can be answered with which materialized

views (many problems are NP-complete) [3, 9, 11, 13, 20, 22, 28,

36]. Our method uses the idea in [3, 36] and focuses on a

restricted set of ways of using stored query parts to check whether

a query will return an empty result set. Hence, our solution is

scalable in the presence of a large number of queries and stored

query parts.

[15] proposed using materialized views to answer preference

queries that maximize a linear function over the relation’s

attributes. [15] only considers numeric attributes and selection on

a single relation, while our method needs to handle arbitrary

attributes and multiple relations.

[4, 5] proposed using statistics on query expressions to facilitate

query optimization. Each set of collected statistics S is on an

attribute r. If r does not appear in a query Q, then S cannot be

used for the cardinality estimation of Q. In contrast, our method

does not consider attributes. Rather, it only cares whether or not

the cardinality is zero. Moreover, [4, 5] only consider select-

project-join queries whose filter expression is a conjunction of

simple predicates, while our method needs to handle arbitrary

filter expressions.

[1, 6] proposed building histograms by analyzing query results

rather than checking the relation. [1, 6] cannot detect correlation

among multiple relations, which is a common reason that leads to

empty result sets.

Multiple-query optimization [32, 33, 39] allows multiple

concurrent queries to reuse each other’s intermediate results.

However, it does not work for non-concurrent queries, which are

common in our case.

5. Conclusion
In this paper, we propose a fast detection method for empty-

result queries. Our key idea is to reuse the evaluation results from

previous empty-result queries. Under a fixed storage budget, our

method only stores the most valuable and non-redundant

information, continuously updates the stored information, and

utilizes a set of special properties of empty result sets to increase

its coverage detection capability. Our experiments with both a

theoretical analysis and a prototype implementation in

PostgreSQL show that our method has low overhead. In a large

number of cases, our method can bring significant benefit by

avoiding executing empty-result queries unnecessarily. This can

both reduce the load on the RDBMS and expedite the interactive

exploration process.

Like traditional materialized views, we expect our techniques to

be most helpful in read-mostly environments. Extending our

techniques to more update-intensive environment is an interesting

area for future work. We suspect that many of the techniques used

in materialized view maintenance for detecting irrelevant updates

[8, 25] can be modified to be useful in our scenario. That is, Caqp

keeps those atomic query parts that are not influenced by the

updates to relations. The atomic query parts used in our

techniques have the special property that most (or all) updates to

relations are irrelevant. As a result, we can create in-memory

filtering relations that summarize the most relevant information in

the base relations and use them to quickly filter out as many

irrelevant updates as possible. The details of our current progress

are available in [24].

6. Acknowledgements
We would like to thank Vikram Aggarwal, Jeffrey F. Naughton,

Chunqiang Tang, Naval K. Verma, Michael W. Watzke, Zhen

Wen, Kun-lung Wu, and Fan Ye for helpful discussions.

7. References
[1] Aboulnaga, A., and Chaudhuri, S. Self-tuning Histograms:

Building Histograms without Looking at Data. SIGMOD

Conf. 1999: 181-192.

[2] Agrawal, S., Chaudhuri, S., and Narasayya, V.R. Automated

Selection of Materialized Views and Indexes in SQL

Databases. VLDB 2000: 496-505.

[3] Afrati, F.N., Li, C., and Mitra, P. On Containment of

Conjunctive Queries with Arithmetic Comparisons. EDBT

2004: 459-476.

1024

[4] Bruno, N., and Chaudhuri, S. Exploiting Statistics on Query

Expressions for Optimization. SIGMOD Conf. 2002: 263-

274.

[5] Bruno, N., and Chaudhuri, S. Conditional Selectivity for

Statistics on Query Expressions. SIGMOD Conf. 2004: 311-

322.

[6] Bruno, N., Chaudhuri, S., and Gravano, L. STHoles: A

Multidimensional Workload-Aware Histogram. SIGMOD

Conf. 2001: 211-222.

[7] Bruno, N., Chaudhuri, S., and Gravano, L. Top-k Selection

Queries over Relational Databases: Mapping Strategies and

Performance Evaluation. TODS 27(2): 153-187, 2002.

[8] Blakeley, J.A., Coburn, N., and Larson, P. Updating Derived

Relations: Detecting Irrelevant and Autonomously

Computable Updates. TODS 14(3): 369-400, 1989.

[9] Chaudhuri, S., Krishnamurthy, R., and Potamianos, S. et al.

Optimizing Queries with Materialized Views. ICDE 1995:

190-200.

[10] Corella, F., Kaplan, S.J., and Wiederhold, G. et al.

Cooperative Responses to Boolean Queries. ICDE 1984: 77-

85.

[11] Goldstein, J., and Larson, P. Optimizing Queries Using

Materialized Views: A Practical, Scalable Solution.

SIGMOD Conf. 2001: 331-342.

[12] Gupta, A., and Mumick, I.S. Materialized Views:

Techniques, Implementations, and Applications. MIT Press,

1999.

[13] Halevy, A.Y. Answering Queries Using Views: A Survey.

VLDB J. 10(4): 270-294, 2001.

[14] Hellerstein, J.M., Haas, P.J., and Wang, H. Online

Aggregation. SIGMOD Conf. 1997: 171-182.

[15] Hristidis, V., Koudas, N., and Papakonstantinou, Y.

PREFER: A System for the Efficient Execution of Multi-

parametric Ranked Queries. SIGMOD Conf. 2001: 259-270.

[16] Janas, J.M. Towards More Informative User Interfaces.

VLDB 1979: 17-23.

[17] Jones, S., Cunningham, S.J., and McNab, R.J. et al. A

Transaction Log Analysis of a Digital Library. Int. J. on

Digital Libraries 3(2): 152-169, 2000.

[18] Kao, M., Cercone, N., and Luk, W. Providing Quality

Responses with Natural Language Interfaces: The Null Value

Problem. IEEE Trans. Software Eng. 14(7): 959-984, 1988.

[19] Kießling, W., and Köstler, G. Preference SQL - Design,

Implementation, Experiences. VLDB 2002: 990-1001.

[20] Kolaitis, P.G., Martin, D.L., and Thakur, M.N. On the

Complexity of the Containment Problem for Conjunctive

Queries with Built-in Predicates. PODS 1998: 197-204.

[21] Lee, R.M. Conversational Aspects of Database Interactions.

VLDB 1978: 392-399.

[22] Levy, A.Y., Mendelzon, A.O., and Sagiv, Y. et al. Answering

Queries Using Views. PODS 1995: 95-104.

[23] Luo, G., Naughton, J.F., and Ellmann, C.J. et al. Toward a

Progress Indicator for Database Queries. SIGMOD Conf.

2004: 791-802.

[24] Luo, G., and Yu, P.S. Efficient Real-time Materialized View

Maintenance. Submitted for publication, available at

http://www.cs.wisc.edu/~gangluo/detect_full.pdf, 2006.

[25] Levy, A.Y., and Sagiv, Y. Queries Independent of Updates.

VLDB 1993: 171-181.

[26] Motro, A. SEAVE: A Mechanism for Verifying User

Presuppositions in Query Systems. ACM Trans. Inf. Syst.

4(4): 312-330, 1986.

[27] Motro, A. FLEX: A Tolerant and Cooperative User Interface

to Databases. TKDE 2(2): 231-246, 1990.

[28] Pottinger, R., and Levy, A.Y. A Scalable Algorithm for

Answering Queries Using Views. VLDB 2000: 484-495.

[29] PostgreSQL homepage, 2005. http://www.postgresql.org.

[30] Rebhan, M., Chalifa-Caspi, V., and Prilusky, J. et al.

GeneCards: a Novel Functional Genomics Compendium with

Automated Data Mining and Query Reformulation Support.

Bioinformatics 14(8): 656-664, 1998.

[31] Ramasamy, K., Patel, J.M., and Naughton, J.F. et al. Set

Containment Joins: the Good, the Bad and the Ugly. VLDB

2000: 351-362.

[32] Roy, P., Seshadri, S., and Sudarshan, S. et al. Efficient and

Extensible Algorithms for Multi Query Optimization.

SIGMOD Conf. 2000: 249-260.

[33] Sellis, T.K. Multiple-Query Optimization. TODS 13(1): 23-

52, 1988.

[34] Shneiderman, B. Improving the Human Factors Aspect of

Database Interactions. TODS 3(4): 417-439, 1978.

[35] TPC Homepage. TPC-R benchmark, www.tpc.org.

[36] Tsatalos, O.G., Solomon, M.H., and Ioannidis, Y.E. The

GMAP: A Versatile Tool for Physical Data Independence.

VLDB J. 5(2): 101-118, 1996.

[37] Williamson, C., and Shneiderman, B. The Dynamic

HomeFinder: Evaluating Dynamic Queries in a Real-Estate

Information Exploration System. SIGIR 1992: 338-346.

[38] Yu, C.T., Philip, G., and Meng, W. Distributed Top-N Query

Processing with Possibly Uncooperative Local Systems.

VLDB 2003: 117-128.

[39] Zhao, Y., Deshpande, P., and Naughton, J.F. et al.

Simultaneous Optimization and Evaluation of Multiple

Dimensional Queries. SIGMOD Conf. 1998: 271-282.

[40] Zilio, D.C., Rao, J., and Lightstone, S. et al. DB2 Design

Advisor: Integrated Automatic Physical Database Design.

VLDB 2004: 1087-1097.

1025

