
Trustworthy Keyword Search for Regulatory-Compliant
Records Retention

Soumyadeb Mitra∗

Dept. of Computer Science
University of Illinois at
Urbana-Champaign

mitra1@cs.uiuc.edu

Windsor W. Hsu
CS Storage Systems Dept.

IBM Almaden Research
Center

windsor@almaden.ibm.com

Marianne Winslett†
Dept. of Computer Science

University of Illinois at
Urbana-Champaign

winslett@cs.uiuc.edu

ABSTRACT
Recent litigation and intense regulatory focus on secure re-
tention of electronic records have spurred a rush to intro-
duce Write-Once-Read-Many (WORM) storage devices for
retaining business records such as electronic mail. However,
simply storing records in WORM storage is insufficient to
ensure that the records are trustworthy, i.e., able to pro-
vide irrefutable proof and accurate details of past events.
Specifically, some form of index is needed for timely ac-
cess to the records, but unless the index is maintained se-
curely, the records can in effect be hidden or altered, even
if stored in WORM storage. In this paper, we systemati-
cally analyze the requirements for establishing a trustwor-
thy inverted index to enable keyword-based search queries.
We propose a novel scheme for efficient creation of such an
index and demonstrate, through extensive simulations and
experiments with an enterprise keyword search engine, that
the scheme can achieve online update speeds while main-
taining good query performance. In addition, we present a
secure index structure for multi-keyword queries that sup-
ports insert, lookup and range queries in time logarithmic
in the number of documents.

1. INTRODUCTION
Documents such as electronic mail, financial statements,

meeting memos, drug development logs, and quality assur-
ance documents are valuable assets. Key decisions in busi-
ness operations and other critical activities are based on in-
formation in these documents, so they must be maintained
in a trustworthy fashion—safe from improper destruction or
modification, and readily accessible. Businesses increasingly
store these documents electronically, making them relatively
easy to delete and modify without leaving much of a trace.

∗This research was partially supported by an IBM intern-
ship.
†This research was supported by NSF under grants IIS-
0331707, CNS-0325951, and CNS-0524695.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

Ensuring that records are readily accessible, accurate, cred-
ible, and irrefutable is particularly imperative given recent
legal and regulatory trends. The US alone has over 10,000
regulations that mandate how records should be managed.
Many of those focus on ensuring that records are trustwor-
thy (e.g., Securities and Exchange Commission (SEC) Rule
17a 4 and the Sarbanes-Oxley Act).

This has led to a rush to introduce Write-Once-Read-
Many (WORM) storage devices (e.g., [8, 18, 23]) to en-
able proper records retention. However, storing records in
WORM storage is inadequate to ensure that they are trust-
worthy, i.e., able to provide irrefutable evidence of past
events. The volume of records and stringent response time
requirements dictate the use of a direct access mechanism
such as an index to access the records. Furthermore, the
records are likely to be accessed not only during litigation
and audits, but also as an integral part of day-to-day busi-
ness activity—companies prefer to maintain only a single
copy of each record if possible, due to the cost of maintain-
ing multiple copies and the need for trustworthy input to
business decisions.

If the index through which a record is accessed can be
suitably manipulated, the record can, for all practical pur-
poses, be hidden or deleted, even if it is stored in WORM
storage. For example, if the index entry pointing to the
record is removed, or made to point to a different record,
the original record becomes inaccessible. Hence the index
itself must be maintained in a trustworthy fashion.

To address this issue, researchers proposed the concept
of a fossilized index, which is impervious to such manip-
ulations. One such index is the Generalized Hash Tree
(GHT) [29] which supports exact-match lookups of records
based on attribute values and hence is most suitable for use
with structured data. However, most business records, such
as email, memos, notes, meeting minutes, etc., are unstruc-
tured or semi-structured. The natural query interface for
these documents is keyword search, where the user provides
a list of keywords and receives a list of documents that con-
tain some or all of the keywords. Keyword based searches
are typically handled by an inverted index [9].

In this paper, we analyze the requirements for a trustwor-
thy index for keyword-based search. We argue that trust-
worthy index entries must be durable—the index must be
updated when new documents arrive, and not periodically
deleted and rebuilt. To this end, we propose a scheme for
efficiently updating an inverted index, based on judicious
merging of the posting lists of terms. Through extensive

1001



simulations and experiments with an IBM intranet search
engine, we demonstrate that the scheme achieves online up-
date speed while maintaining good query performance. We
also present and evaluate jump indexes, a novel trustworthy
and efficient index for join operations on posting lists for
multi-keyword queries.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the threat model, analyze related work,
and derive the key requirements for a trustworthy inverted
index. We also propose enhancements to WORM storage to
facilitate such an index. In Section 3, we develop the idea
of merging posting lists to enable online update of inverted
indexes. We present a trustworthy indexing scheme for post-
ing lists in Section 4. In Section 5, we discuss a rank-based
attack and propose countermeasures. Section 6 concludes
the paper.

2. ISSUES

2.1 Threat Model
We are concerned with a very specific threat model: a le-

gitimate user Alice creates a document (record R) and com-
mits R to WORM storage, through an application. After R
has been committed, a user Mala begins to regret its exis-
tence. Mala will do everything she can to prevent a future
user Bob (e.g., a regulatory authority) from receiving R as
the answer to one of his queries.

Coverups are often directed by high-level company insid-
ers (e.g., CEOs and CFOs). To model these attacks, we
assume that Mala can take on the identity of any legitimate
user or superuser in the system, and perform any action
that person can perform. For example, Mala can write any
data to the WORM device as long as the write does not over-
write existing data, and she can read any data on the device.
This means that we cannot rely on conventional file/storage
system access control mechanisms [12, 22] to ensure that
documents and indexes are only modifiable by legitimate
applications. However, we assume that physical access to
the WORM device is restricted or monitored so that Mala
cannot steal or destroy it without raising red flags and trig-
gering suspicion and a presumption of guilt. We also assume
that Bob is sufficiently cautious that he will check to make
sure he is running a certified version of the search engine and
operating system, so Mala cannot alter Bob’s search engine
or redirect Bob’s I/O requests at the file system level. Simi-
larly, we trust the document insertion application Alice uses
to commit R (i.e., R does reach WORM storage initially),
and assume the WORM device operates properly (i.e., it
never overwrites data).

No one regrets the existence of R until R is already perma-
nently in WORM storage. Thus Mala’s only hope is to keep
R out of the index that Bob uses in his search. She can do
this by preventing R from ever getting into the index, or by
ensuring that R is not in the index Bob uses. This suggests
a strategy for us. First, we can ensure that R is entered in
the index before Mala regrets R’s existence. Second, we can
ensure that any data that ever enters the index stays acces-
sible through it forever (or at least for a mandated retention
period). In other words, the index should be trustworthy in
the sense of it being in WORM storage and never “losing”
any old entries when new entries are added.

To stop Mala from preventing R from entering the index,
one approach is to insert R and construct the index entry

for R as a single action, because we trust the document
insertion code to get R into WORM storage initially. If
Mala alters the document insertion code after R is inserted,
R will still be on WORM storage, so we do not need to trust
the document insertion code once R has been inserted. If
Mala alters the index update code, that alteration will take
place after R has been entered into the index. Thus we
must ensure that the altered index creation code, altered
document insertion code, or any other application of Mala’s
cannot hide R’s index entry from the search engine.

2.2 Storage Model
Magnetic recording currently offers better cost and perfor-

mance than optical recording. Moreover, while immutability
is often specified as a requirement for records, what is re-
quired in practice is that the records be “term-immutable”,
i.e., immutable for a specified retention period. Thus almost
all recently-introduced WORM storage devices are built atop
conventional rewritable magnetic disks, with write-once se-
mantics enforced through software [8, 18, 23]. The software
running on these WORM boxes provides a file-system-like
(or object) interface to the external world, but with file mod-
ification and premature deletion operations disallowed.

Such devices allow files to be written and to subsequently
have their contents committed. However, this interface is
too restrictive for WORM indexes. For efficiency, we need
the ability to commit small amounts of data without creat-
ing a new file. For example, to add a new document to the
inverted index, we need the ability to append the document
ID to individual posting lists (maintained as separate files).
Furthermore, for creating index structures like jump indexes
(introduced later), we also need the ability to append new
bytes to partially-written file blocks.

Since rewritable media are the underlying medium, the
WORM device’s interface can be extended to support ap-
pend operations on otherwise immutable files and blocks [17].
Based on discussions with several storage vendors, we be-
lieve such an extension to the current interface can be ac-
complished relatively easily. In the remainder of this paper,
we assume that such a WORM device is used for the in-
verted indexing, while a conventional WORM is used for
the documents themselves.

2.3 Requirements and Related Work
Search engines typically use inverted indexes to support

keyword search [9]. As shown in Figure 1(a), an inverted in-
dex comprises a dictionary of keywords and associated post-
ing lists of document identifiers (with additional metadata
such as keyword frequency, type, position) for each keyword.

In a trustworthy index, the posting list entries for a docu-
ment must be durable, and the path to each entry must also
be durable. This can be achieved by keeping each posting
list in an append-only file in WORM storage. The index can
be updated when a new document is added, by appending
its document ID to the posting lists of all the keywords it
contains. Unfortunately, this operation can be prohibitively
slow, as each file append will require a random I/O. For
example, in the data set used in our experiments, each doc-
ument contains almost 500 keywords on average. If each
append incurs a 2 msec random I/O, it would take 1 second
to index a document.

A number of solutions have been proposed for supporting
efficient inverted index updates [3, 6, 10, 11, 16, 27]. The

1002



Query

Data

Base

Worm

Index

1 3 11 17 36

3 9 31

3 19

7 36

3

(a) Inverted Index

Query

Data

Base

Worm

Index

1 3 11 17 36

7 36

3

3#Data 3#Base 9#Data 19#Base 31#Data

(b) Inverted Index After Merging

Figure 1: Posting Lists. With each keyword, a posting list of documents containing that keyword is stored. After

merging, the keyword (or its hash) must also be stored in the posting list.

underlying principle behind these approaches is to amortize
the cost of random I/O by buffering the index entries of
new documents in memory or disk and committing them to
the index in batches. Specifically, the keywords of newly
arriving documents are appended to an in-memory or on-
disk log containing 〈keyword, document ID〉 pairs. This log
is periodically sorted on keyword to create an inverted in-
dex for the new documents, which is then merged with the
original inverted index. However, this strategy is effective
only when a huge number of index entries are buffered. For
example, researchers have found that one must buffer over
100,000 documents to achieve a document commit rate of 2
documents per second on a 20 GB collection [21]. Buffer-
ing creates a time lag (100,000/2 seconds, or half a day, in
the previous example) between when a document is created
and when the index on WORM is updated. For trustwor-
thy indexing, we cannot leave such a gap between document
commit and index update—Mala can get rid of an index
entry while it is still in the buffer, or crash the application
and delete the recovery logs of uncommitted posting entries.
Keeping the recovery logs on WORM is not a solution be-
cause scanning the entire log on every restart would be very
inefficient, while relying on an end-of-committed-log marker
would be insecure. Mala can append such markers to fool
the application into believing that no recovery is required.

The time lag between when a document is committed and
when someone may regret its existence is domain-specific
and has no a priori lower bound. Furthermore, any de-
lay in committing index entries introduces unnecessary risk
and complexity into the compliance process. For example,
the prevailing interpretation of email retention regulations is
that a regulated email must be committed as a record before
it is delivered to a mailbox. Thus generic compliance index-
ing should not assume any safe time window for committing
index entries after returning to the invoking application—a
trustworthy index should be updated in real time.

Search engines answer multi-keyword conjunctive queries
(queries in which all the keywords must be contained in the
document) by calculating the intersection of the posting lists
of the query keywords. To make this fast, additional index
structures such as B+ trees are typically maintained on the
posting lists. Mala can effectively conceal a document if she
can omit it from these posting list indexes. In Section 4,
we show that Mala can conceal entries from B+ trees even
if they are maintained in WORM storage, by appending
malicious entries.

The problem of secure indexing has been explored before,
but under a different threat model. Merkle hash trees let
one verify the authenticity of any tree node entry by trust-
ing the signed hash value stored at the root node. Authen-
ticated dictionaries [2, 13] support secure lookup operations
for dictionary data structures. These and many other pro-
posals are designed for the outsourcing threat model, where
the data store is untrusted [15]. The correctness of out-
sourced query answers is guaranteed by the data owner by
attaching appropriate signatures that can be verified by the
querier. These approaches rely on the data owner to sign
data and index entries appropriately. In the compliance
storage threat model, Mala can take on the data owner’s
identity, so she could modify outsourced data/indexes and
re-sign them. Another key difference from the outsourcing
threat model is that we trust the data store (WORM device)
not to delete committed records.

Indexing methods for WORM (e.g., [1, 7, 20, 24]) were
motivated by the desire to store data on optical disks, which
once had an advantage over magnetic disks in terms of cost
and storage capacity. These methods were designed for min-
imizing storage overhead and maximizing performance, and
do not provide trustworthy recordkeeping.

3. ONLINE UPDATE OF POSTING LISTS

0

100

200

300

400

500

600

Cache Size (MB)

I/O
s

pe
r

D
oc

4 16 64 256 1024 4096 16384 65536

Figure 2: Random I/Os Per Inserted Document.

As pointed out in the previous section, an inverted index
must be updated in real time to ensure compliance. We
can reduce the cost of incremental posting list updates by
caching the list tails in the storage cache. Modern storage
devices (storage servers) have on-board non-volatile caches,
with sizes ranging from a few hundred megabytes to a few

1003



gigabytes. Data in the non-volatile cache of a WORM de-
vice are effectively committed to WORM storage, from the
application’s point of view. To determine the effectiveness of
caching for improving the performance of index insertions,
we simulated the incremental insertion of one million docu-
ments obtained from IBM’s intranet into an initially empty
index. In the simulation, the tail blocks of as many posting
lists as possible are cached in the storage server’s (initially
dirty) cache. If there is a cache hit when writing an index
entry, then no I/O occurs (unless the block becomes full, in
which case it is written out). If there is a cache miss, then
the least recently used cache block is written out, and the
needed block is read.

Figure 2 shows the average number of random I/Os per
added document, as a function of the cache size. The curve
levels off slowly due to the Zipfian distribution [30] of the
keywords in typical document databases—most words occur
in very few documents, and posting list updates for these
rare words benefit little from caching. Even for very large
caches beyond 4 GB, the number of random I/Os remains
very high, at about 21 per document on average. Because
caching is performed at the granularity of disk blocks, a
random I/O is incurred for writing out an evicted posting
list block even if the block is not yet full.

We can markedly improve the situation by merging mul-
tiple posting lists together as shown in Figure 1(b). If we
merge posting lists until the total number of lists is no more
than the number of cache blocks in the storage device, then
all posting list updates will hit the cache. Also, by merging
posting lists smaller than one block into larger lists, we re-
duce the number of random I/Os by decreasing the number
of partial blocks written out. With this scheme, an index up-
date requires I/O only when a cache block fills up and must
be written to disk. Assuming 4 KB blocks and 500 8-byte
postings per document, we incur, on an average, 500∗8

4096
=1

random I/O per document insertion. This is a factor of 20
speedup over simply using a cache of 4 or more gigabytes,
and 500 speedup over the uncached case.

Merging, however, has associated costs:

• Query response time will increase because longer posting
lists must be scanned. For example, a query for the keyword
‘Data’ in Figure 1(b) now requires scanning five posting list
entries, as compared to only three in the unmerged case.

• To remove false positives, we must store (an encoding of)
the keyword with each entry in a merged list. The encoding
can be stored in log(q) bits, where q is the number of post-
ing lists that are merged together. This overhead can be re-
duced further if an encoding scheme like Huffman encoding
is used, since keyword occurrences within merged posting
lists are unlikely to be uniformly distributed. This encoding
can be added to the metadata in each list entry. We do not
include this overhead in our analysis, but it would appear
as a constant factor overhead in the query cost results in
Section 3.3.

The challenge, therefore, is to devise merging strategies
that have minimal impact on query performance.

3.1 Query Cost and Optimization Problem
Keyword queries are answered by scanning the posting

lists of the terms in the query1. The documents in the post-

1Researchers have proposed heuristic techniques that do not
require scanning entire posting lists. These techniques often

ing lists are assigned scores based on similarity measures like
cosine [28] or Okapi BM-25 [25]. The scores are used to rank
the documents.

The total workload cost for answering a set of queries
can hence be modeled as follows: Let qi be the number of
queries that contain the ith term (its query frequency), and
let ti be the length of the unmerged posting list for the ith
term (its term frequency). The total workload cost without
any merging is proportional to

X

1≤i≤n

ti ∗ qi.

We wish to merge the n posting lists into M lists, where M
is the number of cache blocks available in the storage device,
in a manner that will minimize query response time. If we
merge the posting lists into M lists, A1, . . . , AM , then the
workload cost is proportional to

Q =
X

1≤i≤M

(
X

k∈Ai

tk)(
X

k∈Ai

qk). (1)

The original scan of the ith posting list has been replaced
by a scan of all the posting lists merged with the ith list.
The optimization problem is to choose the sets A1, . . . , AM

that minimize the total workload cost Q, given M , qi and
ti. Unfortunately, this problem can be shown to be NP-
complete by reduction from the minimum sum of squares
problem [5]. The challenge, therefore, is to design heuristic
solutions that perform well in practice. We propose and
analyze two such schemes in Section 3.3.

3.2 Experimental Data
Confidentiality concerns make it difficult to obtain query

workloads for corporate email and documents, which are
the primary targets of this work. We are aware of only
one publicly available business email archive [19], and it has
no query log. Since business intranet queries typically are
searching for specific information, such as specific business
or policy documents, or for specific web pages, we believe
that they are a reasonable approximation to a record reten-
tion workload. Therefore, our experiments use a collection
of one million documents crawled by an IBM intranet search
engine. For the query workload, we use 300,000 actual user
queries logged by the search engine.

3.3 Merging Strategies
The distributions of unmerged posting list lengths (ti) and

query frequencies (qi) give useful insights into possible merg-
ing strategies. Figure 3(a) shows that the distribution of ti

for our documents is Zipfian, as one might expect based on
published web studies. Figure 3(b) shows the distribution
of qi for the 300,000 queries from our query log. We found
that the most common terms in the queries (high qi) are
also very common in the documents (high ti). This makes
sense, as people generally query on terms that they know
about [4]. However, some terms (like ‘following‘) are com-
mon in documents but rarely queried.

The ith term’s contribution to the total workload cost is
qiti. Figure 3(c) shows the cumulative workload cost distri-
bution, with the x axis representing the frequency order of

do not perform well in practice [28] and can omit relevant
documents. Thus these cannot be used in a regulatory envi-
ronment, where it is imperative that all relevant documents
be produced on demand.

1004



Document Statistics

1.E+03

1.E+04

1.E+05

1.E+06

0 5000 10000 15000 20000 25000
Rank

Te
rm

Fr
eq

ue
nc

y

(a) Distribution of Term Fre-
quencies

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 5000 10000 15000 20000 25000
Rank

Q
ue

ry
Fr

eq
ue

nc
y

(b) Distribution of Query Fre-
quencies

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

0 5000 10000 15000 20000 25000
Rank

W
or

kl
oa

d
C

os
t(

Q
) QF

TF

(c) Cumulative Workload Cost

Ratios of Workload Cost ((d)-(g))

0

1

2

3

4

5

6

Cache Size (MB)

W
or

kl
oa

d
C

os
t(

Q
)R

at
io

0 term

1000 terms

10000 terms

4 8 16 32 64 128 256 512

(d) Popular Query Terms Not
Merged

0

1

2

3

4

5

6

Cache Size (MB)

W
or

kl
oa

d
C

os
t(

Q
)R

at
io 0 term

1000 terms

10000 terms

4 8 16 32 64 128 256 512

(e) Popular Document Terms Not
Merged

0

1

2

3

4

5

6

Cache Size (MB)

W
or

kl
oa

d
C

os
t(

Q
)R

at
io 0 term

1000 terms

10000 terms

4 8 16 32 64 128 256 512

(f) Popular Query Terms Not
Merged - With Learning

0

1

2

3

4

5

6

Cache Size (MB)

W
or

kl
oa

d
C

os
t(

Q
)R

at
io 0 term

1000 terms

10000 terms

4 8 16 32 64 128 256 512

(g) Popular Document Terms Not
Merged - With Learning

0

20

40

60

80

100

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Query Cost (Q)

P
er

ce
nt

of
Q

ue
ri

es

32 MB

Unmerged

64 MB
512 MB

(h) Cumulative Query Cost Dis-
tribution

1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100
Query Cost Percentile

Q
ue

ry
C

os
tR

at
io

(i) Query Slowdown Distribution

Figure Description

3(d),3(e) These figures show the ratios of total workload costs (merged versus unmerged) as a function of cache size, when the
terms with unmerged lists are those with high qi and ti respectively. The different curves correspond to different

numbers of terms with unmerged posting lists (0, 1,000, or 10,000). The remaining posting lists are merged uniformly,

with hashing used to assign terms to posting lists.
3(f),3(g) These figures show the effectiveness of learning qi and ti statistics. To study the stability of these statistics,

we computed the most popular terms for the first 10% of the documents crawled and the first 10% of the queries

submitted, and used those statistics to make merging decisions for the entire index. Figures 3(f) and 3(g) show that
the resulting workload query cost ratio is almost unchanged from that of Figures 3(d) and 3(e), respectively.

3(h),3(i) These figures show the effect on individual queries of merging posting lists. Figure 3(h) shows the cumulative
distribution of query costs for different cache sizes with uniform merging and with no merging. This figure shows

that merging slows down the shortest queries the most (the x axis is log scale), while the long running queries are
comparatively unaffected. This is also illustrated in Figure 3(i), which plots the query slowdown against the query

cost, for a cache size of 512 MB. The figure shows that the longest-running half of the queries in the workload have

no visible slowdown on average, and the next longest-running 30% of the queries are 25% slower on average.

Figure 3: Workload and Query Cost Under Different Merging Strategies.

1005



the terms. The figure shows the contribution of the 25,000
most popular terms, out of more than 1,000,000 terms in the
documents. The two curves in the figure show terms ranked
by query frequency qi (QF) and by term frequency ti (TF).
The key observation is that a very small fraction of the terms
account for almost the entire workload cost. Thus one pos-
sible merging heuristic is to have separate posting lists for
the frequent terms and merged posting lists for the remain-
der. The curve in Figure 3(c) corresponding to document
popularity peaks slowly, compared to the query-popularity
curve, due to terms that occur in many documents but few
queries. However, the fraction of terms that contribute a lot
to query cost is still small, compared to the total number of
terms.

These merging heuristics require learning the frequencies
ti or qi. Figures 3(f) and 3(g) show that the frequencies are
quite stable over time and space. In an environment where
the frequencies are less stable, the system can learn the fre-
quencies online, and the merging strategy can be adapted
accordingly. One possible approach is to divide time into
epochs and maintain a separate index for the documents in-
serted in each epoch. The choice of posting lists to merge in
any particular epoch can be determined by the statistics col-
lected during the previous epoch. Queries must be answered
by scanning the indexes of all epochs. By keeping the epoch
interval large enough, one can keep the number of separate
indexes reasonable. Furthermore, document database query
interfaces typically support query conditions on document
creation time (e.g., to retrieve only documents created in
2004). For such queries, one only needs to consider those
indexes whose epochs overlap with the time interval spec-
ified in the query. The exact time range restrictions can
be checked in a filtering phase after the keyword search, or
can be integrated into the keyword search phase using jump
indexes, as discussed in a later section.

3.4 Simulations
We conducted extensive simulations to evaluate the effects

on query performance of the posting list merging heuristics
proposed in the previous section. We varied the cache size
and the number of popular terms (based on both ti and qi)
that are not merged. The cache size determines the final
number M of posting lists. Assuming a block size of 8 KB,
M = Cache Size

8KB
.

To estimate the effect of merging posting list on query
throughput, we computed the ratio of the workload cost Q
after merging the posting lists to the workload cost with no
merging. The results are shown in Figures 3(d)-3(g), along
with a detailed description. Figures 3(d) and 3(e) show the
workload cost ratio as a function of cache size, when the
terms with unmerged lists have high qi and ti respectively.
The key observation from these figures is that even for mod-
est cache sizes (128-256 MB), the workload cost with merg-
ing is almost as good as without merging. Figures 3(f) and
3(g) summarize the effectiveness of learning term statistics
for the epoch-based scheme outlined in Section 3.3. In this
experiment, we used terms in the first 10% of the documents
and queries to make merging decisions for the entire index.
The resulting workload cost ratio is almost unchanged from
that of Figures 3(d) and 3(e). This suggests that the term
statistics are likely to be relatively stable in practice, and
can be learned for the purpose of merging posting lists.

Figures 3(h) and 3(i) show the effect on individual queries

0

1

2

3

4

5

6

Cache Size (MB)

W
or

kl
oa

d
C

os
t(

Q
)R

at
io

4 8 16 32 64 128

Figure 4: Actual Workload Run Time Ratios.

of merging posting lists. Overall, merging slows down the
shortest running queries the most, while the longest-running
queries are relatively unaffected. As shown in Figure 3(i),
the longest-running half of the queries in the workload have
no visible slowdown and the next longest-running 30% of
the queries are 25% slower on average. From separate ex-
periments, we know the actual running time for the average-
length query is 500 msec on the platform described in the
next section. The shortest-running 20% of the queries are
slowed down by a factor of 4 on average, but this slowdown
is unlikely to be visible to the user since the user-visible re-
sponse time for such fast queries (far less than 500 msec) is
likely to be dominated by factors such as network latency
and human response time, rather than index scan time.

One important observation from all these figures is that if
all the posting lists are uniformly merged (the curves corre-
sponding to “0 term” in Figures 3(d) and 3(e)), the workload
slowdown is close to that of the other schemes, particularly
for larger cache sizes (128-512 MB). Due to the Zipfian dis-
tributions of qi and ti, very few terms have high ti or qi.
As long as the posting lists of the popular terms do not get
merged with each other, merging does not slow down query
response significantly. If the number of posting lists is sub-
stantially larger than the number of popular terms (as with
the larger cache sizes), these unlucky merges are unlikely to
occur. In other words, uniform merging, being straightfor-
ward to implement, is likely to be the method of choice in
practice.

3.5 Experimental Validation

The simulation results in the previous section showed that
uniform merging of all posting lists offers very reasonable
query performance. Further, it is straightforward to im-
plement, as it does not require learning qi or ti statistics;
nor does it require the creation or use of multiple indexes
for different epochs. We implemented this scheme in IBM’s
Trevi [11] search engine to validate our simulation results.
Our experiments used a dual-processor 3.2 GHz Intel Xeon
Server with 10K RPM SCSI disks configured as RAID-0.
We emulated the storage cache by caching in software and
disabling file system caching (forcing all writes to disk).

Running all 300,000 queries on the server would have
taken very long, so we instead used a 1% random sample
from the query log. We used 32K separate posting lists
(corresponding to a 128 MB cache size), which gives very
reasonable query performance. Figure 4 shows the work-
load performance with uniform merging as a ratio to the

1006



ZIGZAG(list1,list2)

1: top1 ← list1.Start()
2: top2 ← list2.Start()

{Initialize the iterators to point to list heads}
3: loop
4: if ((top1=list1.End()) OR (top2=list2.End())) then
5: return
6: end if
7: if ((*top1)<(*top2)) then
8: top1 ← list1.FindGeq(*top2)

{Find an element greater than or equal to top2}
9: continue
10: end if
11: if ((*top2)<(*top1)) then
12: top2 ← list2.FindGeq(*top1)

{Find an element greater than equal to top1}
13: continue
14: end if
15: if ((*top2)=(*top1)) then
16: OUTPUT (top1)

{Next element in join}
17: top1 ← list1.FindGeq(*top1+1)
18: top2 ← list2.FindGeq(*top2+1)
19: continue
20: end if
21: end loop

Figure 5: Zigzag Join.

case with no merging, for different cache sizes. The plot
is quantitatively similar to that obtained from the simula-
tion results (Figure 3(e), plot labeled “0 term”), except for a
slight perturbation at a cache size of 64 MB, due to a change
in system behavior as the number of open files passes 16,000.

4. MULTI-KEYWORD QUERIES

Our analysis so far has focused on queries in which any
document containing a subset of the query terms is a match.
Conjunctive queries in which all the query keywords must
be present in a document are also very common in business
environments. For example ‘all emails from X to Y’ is a
conjunctive query on the two email addresses.

Conjunctive queries can be answered by taking the inter-
section of the keyword posting lists. This intersection can be
computed without scanning the entire lists if an additional
index structure, such as a B+ tree, is maintained on the in-
dividual lists. For example, one can exploit the fact that the
posting lists are sorted on document ID and use the zigzag
join [14] algorithm (Figure 5), together with an auxiliary in-
dex on posting lists, to skip over portions of lists that cannot
be in the query result. In particular, the FindGeq() opera-
tion in steps 8 and 12 of Algorithm 5 can be done efficiently
using such an auxiliary index.

One can create a B+ tree for an increasing sequence of
document IDs without any node splits or merges, by building
the tree from the bottom up, as shown in Figure 6(a) for the
special case of a 2-3 tree. New elements are added at the
leaf (posting list) level. When a leaf node fills up, a new leaf
is created and an entry is added to the parent that points to
the new leaf. If there is no room in the parent, the process
is repeated until the root is reached. When the root fills up,
a new level can be introduced, with a new root. These steps
only require append and create operations on nodes and can
be implemented in WORM storage.

Unfortunately, B+ trees are not secure, even when stored
in WORM storage. For instance, Figure 6(b) shows that
Mala can hide entry 31 by creating a separate subtree that

does not contain 31, and adding an entry 25 at the root
to lead to the new subtree. A subsequent lookup on 31
will be directed to Mala’s subtree. FindGeq will also return
incorrect results: the call FindGeq(28) will return 30 instead
of 29. Mala’s attack works because in a B+ tree, the path
taken to look up entry 31 depends on entries that were added
to the index after entry 31 was added. Other techniques like
binary search can also be compromised by the adversary, by
appending smaller numbers at the tail. For example, binary
search on the leaves of the tree in Figure 6(b) would miss
31 because of the malicious entry 30 at the end.

An alternative strategy for supporting fast joins of posting
lists is to build a GHT [29] for each posting list. For every
entry in the smaller posting list, we consult the GHT to find
matching entries in the longer posting list. However, GHTs
only support exact-match lookups and have poor locality
due to the use of hashing. A GHT-based join would be much
slower than a zigzag join on sorted posting lists, especially
for roughly equal sized lists.

4.1 Jump Indexes for Posting Lists
To address the issues outlined above, we designed a trust-

worthy index called a jump index. This index exploits the
fact that the document IDs in posting lists are strictly mono-
tonically increasing sequences. Jump indexes support Find-
Geq() in O(log(N)) pointer follows in the worst case, where
N is the largest number in the sequence. This bound is gen-
erally weaker than the O(log(n)) bound for B+ tree lookups,
where n is the number of entries in the tree. However, in
this particular application, N is equal to the number of doc-
uments in the database, because document IDs are assigned
through an increasing counter. Hence our bound is logarith-
mic in the number of documents.

The intuition behind jump indexes is that one can get to
any number k ≤ N in O(log2(N)) steps, by taking jumps in
powers of 2. Consider a sequence of numbers 0, . . . , N − 1,
where N = 2p. Let b1 · · · bp be the binary representation of
an integer 0 ≤ k < N . One can reach k in p steps by starting
at the beginning of the sequence, then successively jumping
forward b1 ∗ 2p−1 places, then b2 ∗ 2p−2 places, and so on
until a bp ∗ 20 jump forward brings us to k.

If we apply this approach to a posting list, the list will not
contain every document ID, so we must store explicit jump
pointers that tell us how far ahead to jump. The ith jump
pointer stored with a list entry l points to the smallest list
entry l′ such that l + 2i ≤ l′ < l + 2i+1. Figure 7(a) shows
an example jump index where the 0th pointer from 1 points
to 2, as 1 + 20 ≤ 2 < 1 + 21, the 2nd pointer points to 5
since 1 + 22 ≤ 5 < 1 + 23, and so on.

More generally, let the posting list entries be n1, · · · , nN .
Any entry can be looked up by following jump pointers from
the smallest number in the sequence. To look up an entry,
say n, one needs to first find i1 such that n1 + 2i1 ≤ n <
n1 + 2i1+1 and follow the i1st jump pointer from n1 to a
number, say ni1 . From ni1 , one needs to find i2 such that
ni1 + 2i2 ≤ n < ni1 + 2i2+1, and follow the i2nd pointer
to ni2 , and so on until one reaches n. To look up 7 in
Figure 7(a), one follows the 2nd pointer (i1 = 2) from 1 to
5 and the 1st pointer (i2 = 1) from 5 to 7.

The algorithms for Insert(k), Lookup(k) and FindGeq(k)
are presented in Figure 4.2. FindGeq(k) simply makes a
call to FindGeqRec(). The notation ptrs[i] refers to the ith
jump pointer for index entry s. The pseudocode includes

1007



2 4 7 11 13 19 23 29 31

7 13

23

31

(a) B+ Tree in WORM Storage

2 4 7 11 13 19 23 29 31

7 13

23

31

25

25 26 30

27

(b) B+ Tree Manipulated to Hide Entries

Figure 6: Untrustworthy B+ Trees. The diagram on the left shows a B+ Tree in WORM storage. By adding entry 25 to the

root and pointing it to a spurious subtree, one can effectively hide entry 31 from subsequent queries.

assert checks, violations of which should trigger a report of
attempted malicious activity.

4.2 Complexity
Proposition 1: Let i1, . . . , ij be the values of i selected

in step 9 in successive iterations of the loop in Lookup(k).
Then i1 > · · · > ij .

Proof: Let the document IDs whose jump index nodes are
visited by Lookup be s1, . . . , sj , where s1 is the smallest
number in the posting list. From step 9, we have s1 + 2i1 ≤
k < s1 + 2i1+1 (a). Also, since the i1st pointer points to
s2, and s2 must have been inserted previously, we also have
s1 + 2i1 ≤ s2 < s1 + 2i1+1, i.e., s2 ≥ s1 + 2i1 (b). Further,
we have s2 + 2i2 ≤ k < s2 + 2i2+1 (c). From (a) and (c), we
have s2 + 2i2 < s1 + 2i1+1 (d). From (b) and (d) we have
s1 + 2i1 + 2i2 < s1 + 2i1+1. Hence we have i1 > i2. By
repeating the same argument, we get i1 > · · · > ik. QED

From step 9 of Lookup, we have i1 ≤ �log2(k)�+1. Thus
it takes at most �log2(k)�+1 jumps to find k. It can similarly
be argued that Insert() and FindGeq() also require O(log2(k))
pointer follows. If there are N documents in the index, the
complexity of the operation is, therefore O(log2(N)).

4.3 Trustworthy Jump Indexes
A straightforward approach to storing jump pointers in a

WORM device is to maintain each node of the jump index
in a separate disk block. Because of the monotonicity prop-
erty of document IDs, the pointers are also set in increasing
order—ptrs[i] is always set after ptrs[i

′] if i′ < i. Hence the
pointer assignment operation can also be implemented as an
append operation. Under this approach, jump indexes and
their associated posting lists have the following properties:

Proposition 2: Once an ID has been inserted into a jump in-
dex and the associated posting list, it can always be looked
up successfully.

Proof Outline: The pointers set up during Insert (step 11)
are written to WORM, so they and the entries themselves
cannot be altered afterwards. The values of i (i1, . . . , ij) se-
lected by Insert() are identical to those selected by Lookup().
Hence an entry that has been inserted is always visible to
Lookup(). QED

Proposition 3: Let v be an ID in the posting list. If k ≤ v,

then FindGeq(k) will never return a value greater than v.

Proof Outline: Suppose the path to v in the index is through
jump pointers j1, . . . joj (i.e., Lookup(v) selects j1, . . . joj in
successive iterations of the loop step 9). Also suppose Find-
Geq(k) returns l and i1, . . . ioi is the path to l in the index,
that is, i1, . . . ioi are selected in step 4 (or step 15 if the
checks in lines 5 or 9 fail) of successive calls to FindGeqRec(k).

We first show that i1 ≤ j1. Consider the first call to
FindGeqRec. In step 4, we choose i ≤ j1, as k ≤ v. If the
checks in step 5 and 9 succeed for that i, we have i1 = i and
hence i1 ≤ j1. If either of the checks fails, FindGeqRec selects
an i in step 15. However, since v is in the index, ptr0[j1] is
not NULL. So we never go beyond j1, hence i1 ≤ j1. Now
two cases arise: (i) i1 < j1. In this case, we have l < v
(l < s0 + 2i1+1 ≤ s0 + 2j

1 ≤ v). (ii) i1 = j1. In this case,
we can inductively apply the argument to the next call to
FindGeqRec(). QED

Proposition 3 guarantees that no document ID can be
hidden when joining two posting lists. Consider a document
ID d present in both posting lists being joined. The zigzag
join starts from the smallest numbers in the lists and makes
successive calls to FindGeq(). Proposition 3 guarantees that
no number greater than d can be returned in a FindGeq()
call, before d is returned. In other words, d will eventually
be returned in a FindGeq() call on both the lists and hence
will always appear in the final result.

4.4 Block Jump Indexes
To reduce the overhead of storing the jump pointers and

the depth of the index, which impacts performance, we can
store p posting entries together in blocks of size L and as-
sociate pointers with blocks, rather than with every entry.
We can also define jump pointers using powers of B rather
than powers of two, where p ≥ B. Specifically, we maintain
(B−1) logB(N) pointers with every block, with each pointer
uniquely identified by a pair (i, j), where 0 ≤ i < logB(N)
and 1 ≤ j < B. The pointers are set up as follows:

Let l1 be the largest document ID stored in block b. The
(i, j) pointer in b points to the block containing the smallest
document ID s such that

l1 + jBi ≤ s < l1 + (j + 1)Bi.

Figure 7(b) illustrates this for the case where p = 4 and
B = 3. The figure shows only pointers for 0 ≤ i ≤ 4. The

1008



1

2 5

7

10

0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Jump Pointers

Jump Pointers Jump Pointers

Jump Pointers

Jump Pointers

15
0 1 2 3 4

Jump Pointers

(a) Binary Jump Index.

(1
,1

)

(0
,1

)

(2
,1

)

1

Jump Pointers

2 (0
,1

)

(0
,2

)

(1
,1

)

(1
,2

)

(2
,2

)

(3
,1

)

(3
,2

)

(4
,1

)

(4
,2

)

5 7

8 10 (0
,2

)

(1
,2

)

(2
,1

)

(2
,2

)

(3
,1

)

(3
,2

)

(4
,1

)

(4
,2

)

15 19

Jump Pointers

21 22 25

Block 0

Block 1

Block 2

(b) Block-structured Jump Index.

(a) Shaded pointers that are not filled are NULL. Only the first four pointers are shown. (b) For clarity the pointers are shown
pointing to numbers, though pointers actually only store the address of the block. Only pointers with i ≤ 4 are shown.

Insert(k) —Insert ID k into the jump index

1: if jump index is empty then
2: Create a new jump index with a node containing k
3: return
4: end if
5: s ← the smallest document ID in the jump index
6: assert s < k

{The index entries must be monotonically increasing}
7: loop
8: Find i ≥ 0, such that s + 2i ≤ k < s + 2i+1

9: if (ptrs[i]==NULL) then
10: Create a new jump index node containing k
11: ptrs[i] ← k’s location // Set the ith pointer of s
12: return DONE
13: else
14: s′ ← the document ID at ptrs[i]

{Follow the pointer to a new s}
15: assert s′ < k
16: s ← s′
17: continue
18: end if
19: end loop

Lookup(k) —Find k in the jump index

1: s ← the smallest document ID in the jump index
2: loop
3: if s > k then
4: return NOT FOUND
5: end if
6: if s == k then
7: return FOUND
8: end if
9: Find i ≥ 0 such that s + 2i ≤ k < s + 2i+1

10: if ptrs[i]==NULL then
11: return NOT FOUND
12: else
13: s′ ← the document ID at ptrs[i]

{Follow the pointer to a new s}
14: assert s + 2i ≤ s′ < s + 2i+1

15: s ← s′
16: continue
17: end if
18: end loop

Lookup block(k) —Find ID k in the jump index

1: b ← the first block of the index
2: loop
3: nb ← the largest ID in block b
4: if (k ≤ nb) then
5: Search for k in b, and return FOUND or NOT FOUND
6: end if
7: Find (i, j) such that 0 ≤ i < logB(N), 1 ≤ j < B, and

nb + j ∗ Bi ≤ k < nb + (j + 1) ∗ Bi

8: if ptrb(i, j) �= NULL then
9: b ← ptrb(i, j)

{ptrb(i, j) is the (i, j)th pointer in block b}
10: continue
11: else
12: return NOT FOUND
13: end if
14: end loop

FindGeqRec(k,s) —Function implementing FindGeq(k)

1: if (s ≥ k) then
2: return s
3: end if
4: Find i ≥ 0 such that s + 2i ≤ k < s + 2i+1

5: if (ptrs[i] �= NULL) then
6: t ← document ID at ptrs[i]

7: assert s + 2i ≤ t < s + 2i+1

8: res ← FindGeqRec(k, t)
{Recursively call FindGeqRec() by following the ptr}

9: if (res �= NOT FOUND) then

10: assert s + 2i ≤ res < s + 2i+1

11: return res
12: end if
13: end if

{No number ≥ k could be found by following ith ptr. Now
we return the first non-null ptr}

14: i ← i + 1
15: while (i < log2(N)) do
16: if (ptrs[i] �= NULL) then
17: t ← document ID at ptrs[i]

18: assert s + 2i ≤ t < s + 2i+1

19: return t
20: end if
21: i ← i + 1
22: end while
23: return NOT FOUND

FindGeq(k) —Find number ≥ k

1: return FindGeqRec(k, the smallest number in the sequence)

Insert block(k) — Insert document id k in the jump index

1: last block ← last block in the index
2: If last block is full (has p entries), allocate a new block and

set last block to new block.
3: Append (k) to the last block.
4: b ← first block
5: loop
6: if (b==last block) then
7: return DONE
8: end if
9: nb ← the largest ID in block b
10: assert nb < k
11: Find (i, j) such that 0 ≤ i < logB(N), 1 ≤ j < B, and

nb + j ∗ Bi ≤ k < nb + (j + 1) ∗ Bi

12: if ptrb(i, j) �= NULL then
13: b ← ptrb(i, j)

{ptrb(i, j) is the (i, j)th pointer in block b}
14: continue
15: else
16: ptrb(i, j) ← last block
17: return
18: end if
19: end loop

Figure 7: Jump Index Essentials.

1009



largest number in block 0 is 7. The (0, 1) pointer points to
block 1 because the latter contains 8 and 7 + 1 ∗ 30 ≤ 8 <
7+1∗31. 8 is the smallest number satisfying that constraint.
Similarly, the (2, 2) pointer of block 0 points to block 2,
because block 2 contains 25 and 7 +2 ∗ 32 ≤ 25 < 7+ 2 ∗ 33,
and so on.

The algorithms for Insert block() and Lookup block() are
presented in Figure 7. As when B = 2, the pointer set
operation in step 15 of Insert block() can be implemented
by an append operation. As with B = 2, one can show that
if the lookup proceeds by following pointers i1, . . . , ik, then
i1 < · · · < ik. This gives a bound of logB(N) jumps for
Lookup().

4.5 Evaluation
The key jump index parameters are L (jump index block

size), p (number of posting list elements in a block), and B
(branching factor). At the end of each posting list block,
we leave space to store jump pointers. Assuming 4-byte
pointers and 8-byte posting elements, we have

8 ∗ p + 4 ∗ (B − 1) logB(N) ≤ L.

The number of pointers per index block ((B−1) logB(N))
depends on N , the largest document ID expected to be in-
dexed. For our evaluation, we set N = 232, roughly 4 bil-
lion, which should be adequate for typical business usage.
To store more than N documents, we can chain additional
blocks of jump pointers off the end of the posting list block.
Figure 8(a) shows the space overhead of a jump index, com-
puted as the ratio of the space allocated for pointers to the
space occupied by actual posting elements. For B = 32 and
L = 8 KB, a jump adds 11% space overhead.

We carried out extensive simulations to evaluate the per-
formance of jump indexes for different values of block size
L and branching factor B. Due to space constraints, we
present and analyze the results for L = 8 KB, and briefly
discuss how the results differ for other values of L.

Our first set of experiments evaluates the index update
performance as a function of the cache size. When a new
document is added, apart from appending the document ID
to the tail block of the posting lists, the jump index pointers
must also be followed and set in some of the intermediate
posting list blocks. This increases the I/Os per document
unless we increase the cache size. To reduce the I/O for
following jump index pointers, our index code tracks in its
own memory (not the storage server memory) the largest
document ID and the last pointer for all the blocks on the
path from root to the tail block, for every posting list. The
pointer to be followed while appending a new document ID
is determined from these largest document ID values (step
11 in Insert Block), without fetching the corresponding block
from disk. With this optimization, a block fetch is required
only when setting a new pointer, which is infrequent com-
pared to following a pointer. The memory requirement for
storing the largest document ID and pointers for all the post-
ing lists is 8k log(N) bytes, where k is the number of posting
lists and N is the number of documents. For example, the
memory requirement for k = 32,768 and N = 232 is 8 MB,
which is quite reasonable for the indexing code.

To evaluate update performance, we incrementally inserted
our 1 million documents into an initially empty index. We
used a cache simulator to measure the I/Os incurred while
updating the index. As in Section 3.5, we uniformly merged

the posting lists into 32,768 lists. Figure 8(b) plots the I/Os
incurred per document inserted as a function of cache size,
for B ∈ {2, 32, 64}. A higher value of B requires more jump
index pointers to be set and hence requires more I/O per
document. The effect is particularly prominent for smaller
cache sizes like 128 MB, which is barely enough to hold the
posting list tail blocks. However the curves level off eventu-
ally as the cache size increases to hold all the pointer blocks
(depth of the tree) in memory. For example at 288 MB, the
curves almost converge at 1.1 I/Os per document. This is
close to the 1 I/O per document required to just append
the document IDs to the posting lists. Increasing the block
size L beyond 8 Kbytes (not shown in the figure) reduces
the I/Os per document, by reducing the storage overhead
for jump pointers.

Our next set of simulations evaluates jump index query
performance. We use the same workload of 300, 000 queries
as before, treating each query as a conjunctive query. Multi-
keyword queries are answered with zigzag joins of the post-
ing lists, starting with the shortest two lists. We plotted
query speedup, defined as the ratio of the number of blocks
read when no jump index is kept (using a sequential scan-
merge join) to the number of blocks read in a zigzag join
using the jump index. Figure 8(c) shows the speedup as a
function of the number of query keywords, for different val-
ues of B. The figure shows that the benefit of jump indexes
increases with the number of keywords in the query, rising
smoothly from almost no benefit with 3-keyword queries to
a factor of 3 speedup for 7-keyword queries. Two-keyword
queries are approximately 10% slower when a jump index is
used, which can be explained as follows.

Consider two sorted lists of length l1 and l2 containing
numbers uniformly distributed in [1, N ] (that is, each num-

ber is picked with probability li
N

). If l1 is roughly the same
size as l2, then a zigzag join on the two lists is O(l1 + l2),
even with an index. This is because any two consecutive el-
ements of one list are likely to bracket an element from the
other list, so that a zigzag join visits every element of each
list, approximating a scan-merge join. However, if l1 
 l2,
then a zigzag join is O(l1 log(l2)), approximating a scan of
the smaller list with index lookups on the longer list.

Because we uniformly merge posting lists, most of the re-
sulting lists are of roughly equal size. A 2-keyword query on
these lists approximates a scan. The additional overhead of
jump pointers makes a sequential scan using the jump index
slower than a scan over posting lists without a jump index.
For queries with more than two keywords, the partial result
obtained by intersecting the first two lists is zigzag joined
with the next shortest list, and so on. On each iteration, the
partial result becomes smaller and the next list to be joined
becomes longer. Thus subsequent zigzag joins move toward
a O(l1 log(l2)) computation time. This is why the benefit
of a jump index increases with the number of conjunctive
terms in the query.

A second observation from Figure 8(c) is that queries with
few keywords perform slightly better with small B, while
many-keyword queries benefit slightly from larger B. This
is because the scan-merge-like zigzag join on smaller queries
runs fastest on the index with lowest space overhead (smaller
B). In contrast, the zigzag joins of large queries benefit from
the decreased depth of the jump index (higher B). In our
experiments with B = 2k, 1 ≤ k ≤ 6 (for clarity, not all
are shown in the figures), B = 32 provides the best tradeoff,

1010



0

10

20

30

40

50

60

70

B

%
O

ve
rh

ea
d L=4K

L=8K

L=16K

L=32K

4 8 16 32 64 1282

(a) Space Overhead of Jump In-
dex

0

5

10

15

20

25

Cache Size (MB)

I/O
s

pe
r

D
oc

B=64

B=32

B=2

128 160 192 256224 288 320

(b) I/Os Per Document Inserted
with Jump Index

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Terms in Query

S
pe

ed
up

unmerged

B=2

B=32
B=64

2 3 4 5 6 7

(c) Query Performance for Jump
Index

Figure 8: Jump Index Performance.

performing best for queries with more than five keywords
and within 5% of the best for smaller queries.

As a reference, Figure 8(c) also shows the ideal speedup
achievable with no merging of posting lists and with a sep-
arate B+ tree (block size 8 KB) for each posting list. This
ideal case benefits from unmerged posting lists to answer
queries, and from the larger fanout of B+ trees compared
to jump indexes, for a fixed block size. A jump index stores
(B − 1) logB(N) pointers in each block, while B+ trees only
use B pointers. Nonetheless, Figure 8(c) shows that the
query performance of jump indexes is within a factor of 1.4
of the theoretical maximum—while simultaneously support-
ing immediate index updates on document insertions and
providing trustworthiness guarantees that are unachievable
with the unmerged, B+ tree-based approach.

Finally, jump indexes slow down disjunctive query work-
loads (Section 3.1) by the same factor as the space overhead
of the jump index. For example, the slowdown is 1.5% and
11% for B = 2 and B = 32, respectively, for 8 KB blocks.

The choice of whether to include a jump index depends on
the expected query workload. If most queries are disjunctive
or involve only two or three keywords, one should use merged
posting lists with no jump index. If most queries conjoin
many keywords, it is best to use merged posting lists and
a jump index with B = 32. One can use the epoch scheme
outlined in Section 3.3 to learn the query pattern in one
epoch and use it to decide whether to include a jump index
for the next epoch.

5. RANKING ATTACKS
The effectiveness of a search query depends on the rank-

ing of the documents it returns. Mala can try to hide a
document D by adding spurious documents to the posting
lists of all D’s keywords or by directly altering the statis-
tics maintained for ranking D, so that D will be ranked low
when Bob issues his query. In an investigation of potential
illegal activity, Bob is likely to examine all returned docu-
ments, so Mala’s attack will make Bob’s job harder but will
not prevent him from uncovering evidence of misdeeds. Fur-
ther, Bob is extremely likely to notice her cover-up attempt,
rousing his suspicions still further, as explained below.

If Mala stuffs the posting lists with IDs of documents that
do not exist or do not contain the query keywords, the search
engine can detect this and alert Bob to malicious activity.
Bob will then carefully examine the felonious cover-up at-

tempt and unearth D. If Mala stuffs the posting lists with
documents containing the same keywords as D, it will be
very hard for her to create a large number of meaningful
distinct documents that contain D’s keywords, without rais-
ing suspicion. For example, if Bob queries a corporate email
archive for [Stewart Waksal ImClone], Mala cannot invent
many believable emails that discuss Stewart, Waksal, and
ImClone. Though the search engine may be fooled by them,
Bob’s suspicions are likely to be aroused when he examines
the top-ranked email.

In most investigative situations, Bob will also be able to
supply a target time range for illegal activity (Nov.-Dec. 2001
in this case). To support such queries, we need a trustworthy
index on document commit times—Mala must not be able
to retroactively insert email supposedly committed during
an earlier period, or eliminate any entry from the result of a
query on commit time. A jump index on commit times can
provide these guarantees and foil Mala’s cover-up attempt.

6. CONCLUSION & FUTURE WORK
We have presented a threat model for trustworthy record-

keeping for legislative compliance, and identified key re-
quirements for trustworthy indexes for this environment.
One such requirement is the need for immediate indexing of
newly inserted documents, which renders inapplicable the
traditional approach of logging new posting list entries and
periodically rebuilding the posting lists from scratch. To
meet these requirements, we proposed a scheme based on
judicious merging of posting lists and the optional use of
jump indexes for faster conjunctive query processing.

Through extensive simulations and experiments with an
IBM intranet search engine and a workload of IBM intranet
queries and documents, we demonstrated that merged post-
ing lists and jump indexes offer excellent performance. Com-
pared to a baseline approach that uses a multi-GB storage
server cache for posting lists, does not merge posting lists,
and keeps a separate B+ tree for each posting list to speed
up conjunctive queries, our scheme is 20 times faster for
document insertions, while using only a modest 128 MB
storage server cache (256 MB with jump indexes)—and our
scheme offers trustworthiness guarantees. For a disjunctive
keyword query workload, merged posting lists without jump
indexes are only 14% slower than the baseline approach, and
merged posting lists with jump indexes (32-way branching)
are only 26% slower than the baseline approach (due to the

1011



11% space overhead of including a jump index), while still
offering trustworthiness guarantees. On a conjunctive query
workload, merged posting lists with jump indexes are 47%
faster than merged posting lists without jump indexes, and
are only 30% slower than the baseline approach. We con-
clude that the query overhead of our scheme is a very rea-
sonable tradeoff for its impermeability to insider attempts
to hide evidence of misdeeds by circumventing records re-
tention policies.

Jump indexes and merged posting lists share the desirable
property that attempted malicious activity is easy to detect,
in the form of a violation of a monotonicity property. One
topic for future work is an elegant course of action once ma-
licious attempts have been detected (malicious index entries
and documents cannot simply be removed, as they reside
on WORM). Another interesting topic is the use of merged
posting lists for online update in non-compliance scenarios.

7. REFERENCES

[1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An Asymptotically Optimal
Multiversion B-tree. VLDB Journal, 5:264–275, 1996.

[2] K. Blibech and A. Gabillon. Chronos: an
authenticated dictionary based on skip lists for
timestamping systems. In Workshop on Secure Web
Services, 2005.

[3] E. Brown, J. Callan, and W. Croft. Fast incremental
indexing for full-text information retrieval. In VLDB,
1994.

[4] E. W. Brown, J. P. Callan, W. B. Croft, and J. E. B.
Moss. Supporting full-text information retrieval with a
persistent object store. In EDBT, 1994.

[5] P. Crescenzi and V. Kann. A compendium of NP
optimization problems. Available at
http://www.nada.kth.se/.

[6] D. Cutting and J. Pedersen. Optimization for dynamic
inverted index maintenance. In SIGIR, 1990.

[7] M. C. Easton. Key-Sequence Data Sets on Indelible
Storage. IBM J. Research & Development, May 1986.

[8] EMC Corp. EMC Centera Content Addressed Storage
System, 2003. www.emc.com/products/
systems/centera ce.jsp.

[9] C. Faloutsos. Access methods for text. ACM
Computing Surveys, vol. 17, pp. 49-74, 1985.

[10] C. Faloutsos and H. V. Jagadish. On B-tree indices for
skewed distributions. In VLDB, 1992.

[11] M. F. Fontoura, A. Neumann, S. Rajagopalan,
E. Shekita, and J. Zien. High performance index build
algorithms for intranet search engines. In VLDB,
2004.

[12] E. Goh, H. Shacham, N. Modadugu, and D. Boneh.

Sirius: Securing remote untrusted storage. In NDSS,
2003.

[13] M. Goodrich, R. Tamassia, and A. Schwerin.
Implementation of an authenticated dictionary with
skip lists and commutative hashing. In DISCEX II,
2001.

[14] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book. Prentice-Hall,
2000.

[15] H. Hacigumus, B. R. Iyer, and S. Mehrotra. Providing
database as a service. In ICDE, 2002.

[16] S. Heinz and J. Zobel. Efficient single-pass index
construction for text databases. J. Am. Soc. for Info.
Sci. & Tech., 54:8, Jun. 2003.

[17] L. Huang, W. Hsu, and F. Zheng. CIS: Content
Immutable Storage for Trustworthy Record Keeping.
In NASA MSST, 2006.

[18] IBM Corp. IBM TotalStorage DR550, 2004. Available
at http://www-1.ibm.com/servers/storage/disk/dr.

[19] B. Klimt and Y. Yang. Introducing the Enron Corpus.
In CEAS, 2004.

[20] T. Krijnen and L. G. L. T. Meertens. Making B-Trees
Work for B.IW 219/83. The Mathematical Centre,
Amsterdam, 1983.

[21] N. Lester, J. Zobel, and H. E. Williams. In-place
versus re-build versus re-merge: index maintenance
strategies for text retrieval systems. In Conf. on
Australasian Computer Science, 2004.

[22] E. L. Miller, W. E. Freeman, D. D. E. Long, and B. C.
Reed. Strong security for network-attached storage. In
FAST, 2002.

[23] Network Appliance, Inc. SnapLockTM Compliance
and SnapLock Enterprise Software, 2003. Available at
http://www.netapp.com/products/filer/snaplock.html.

[24] P. Rathmann. Dynamic Data Structures on Optical
Disks. In ICDE, 1984.

[25] S. E. Robertson, S. Walker, M. Hancock-Beaulieu,
A. Gull, and M. Lau. Okapi at TREC. TREC, 1992.

[26] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[27] A. Tomasic, H. Garćıa-Molina, and K. Shoens.
Incremental updates of inverted lists for text
document retrieval. In VLDB, 1994.

[28] I. H. Witten, A. Moffatt, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, San Francisco, CA, 1999.

[29] Q. Zhu and W. Hsu. Fossilized Index: The Linchpin of
Trustworthy Non-Alterable Electronic Records. In
ACM SIGMOD Conference, June 2005.

[30] G. K. Zipf. Human Behaviour and the Principle of
Least Effort. Addison-Wesley, Cambridge, 1949.

1012


