ConQuer :

A System for Efficient Querying Over

Inconsistent Databases

Ariel Fuxman'

TUniversity of Toronto
Toronto, Canada

Abstract

Although integrity constraints have long been
used to maintain data consistency, there are
situations in which they may not be enforced
or satisfied. In this demo, we showcase Con-
Quer, a system for efficient and scalable an-
swering of SQL queries on databases that may
violate a set of constraints. ConQuer permits
users to postulate a set of key constraints to-
gether with their queries. The system rewrites
the queries to retrieve all (and only) data that
is consistent with respect to the constraints.
The rewriting is into SQL, so the rewritten
queries can be efficiently optimized and exe-
cuted by commercial database systems.

1 Introduction

Integrity constraints have long been used to maintain
data consistency. Data design focuses on develop-
ing a set of constraints to ensure that every possi-
ble database reflects a valid, consistent state of the
world. However, integrity constraints may not be en-
forced or satisfied for a number of reasons. In some
environments, checking the consistency of constraints
may be too expensive, particularly for workloads with
high update rates. Hence, the database may become
inconsistent with respect to the (unenforced) integrity
constraints. When data is integrated from multiple
sources, each source may satisfy a constraint (for ex-
ample a key constraint), but the merged data may
not (if the same key value exists in multiple sources).
More generally, when data is exchanged between inde-
pendently designed sources with different constraints,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1354

Diego Fuxman?

Renée J. Miller!

fUniversidad Nacional del Sur

Bahia Blanca, Argentina

the exchanged data may not satisfy the constraints of
the destination schema.

One strategy for managing inconsistent databases
is data cleaning [4]. Data cleaning techniques seek
to identify and correct errors in the data and can
be used to restore the database to a consistent state.
Data cleaning, when applicable, may be very success-
ful. However, these techniques are semi-automatic at
best, and they can be infeasible or unaffordable for
some applications. Furthermore, committing to a sin-
gle cleaning strategy may not be appropriate for some
environments. A user may wish to experiment with
different cleaning strategies, or may desire to retain
all data, even inconsistent data, for tasks such as lin-
eage tracing. Finally, data cleaning is only applicable
to data that contains errors. However, the violation of
a constraint may also indicate that the data contains
exceptions, that is, clean data that simply does not
satisfy a constraint.

In our work, we will showcase the ConQuer sys-
tem, which takes an approach that is applicable to
databases with both errors and exceptions.! In Con-
Quer, a user may postulate a set of integrity con-
straints, possibly at query time, and retrieve all (and
only) query answers that are consistent with respect to
these constraints. Given a SQL query, ConQuer pro-
duces another SQL query that retrieves the consistent
answers. Furthermore, ConQuer supports the detec-
tion and resolution of inconsistencies in the database.

2 Conquer’s Approach
2.1 Examples

We will now illustrate ConQuer’s rewriting strategy
with some simple examples. The examples use the
database of a movie theater (Figure 1). The database
contains a relation rooms, with the rooms of the the-
ater and the movies it is currently showing, and a re-
lation movies with information about movies. We will
assume that the key of rooms is the attribute roomNo,
and that the key of movies is movieName.

1ConQuer stands for Consistent Querying

rooms
| roomNo | movieName |

sl #1 Les Invasions Barbares

s2 #2 Sideways

s3 #2 Million Dollar Baby

s4 #3 Madagascar

sb #3 Sideways

movies

| movieName | country [year |
t1 Million Dollar Baby US 2004
t2 Million Dollar Baby US 2005
t3 Sideways US 2004
t4 | Les Invasions Barbares US 2003
t5 | Les Invasions Barbares | Canada | 2004

Figure 1: An inconsistent database with rooms and
movies relations

Notice that both relations are inconsistent with re-
spect to their keys. According to this database, the
movie Million Dollar Baby has been released in two
different years: 2004 (the correct one) and 2005. For
the movie Les Invasions Barbares, the database gives
two release years and two different countries: US and
Canada (the correct one). In the rooms relation, rooms
2 and 3 violate the key constraint.

Suppose that a user wants a list of the movies that
were released during or after 2004.

q1: select movieName
from movies
where year >= 2004

The answer to this query on the dirty database is
{Million Dollar Baby, Million Dollar Baby, Sideways,
Les Invasions Barbares}. The movie Million Dollar
Baby is included in the answer twice, a fact which
does tell the user that the database does not satisfy
the key constraint. Furthermore, the query will re-
trieve all three movies, giving the user no indication
that Les Invasions Barbares was included in the an-
swer just because the underlying database is dirty or
inconsistent. Similarly, the query answer does not in-
dicate whether every (inconsistent) tuple for Million
Dollar Baby is associated to a year greater than or
equal to 2004. In contrast, ConQuer gives users the
option of asking for query answers that are known to
be consistent with respect to a set of constraints, in
this case the key constraint of movies. In our exam-
ple, ConQuer would rewrite query ¢; into the query
given in Figure 2.

A key value is consistent if all possible tuples con-
taining that key value satisfy the query. To under-
stand the rewriting, notice that the first three lines
correspond to the original query g;. This part of the
rewriting retrieves a set of answers that are candidates

1355

select distinct ml.movieName
from movies ml
where ml.year >= 2004
and not exists

(select *

from movies m2

where m2.movieName=ml.movieName

and m2.year < 2004)

Figure 2: Rewriting of ¢;

to be consistent answers. From the candidates, the
rewriting filters out those key values for which there
is another (possible) tuple that violates the query (the
filter is implemented here in the nested not exists
clause). In this example, the result of applying the
rewritten query is {Million Dollar Baby, Sideways}.
The movie Million Dollar Baby is included because
while its data is inconsistent, all its tuples are asso-
ciated to a year greater than or equal to 2004. The
movie Sideways is in the consistent answer because it
appears in a single, consistent tuple where the release
year is 2004. However, Les Invasions Barbares is not
returned since one of its tuples is for a year previous
to 2004. This matches the intuition that we do not
know for sure whether the movie was released in or
after 2004. In addition to the nested not exists, we
use the distinct keyword to ensure that each consis-
tent answer is returned the right number of times (for
this query, each consistent movie should be returned
once).

The above example gives a flavor for the type of
rewriting we will use to permit consistent query an-
swering over a potentially inconsistent database. In
ConQuer, we use a common definition of consistent
query answer based on the notion of a repair [2]. For
keys, a repair is a subset of the inconsistent database
containing exactly one tuple per key. A repair is one
possible “cleaned” version of the database. A query
answer is said to be consistent if it is an answer to the
query in every repair [2].

As another example, consider a query g2, which re-
trieves the rooms of the theater showing movies re-
leased in or after 2004.

g2: select r.roomNo
from movies m, rooms r
where m.year>=2004
and m.movieName=r.movieName

The consistent answer for go on the database is
room 2. The reason that room 1 is not a consistent
answer is that it is showing the movie Les Invasions
Barbares, which is not known (for certain) to have been
released in or after 2004. Room 3 is not a consistent
answer because it may be showing Madagascar or Side-
ways, the former of which is not a tuple in the movies
relation.

with Candidates as (
select distinct r.roomNo
from movies m, rooms r
where m.year>=2004
and m.movieName=r.movieName),
Filter as (
select roomNo
from Candidates Cand
join rooms r on Cand.roomNo=r.roomNo
left outer join movies m
on m.movieName=r.movieName
where m.movieName is null or m.year<2004)
select roomNo
from Candidates Cand
where not exists (select * from Filter F
where Cand.roomNo = F.roomNo)

Figure 3: Rewriting of ¢

In Figure 3, we show a query rewriting that com-
putes the consistent answers for ¢o. Notice that there
are two subqueries named Candidates and Filter.
Candidates corresponds to the original query o, ex-
cept that it uses the distinct keyword. In this case,
the result of applying Candidates to the database re-
trieves all the rooms. The query Filter returns the
rooms that should be filtered out from the result of
Candidates because they are not consistent answers.
In this case, Filter returns rooms 1 and 3. Room 1 is
returned by Filter because tuple sl joins with tuple
t4, which corresponds to a movie released before 2004.
Room 3 is in Filter because the movie Madagascar
does not appear in the relation movies, and there-
fore tuple s4 violates the join condition of ¢2. Notice
that Filter computes a left-outer join between rooms
and movies. Since tuple s4 does not join with any
tuple of customer, room 3 appears together with a
null value for attribute m.movieName in the left-outer
join. Therefore, the condition m.movieName is null
is satisfied, and room 3 is returned by the filter.

The rewriting finally retrieves the rooms in the re-
sult of Candidates that are not in Filter (i.e., they
are not filtered out). In this case, it returns room 1,
which is the consistent answer.

2.2 Query Rewriting

The query rewriting algorithm of ConQuer is described
in full elsewhere [6]. The following are some of its main
advantages.

e The approach is fully declarative because it is
based on an algorithm that rewrites SQL queries
into SQL queries. Since it requires no procedu-
ral pre- or post-processing of the queries, Con-
Quer can be applied to much larger databases
than any of the existing systems for consistent
query answering [3, 5].

1356

e In addition to select-project-join queries, Con-
Quer’s algorithm works also for queries with
grouping and aggregation. We consider both
bag and set semantics (e.g., queries using the
DISTINCT keyword). These features are needed
to enable practical use in analysis queries over an
integrated and potentially inconsistent data ware-
house.

e ConQuer uses two kinds of rewritings: one
that works over the unchanged (inconsistent)
database, and another that makes use of a
database with annotations about constraint vio-
lations. When available, ConQuer exploits these
annotations using query optimizations specific
to the semantics of consistent query answer-
ing. These optimizations are highly effective and
would not be found by a standard optimizer.

e The efficiency of the query rewriting approach
of ConQuer has been experimentally validated
[6]. This included a detailed performance study
of ConQuer’s rewriting algorithm over data and
queries from the TPC-H decision support bench-
mark [1]. The results show that the overhead of
the rewritten queries is not onerous. In particular,
for most of the tested queries, ConQuer retrieves
the consistent answers within twice the time re-
quired to obtain the answer for the original (non-
rewritten) query.

Notice that our approach is actually orthogonal to
any cleaning that may be done on the database, and
can be used to facilitate cleaning. In the absence of
user input to decide between alternative tuples, our ap-
proach provides the option of retaining all alternatives
rather than having to remove (or ignore) the incon-
sistent data. Furthermore, our approach may be used
interactively to permit a user to understand where the
data is potentially inconsistent. In particular, Con-
Quer presents the user with the difference between
the results to the original and rewritten queries. This
difference reflects inconsistent data that may need to
be cleaned. In our example, the user may be alerted
about the fact that the movie Les Invasions Barbares
appears in the answer to the original query, but not in
the consistent answer. This may prompt him or her
to correct the data and change the year of tuple 5 to
2003. After this change, the movie Les Invasions Bar-
bares will no longer appear as a candidate answer to
the original query.

3 System Overview

ConQuer is implemented in Java and follows a modular
architecture. It consists of the following components:

Query Rewriting Module: It rewrites a given
SQL query into another SQL query that computes
the consistent answers. If the database is anno-
tated, it also produces the optimized query rewrit-
ing that makes use of annotations.

e Query Execution Engine: Connects with DB2
through a JDBC connection. This component
can be used to compute both the original and
the rewritten queries. It also computes the dif-
ference between the results of the queries in order
to show the user some potential inconsistencies in
the database.

e Conflict Resolution Module: Provides a trac-
ing facility to find the data that leads to differ-
ences between the answer to the original query
and the consistent answer. This module also per-
mits a user to update the database to correct er-
TorS.

e User Interface: Query results are displayed us-
ing a web-accessible interface that is implemented
in PHP.

4 Demonstration

In the demo, we will showcase the ConQuer system on
a database that integrates information from a variety
of sources. The user will be presented with an exten-
sive menu of queries highlighting the inconsistencies
present in the data. Furthermore, users will be given
the freedom to try their own queries.

Once a query is submitted, the user interface will
show the rewriting that uses annotations and the
one which does not. The user will be allowed to
choose which query rewriting should be executed on
the database. Once the query is executed, the sys-
tem will present three windows showing the answer
to the original query, the consistent answer, and the
difference between the previous two. In the last win-
dow, it will be possible to click on a tuple and invoke
the Conflict Resolution Module to trace the reasons
for the difference between the answer to the original
query and the consistent one.

References

[1] TPC Benchmark H (Decision Support). Standard
Specification Revision 2.1.0, 2003.

[2] M. Arenas, L. Bertossi, and J. Chomicki. Consis-
tent Query Answers in Inconsistent Databases. In
PODS, pages 68-79, 1999.

1357

[3] J. Chomicki, J. Marcinkowski, and S. Staworko.
Hippo: A System for Computing Consistent An-
swers to a Class of SQL Queries. In EDBT, pages
841-844, 2004. Demonstration paper.

[4] T.Dasu and T. Johnson. Exploratory Data Mining
and Data Cleaning. John Wiley, 2003.

[5] T. Eiter, M. Fink, G. Greco, and D. Lembo. Ef-
ficient Evaluation of Logic Programs for Querying
Data Integration Systems. In ICLP, pages 163—
177, 2003.

[6] A. Fuxman, E. Fazli, and R. J. Miller. Efficient
management of inconsistent databases. To appear
at SIGMOD, 2005.

