PSYCHO: A Prototype System for Pattern Management

Barbara Catania

Anna Maddalena

Maurizio Mazza

Department of Computer and Information Science - University of Genoa
Via Dodecaneso 35, 16146, Genoa, Italy
{catania,maddalena,mazza}@Qdisi.unige.it

Abstract

Patterns represent in a compact and rich in
semantics way huge quantity of heterogeneous
data. Due to their characteristics, specific sys-
tems are required for pattern management, in
order to model and manipulate patterns, with
a possibly user-defined structure, in an effi-
cient and effective way. In this demonstration
we present PSYCHO, a pattern based man-
agement system prototype. PSYCHO allows
the user to: (i) use standard pattern types or
define new ones; (ii) generate or import pat-
terns, represented according to existing stan-
dards; (iii) manipulate possibly heterogeneous
patterns under an integrated environment.

1 Introduction

The huge quantity of heterogeneous raw data collected
from modern, data-intensive environments are not eas-
ily manageable from users. Knowledge extraction and
data management techniques are therefore required to
extract from them concise and relevant information
that can be interpreted and manipulated by humans in
order to discover interesting data correlations. Several
kinds of patterns exist that can represent such hidden
knowledge. In general, a pattern can be defined as a
compact and rich in semantics representation of raw
data. Clusters, association rules, frequent itemsets,
symptom-diagnosis correlations are common examples
of patterns.

Pattern management is an important issue in many
domains. Data mining is certainly the most important
context in which pattern management is required. Ex-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and motice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1346

amples of other domains where patterns can be useful
are information retrieval and image processing.

The specific characteristics of patterns make tradi-
tional DBMSs unsuitable for pattern management. In
particular, patterns can be generated from different
application contexts resulting in very heterogeneous
structures. Moreover, patterns can be generated by
using some data mining tools (a-posteriori patterns)
but also known by the users and used for example
to check how well some data source is represented by
them (a-priori patterns). Since source data change
with high frequency, another issue consists in deter-
mining whether existing patterns, after a certain time,
still represent the data source from which they have
been generated, possibly being able to change pat-
tern information when the quality of the representa-
tion changes. Finally, patterns should be manipulated
(e.g. extracted, synchronized, deleted) and queried
through dedicated languages. All the previous con-
siderations motivate the need for the design of ad hoc
Pattern Based Management Systems (PBMSs) [4].

Many efforts have been devoted towards designing
a PBMS. Existing proposals mainly differ in: (i) the
chosen architecture for pattern and data management;
(ii) the considered pattern model; (iii) the languages
for pattern retrieval and management. The architec-
ture of a PBMS can be integrated or separated. In the
first case, raw data and patterns are stored together
and the mining process is usually seen as a particu-
lar type of query. In the second case, raw data and
patterns are logically stored and managed by two dis-
tinct systems, and mining operations are not queries
but manipulation operations.

Several approaches have been provided for pattern
management. Scientific community efforts usually pro-
vide general frameworks for pattern extraction and
management. Among them, we recall the Inductive
Database approach, relying on an integrated archi-
tecture and mainly investigated in the context of the
CINQ project [5, 3], the 3W Model [2] and the PANDA
framework [1, 4, 9], relying on a separated architecture.
CINQ has provided solutions (and prototypes) for the
management of specific data mining patterns (mainly
association rules), together with SQL-like languages to

deal with pattern extraction and manipulation. Dif-
ferently, the 3W Model and PANDA frameworks guar-
antee the representation and the management of het-
erogeneous and possibly user-defined patterns, repre-
sented as linear constraints in 3W Model and accord-
ing to an object-relational model in PANDA. Vari-
ous standards have also been defined with the aim
of providing standard representation and manipula-
tion of patterns resulting from data mining and data
warehousing processes, in order to support their ex-
change between heterogeneous architectures. Among
them, we recall PMML [10], providing an XML-based
format for representing data mining results and the
used mining algorithm, Common Warehouse Meta-
model (CWM) [6], an important standardization ef-
fort for data warehousing (and data mining) metadata,
Java Data Mining (JDM) [7], a Java API supporting
pattern manipulation and guaranteeing interoperabil-
ity between data mining applications. From the side of
commercial systems, the most important DBMSs ad-
dress the pattern management problem by providing
an application layer offering features for representing
and managing typical data mining patterns.

Unfortunately, none of the proposed approaches
provides all the capabilities introduced above for pat-
tern management. All approaches, except PANDA,
3W Model and, in a restricted way, PMML, support
just the management of patterns of the same type, usu-
ally generated by a mining process. Moreover, pattern
types are often predefined and cannot be extended by
the user. Finally, synchronization issues are only par-
tially taken into account (and not explicitly considered
by existing standards).

Starting from these limitations and taking into
account the results presented in the context of the
PANDA project [9], we have designed and imple-
mented a PBMS coping with most of the features
previously introduced. The system, called PSYCHO,
from Pattern base management SYstem arCHitecture
prOtotype, is based on a separated architecture and
provides the following features: (i) manipulation of
heterogeneous patterns; (ii) definition of user-defined
patterns, not necessarily coming from a data mining
context; (iii) a Pattern Manipulation Language (PML)
supporting the management of both a-posteriori and
a-priori patterns and pattern synchronization; (iv) a
Pattern Query Language (PQL), offering query capa-
bilities for selecting and combining patterns, possibly
of different types, and for combining patterns and data
in order to get a deeper knowledge of their correlations
(cross-over queries).

In the following, we briefly review the PSYCHO
pattern model (Section 2), we sketch the PSYCHO ar-
chitecture (Section 3), and we finally outline the con-
text of the demonstration (Section 4).

1347

2 The Pattern Model

The PSYCHO logical model relies on the PANDA
model [1, 4, 9] and is based on three main concepts:
pattern type, pattern, and class.

A pattern type gives a formal description of the pat-
tern structure. It is a record with six elements: (i)
the pattern name n; (ii) the structure schema s, which
defines the structure of the patterns instances of the
pattern type; (iii) the source schema d, which describes
the dataset from which patterns, instances of the pat-
tern type being defined, are constructed; (iv) the mea-
sure schema m, which is a tuple describing the mea-
sures which quantify the quality of the source data
representation achieved by the pattern; (v) the for-
mula f, carrying the semantics of the pattern. f is
a constraint-based formula describing, possibly in an
approximated way, the relation between data repre-
sented by the pattern and the pattern structure. Inside
f, attributes are interpreted as free variables ranging
over the components of either the source or the pat-
tern space; (vi) the validity period schema v, defining
the schema of the temporal validity interval associated
with each instance of the pattern type.

Patterns are instances of a specific pattern type.
Thus, they are record values with identifiers containing
the proper instantiation of the corresponding schema
elements in the pattern type. In a pattern, the for-
mula component is obtained from the one in the pat-
tern type by instantiating each attribute appearing in
s with the corresponding value, and letting the at-
tributes appearing in d range over the source space. An
example of a pattern type representing circular clus-
ters of items (represented by quantity and price) and
one specific pattern of that type are shown in Fig. 1.
We remark that the data source represents the overall
data set the pattern is related to. On the other hand,
the formula represents, in an intensional and possibly
approximated way, the subset of data represented by
the pattern. The extensional set of data exactly repre-
sented by the pattern, when needed, can be stored in
the system as a sort of metadata. In Fig. 2, assuming
to represent the cluster of Fig. 1, the intensional map-
ping is represented by all the points inside the circle,
the extensional one by all the black points, and the
source dataset by all black and white points.

A class is a set of semantically related patterns and
constitutes the key concept in defining a pattern query
language. A class is defined for a given pattern type
and contains only patterns of that type.

Based on the considered pattern model, we designed
three languages for pattern management. The Pattern
Definition Language (PDL) is used for defining new
pattern types, classes, and mining functions, used for
pattern extraction. The Pattern Manipulation Lan-
guage (PML) is used to perform operations such as
insertions, extraction, deletions, updates, synchroniza-
tion of patterns. Moreover, it allows the user to insert

n: ItemCluster

s TUPLE(repr:- TUPLE(id:STRING, price:REAL,qty:REAL),
max_dist:REAL)

d: items:SET(TUPLE(id:STRING, price:REAL,qty:REAL))

m: AvglntraClusterDist:REAL

f: Vz € items (dist(repr, z) < max_dist)

Vi [start:DAY, end:DAY)

pid: 221

s [repr:[id:A12, price:10,qty:20], max_dist:0.5]

d: itemsVIEW:SELECT (id,price,qty) FROM Products)

m: AvglntraClusterDist:0.75

f: x € itemsVIEW : (dist(repr, z) < 0.5)

v: [1-JAN-2005,31-MAR-2005)

Figure 1: The cluster pattern type and one pattern

ay

Figure 2: Source data set and mappings

(remove) a pattern into (from) a certain pattern class.
Finally, the Pattern Query Language (PQL) allows the
user to query the PBMS in order to retrieve patterns
and correlate them with data they represent (cross-
over queries). For all the three languages, an SQL-like
syntax has been provided to simplify the request spec-
ification.

3 The PSYCHO architecture

The PSYCHO architecture relies on Oracle [8] and
Java technologies and can exploit Oracle Data Min-
ing (ODM) server functionalities when dealing with
standard data mining patterns. The architecture is
composed of three distinct layers (Fig. 3). The physi-
cal layer contains both the Pattern Base and the Data
Source. The Pattern Base stores pattern types, pat-
terns, and classes; the Data Source stores all raw data
from which patterns have been extracted. It is in gen-
eral distributed and various types of repositories (re-
lational, XML, etc.) can be considered. The middle
layer, that we call PBMS FEngine, coincides with the
kernel of the system, and it supports all functionalities
for pattern manipulation and retrieval. The PBMS
Engine and the Pattern Base represent the core of the
PSYCHO prototype. The external layer corresponds
to a set of user interfaces (a shell and a GUI) from
which the user can send requests to the engine and
import/export data in other formats. The communica-~
tion between the PBMS engine and the physical layer
is performed in Java. To be more flexible in the imple-
mentation of the external layer modules, communica-
tion between the PBMS Engine and the external layer
is established using sockets and implementing requests
as serializable objects. The result is a completely dis-
tributed architecture, where the pattern base, source
data, PBMS Engine, and external modules can reside
on different hosts.

1348

Import / Export

_ __ |-PML/PDL/PQL Requests 7“ ____ Extemallayer
1] v
PBMS Engine
/ Query Processor
Formula i
Handler
PML Middle Layer
Interpreter
A

Mining Functions,

PDL
Interpreter
Pattern Types,

Pattern Types, Patterns,
Classes, Classes

Mining Functions Classes

Phy?cal rwer N

"

Figure 3: The 3 layers architecture of PSYCHO

Pattern
PBMS Base

3.1 Physical Layer

Pattern Base. The Pattern Base component con-
tains pattern type, pattern, and class definitions. In
PSYCHO, we used the object-relational model of Or-
acle 10g DBMS [8] for pattern storage. Concerning
the pattern formula, we consider two distinct repre-
sentations: an operational one, by which the formula
is interpreted as a predicate over data source elements
implemented as an Oracle PL/SQL stored function; a
declarative one, by which the formula is just a repre-
sentation of a linear constraint formula (see below the
Formula Handler for additional details). Since the pro-
vided implementation of the Pattern Base exploits the
Oracle object-relational logical model, the PML and
PQL interfaces are realized using PL/SQL functions
and procedures which are invoked by the Java appli-
cation implementing the PBMS Engine (see below).
Data Source. The Data Source is a distributed
database containing raw data from which patterns
have been extracted. Various technology can be used
to store the source datasets: relational or object-
relational DBMSs, XML dataset, streams, etc. In the
current PSYCHO version, we assume raw data are
stored in an Oracle 10g DBMS.

3.2 Middle layer

The middle layer consists of the PBMS Engine com-
ponent, whose aim is to execute requests sent to the
PBMS. The PBMS Engine has been implemented in
Java and is logically divided into three main sub-
modules, each of which is dedicated to parse PQL,
PML, and PDL requests, respectively, and to execute
them through calls to the right functions and proce-
dures defined in the Pattern Base. A fourth compo-
nent is dedicated to the management of the intensional
mapping. Such modules are described in the following.
PDL Interpreter. It takes in input a PDL request
for a pattern type or class definition and translates it
into calls to the right functions and procedures defined
in the Pattern Base.

PML Interpreter. It executes PML operations (ex-
traction, deletion, synchronization, operations over

classes). Pattern extraction and synchronization re-
quire an interaction with the Data Source to get the
data from which patterns have to be generated. In-
formation concerning the mining function can be re-
trieved from the Pattern Base. In the current PSY-
CHO implementation, pattern extraction can use ei-
ther mining functions provided by ODM (e.g., a vari-
ant of the A-priori algorithm for association rules, the
K-means or the proprietary O-cluster algorithm for
clusters) or other mining functions provided by the
PBMS. To this purpose, PSYCHO contains a library
of predefined mining functions but new ones can be de-
fined by the user. The Query Processor has to be used
in case patterns have to be filtered (for example, only
patterns with specific measures have to be generated,
synchronized, deleted, or inserted in a given class).
Query Processor. It executes queries expressed in
PQL, after choosing a query execution plan. For non-
cross-over queries, only the Pattern Base, and eventu-
ally the Formula Handler, can be involved in the query
process. On the other hand, for cross-over queries,
Data Source may be required to execute the query.
Queries may also use formulas, for example to compare
two patterns. When formulas are used under the oper-
ational semantics, the queries are executed directly by
the Query Processor. On the other hand, when they
are used under the declarative semantics, the Formula
Handler module is required to execute the query.
Formula Handler. It deals with the declarative rep-
resentation of formulas, i.e., with constraints. It is
used by the PML and PQL interpreters when com-
putations over formula constraints are required. We
implement the Formula Handler as a Java module, us-
ing the Jasper package for interacting with SICStus
Prolog environment [11].

3.3 External Layer

GUI. User requests can be specified through either a
GUI, providing both a visual environment or a simple
shell, where the user can specify his/her request using
an SQL-like syntax. In the first case, the request is
translated into the corresponding PDL, PML or PQL
request in SQL-like syntax and directly passed to the
PBMS Engine that will execute it.

Import/Export. The Import/Export module allows
the user to import and export in the PBMS patterns
already represented by using standard formats. In
the current PSYCHO version, we have already im-
plemented a module for importing/exporting associ-
ation rules represented in PMML [10], by exploiting,
when possible, the import/export functionalities of the
ODM server.

4 Qutline of the demonstration

The demonstration will highlight the peculiarities of
PSYCHO, comparing the supported features with

1349

those provided by other existing pattern management
solutions. PSYCHO features will be described by
using three main pattern management scenarios con-
cerning: (i) management of homogeneous patterns; (ii)
management of heterogeneous patterns; (iii) manage-
ment of user-defined patterns, possibly not related to
typical mining processes.

In the context of such scenarios, we will demon-
strate the following PSYCHO characteristics, by us-
ing either the PSYCHO shell or the PSYCHO GUI:
(i) the usage of a-priori and a-posteriori patterns in
common data mining processes; (ii) the capability to
exploit synchronization to guide the knowledge deci-
sion process, a feature which has only been partially
considered in other existing proposals; (iii) the expres-
sive power of PQL, by presenting, in the context of the
different scenarios, various types of queries, involving
patterns and raw data; (iv) the usage of the vari-
ous pattern-data mapping representations; this issue
is quite innovative, since, as far as we know, exist-
ing solutions deal with at most a single pattern-data
relationship representation; (v) the functionalities of
our Import/Export module, which enhances the basic
PMML import functionalities provided by Oracle.

References

[1] B. Catania, A. Maddalena, and M. Mazza. A
Framework for Data Mining Pattern Manage-
ment. In Proc. of ECML/PKDD, pp. 87-98, 2004.

[2] S. Johnson, L.V.S. Lakshmanan, and R.T. Ng.
The 3W Model and Algebra for Unified Data Min-
ing. In Proc. of VLDB, pp. 21-32, 2001.

[3] R. Meo, P. Lanzi, and M. Klemettinen. Database
Support for Data Mining Applications. LNCS
2682. Springer-Verlag. 2004.

[4] S. Rizzi et al. Towards a Logical Model for Pat-
terns. In Proc. of ER, pp. 77-90, 2003.

[5] CINQ project. http://www.cing-project.org.
(CWM).

[6] Common Warehouse Metamodel
http://www.omg.org/cwm

[7] Java Data Mining API. http://www.jcp.org/
jsr/detail /73.prt.

[8] Oraclel0g Database. http://www.oracle.com/-
technology/products/database/oraclel0g/

[9] PANDA Project. http://dke.cti.gr/panda

[10] Predictive Model Markup Language (PMML).
http://www.dmg.org/pmml-v3-0.html, 2003.

[11] SICStus Prolog (v.3)
sicstuswww /site/

http://www.sics.se/isl/-

