
MIX: A Meta-data Indexing System for XML

SungRan Cho
L3S, University of Hannover

scho@l3s.de

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

Abstract
We present a system for efficient meta-data in-
dexed querying of XML documents. Given the
diversity of the information available in XML, it
is very useful to annotate XML data with a wide
variety of meta-data, such as quality and security
assessments. We address the meta-data indexing
problem of efficiently identifying the XML ele-
ments along a location step in an XPath query,
that satisfy meta-data range constraints. Our sys-
tem, named MIX, incorporates query processing
on all XPath axes suitably enhanced with meta-
data features offering not only query answering
but also dynamic maintenance of meta-data levels
for XML documents.

1 Introduction
Companies are using the Web as the main means of infor-
mation dissemination, and XML has become the de facto
standard for data representation and exchange over the
Web. The information available over the Web is extremely
diverse, and of varying degrees of quality (e.g., accuracy,
recency, etc.) and security. When querying such data, these
quality and security assessments are often as useful as the
data, and should be queryable as well (see, e.g., [5, 1, 6]).
This suggests that it is very useful to annotate XML data
with meta-data, and to efficiently identify the data that meet
desired constraints on the meta-data.

Our meta-data model for XML documents is based on
meta-data levels, assigned to elements by associating an
attribute called MetadataLevel. We use positive inte-
gers as meta-data levels, and the one-sided range constraint
“
�
uml” to identify desirable data, i.e., those that satisfy

the meta-data constraint; uml is referred to as the meta-
data query threshold. For example, a user can ask a query
to find all sales numbers with approximation error

�����
.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Given the importance of XPath-based query access to
XML, and the ubiquity of meta-data that can be modeled as
values from an ordered domain, XPath-based query evalu-
ation engines need to be able to efficiently identify the el-
ements that satisfy meta-data constraints along each loca-
tion step in the XPath query. We have developed a family
of indexing structures to facilitate meta-data based access
to XML documents. We refer to this family as meta-data
indexes. A meta-data index can quickly identify all XML
elements that are (i) reachable from a specified element us-
ing a specified XPath axis, and (ii) satisfy the meta-data
range constraint.

Meta-data indexes can be easily realized using popu-
lar multi-dimensional index structures such as R-trees [2].
Meta-data indexes incorporate the following features:
(i) actual meta-data levels are associated only with el-
ements for which this value is explicitly specified, and
(ii) inherited meta-data levels and inheritance source nodes
are associated with some non-leaf nodes of the index struc-
ture, to enable efficient lookup in the index structure, while
keeping the update cost manageable. A meta-data index
can be easily utilized by a variety of XPath evaluation algo-
rithms, based on an iterator-style interface, including those
in Timber [4] and Galax, an implementation of XQuery [7].

We describe MIX (Meta-data Indexing for XML), a sys-
tem for meta-data indexed querying, and dynamic mainte-
nance of meta-data for XML documents. MIX implements
efficient novel algorithms for querying, focusing on XPath
axes, and update of element meta-data levels providing a
complete solution for the entire set of XPath query axes.

In Section 2, we introduce the structure of our meta-data
indexes. Sections 3 and 4 describe the architecture of MIX
and outline the demonstration.

2 Meta-data Indexes
In this section, we describe a family of meta-data indexes,
which can quickly identify all XML elements reachable
from a given element using a specified XPath axis, and have
a meta-data level no larger than a specified threshold.

2.1 Matching XPath Location Steps

We use an encoding scheme for nodes in XML documents
to reconstruct the XML document unambiguously, which

1326



has the same effect as preorder and postorder. Ln is the
rank at which the node is encountered in a left to right depth
first search (DFS) of the XML data tree, and Rn is the rank
at which the node is encountered in a right to left DFS. Ln
and Rn suffice for matching along ordered and structural
axes, such as ancestor, descendant, following, and preced-
ing, but are insufficient for level sensitive matching, such
as child and parent axes (matching nodes one level apart),
and following-sibling and preceding-sibling axes (match-
ing nodes with the same parent). Associating an additional
number with each node, e.g., the parent node’s Ln, writ-
ten as PLn, permits level sensitive matching as well. A
multi-dimensional index structure, such as an R-tree, on
the Ln/Rn/PLn dimensions can be constructed to quickly
locate desired result elements [3].

2.2 Incorporating Meta-data Levels

Our meta-data model for XML documents assigns meta-
data levels, which are positive integers, to a subset of XML
elements. If an element does not have a meta-data level
explicitly assigned to it, it inherits the value from its closest
ancestor (in the XML tree) that has an explicitly assigned
value. We allow the meta-data level of a child element to
be larger or smaller than that of its parent element.

To support meta-data indexed querying of XML, the R-
tree on the Ln/Rn/PLn dimensions can be augmented to
include the meta-data level. We describe our proposal for
such a meta-data index next.

We use the term bounding box of a non-leaf index page
entry � to denote the set of leaf pages rooted at � . An ele-
ment node in a bounding box (i.e., in one of its leaf pages)
is defined as a boundary node of the bounding box if no
ancestor element of that node is also in the bounding box.

Actual/Inherited Meta-data Levels: In the meta-data in-
dex (MI), actual meta-data levels are associated only with
elements for which this value is explicitly specified (as the
value of attribute ActualML). Non-leaf page entries in
the MI additionally maintain information about meta-data
levels that are inherited by elements in the (index) sub-
tree of that non-leaf page entry (as the value of attribute
InheritedML). More precisely, the meta-data levels in-
herited by the boundary nodes of a bounding box, that do
not have an ActualML attribute defined, influence the
InheritedML values of the bounding box. The ele-
ment nodes in leaf pages entries of the MI do not store
InheritedML values; only the non-leaf page entries
maintain ranges of these values.

Inheritance Source Nodes: Although ActualML and
InheritedML in page entries identify which leaf pages
contain potentially desirable elements, those values, how-
ever, do not suffice for efficient maintenance of the meta-
data index under updates to the actual meta-data level of an
element. So far, there is no way to efficiently make this de-
cision, based on the ActualML and InheritedML val-
ues. Our solution to enable effective support for mainte-
nance of InheritedML values is to store the identities of

Meta−data
Index

XML
Data

XML Stores

XPath Query

Input

Bulk load

Query Result

User Administration

Metat−data threshold Meta−data specification

Execution Engine

Index Maintenance

Meta−data change

Meta−data Index Management

Figure 1: Architecture of MIX

XML element nodes from where these low and high meta-
data levels are inherited. This information is maintained in
the non-leaf page entries as values for the InheritList
attribute.

Lastly, we discuss some conventions and an optimiza-
tion used in the meta-data index. A value of � for low/high
actual meta-data levels in a bounding box means that no
element node in the bounding box has an ActualML de-
fined. A value of � for low/high inherited meta-data levels
in a bounding box means that no node in the bounding box
inherits its meta-data level from outside the box. As an
optimization to the MI, whenever the value of a meta-data
related attribute in a non-leaf page entry is the same as that
in its parent non-leaf page entry, the child entry records
this information using a special symbol “-”. This optimiza-
tion is very useful to bound the propagation of updates to
InheritedML and InheritList values, under meta-
data level updates.

3 System Architecture
MIX is a Java-based prototype. Its architecture is depicted
in Figure 1. It consists of two main components: the
XPath querying module and the meta-data index manage-
ment module. The first component incorporates a query
processor on all XPath axes, using meta-data aware index-
ing, that accepts queries and returns elements satisfying the
meta-data constraint. The second component incorporates
maintenance of meta-data information for XML elements
and incremental maintenance of the index under meta-data
update.

The MIX system in its current version encompasses the
following functionality and features that will be demon-
strated.

Dynamic visualization: MIX facilitates browsing of dif-
ferent XML documents, display of queries and query re-
sults, and visualization of the meta-data index through a
flexible and interactive graphical interface.

Aids to adjusting parameters: MIX provides support
for adjusting various parameters of the method. The spe-

1327



cific operations taking place when meta-data information
or page size on the index is adjusted can be viewed in an
interactive mode.
Meta-data access and manipulation: MIX implements
novel algorithms that can not only dynamically incorporate
meta-data specification changes but also bulk load meta-
data efficiently.

4 Demonstration Outline
4.1 XPath Querying

MIX implements the index lookup algorithm for the
meta-data index, which uses the ActualML and
InheritedML ranges to return the set of nodes with
meta-data level

�
uml along an XPath location step. Once

an XML document to be queried is selected, users can spec-
ify XPath queries along with a meta-data threshold through
a flexible graphical interface. Then the system uses the
meta-data index to return all XML data through the meta-
data index. MIX system supports all XPath axes and pro-
vides various ways to conveniently visualize query results.
In Figure 2(b), for example, a user issues a query, “retrieve
all descendants of all-accounts with meta-data level�

2”, and as a result, cart and item elements are high-
lighted in the graphical interface, along with the associated
meta-data index information.

4.2 Meta-data Index Management

Meta-data Specification: XML documents can be se-
lected and browsed in graphical form. XML element nodes
are labeled with element tags or string values; edges are ei-
ther between elements or between an element and a string
value. In Figure 2(a), an example XML database rep-
resents an online-seller that contains information
about items and accounts. XML elements are encoded
with Ln, Rn, and PLn and the MetadataLevel attribute
specified on elements is displayed in a circle. Meta-data in-
formation for XML elements can be dynamically modified
on demand through a graphical interface.

Bulk Loading: The system incorporates efficient sup-
port for loading new documents, via a bulk loading algo-
rithm that facilitates index construction and efficient rep-
resentation of element meta-data information in the hier-
archical structure. Each element is represented in the in-
dex using the “coordinates”: Ln, Rn, PLn, ActualML,
InheritedML, InheritList. Meta-data index con-
tents as well as index operations can be efficiently visu-
alized in the system. Figure 2(b), for example, shows
a meta-data index over the online-seller dataset of
Figure 2(a) with a page capacity of 2. The leaf pages in
the index contain both leaf and non-leaf XML elements,
and non-leaf index pages indicate page boundaries by the
smallest and the largest values occurring in the page.

Index Maintenance: Maintenance under updates is an
essential task for the meta-data index, simply because
changes occur in the real world. A specified meta-data level

may be changed to a different value, may be removed, or
an inherited meta-data level may be replaced by an explicit
value. Whenever the meta-data level information for XML
elements is modified, such changes should be propagated to
the meta-data index, so that they are taken into account dur-
ing query processing. MIX incorporates novel algorithms
for such propagation, in particular such propagation is per-
formed in a top-down and bottom-up fashion in the index.

� Top-down update for actual meta-data levels: The
top-down update for actual meta-data levels navigates
the index tree down from the root page and makes the
implicit values (“-”) of ActualML explicit during in-
dex tree traversal. Once the leaf page is reached, it
modifies the ActualML of the node, and then invokes
bottom-up update.

� Bottom-up update for actual meta-data levels: The
goal of the bottom-up update is to change back the
index page entries correctly. We use a lock-step ap-
proach to make sure that the implicit (“-”) values are
properly recorded. More specifically, if the value
ActualML of the child page entry is the same as
that of the parent page entry, the value at the child
page entry is changed back to “-”. If the value at the
child page entry is “-”, then the old value at the parent
page is propagated down only to child page, instead of
propagating all the way down to the leaves.

� Top-down update for inherited meta-data levels:
The top-down update for inherited meta-data levels
first traverses down the index tree to identify pages
with the given element node or its descendants, and
makes explicit the values of InheritedML and
InheritList during traversal.

� Bottom-up update for inherited meta-data levels:
The bottom-up update propagates InheritedML
and InheritList, back up the index tree, modify-
ing and making implicit values and lists during traver-
sal. The approach to propagate values and lists to child
pages and to revert to “-” is the same as the bottom-
up update for actual meta-data levels. The bottom-up
update works with a global stack to keep track of how
inheritance works for the data items in the leaf page, to
deal with a nearest ancestor with an explicit meta-data
level.

The system includes support for effective visualization
of meta-data level propagation operations in the index.
Consider that a meta-data level of 2 is specified for the
all-items element in Figure 2(a). The top-down up-
date for the actual meta-data level makes the “-” values ex-
plicit on the paths where the all-items is present. The
bottom-up update for actual meta-data level changes back
index pages. If a meta-data level for element all-items
is added, this would result in a change of the meta-data
level inherited by its descendants. The top-down update
for inherited meta-data level makes the “-” values explicit

1328



 

(a) XML data

 

(b) Meta-data Index

Figure 2: XML data and meta-data index

 

Figure 3: Update of meta-data level

on the paths where book, title, and author elements
are present. The bottom-up update for inherited meta-data
level changes the smallest or the largest InheritedML
value in the index pages in a way identical to what the
bottom-up update for actual meta-data level has done. Ad-
ditionally, the list InheritList is modified to contain
a reference to the all-items node. The final meta-data
index is shown in Figure 3.

5 Conclusion
The proposed system, MIX, provides meta-data access and
manipulation of XML documents. It incorporates novel
meta-data indexing methods to facilitate meta-data oper-
ations on XML documents as well as novel algorithms
to reflect dynamic changes of meta-data level information
on the index. Through an easy to use graphical user in-
terface, it accepts queries, requests for element meta-data
level modifications, and displays and visualizes query re-
sults. Moreover, it facilitates understanding of the novel
meta-data index operations incorporating support for dy-
namic visualization of the index.

References
[1] D. Bhagwat, L. Chiticariu, W.C. Tan, and G. Vijayvargiya.

An annotation management system for relational databases.
In Proc. of VLDB, 2004.

[2] V. Gaede and O. Gunther. Multidimensional Access Meth-
ods. ACM Computing Surveys, 30(2), 170–231, 1998.

[3] T. Grust. Accelerating XPath location steps. In Proc. of
SIGMOD, 2002.

[4] H.V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Laksh-
manan, A. Nierman, S. Paparizos, J.M. Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu, TIMBER: A native
XML database, VLDB Journal 11(4): 274-291, 2002.

[5] S. Murthy, D. Maier, and L. Delcambre. Querying bi-level
information. In Proc. of WebDB, 2004.

[6] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In Proc. of CIDR, 2005.

[7] S. Boag, D. Chamberlin, M.F. Fernandez, D. Florescu,
J. Robie, and J. Simeon. XQuery 1.0: An XML query lan-
guage. W3C Working Draft. http://www.w3.org/TR/xquery/

1329


